Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models

Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertil...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 18; no. 6; pp. 1880 - 1894
Main Authors Hillier, Jonathan, Brentrup, Frank, Wattenbach, Martin, Walter, Christof, Garcia-Suarez, Tirma, Mila-i-Canals, Llorenç, Smith, Pete
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2012
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.
AbstractList Major sources of greenhouse gas ( GHG ) emissions from agricultural crop production are nitrous oxide ( N 2 O ) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide ( CO 2 ) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N 2 O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer-induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per-hectare basis. The optimal mitigation for each soil-climate-region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site-specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice. [PUBLICATION ABSTRACT]
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice.
Author Hillier, Jonathan
Brentrup, Frank
Mila-i-Canals, Llorenç
Smith, Pete
Garcia-Suarez, Tirma
Wattenbach, Martin
Walter, Christof
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Hillier
  fullname: Hillier, Jonathan
  email: j.hillier@abdn.ac.uk
  organization: Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK
– sequence: 2
  givenname: Frank
  surname: Brentrup
  fullname: Brentrup, Frank
  organization: Research Centre Hanninghof, Yara International ASA, Hanninghof 35, 48249, Duelmen, Germany
– sequence: 3
  givenname: Martin
  surname: Wattenbach
  fullname: Wattenbach, Martin
  organization: Section Hydrology, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, 14473, Potsdam, Germany
– sequence: 4
  givenname: Christof
  surname: Walter
  fullname: Walter, Christof
  organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK
– sequence: 5
  givenname: Tirma
  surname: Garcia-Suarez
  fullname: Garcia-Suarez, Tirma
  organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK
– sequence: 6
  givenname: Llorenç
  surname: Mila-i-Canals
  fullname: Mila-i-Canals, Llorenç
  organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK
– sequence: 7
  givenname: Pete
  surname: Smith
  fullname: Smith, Pete
  organization: Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25935907$$DView record in Pascal Francis
BookMark eNqNkc1u1DAUhSNUJNrCO1hCSGwS_J_JAhCMmCmigi5AldhYjnOT8ZDEqZ2h05fiGbE71Sy6qje25e-ce33PWXYyuhGyDBFckLjebQvCpMgpX8iCYkILTGVJiv2z7PT4cJLOgucEE_YiOwthizFmFMvT7N_1xpoNMt5NvR4b1HmAceN2AVCnAxrsbDs9WzciN6UtoM7-BTRvIKF6hjCjGkZo7RyQHVFj2xY8jDO6db5vkIcuqT6iZW-HiKNUJDjb52ECY1tr0OShseZg3no3RJsZOh_hBsEwWW-N7tHgGujDy-x5q_sArx728-zX6svP5UV--WP9dfnpMjecU5JTUTWSMbxYtLRqGlMbTATjvCqhjFdBG0laWS9kBdjEhluiueAgasppzXXNzrO3B9_Ju5td_KQabDDQxxlBHI6KkywrKQllEX39CN26nR9jd4kiXAgpyki9eaB0iN9pvR6NDWrycSr-TsWGmahw4hYHLiYSgof2iBCsUuBqq1KuKuWqUuDqPnC1j9IPj6TGzvfZzV7b_ikG7w8Gt7aHuycXVuvl53SK-vygt2GG_VGv_R8lS1YKdf19rVari6vV1fq3-sb-A8Xw2cw
CitedBy_id crossref_primary_10_3390_agronomy11091710
crossref_primary_10_1098_rspb_2017_2798
crossref_primary_10_1016_j_agsy_2015_03_002
crossref_primary_10_1016_j_agsy_2017_03_006
crossref_primary_10_1111_gcb_12368
crossref_primary_10_1016_j_agee_2013_10_010
crossref_primary_10_1016_j_scitotenv_2019_03_304
crossref_primary_10_1002_jpln_201800376
crossref_primary_10_1016_j_agee_2014_07_015
crossref_primary_10_1088_1748_9326_9_3_035006
crossref_primary_10_1371_journal_pone_0228223
crossref_primary_10_3390_ijerph19127324
crossref_primary_10_1016_j_jclepro_2017_02_172
crossref_primary_10_1111_gcb_12413
crossref_primary_10_3389_fsufs_2019_00121
crossref_primary_10_1080_01904167_2021_2005803
crossref_primary_10_3390_atmos11090958
crossref_primary_10_1016_j_jclepro_2018_09_160
crossref_primary_10_1016_j_envsoft_2013_03_015
crossref_primary_10_1016_j_ecoleng_2015_04_071
crossref_primary_10_1016_j_jclepro_2015_05_040
crossref_primary_10_1016_j_jclepro_2017_03_133
crossref_primary_10_1017_S0021859612000810
crossref_primary_10_3389_fpls_2022_914653
crossref_primary_10_1016_j_envsoft_2014_12_017
crossref_primary_10_4155_cmt_13_77
crossref_primary_10_5194_soil_1_687_2015
crossref_primary_10_3389_fsufs_2020_558483
crossref_primary_10_1016_j_scitotenv_2019_02_125
crossref_primary_10_1111_j_1757_1707_2012_01198_x
crossref_primary_10_1016_j_scitotenv_2014_02_020
crossref_primary_10_1016_j_scitotenv_2014_05_070
crossref_primary_10_1007_s11356_018_3792_2
crossref_primary_10_1007_s11356_021_17184_0
crossref_primary_10_1016_j_agsy_2016_12_008
Cites_doi 10.3763/ijas.2009.0419
10.1016/S1161-0301(03)00039-X
10.1016/j.biombioe.2007.11.001
10.1017/CBO9780511976988.006
10.1016/j.still.2008.05.012
10.2134/agronj1996.00021962008800010008x
10.1016/j.geoderma.2004.01.021
10.1098/rstb.2007.2184
10.1098/rstb.2010.0127
10.1111/j.1365-2486.2009.02031.x
10.3763/ijas.2009.0484
10.2134/jeq2005.0160
10.1007/s10705-004-7354-2
10.1016/j.still.2008.08.008
10.1111/j.1475-2743.2004.tb00363.x
10.1016/j.still.2008.07.011
10.1127/0941-2948-2006/0130
10.1111/j.1365-3059.2008.01899.x
10.1111/j.1365-2389.2005.00708.x
10.1046/j.1365-2486.1998.00185.x
10.1029/2001GB001812
10.1029/94GB00767
10.1890/05-2018
10.1007/s10705-007-9138-y
10.1016/j.envsoft.2011.03.014
10.1046/j.1365-2486.1997.00055.x
10.2136/sssaj2002.1930
10.1007/s10533-004-0360-2
10.1111/j.1475-2743.2004.tb00366.x
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2015 INIST-CNRS
Copyright © 2012 Blackwell Publishing Ltd
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Blackwell Publishing Ltd
DBID BSCLL
AAYXX
CITATION
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TG
7U6
KL.
SOI
DOI 10.1111/j.1365-2486.2012.02671.x
DatabaseName Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Sustainability Science Abstracts
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Meteorological & Geoastrophysical Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Agriculture
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 1894
ExternalDocumentID 2653689851
25935907
10_1111_j_1365_2486_2012_02671_x
GCB2671
ark_67375_WNG_FFHPFPGZ_K
Genre article
Feature
GeographicLocations World
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
7SN
7UA
C1K
F1W
H97
L.G
7ST
7TG
7U6
KL.
SOI
ID FETCH-LOGICAL-c4421-259d633088f29ddcbc01534497e7ddc52d61f6b869e0cffef1a454e5b242b4ab3
IEDL.DBID DR2
ISSN 1354-1013
IngestDate Thu Jul 10 19:55:09 EDT 2025
Fri Jul 25 10:58:59 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Thu Apr 24 22:50:44 EDT 2025
Tue Jul 01 03:52:48 EDT 2025
Wed Jan 22 17:09:12 EST 2025
Wed Oct 30 09:54:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Cultivated field
Climate
mitigation
Soil tillage
nitrous oxide
soil carbon
Carbon
Empirical model
Modeling
modelling
fertilizer
tillage
Fertilizers
Soils
Greenhouse gas
Mitigation measure
Agriculture
Nitrogen protoxide
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4421-259d633088f29ddcbc01534497e7ddc52d61f6b869e0cffef1a454e5b242b4ab3
Notes ark:/67375/WNG-FFHPFPGZ-K
istex:DE94C5C57A8CBDE88EBBAAB7805B7938567F43F9
ArticleID:GCB2671
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1011455657
PQPubID 30327
PageCount 15
ParticipantIDs proquest_miscellaneous_1017966123
proquest_journals_1011455657
pascalfrancis_primary_25935907
crossref_primary_10_1111_j_1365_2486_2012_02671_x
crossref_citationtrail_10_1111_j_1365_2486_2012_02671_x
wiley_primary_10_1111_j_1365_2486_2012_02671_x_GCB2671
istex_primary_ark_67375_WNG_FFHPFPGZ_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Change Biol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255-263.
Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957.
Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263, doi: 10.1127/0941-2948-2006/0130.
Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agronomy Journal, 88, 38-43.
Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685.
Barthès B, Azontonde A, Blanchart E et al. (2004) Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management, 20, 231-239.
Ball BC, Crichton I, Horgan GW (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil & Tillage Research, 101, 20-30.
Rochette P (2008) No-till only increase N2O emissions in poorly-aerated soils. Soil & Tillage Research, 101, 97-100.
Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1-23.
R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at : http://www.R-project.org (accessed 1 March 2012).
Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 16, 1837-1846.
Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, 673-680.
Vermeulen GD, Mosquera J (2009) Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil. Soil & Tillage Research, 102, 126-134.
Smith P (2008) Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81, 169-178.
Smith P, Martino D, Cai Z, et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B, 363, 789-813.
Del Grosso SJ, Parton WJ, Mosier AR, Walsh MK, Ojima DS, Thornton PE (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35, 1451-1460.
Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems, 72, 51-65.
Hiller JG, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Journal of Environmental Modelling and Software, 26, 1070-1078.
St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass and Bioenergy, 32, 442-452.
Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H (2004) Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production. European Journal of Agronomy, 20, 265-279.
Hillier JG, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7, 107-118.
West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis. Soil Science Society of America Journal, 66, 1930-1946.
Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080.
Carlton R, Berry P, P (2010) Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land. International Journal of Agricultural Sustainability, 8, 164-175.
Adler RA, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17, 666-691.
Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254.
Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67e79.
Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions. Biogeochemistry, 72, 87-121.
FAO/IIASA/ISRIC/ISSCAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
Berry PM, Kindred DR, Paveley ND (2008) Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000-1008.
IPCC (2006). IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed 1 March 2012)
US-EPA (2006) Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC. Available at: http://www.epa.gov/climatechange/economics/international.html (accessed 1 March 2012)
2007; 17
2002; 16
2004; 122
2004; 20
2010; 16
2006; 35
2011
2010; 365
2006; 15
2009
2008
2007
2008; 57
2006
2008; 32
2004
2008; 101
1997; 3
2008; 363
1994; 8
2002; 66
2009; 102
2009; 7
2011; 26
2005; 72
2008; 81
1998; 4
2005; 56
2010; 8
1996; 88
Smith P (e_1_2_6_34_1) 2007
e_1_2_6_32_1
e_1_2_6_10_1
IPCC (e_1_2_6_18_1) 2006
e_1_2_6_31_1
e_1_2_6_30_1
IPCC (e_1_2_6_19_1) 2007
R Development Core Team (e_1_2_6_26_1) 2008
e_1_2_6_13_1
e_1_2_6_36_1
FAO/IIASA/ISRIC/ISSCAS/JRC (e_1_2_6_14_1) 2009
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_15_1
US‐EPA (e_1_2_6_38_1) 2006
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
References_xml – reference: Del Grosso SJ, Parton WJ, Mosier AR, Walsh MK, Ojima DS, Thornton PE (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35, 1451-1460.
– reference: Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions. Biogeochemistry, 72, 87-121.
– reference: Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1-23.
– reference: Hiller JG, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Journal of Environmental Modelling and Software, 26, 1070-1078.
– reference: Ball BC, Crichton I, Horgan GW (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil & Tillage Research, 101, 20-30.
– reference: FAO/IIASA/ISRIC/ISSCAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
– reference: US-EPA (2006) Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC. Available at: http://www.epa.gov/climatechange/economics/international.html (accessed 1 March 2012)
– reference: West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis. Soil Science Society of America Journal, 66, 1930-1946.
– reference: Carlton R, Berry P, P (2010) Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land. International Journal of Agricultural Sustainability, 8, 164-175.
– reference: Smith P (2008) Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81, 169-178.
– reference: IPCC (2006). IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed 1 March 2012)
– reference: Smith P, Martino D, Cai Z, et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B, 363, 789-813.
– reference: Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263, doi: 10.1127/0941-2948-2006/0130.
– reference: Adler RA, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17, 666-691.
– reference: Hillier JG, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7, 107-118.
– reference: Rochette P (2008) No-till only increase N2O emissions in poorly-aerated soils. Soil & Tillage Research, 101, 97-100.
– reference: Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agronomy Journal, 88, 38-43.
– reference: Berry PM, Kindred DR, Paveley ND (2008) Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000-1008.
– reference: Barthès B, Azontonde A, Blanchart E et al. (2004) Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management, 20, 231-239.
– reference: Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255-263.
– reference: R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at : http://www.R-project.org (accessed 1 March 2012).
– reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67e79.
– reference: St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass and Bioenergy, 32, 442-452.
– reference: Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, 673-680.
– reference: Vermeulen GD, Mosquera J (2009) Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil. Soil & Tillage Research, 102, 126-134.
– reference: Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957.
– reference: Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 16, 1837-1846.
– reference: Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080.
– reference: Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254.
– reference: Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems, 72, 51-65.
– reference: Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H (2004) Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production. European Journal of Agronomy, 20, 265-279.
– reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685.
– volume: 16
  start-page: 1080
  year: 2002
  article-title: Modeling global annual N O and NO emissions from fertilized fields
  publication-title: Global Biogeochemical Cycles
– volume: 101
  start-page: 97
  year: 2008
  end-page: 100
  article-title: No‐till only increase N O emissions in poorly‐aerated soils
  publication-title: Soil & Tillage Research
– volume: 17
  start-page: 666
  year: 2007
  end-page: 691
  article-title: Life‐cycle assessment of net greenhouse‐gas flux for bioenergy cropping systems
  publication-title: Ecological Applications
– year: 2009
– volume: 8
  start-page: 164
  year: 2010
  end-page: 175
  article-title: Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land
  publication-title: International Journal of Agricultural Sustainability
– volume: 35
  start-page: 1451
  year: 2006
  end-page: 1460
  article-title: DAYCENT national‐scale simulations of nitrous oxide emissions from cropped soils in the United States
  publication-title: Journal of Environmental Quality
– volume: 20
  start-page: 265
  year: 2004
  end-page: 279
  article-title: Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production
  publication-title: European Journal of Agronomy
– volume: 72
  start-page: 87
  year: 2005
  end-page: 121
  article-title: Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions
  publication-title: Biogeochemistry
– volume: 88
  start-page: 38
  year: 1996
  end-page: 43
  article-title: SUNDIAL: a PC‐based system for simulating nitrogen dynamics in arable land
  publication-title: Agronomy Journal
– volume: 4
  start-page: 679
  year: 1998
  end-page: 685
  article-title: Preliminary estimates of the potential for carbon mitigation in European soils through no‐till farming
  publication-title: Global Change Biology
– volume: 81
  start-page: 169
  year: 2008
  end-page: 178
  article-title: Land use change and soil organic carbon dynamics
  publication-title: Nutrient Cycling in Agroecosystems
– volume: 3
  start-page: 67e79
  year: 1997
  article-title: Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long‐term experiments
  publication-title: Global Change Biology
– year: 2007
– volume: 365
  start-page: 2941
  year: 2010
  end-page: 2957
  article-title: Competition for land
  publication-title: Philosophical Transactions of the Royal Society, B
– start-page: 120
  year: 2004
– volume: 32
  start-page: 442
  year: 2008
  end-page: 452
  article-title: Estimating the pre‐harvest greenhouse gas costs of energy crop production
  publication-title: Biomass and Bioenergy
– volume: 16
  start-page: 1837
  year: 2010
  end-page: 1846
  article-title: Evaluation of effectiveness of enhanced‐efficiency fertilizers as mitigation options for N O and NO emissions from agricultural soils: meta‐analysis
  publication-title: Global Change Biology
– volume: 57
  start-page: 1000
  year: 2008
  end-page: 1008
  article-title: Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production
  publication-title: Plant Pathology
– volume: 7
  start-page: 107
  year: 2009
  end-page: 118
  article-title: The carbon footprints of food crop production
  publication-title: International Journal of Agricultural Sustainability
– volume: 101
  start-page: 20
  year: 2008
  end-page: 30
  article-title: Dynamics of upward and downward N O and CO fluxes in ploughed or no‐tilled soils in relation to water‐filled pore space, compaction and crop presence
  publication-title: Soil & Tillage Research
– volume: 122
  start-page: 1
  year: 2004
  end-page: 23
  article-title: Carbon sequestration in the agricultural soils of Europe
  publication-title: Geoderma
– volume: 26
  start-page: 1070
  year: 2011
  end-page: 1078
  article-title: A farm‐focused calculator for emissions from crop and livestock production
  publication-title: Journal of Environmental Modelling and Software
– volume: 20
  start-page: 255
  year: 2004
  end-page: 263
  article-title: Impacts of land management on fluxes of trace greenhouse gases
  publication-title: Soil Use and Management
– volume: 66
  start-page: 1930
  year: 2002
  end-page: 1946
  article-title: Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis
  publication-title: Soil Science Society of America Journal
– volume: 102
  start-page: 126
  year: 2009
  end-page: 134
  article-title: Soil, crop and emission responses to seasonal‐controlled traffic in organic vegetable farming on loam soil
  publication-title: Soil & Tillage Research
– year: 2008
– year: 2006
– start-page: 32
  year: 2011
  end-page: 61
– volume: 8
  start-page: 237
  year: 1994
  end-page: 254
  article-title: Modeling carbon biogeochemistry in agricultural soils
  publication-title: Global Biogeochemical Cycles
– volume: 363
  start-page: 789
  year: 2008
  end-page: 813
  article-title: Greenhouse gas mitigation in agriculture
  publication-title: Philosophical Transactions of the Royal Society, B
– volume: 15
  start-page: 259
  year: 2006
  end-page: 263
  article-title: World Map of the Köppen‐Geiger climate classification updated
  publication-title: Meteorologische Zeitschrift
– volume: 20
  start-page: 231
  year: 2004
  end-page: 239
  article-title: Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin
  publication-title: Soil Use and Management
– volume: 56
  start-page: 673
  year: 2005
  end-page: 680
  article-title: An overview of the permanence of soil organic carbon stocks: influence of direct human‐induced, indirect and natural effects
  publication-title: European Journal of Soil Science
– volume: 72
  start-page: 51
  year: 2005
  end-page: 65
  article-title: Trends in global nitrous oxide emissions from animal production systems
  publication-title: Nutrient Cycling in Agroecosystems
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2008
  ident: e_1_2_6_26_1
– ident: e_1_2_6_17_1
  doi: 10.3763/ijas.2009.0419
– ident: e_1_2_6_10_1
  doi: 10.1016/S1161-0301(03)00039-X
– ident: e_1_2_6_37_1
  doi: 10.1016/j.biombioe.2007.11.001
– ident: e_1_2_6_20_1
  doi: 10.1017/CBO9780511976988.006
– volume-title: Harmonized World Soil Database (version 1.1)
  year: 2009
  ident: e_1_2_6_14_1
– ident: e_1_2_6_5_1
  doi: 10.1016/j.still.2008.05.012
– volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_6_19_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_31_1
  doi: 10.2134/agronj1996.00021962008800010008x
– volume-title: Global Anthropogenic Non‐CO2 Greenhouse Gas Emissions: 1990‐2020
  year: 2006
  ident: e_1_2_6_38_1
– ident: e_1_2_6_15_1
  doi: 10.1016/j.geoderma.2004.01.021
– ident: e_1_2_6_25_1
– ident: e_1_2_6_35_1
  doi: 10.1098/rstb.2007.2184
– ident: e_1_2_6_36_1
  doi: 10.1098/rstb.2010.0127
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2486.2009.02031.x
– ident: e_1_2_6_11_1
  doi: 10.3763/ijas.2009.0484
– ident: e_1_2_6_12_1
  doi: 10.2134/jeq2005.0160
– ident: e_1_2_6_23_1
  doi: 10.1007/s10705-004-7354-2
– ident: e_1_2_6_39_1
  doi: 10.1016/j.still.2008.08.008
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1475-2743.2004.tb00363.x
– ident: e_1_2_6_27_1
  doi: 10.1016/j.still.2008.07.011
– volume-title: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: e_1_2_6_34_1
– ident: e_1_2_6_13_1
– ident: e_1_2_6_21_1
  doi: 10.1127/0941-2948-2006/0130
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-3059.2008.01899.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1365-2389.2005.00708.x
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1365-2486.1998.00185.x
– volume-title: IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories
  year: 2006
  ident: e_1_2_6_18_1
– ident: e_1_2_6_8_1
  doi: 10.1029/2001GB001812
– ident: e_1_2_6_22_1
  doi: 10.1029/94GB00767
– ident: e_1_2_6_9_1
– ident: e_1_2_6_2_1
  doi: 10.1890/05-2018
– ident: e_1_2_6_29_1
  doi: 10.1007/s10705-007-9138-y
– ident: e_1_2_6_16_1
  doi: 10.1016/j.envsoft.2011.03.014
– ident: e_1_2_6_32_1
  doi: 10.1046/j.1365-2486.1997.00055.x
– ident: e_1_2_6_40_1
  doi: 10.2136/sssaj2002.1930
– ident: e_1_2_6_24_1
  doi: 10.1007/s10533-004-0360-2
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1475-2743.2004.tb00366.x
SSID ssj0003206
Score 2.2616584
Snippet Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral...
Major sources of greenhouse gas ( GHG ) emissions from agricultural crop production are nitrous oxide ( N 2 O ) emissions resulting from the application of...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1880
SubjectTerms Agricultural land
agriculture
Agronomy
Agronomy. Soil science and plant productions
Animal and plant ecology
Animal, plant and microbial ecology
Biological and medical sciences
Carbon dioxide
climate
Climate change
Crop production
Farm buildings
fertilizer
Fertilizer application
Fertilizers
Fundamental and applied biological sciences. Psychology
General agroecology
General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping
General agronomy. Plant production
General aspects
Generalities. Agricultural and farming systems. Agricultural development
Geochemistry
greenhouse gas
Greenhouse gases
Mitigation
modelling
Nitrification
Nitrous oxide
Organic fertilizers
soil carbon
Soil types
Soils
tillage
Title Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models
URI https://api.istex.fr/ark:/67375/WNG-FFHPFPGZ-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2012.02671.x
https://www.proquest.com/docview/1011455657
https://www.proquest.com/docview/1017966123
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQEBJc8FOYFhiTkdDuWjWJ7SRXaFRLK9CmCTFt4saKE6eN2iVVkkqDKx6BR-GZeBLOcdJsQVxMiLumznES-_jkc_z5O4S8hTlPKmLGhjGu_wMisIeRYnwoVOCnCbdVYrZHn5yK2Tn7cMkvW_4T7oVp9CG6D244Mky8xgEeqao_yA1Di_nINMBPeo7w7BHiSSxAfPTpRknKdUyaTdvlDCKP7fZJPX-tqPemuo-Nfo3MyaiCxkubrBc9WHob3Jq3U_iELLfP1ZBSlqNNrUbxtz8kH__Pgz8lj1sQS48ar3tG7ul8QB4dzctWyEMPyIMmyeXXAdk9vtlLB0ZtMKkGxDoBwF6U5jR6SCerDNCzOXpOfl4ssnhBMb8YUi_pHOlBi2JTaTqPKnqVNdIgRU6LhpVD5xC2KaBZPBXxc00VhPE0qyua5XSbB6amRiKWYj4KsHrXXlVTvEhVZKtf33_g5lMkUNF1iatYTfW4DYd22hoJ1VfrzKirUJNLqHpBzsPjz5PZsE0uMQTPBLeEaV8iXBeCbOoESRKrGICRy1jgaQ8OuZMIOxXKF4Eex3CLqR0xzjRXgGkUi5S7S3byItd74Ei20trhvvZ8xlgEFQPqG6e-kyQR1OJbxNs6koxb5XVMALKSt2Zg0KUSu1Ril0rTpfLaInZnuW7UR-5gc2h8tTOIyiWy9zwuL06nMgxnZ-HZ9Iv8aJGDnjN3BtA0Lg_GnkX2t94t28hWISUQte0Fh-I3XTHEJFxoinINniBNmBco7GMRYVz5zncvp5P3-Ovlvxq-Ig_x74bNt0926nKjXwNurNWBiQi_Ae-uYnU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVgg48BOoMJSySNBbothe_-SAUEmbpKSJKtSqVS-L114nVlM7ih2RcuIReBTuvAonnoSZtePWiEOF1AM3W_asV-uZnZndb78h5DXkPKHtM1b3cf8fIgK97glm1W3RcsPA0kWgjkcPhnbviH04sU5WyI_lWZicH6JccEPLUPM1GjguSFetXEG0mItQA1zTM2xHbywKhGVfXnyG_C19u7cDP_uNYXR2D9u9elFioA79g85B8B_YkNK7bmi0gsAXPrhHk7GWIx24tYzA1kNbuHZLNv0wlKHuMYtJS4BnE8wTJrR7i6xhQXEk7t_5eMldZRqqsKduWgzmOt2swoj-2vOKb1zD37xArKaXwu8K8zoblUD4ajit_GHnAfm5HMkcBnPWmGei4X_5g2TyPx3qh-R-EafT7dywHpEVGdfIve3RrOAqkTVyO6_jeVEj67uXxwVBqJgv0xrRBpCTJDP1Gt2i7UkECYK6e0y-H48jf0yxhBqiS-kIEVDjZJ5KOvJSeh7l7CdJTJMceERH4JkoBOz4KqYIGRXgqcIoS2kU02Wpm4wqFlyKJTdA6l3xVUnxI2kSTX59_YbnaxEjRqcz3KjLm8eTRrSkDwmoPJ9GikCGqnJJ6RNydCMjvk5W4ySWT0FzdSGlYbnScRljHjQMgW0zdI0g8KAVVyPOUnO5X5DLY42TCb-SZIIKcVQhjirElQrxhUb0UnKaE6xcQ2ZLGUcp4M3OEKDoWPx42OWdTu-gc9A95X2NbFaspxSAoTGtVtPRyMbSnHgxeaeIekT6ftuCx6_KxzDt4l6aF0vQBK48mY3cRRqxle1cu_e8236PV8_-VfAludM7HOzz_b1h_zm5i6_k4MUNsprN5vIFhMmZ2FTTESWfbtoofwN9usDV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VViA48BOoMJSySNBbothe_x0QKkmdlNAoQlStelm89jqxmtpR7IiUE4_Ao3DmVbjxJMysnbRBHCqkHrjZ8s56tZ7ZmfF--w0hLyHnie2QsXqI-_8QEej1QDCrbgvPjSNLF5E6Hn3Qt7uH7N2xdbxGfizOwpT8EMsfbmgZar1GA59E8aqRK4QWcxFpgL_0DNvRG_MKYNmT558hfctf77fhW78yDH_vY6tbryoM1GF4MDaI_SMbMnrXjQ0vikIRgnc0GfMc6cCtZUS2HtvCtT3ZDONYxnrALCYtAY5NsECY0O8NssHspodlI9ofLqirTEPV9dRNi8FSp5urKKK_jnzFNW7gV54jVDPI4WvFZZmNlTj4cjSt3KF_j_xcTGSJgjltzArRCL_8wTH5f870fXK3itLpbmlWD8iaTGvkzu5wWjGVyBq5WVbxPK-Rzb2Lw4IgVK2WeY1oB5CRZFPVjO7Q1jiB9EDdPSTfj0ZJOKJYQA2xpXSI-KdRNsslHQY5PUtK7pMspVkJO6JD8EsUwnVsiglCQQX4qTgpcpqkdFHopqCKA5diwQ2QelO9VVJ8SZ4l419fv-HpWkSI0ckUt-nK7vGcEV2Sh0RUnk0SRR9DVbGk_BE5vJYZ3yTraZbKx6C4upDSsFzpuIyxADqGsLYZu0YUBdCLqxFnobg8rKjlscLJmF9KMUGFOKoQRxXiSoX4XCP6UnJS0qtcQWZH2cZSIJieIjzRsfhRv8N9vzvwB50T3tPI9orxLAVgakzLazoa2VpYE6-W7hwxj0jeb1vw-MXyMSy6uJMWpBI0gSs_ZiNzkUZsZTpXHj3vtN7i1ZN_FXxObg3aPn-_3-89JbexRYlc3CLrxXQmn0GMXIhttRhR8um6bfI3azy_hA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+cropland+greenhouse+gas+mitigation+options+give+the+greatest+benefits+in+different+world+regions%3F+Climate+and+soil-specific+predictions+from+integrated+empirical+models&rft.jtitle=Global+change+biology&rft.au=Hillier%2C+Jonathan&rft.au=Brentrup%2C+Frank&rft.au=Wattenbach%2C+Martin&rft.au=Walter%2C+Christof&rft.date=2012-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=18&rft.issue=6&rft.spage=1880&rft_id=info:doi/10.1111%2Fj.1365-2486.2012.02671.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2653689851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon