Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models
Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertil...
Saved in:
Published in | Global change biology Vol. 18; no. 6; pp. 1880 - 1894 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2012
Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice. |
---|---|
AbstractList | Major sources of greenhouse gas (
GHG
) emissions from agricultural crop production are nitrous oxide (
N
2
O
) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (
CO
2
) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil
N
2
O
emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal
GHG
mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of
GHG
emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural
GHG
abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice. Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer-induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per-hectare basis. The optimal mitigation for each soil-climate-region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site-specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice. [PUBLICATION ABSTRACT] Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral and organic fertilizer, and carbon dioxide (CO2) emissions from soil carbon losses. Consequently, choice of fertilizer type, optimizing fertilizer application rates and timing, reducing microbial denitrification and improving soil carbon management are focus areas for mitigation. We have integrated separate models derived from global data on fertilizer‐induced soil N2O emissions, soil nitrification inhibitors, and the effects of tillage and soil inputs of soil C stocks into a single model to determine optimal mitigation options as a function of soil type, climate, and fertilization rates. After Monte Carlo sampling of input variables, we aggregated the outputs according to climate, soil and fertilizer factors to consider the benefits of several possible emissions mitigation strategies, and identified the most beneficial option for each factor class on a per‐hectare basis. The optimal mitigation for each soil‐climate‐region was then mapped to propose geographically specific optimal GHG mitigation strategies for crops with varying N requirements. The use of empirical models reduces the requirements for validation (as they are calibrated on globally or continentally observed phenomena). However, as they are relatively simple in structure, they may not be applicable for accurate site‐specific prediction of GHG emissions. The value of this modelling approach is for initial screening and ranking of potential agricultural mitigation options and to explore the potential impact of regional agricultural GHG abatement policies. Given the clear association between management practice and crop productivity, it is essential to incorporate characterization of the yield effect on a given crop before recommending any mitigation practice. |
Author | Hillier, Jonathan Brentrup, Frank Mila-i-Canals, Llorenç Smith, Pete Garcia-Suarez, Tirma Wattenbach, Martin Walter, Christof |
Author_xml | – sequence: 1 givenname: Jonathan surname: Hillier fullname: Hillier, Jonathan email: j.hillier@abdn.ac.uk organization: Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK – sequence: 2 givenname: Frank surname: Brentrup fullname: Brentrup, Frank organization: Research Centre Hanninghof, Yara International ASA, Hanninghof 35, 48249, Duelmen, Germany – sequence: 3 givenname: Martin surname: Wattenbach fullname: Wattenbach, Martin organization: Section Hydrology, Helmholtz Centre Potsdam, GFZ German Research Centre For Geosciences, Telegrafenberg, 14473, Potsdam, Germany – sequence: 4 givenname: Christof surname: Walter fullname: Walter, Christof organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK – sequence: 5 givenname: Tirma surname: Garcia-Suarez fullname: Garcia-Suarez, Tirma organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK – sequence: 6 givenname: Llorenç surname: Mila-i-Canals fullname: Mila-i-Canals, Llorenç organization: Unilever Colworth, Colworth Park, MK44 1LQ, Sharnbrook, UK – sequence: 7 givenname: Pete surname: Smith fullname: Smith, Pete organization: Institute of Biological and Environmental Sciences, University of Aberdeen, 23 St Machar Drive, AB24 3UU, Aberdeen, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25935907$$DView record in Pascal Francis |
BookMark | eNqNkc1u1DAUhSNUJNrCO1hCSGwS_J_JAhCMmCmigi5AldhYjnOT8ZDEqZ2h05fiGbE71Sy6qje25e-ce33PWXYyuhGyDBFckLjebQvCpMgpX8iCYkILTGVJiv2z7PT4cJLOgucEE_YiOwthizFmFMvT7N_1xpoNMt5NvR4b1HmAceN2AVCnAxrsbDs9WzciN6UtoM7-BTRvIKF6hjCjGkZo7RyQHVFj2xY8jDO6db5vkIcuqT6iZW-HiKNUJDjb52ECY1tr0OShseZg3no3RJsZOh_hBsEwWW-N7tHgGujDy-x5q_sArx728-zX6svP5UV--WP9dfnpMjecU5JTUTWSMbxYtLRqGlMbTATjvCqhjFdBG0laWS9kBdjEhluiueAgasppzXXNzrO3B9_Ju5td_KQabDDQxxlBHI6KkywrKQllEX39CN26nR9jd4kiXAgpyki9eaB0iN9pvR6NDWrycSr-TsWGmahw4hYHLiYSgof2iBCsUuBqq1KuKuWqUuDqPnC1j9IPj6TGzvfZzV7b_ikG7w8Gt7aHuycXVuvl53SK-vygt2GG_VGv_R8lS1YKdf19rVari6vV1fq3-sb-A8Xw2cw |
CitedBy_id | crossref_primary_10_3390_agronomy11091710 crossref_primary_10_1098_rspb_2017_2798 crossref_primary_10_1016_j_agsy_2015_03_002 crossref_primary_10_1016_j_agsy_2017_03_006 crossref_primary_10_1111_gcb_12368 crossref_primary_10_1016_j_agee_2013_10_010 crossref_primary_10_1016_j_scitotenv_2019_03_304 crossref_primary_10_1002_jpln_201800376 crossref_primary_10_1016_j_agee_2014_07_015 crossref_primary_10_1088_1748_9326_9_3_035006 crossref_primary_10_1371_journal_pone_0228223 crossref_primary_10_3390_ijerph19127324 crossref_primary_10_1016_j_jclepro_2017_02_172 crossref_primary_10_1111_gcb_12413 crossref_primary_10_3389_fsufs_2019_00121 crossref_primary_10_1080_01904167_2021_2005803 crossref_primary_10_3390_atmos11090958 crossref_primary_10_1016_j_jclepro_2018_09_160 crossref_primary_10_1016_j_envsoft_2013_03_015 crossref_primary_10_1016_j_ecoleng_2015_04_071 crossref_primary_10_1016_j_jclepro_2015_05_040 crossref_primary_10_1016_j_jclepro_2017_03_133 crossref_primary_10_1017_S0021859612000810 crossref_primary_10_3389_fpls_2022_914653 crossref_primary_10_1016_j_envsoft_2014_12_017 crossref_primary_10_4155_cmt_13_77 crossref_primary_10_5194_soil_1_687_2015 crossref_primary_10_3389_fsufs_2020_558483 crossref_primary_10_1016_j_scitotenv_2019_02_125 crossref_primary_10_1111_j_1757_1707_2012_01198_x crossref_primary_10_1016_j_scitotenv_2014_02_020 crossref_primary_10_1016_j_scitotenv_2014_05_070 crossref_primary_10_1007_s11356_018_3792_2 crossref_primary_10_1007_s11356_021_17184_0 crossref_primary_10_1016_j_agsy_2016_12_008 |
Cites_doi | 10.3763/ijas.2009.0419 10.1016/S1161-0301(03)00039-X 10.1016/j.biombioe.2007.11.001 10.1017/CBO9780511976988.006 10.1016/j.still.2008.05.012 10.2134/agronj1996.00021962008800010008x 10.1016/j.geoderma.2004.01.021 10.1098/rstb.2007.2184 10.1098/rstb.2010.0127 10.1111/j.1365-2486.2009.02031.x 10.3763/ijas.2009.0484 10.2134/jeq2005.0160 10.1007/s10705-004-7354-2 10.1016/j.still.2008.08.008 10.1111/j.1475-2743.2004.tb00363.x 10.1016/j.still.2008.07.011 10.1127/0941-2948-2006/0130 10.1111/j.1365-3059.2008.01899.x 10.1111/j.1365-2389.2005.00708.x 10.1046/j.1365-2486.1998.00185.x 10.1029/2001GB001812 10.1029/94GB00767 10.1890/05-2018 10.1007/s10705-007-9138-y 10.1016/j.envsoft.2011.03.014 10.1046/j.1365-2486.1997.00055.x 10.2136/sssaj2002.1930 10.1007/s10533-004-0360-2 10.1111/j.1475-2743.2004.tb00366.x |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2015 INIST-CNRS Copyright © 2012 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Blackwell Publishing Ltd |
DBID | BSCLL AAYXX CITATION IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7TG 7U6 KL. SOI |
DOI | 10.1111/j.1365-2486.2012.02671.x |
DatabaseName | Istex CrossRef Pascal-Francis Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Sustainability Science Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Agriculture Biology Environmental Sciences |
EISSN | 1365-2486 |
EndPage | 1894 |
ExternalDocumentID | 2653689851 25935907 10_1111_j_1365_2486_2012_02671_x GCB2671 ark_67375_WNG_FFHPFPGZ_K |
Genre | article Feature |
GeographicLocations | World |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW 7SN 7UA C1K F1W H97 L.G 7ST 7TG 7U6 KL. SOI |
ID | FETCH-LOGICAL-c4421-259d633088f29ddcbc01534497e7ddc52d61f6b869e0cffef1a454e5b242b4ab3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 |
IngestDate | Thu Jul 10 19:55:09 EDT 2025 Fri Jul 25 10:58:59 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Thu Apr 24 22:50:44 EDT 2025 Tue Jul 01 03:52:48 EDT 2025 Wed Jan 22 17:09:12 EST 2025 Wed Oct 30 09:54:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Cultivated field Climate mitigation Soil tillage nitrous oxide soil carbon Carbon Empirical model Modeling modelling fertilizer tillage Fertilizers Soils Greenhouse gas Mitigation measure Agriculture Nitrogen protoxide |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4421-259d633088f29ddcbc01534497e7ddc52d61f6b869e0cffef1a454e5b242b4ab3 |
Notes | ark:/67375/WNG-FFHPFPGZ-K istex:DE94C5C57A8CBDE88EBBAAB7805B7938567F43F9 ArticleID:GCB2671 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 1011455657 |
PQPubID | 30327 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1017966123 proquest_journals_1011455657 pascalfrancis_primary_25935907 crossref_primary_10_1111_j_1365_2486_2012_02671_x crossref_citationtrail_10_1111_j_1365_2486_2012_02671_x wiley_primary_10_1111_j_1365_2486_2012_02671_x_GCB2671 istex_primary_ark_67375_WNG_FFHPFPGZ_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2012 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Change Biol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255-263. Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263, doi: 10.1127/0941-2948-2006/0130. Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agronomy Journal, 88, 38-43. Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685. Barthès B, Azontonde A, Blanchart E et al. (2004) Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management, 20, 231-239. Ball BC, Crichton I, Horgan GW (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil & Tillage Research, 101, 20-30. Rochette P (2008) No-till only increase N2O emissions in poorly-aerated soils. Soil & Tillage Research, 101, 97-100. Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1-23. R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at : http://www.R-project.org (accessed 1 March 2012). Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 16, 1837-1846. Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, 673-680. Vermeulen GD, Mosquera J (2009) Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil. Soil & Tillage Research, 102, 126-134. Smith P (2008) Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81, 169-178. Smith P, Martino D, Cai Z, et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B, 363, 789-813. Del Grosso SJ, Parton WJ, Mosier AR, Walsh MK, Ojima DS, Thornton PE (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35, 1451-1460. Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems, 72, 51-65. Hiller JG, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Journal of Environmental Modelling and Software, 26, 1070-1078. St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass and Bioenergy, 32, 442-452. Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H (2004) Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production. European Journal of Agronomy, 20, 265-279. Hillier JG, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7, 107-118. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis. Soil Science Society of America Journal, 66, 1930-1946. Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080. Carlton R, Berry P, P (2010) Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land. International Journal of Agricultural Sustainability, 8, 164-175. Adler RA, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17, 666-691. Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254. Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67e79. Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions. Biogeochemistry, 72, 87-121. FAO/IIASA/ISRIC/ISSCAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. Berry PM, Kindred DR, Paveley ND (2008) Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000-1008. IPCC (2006). IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed 1 March 2012) US-EPA (2006) Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC. Available at: http://www.epa.gov/climatechange/economics/international.html (accessed 1 March 2012) 2007; 17 2002; 16 2004; 122 2004; 20 2010; 16 2006; 35 2011 2010; 365 2006; 15 2009 2008 2007 2008; 57 2006 2008; 32 2004 2008; 101 1997; 3 2008; 363 1994; 8 2002; 66 2009; 102 2009; 7 2011; 26 2005; 72 2008; 81 1998; 4 2005; 56 2010; 8 1996; 88 Smith P (e_1_2_6_34_1) 2007 e_1_2_6_32_1 e_1_2_6_10_1 IPCC (e_1_2_6_18_1) 2006 e_1_2_6_31_1 e_1_2_6_30_1 IPCC (e_1_2_6_19_1) 2007 R Development Core Team (e_1_2_6_26_1) 2008 e_1_2_6_13_1 e_1_2_6_36_1 FAO/IIASA/ISRIC/ISSCAS/JRC (e_1_2_6_14_1) 2009 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_39_1 e_1_2_6_15_1 US‐EPA (e_1_2_6_38_1) 2006 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 |
References_xml | – reference: Del Grosso SJ, Parton WJ, Mosier AR, Walsh MK, Ojima DS, Thornton PE (2006) DAYCENT national-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35, 1451-1460. – reference: Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions. Biogeochemistry, 72, 87-121. – reference: Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma, 122, 1-23. – reference: Hiller JG, Walter C, Malin D, Garcia-Suarez T, Mila-i-Canals L, Smith P (2011) A farm-focused calculator for emissions from crop and livestock production. Journal of Environmental Modelling and Software, 26, 1070-1078. – reference: Ball BC, Crichton I, Horgan GW (2008) Dynamics of upward and downward N2O and CO2 fluxes in ploughed or no-tilled soils in relation to water-filled pore space, compaction and crop presence. Soil & Tillage Research, 101, 20-30. – reference: FAO/IIASA/ISRIC/ISSCAS/JRC (2009) Harmonized World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria. – reference: US-EPA (2006) Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990-2020. United States Environmental Protection Agency, EPA 430-R-06-003, June 2006. Washington, DC. Available at: http://www.epa.gov/climatechange/economics/international.html (accessed 1 March 2012) – reference: West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis. Soil Science Society of America Journal, 66, 1930-1946. – reference: Carlton R, Berry P, P (2010) Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land. International Journal of Agricultural Sustainability, 8, 164-175. – reference: Smith P (2008) Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81, 169-178. – reference: IPCC (2006). IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental Strategies, Tokyo, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed 1 March 2012) – reference: Smith P, Martino D, Cai Z, et al. (2008) Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society, B, 363, 789-813. – reference: Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259-263, doi: 10.1127/0941-2948-2006/0130. – reference: Adler RA, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecological Applications, 17, 666-691. – reference: Hillier JG, Hawes C, Squire G, Hilton A, Wale S, Smith P (2009) The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 7, 107-118. – reference: Rochette P (2008) No-till only increase N2O emissions in poorly-aerated soils. Soil & Tillage Research, 101, 97-100. – reference: Smith JU, Bradbury NJ, Addiscott TM (1996) SUNDIAL: a PC-based system for simulating nitrogen dynamics in arable land. Agronomy Journal, 88, 38-43. – reference: Berry PM, Kindred DR, Paveley ND (2008) Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production. Plant Pathology, 57, 1000-1008. – reference: Barthès B, Azontonde A, Blanchart E et al. (2004) Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin. Soil Use and Management, 20, 231-239. – reference: Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use and Management, 20, 255-263. – reference: R Development Core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at : http://www.R-project.org (accessed 1 March 2012). – reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 3, 67e79. – reference: St Clair S, Hillier J, Smith P (2008) Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass and Bioenergy, 32, 442-452. – reference: Smith P (2005) An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 56, 673-680. – reference: Vermeulen GD, Mosquera J (2009) Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil. Soil & Tillage Research, 102, 126-134. – reference: Smith P, Gregory P, van Vuuren D et al. (2010) Competition for land. Philosophical Transactions of the Royal Society, B, 365, 2941-2957. – reference: Akiyama H, Yan X, Yagi K (2010) Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Global Change Biology, 16, 1837-1846. – reference: Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16, 1080. – reference: Li C, Frolking S, Harriss R (1994) Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles, 8, 237-254. – reference: Oenema O, Wrage N, Velthof GL, van Groenigen JW, Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutrient Cycling in Agroecosystems, 72, 51-65. – reference: Brentrup F, Küsters J, Lammel J, Barraclough P, Kuhlmann H (2004) Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production. European Journal of Agronomy, 20, 265-279. – reference: Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Change Biology, 4, 679-685. – volume: 16 start-page: 1080 year: 2002 article-title: Modeling global annual N O and NO emissions from fertilized fields publication-title: Global Biogeochemical Cycles – volume: 101 start-page: 97 year: 2008 end-page: 100 article-title: No‐till only increase N O emissions in poorly‐aerated soils publication-title: Soil & Tillage Research – volume: 17 start-page: 666 year: 2007 end-page: 691 article-title: Life‐cycle assessment of net greenhouse‐gas flux for bioenergy cropping systems publication-title: Ecological Applications – year: 2009 – volume: 8 start-page: 164 year: 2010 end-page: 175 article-title: Impact of crop yield reduction on GHG emissions from compensatory cultivation of pasture and forested land publication-title: International Journal of Agricultural Sustainability – volume: 35 start-page: 1451 year: 2006 end-page: 1460 article-title: DAYCENT national‐scale simulations of nitrous oxide emissions from cropped soils in the United States publication-title: Journal of Environmental Quality – volume: 20 start-page: 265 year: 2004 end-page: 279 article-title: Investigation of the environmental impact of agricultural crop production using the life cycle assessment (LCA) methodology. Part II: application of the LCA methodology to investigate the environmental impact of different N fertilizer rates in cereal production publication-title: European Journal of Agronomy – volume: 72 start-page: 87 year: 2005 end-page: 121 article-title: Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperature and tropical regions publication-title: Biogeochemistry – volume: 88 start-page: 38 year: 1996 end-page: 43 article-title: SUNDIAL: a PC‐based system for simulating nitrogen dynamics in arable land publication-title: Agronomy Journal – volume: 4 start-page: 679 year: 1998 end-page: 685 article-title: Preliminary estimates of the potential for carbon mitigation in European soils through no‐till farming publication-title: Global Change Biology – volume: 81 start-page: 169 year: 2008 end-page: 178 article-title: Land use change and soil organic carbon dynamics publication-title: Nutrient Cycling in Agroecosystems – volume: 3 start-page: 67e79 year: 1997 article-title: Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long‐term experiments publication-title: Global Change Biology – year: 2007 – volume: 365 start-page: 2941 year: 2010 end-page: 2957 article-title: Competition for land publication-title: Philosophical Transactions of the Royal Society, B – start-page: 120 year: 2004 – volume: 32 start-page: 442 year: 2008 end-page: 452 article-title: Estimating the pre‐harvest greenhouse gas costs of energy crop production publication-title: Biomass and Bioenergy – volume: 16 start-page: 1837 year: 2010 end-page: 1846 article-title: Evaluation of effectiveness of enhanced‐efficiency fertilizers as mitigation options for N O and NO emissions from agricultural soils: meta‐analysis publication-title: Global Change Biology – volume: 57 start-page: 1000 year: 2008 end-page: 1008 article-title: Quantifying the effects of fungicides and disease resistance on greenhouse gas emissions associated with wheat production publication-title: Plant Pathology – volume: 7 start-page: 107 year: 2009 end-page: 118 article-title: The carbon footprints of food crop production publication-title: International Journal of Agricultural Sustainability – volume: 101 start-page: 20 year: 2008 end-page: 30 article-title: Dynamics of upward and downward N O and CO fluxes in ploughed or no‐tilled soils in relation to water‐filled pore space, compaction and crop presence publication-title: Soil & Tillage Research – volume: 122 start-page: 1 year: 2004 end-page: 23 article-title: Carbon sequestration in the agricultural soils of Europe publication-title: Geoderma – volume: 26 start-page: 1070 year: 2011 end-page: 1078 article-title: A farm‐focused calculator for emissions from crop and livestock production publication-title: Journal of Environmental Modelling and Software – volume: 20 start-page: 255 year: 2004 end-page: 263 article-title: Impacts of land management on fluxes of trace greenhouse gases publication-title: Soil Use and Management – volume: 66 start-page: 1930 year: 2002 end-page: 1946 article-title: Soil organic carbon sequestration rates by tillage and crop rotation a global data analysis publication-title: Soil Science Society of America Journal – volume: 102 start-page: 126 year: 2009 end-page: 134 article-title: Soil, crop and emission responses to seasonal‐controlled traffic in organic vegetable farming on loam soil publication-title: Soil & Tillage Research – year: 2008 – year: 2006 – start-page: 32 year: 2011 end-page: 61 – volume: 8 start-page: 237 year: 1994 end-page: 254 article-title: Modeling carbon biogeochemistry in agricultural soils publication-title: Global Biogeochemical Cycles – volume: 363 start-page: 789 year: 2008 end-page: 813 article-title: Greenhouse gas mitigation in agriculture publication-title: Philosophical Transactions of the Royal Society, B – volume: 15 start-page: 259 year: 2006 end-page: 263 article-title: World Map of the Köppen‐Geiger climate classification updated publication-title: Meteorologische Zeitschrift – volume: 20 start-page: 231 year: 2004 end-page: 239 article-title: Effect of a legume cover crop (Mucuna pruriens var. utilis) on soil carbon in an Ultisol under maize cultivation in southern Benin publication-title: Soil Use and Management – volume: 56 start-page: 673 year: 2005 end-page: 680 article-title: An overview of the permanence of soil organic carbon stocks: influence of direct human‐induced, indirect and natural effects publication-title: European Journal of Soil Science – volume: 72 start-page: 51 year: 2005 end-page: 65 article-title: Trends in global nitrous oxide emissions from animal production systems publication-title: Nutrient Cycling in Agroecosystems – volume-title: R: A Language and Environment for Statistical Computing year: 2008 ident: e_1_2_6_26_1 – ident: e_1_2_6_17_1 doi: 10.3763/ijas.2009.0419 – ident: e_1_2_6_10_1 doi: 10.1016/S1161-0301(03)00039-X – ident: e_1_2_6_37_1 doi: 10.1016/j.biombioe.2007.11.001 – ident: e_1_2_6_20_1 doi: 10.1017/CBO9780511976988.006 – volume-title: Harmonized World Soil Database (version 1.1) year: 2009 ident: e_1_2_6_14_1 – ident: e_1_2_6_5_1 doi: 10.1016/j.still.2008.05.012 – volume-title: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_6_19_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_31_1 doi: 10.2134/agronj1996.00021962008800010008x – volume-title: Global Anthropogenic Non‐CO2 Greenhouse Gas Emissions: 1990‐2020 year: 2006 ident: e_1_2_6_38_1 – ident: e_1_2_6_15_1 doi: 10.1016/j.geoderma.2004.01.021 – ident: e_1_2_6_25_1 – ident: e_1_2_6_35_1 doi: 10.1098/rstb.2007.2184 – ident: e_1_2_6_36_1 doi: 10.1098/rstb.2010.0127 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2486.2009.02031.x – ident: e_1_2_6_11_1 doi: 10.3763/ijas.2009.0484 – ident: e_1_2_6_12_1 doi: 10.2134/jeq2005.0160 – ident: e_1_2_6_23_1 doi: 10.1007/s10705-004-7354-2 – ident: e_1_2_6_39_1 doi: 10.1016/j.still.2008.08.008 – ident: e_1_2_6_6_1 doi: 10.1111/j.1475-2743.2004.tb00363.x – ident: e_1_2_6_27_1 doi: 10.1016/j.still.2008.07.011 – volume-title: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: e_1_2_6_34_1 – ident: e_1_2_6_13_1 – ident: e_1_2_6_21_1 doi: 10.1127/0941-2948-2006/0130 – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-3059.2008.01899.x – ident: e_1_2_6_28_1 doi: 10.1111/j.1365-2389.2005.00708.x – ident: e_1_2_6_33_1 doi: 10.1046/j.1365-2486.1998.00185.x – volume-title: IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories year: 2006 ident: e_1_2_6_18_1 – ident: e_1_2_6_8_1 doi: 10.1029/2001GB001812 – ident: e_1_2_6_22_1 doi: 10.1029/94GB00767 – ident: e_1_2_6_9_1 – ident: e_1_2_6_2_1 doi: 10.1890/05-2018 – ident: e_1_2_6_29_1 doi: 10.1007/s10705-007-9138-y – ident: e_1_2_6_16_1 doi: 10.1016/j.envsoft.2011.03.014 – ident: e_1_2_6_32_1 doi: 10.1046/j.1365-2486.1997.00055.x – ident: e_1_2_6_40_1 doi: 10.2136/sssaj2002.1930 – ident: e_1_2_6_24_1 doi: 10.1007/s10533-004-0360-2 – ident: e_1_2_6_30_1 doi: 10.1111/j.1475-2743.2004.tb00366.x |
SSID | ssj0003206 |
Score | 2.2616584 |
Snippet | Major sources of greenhouse gas (GHG) emissions from agricultural crop production are nitrous oxide (N2O) emissions resulting from the application of mineral... Major sources of greenhouse gas ( GHG ) emissions from agricultural crop production are nitrous oxide ( N 2 O ) emissions resulting from the application of... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1880 |
SubjectTerms | Agricultural land agriculture Agronomy Agronomy. Soil science and plant productions Animal and plant ecology Animal, plant and microbial ecology Biological and medical sciences Carbon dioxide climate Climate change Crop production Farm buildings fertilizer Fertilizer application Fertilizers Fundamental and applied biological sciences. Psychology General agroecology General agroecology. Agricultural and farming systems. Agricultural development. Rural area planning. Landscaping General agronomy. Plant production General aspects Generalities. Agricultural and farming systems. Agricultural development Geochemistry greenhouse gas Greenhouse gases Mitigation modelling Nitrification Nitrous oxide Organic fertilizers soil carbon Soil types Soils tillage |
Title | Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models |
URI | https://api.istex.fr/ark:/67375/WNG-FFHPFPGZ-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2486.2012.02671.x https://www.proquest.com/docview/1011455657 https://www.proquest.com/docview/1017966123 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dbtMwFLbQEBJc8FOYFhiTkdDuWjWJ7SRXaFRLK9CmCTFt4saKE6eN2iVVkkqDKx6BR-GZeBLOcdJsQVxMiLumznES-_jkc_z5O4S8hTlPKmLGhjGu_wMisIeRYnwoVOCnCbdVYrZHn5yK2Tn7cMkvW_4T7oVp9CG6D244Mky8xgEeqao_yA1Di_nINMBPeo7w7BHiSSxAfPTpRknKdUyaTdvlDCKP7fZJPX-tqPemuo-Nfo3MyaiCxkubrBc9WHob3Jq3U_iELLfP1ZBSlqNNrUbxtz8kH__Pgz8lj1sQS48ar3tG7ul8QB4dzctWyEMPyIMmyeXXAdk9vtlLB0ZtMKkGxDoBwF6U5jR6SCerDNCzOXpOfl4ssnhBMb8YUi_pHOlBi2JTaTqPKnqVNdIgRU6LhpVD5xC2KaBZPBXxc00VhPE0qyua5XSbB6amRiKWYj4KsHrXXlVTvEhVZKtf33_g5lMkUNF1iatYTfW4DYd22hoJ1VfrzKirUJNLqHpBzsPjz5PZsE0uMQTPBLeEaV8iXBeCbOoESRKrGICRy1jgaQ8OuZMIOxXKF4Eex3CLqR0xzjRXgGkUi5S7S3byItd74Ei20trhvvZ8xlgEFQPqG6e-kyQR1OJbxNs6koxb5XVMALKSt2Zg0KUSu1Ril0rTpfLaInZnuW7UR-5gc2h8tTOIyiWy9zwuL06nMgxnZ-HZ9Iv8aJGDnjN3BtA0Lg_GnkX2t94t28hWISUQte0Fh-I3XTHEJFxoinINniBNmBco7GMRYVz5zncvp5P3-Ovlvxq-Ig_x74bNt0926nKjXwNurNWBiQi_Ae-uYnU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VVgg48BOoMJSySNBbothe_-SAUEmbpKSJKtSqVS-L114nVlM7ih2RcuIReBTuvAonnoSZtePWiEOF1AM3W_asV-uZnZndb78h5DXkPKHtM1b3cf8fIgK97glm1W3RcsPA0kWgjkcPhnbviH04sU5WyI_lWZicH6JccEPLUPM1GjguSFetXEG0mItQA1zTM2xHbywKhGVfXnyG_C19u7cDP_uNYXR2D9u9elFioA79g85B8B_YkNK7bmi0gsAXPrhHk7GWIx24tYzA1kNbuHZLNv0wlKHuMYtJS4BnE8wTJrR7i6xhQXEk7t_5eMldZRqqsKduWgzmOt2swoj-2vOKb1zD37xArKaXwu8K8zoblUD4ajit_GHnAfm5HMkcBnPWmGei4X_5g2TyPx3qh-R-EafT7dywHpEVGdfIve3RrOAqkTVyO6_jeVEj67uXxwVBqJgv0xrRBpCTJDP1Gt2i7UkECYK6e0y-H48jf0yxhBqiS-kIEVDjZJ5KOvJSeh7l7CdJTJMceERH4JkoBOz4KqYIGRXgqcIoS2kU02Wpm4wqFlyKJTdA6l3xVUnxI2kSTX59_YbnaxEjRqcz3KjLm8eTRrSkDwmoPJ9GikCGqnJJ6RNydCMjvk5W4ySWT0FzdSGlYbnScRljHjQMgW0zdI0g8KAVVyPOUnO5X5DLY42TCb-SZIIKcVQhjirElQrxhUb0UnKaE6xcQ2ZLGUcp4M3OEKDoWPx42OWdTu-gc9A95X2NbFaspxSAoTGtVtPRyMbSnHgxeaeIekT6ftuCx6_KxzDt4l6aF0vQBK48mY3cRRqxle1cu_e8236PV8_-VfAludM7HOzz_b1h_zm5i6_k4MUNsprN5vIFhMmZ2FTTESWfbtoofwN9usDV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VViA48BOoMJSySNBbothe_x0QKkmdlNAoQlStelm89jqxmtpR7IiUE4_Ao3DmVbjxJMysnbRBHCqkHrjZ8s56tZ7ZmfF--w0hLyHnie2QsXqI-_8QEej1QDCrbgvPjSNLF5E6Hn3Qt7uH7N2xdbxGfizOwpT8EMsfbmgZar1GA59E8aqRK4QWcxFpgL_0DNvRG_MKYNmT558hfctf77fhW78yDH_vY6tbryoM1GF4MDaI_SMbMnrXjQ0vikIRgnc0GfMc6cCtZUS2HtvCtT3ZDONYxnrALCYtAY5NsECY0O8NssHspodlI9ofLqirTEPV9dRNi8FSp5urKKK_jnzFNW7gV54jVDPI4WvFZZmNlTj4cjSt3KF_j_xcTGSJgjltzArRCL_8wTH5f870fXK3itLpbmlWD8iaTGvkzu5wWjGVyBq5WVbxPK-Rzb2Lw4IgVK2WeY1oB5CRZFPVjO7Q1jiB9EDdPSTfj0ZJOKJYQA2xpXSI-KdRNsslHQY5PUtK7pMspVkJO6JD8EsUwnVsiglCQQX4qTgpcpqkdFHopqCKA5diwQ2QelO9VVJ8SZ4l419fv-HpWkSI0ckUt-nK7vGcEV2Sh0RUnk0SRR9DVbGk_BE5vJYZ3yTraZbKx6C4upDSsFzpuIyxADqGsLYZu0YUBdCLqxFnobg8rKjlscLJmF9KMUGFOKoQRxXiSoX4XCP6UnJS0qtcQWZH2cZSIJieIjzRsfhRv8N9vzvwB50T3tPI9orxLAVgakzLazoa2VpYE6-W7hwxj0jeb1vw-MXyMSy6uJMWpBI0gSs_ZiNzkUZsZTpXHj3vtN7i1ZN_FXxObg3aPn-_3-89JbexRYlc3CLrxXQmn0GMXIhttRhR8um6bfI3azy_hA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+cropland+greenhouse+gas+mitigation+options+give+the+greatest+benefits+in+different+world+regions%3F+Climate+and+soil-specific+predictions+from+integrated+empirical+models&rft.jtitle=Global+change+biology&rft.au=Hillier%2C+Jonathan&rft.au=Brentrup%2C+Frank&rft.au=Wattenbach%2C+Martin&rft.au=Walter%2C+Christof&rft.date=2012-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1354-1013&rft.eissn=1365-2486&rft.volume=18&rft.issue=6&rft.spage=1880&rft_id=info:doi/10.1111%2Fj.1365-2486.2012.02671.x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2653689851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |