Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway
We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal s...
Saved in:
Published in | Journal of neurology Vol. 266; no. Suppl 1; pp. 108 - 117 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS,
n
= 49), distal sensory polyneuropathy (PNP,
n
= 12), anterior lobe cerebellar atrophy (CA,
n
= 48), downbeat nystagmus syndrome (DN,
n
= 16), primary orthostatic tremor (OT,
n
= 25), Parkinson’s disease (PD,
n
= 27), phobic postural vertigo (PPV
n
= 59) and healthy controls (HC,
n
= 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as “standing on foam-rubber, eyes closed”. Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine. |
---|---|
AbstractList | We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson’s disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as “standing on foam-rubber, eyes closed”. Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine. We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson's disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as "standing on foam-rubber, eyes closed". Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine.We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson's disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as "standing on foam-rubber, eyes closed". Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine. We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining techniques. Body sway is measured in 293 individuals with the clinical diagnoses of acute unilateral vestibulopathy (AVS, n = 49), distal sensory polyneuropathy (PNP, n = 12), anterior lobe cerebellar atrophy (CA, n = 48), downbeat nystagmus syndrome (DN, n = 16), primary orthostatic tremor (OT, n = 25), Parkinson’s disease (PD, n = 27), phobic postural vertigo (PPV n = 59) and healthy controls (HC, n = 57). We classify disorders and rank sway features using supervised machine learning. We compute a continuous, human-interpretable 2D map of stance disorders using t-stochastic neighborhood embedding (t-SNE). Classification of eight diagnoses yielded 82.7% accuracy [95% CI (80.9%, 84.5%)]. Five (CA, PPV, AVS, HC, OT) were classified with a mean sensitivity and specificity of 88.4% and 97.1%, while three (PD, PNP, and DN) achieved a mean sensitivity of 53.7%. The most discriminative stance condition was ranked as “standing on foam-rubber, eyes closed”. Mapping of sway path features into 2D space revealed clear clusters among CA, PPV, AVS, HC and OT subjects. We confirm previous claims that machine learning can aid in classification of clinical sway patterns measured with static posturography. Given a standardized, long-term acquisition of quantitative patient databases, modern machine learning and data analysis techniques help in visualizing, understanding and utilizing high-dimensional sensor data from clinical routine. |
Author | Nowoshilow, Sergej Bardins, Stanislav Krafczyk, Siegbert Frei, Johann Brandt, Thomas Vivar, Gerome Ahmadi, Seyed-Ahmad |
Author_xml | – sequence: 1 givenname: Seyed-Ahmad orcidid: 0000-0002-7082-0739 surname: Ahmadi fullname: Ahmadi, Seyed-Ahmad email: aahmadi@med.lmu.de organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität, Computer Aided Medical Procedures, Technical University of Munich – sequence: 2 givenname: Gerome surname: Vivar fullname: Vivar, Gerome organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität, Computer Aided Medical Procedures, Technical University of Munich – sequence: 3 givenname: Johann surname: Frei fullname: Frei, Johann organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität, Computer Aided Medical Procedures, Technical University of Munich – sequence: 4 givenname: Sergej surname: Nowoshilow fullname: Nowoshilow, Sergej organization: IMP Research Institute of Molecular Pathology – sequence: 5 givenname: Stanislav surname: Bardins fullname: Bardins, Stanislav organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität – sequence: 6 givenname: Thomas surname: Brandt fullname: Brandt, Thomas organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität – sequence: 7 givenname: Siegbert surname: Krafczyk fullname: Krafczyk, Siegbert organization: German Center for Vertigo and Balance Disorders, Ludwig Maximilians Universität |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31286203$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFq3TAQRUVJaV7S_kAXRdBNN25HlmRb3ZXQpIVAN-laTCTZUbAlV7IJTn--ynsJhSyyGtCccxl0T8hRiMER8p7BZwbQfskAgskKmKpACdlV2yuyY4LXFRNSHZEdcAGV5FIck5OcbwGgK4s35Jizumtq4Dvy9yreYbKZmjjN6-KSv3eWWo9DiNlnGnsa3JriGAdvcKR5wWBcAXJM1qX8lVpckE4--DBQDJZOaG58cHR0mPaPJWKOeSkhQ8L5ZttT-Q63t-R1j2N27x7nKfl9_v3q7Ed1-evi59m3y8oIwZaq71voa4YOOEijnFRNA9K2KJUTzHImwSCDRiqwXFpl8dp0pm77tlNctC0_JZ8OuXOKf1aXFz35bNw4YnBxzbqupZCsU8AL-vEZehvXFMp1DxRvhKxbWagPj9R6PTmr5-QnTJt--tYCdAfApJhzcr02fsHFx7Ak9KNmoB8a1IcGdWlQ7xvUW1HrZ-pT-osSP0i5wGFw6f_ZL1j_ADDKr3E |
CitedBy_id | crossref_primary_10_1016_j_clinbiomech_2024_106214 crossref_primary_10_1007_s00415_024_12711_8 crossref_primary_10_1007_s10072_023_07036_9 crossref_primary_10_3389_fnagi_2021_633752 crossref_primary_10_3390_diagnostics12112708 crossref_primary_10_1007_s00415_020_09931_z crossref_primary_10_3389_fneur_2021_627294 crossref_primary_10_1007_s00415_024_12611_x crossref_primary_10_1155_2021_5583389 crossref_primary_10_3389_fneur_2022_929132 crossref_primary_10_4274_mirt_galenos_2021_22590 crossref_primary_10_1055_a_2133_0854 crossref_primary_10_1007_s11042_024_18186_z crossref_primary_10_1002_acn3_51124 crossref_primary_10_1016_j_bspc_2023_104861 crossref_primary_10_3390_s21227565 crossref_primary_10_1038_s41598_022_17567_4 crossref_primary_10_1038_s42003_024_06802_5 crossref_primary_10_3389_fneur_2021_681140 crossref_primary_10_3757_jser_83_149 crossref_primary_10_1186_s13063_022_06460_0 |
Cites_doi | 10.1016/0004-3702(89)90049-0 10.1038/nrneurol.2017.58 10.1001/archneur.56.1.33 10.1111/j.1749-6632.2001.tb03765.x 10.1111/nyas.12585 10.1371/journal.pone.0172398 10.1016/S0003-9993(95)80075-1 10.1093/brain/124.2.322 10.1023/B:STCO.0000035301.49549.88 10.3233/VES-170622 10.1371/journal.pone.0168808 10.1111/j.1749-6632.1981.tb30907.x 10.1016/j.jelekin.2015.01.004 10.1007/s00429-014-0971-x 10.1159/000258682 10.3389/fnagi.2012.00020 10.1016/j.humov.2013.09.004 10.1002/mds.870131303 10.1093/brain/aww268 10.1093/gerona/56.7.M438 10.1007/s10994-006-6226-1 10.1007/s10994-010-5221-8 10.1038/s41598-018-32526-8 10.1016/j.gaitpost.2010.05.017 10.1212/WNL.46.6.1515 10.1016/j.clinph.2006.04.022 10.1016/S0194-5998(97)70132-3 10.1016/0013-4694(84)90172-X 10.1093/brain/aww140 10.1007/BF00365601 10.1016/S0966-6362(01)00142-4 10.1097/00019052-199902000-00002 10.1016/S0893-6080(05)80023-1 10.1016/j.clinbiomech.2007.10.004 10.1016/j.parkreldis.2015.05.021 10.3109/08990220.2013.822364 10.5334/tohm.238 10.1007/978-3-540-29678-2_6304 10.1561/9781601985415 10.1080/00031305.1992.10475879 10.1109/ICSMC.2009.5345909 10.1145/1390156.1390169 10.1007/s00415-011-6124-8 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Journal of Neurology is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Journal of Neurology is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00415-019-09458-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1459 |
EndPage | 117 |
ExternalDocumentID | 31286203 10_1007_s00415_019_09458_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung (DE) grantid: 01 EO 0901: German Center for Vertigo and Balance Disorders (DSGZ) |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 X7M YLTOR Z45 Z7U Z81 Z82 Z83 Z87 Z8O Z8U Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c441t-ff70f21ae0305c9e596605d7a59e41d3150ca106590d35d9dabc8c27f78934773 |
IEDL.DBID | 7X7 |
ISSN | 0340-5354 1432-1459 |
IngestDate | Fri Jul 11 16:38:41 EDT 2025 Fri Jul 25 22:23:36 EDT 2025 Thu Apr 03 07:06:23 EDT 2025 Tue Jul 01 01:31:28 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Fri Feb 21 02:43:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Suppl 1 |
Keywords | Visualization Static posturography Body sway Neurological stance and gait disorders Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-ff70f21ae0305c9e596605d7a59e41d3150ca106590d35d9dabc8c27f78934773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7082-0739 |
PMID | 31286203 |
PQID | 2253645275 |
PQPubID | 47196 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2254518903 proquest_journals_2253645275 pubmed_primary_31286203 crossref_citationtrail_10_1007_s00415_019_09458_y crossref_primary_10_1007_s00415_019_09458_y springer_journals_10_1007_s00415_019_09458_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of neurology |
PublicationTitleAbbrev | J Neurol |
PublicationTitleAlternate | J Neurol |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Richardson, Thies, Ashton-Miller (CR26) 2008; 23 Fioretti, Scocco, Ladislao, Ghetti, Rabini (CR8) 2010; 32 CR39 Krafczyk, Tietze, Swoboda, Valkovi, Brandt (CR7) 2006; 117 Helmchen, Kirchhoff, Göttlich, Sprenger (CR14) 2017; 12 Gelb, Oliver, Gilman (CR25) 1999; 56 CR35 Yu, Huang, Lin (CR31) 2011; 85 Hageman, Leibowitz, Blanke (CR43) 1995; 76 Strupp, Hufner, Sandmann, Zwergal, Dieterich, Jahn (CR23) 2011; 108 Schöberl, Feil, Xiong, Bartenstein, la Fougére, Jahn (CR16) 2017; 140 CR30 Hinton (CR33) 1989; 40 Allum, Bloem, Carpenter, Honegger (CR19) 2001; 14 Gallea, Popa, García-Lorenzo, Valabregue, Legrand, Apartis (CR42) 2016; 139 Gill, Allum, Carpenter, Held-Ziolkowska, Adkin, Honegger (CR44) 2001; 56 Altman (CR32) 1992; 46 Wolpert (CR38) 1992; 5 Pradhan, Wuehr, Akrami, Neuhaeusser, Huth, Brandt (CR50) 2015; 25 CR5 Geurts, Ernst, Wehenkel (CR36) 2006; 63 CR48 CR41 Brandt (CR27) 1996; 46 Wuehr, Schlick, Möhwald, Schniepp (CR47) 2018; 8 Saripalle, Paiva, Derakhshani, King, Lovelace (CR10) 2014; 33 CR18 Brandt, Dieterich (CR2) 2017; 13 van der Maaten, Hinton (CR40) 2008; 9 Strupp, Brandt (CR24) 1999; 55 Monsell, Furman, Herdman, Konrad, Shepard (CR6) 1997; 117 Vonk, Horlings, Allum (CR11) 2010; 15 Redfern, Furman (CR12) 1994; 4 Rigby, Rigby, Caviness (CR15) 2015; 5 Black (CR4) 2001; 942 Bronstein, Guerraz (CR21) 1999; 12 Staab, Eckhardt-Henn, Horii, Jacob, Strupp, Brandt (CR3) 2017; 27 Fung, Sauner, Day (CR46) 2001; 124 Deuschl, Bain, Brin (CR22) 1998; 13 Kirsch, Keeser, Hergenroeder, Erat, Ertl-Wagner, Brandt (CR49) 2016; 221 Ickenstein, Ambach, Klöditz, Koch, Isenmann, Reichmann (CR17) 2012; 4 Diener, Dichgans, Bacher, Gompf (CR13) 1984; 57 Howcroft, Lemaire, Kofman, McIlroy (CR9) 2017; 12 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (CR37) 2011; 12 Schwesig, Fischer, Becker, Lauenroth (CR20) 2014; 31 Feil, Böttcher, Guri, Krafczyk, Schöberl, Zwergal (CR45) 2015; 21 Hufschmidt, Dichgans, Mauritz, Hufschmidt (CR28) 1980; 228 Brandt, Krafczyk, Malsbenden (CR29) 1981; 374 Smola, Sch, Schölkopf (CR34) 2004; 14 Dieterich, Brandt (CR1) 2015; 1343 J Gill (9458_CR44) 2001; 56 C Pradhan (9458_CR50) 2015; 25 MS Redfern (9458_CR12) 1994; 4 S Krafczyk (9458_CR7) 2006; 117 H-F Yu (9458_CR31) 2011; 85 GW Ickenstein (9458_CR17) 2012; 4 J Howcroft (9458_CR9) 2017; 12 M Strupp (9458_CR24) 1999; 55 HB Rigby (9458_CR15) 2015; 5 9458_CR30 AM Bronstein (9458_CR21) 1999; 12 K Feil (9458_CR45) 2015; 21 JP Staab (9458_CR3) 2017; 27 P Geurts (9458_CR36) 2006; 63 PA Hageman (9458_CR43) 1995; 76 HC Diener (9458_CR13) 1984; 57 C Helmchen (9458_CR14) 2017; 12 M Strupp (9458_CR23) 2011; 108 M Wuehr (9458_CR47) 2018; 8 S Fioretti (9458_CR8) 2010; 32 SK Saripalle (9458_CR10) 2014; 33 DJ Gelb (9458_CR25) 1999; 56 9458_CR39 T Brandt (9458_CR29) 1981; 374 9458_CR35 9458_CR41 C Gallea (9458_CR42) 2016; 139 AJ Smola (9458_CR34) 2004; 14 F Schöberl (9458_CR16) 2017; 140 NS Altman (9458_CR32) 1992; 46 JHJ Allum (9458_CR19) 2001; 14 A Hufschmidt (9458_CR28) 1980; 228 V Kirsch (9458_CR49) 2016; 221 M Dieterich (9458_CR1) 2015; 1343 J Vonk (9458_CR11) 2010; 15 FO Black (9458_CR4) 2001; 942 T Brandt (9458_CR27) 1996; 46 9458_CR48 T Brandt (9458_CR2) 2017; 13 EM Monsell (9458_CR6) 1997; 117 F Pedregosa (9458_CR37) 2011; 12 G Deuschl (9458_CR22) 1998; 13 R Schwesig (9458_CR20) 2014; 31 L van der Maaten (9458_CR40) 2008; 9 DH Wolpert (9458_CR38) 1992; 5 GE Hinton (9458_CR33) 1989; 40 JK Richardson (9458_CR26) 2008; 23 VSC Fung (9458_CR46) 2001; 124 9458_CR18 9458_CR5 |
References_xml | – volume: 40 start-page: 185 year: 1989 end-page: 234 ident: CR33 article-title: Connectionist learning procedures publication-title: Artif Intell. doi: 10.1016/0004-3702(89)90049-0 – volume: 13 start-page: 352 year: 2017 end-page: 362 ident: CR2 article-title: The dizzy patient: don’t forget disorders of the central vestibular system publication-title: Nat Rev Neurol. doi: 10.1038/nrneurol.2017.58 – ident: CR39 – volume: 56 start-page: 33 year: 1999 end-page: 39 ident: CR25 article-title: Diagnostic criteria for Parkinson disease publication-title: Arch Neurol. doi: 10.1001/archneur.56.1.33 – ident: CR35 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR37 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res. – volume: 942 start-page: 446 year: 2001 end-page: 464 ident: CR4 article-title: What can posturography tell us about vestibular function? publication-title: Ann N Y Acad Sci. doi: 10.1111/j.1749-6632.2001.tb03765.x – volume: 1343 start-page: 10 year: 2015 end-page: 26 ident: CR1 article-title: The bilateral central vestibular system: Its pathways, functions, and disorders publication-title: Ann N Y Acad Sci. doi: 10.1111/nyas.12585 – volume: 12 start-page: 1 year: 2017 end-page: 13 ident: CR9 article-title: Elderly fall risk prediction using static posturography publication-title: PLoS One doi: 10.1371/journal.pone.0172398 – volume: 76 start-page: 961 year: 1995 end-page: 965 ident: CR43 article-title: Age and gender effects on postural control measures publication-title: Arch Phys Med Rehabil. doi: 10.1016/S0003-9993(95)80075-1 – volume: 124 start-page: 322 year: 2001 end-page: 330 ident: CR46 article-title: A dissociation between subjective and objective unsteadiness in primary orthostatic tremor publication-title: Brain doi: 10.1093/brain/124.2.322 – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: CR32 article-title: An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression publication-title: Am Stat. – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: CR34 article-title: A tutorial on support vector regression publication-title: Stat Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 27 start-page: 191 year: 2017 end-page: 208 ident: CR3 article-title: Diagnostic criteria for persistent postural-perceptual dizziness (PPPD): consensus document of the committee for the classification of vestibular disorders of the Bárány Society publication-title: J Vestib Res. doi: 10.3233/VES-170622 – volume: 12 start-page: e0168808 year: 2017 ident: CR14 article-title: Postural ataxia in cerebellar downbeat nystagmus: its relation to visual, proprioceptive and vestibular signals and cerebellar atrophy publication-title: PLoS One doi: 10.1371/journal.pone.0168808 – volume: 108 start-page: 197 year: 2011 end-page: 204 ident: CR23 article-title: Central oculomotor disturbances and nystagmus: a window into the brainstem and cerebellum publication-title: Dtsch Arztebl Int. – volume: 374 start-page: 636 year: 1981 end-page: 649 ident: CR29 article-title: Postural imbalance with head extension: improvement by training as a model for ataxia therapy publication-title: Ann N Y Acad Sci. doi: 10.1111/j.1749-6632.1981.tb30907.x – volume: 25 start-page: 413 year: 2015 end-page: 422 ident: CR50 article-title: Automated classification of neurological disorders of gait using spatio-temporal gait parameters publication-title: J Electromyogr Kinesiol. doi: 10.1016/j.jelekin.2015.01.004 – volume: 221 start-page: 1291 year: 2016 end-page: 1308 ident: CR49 article-title: Structural and functional connectivity mapping of the vestibular circuitry from human brainstem to cortex publication-title: Brain Struct Funct. doi: 10.1007/s00429-014-0971-x – ident: CR5 – volume: 15 start-page: 261 year: 2010 end-page: 272 ident: CR11 article-title: Differentiating malingering balance disorder patients from healthy controls, compensated unilateral vestibular loss, and whiplash patients using stance and gait posturography publication-title: Audiol Neurotol. doi: 10.1159/000258682 – volume: 4 start-page: 20 year: 2012 ident: CR17 article-title: Static posturography in aging and Parkinson’s disease publication-title: Front Aging Neurosci. doi: 10.3389/fnagi.2012.00020 – ident: CR18 – volume: 33 start-page: 238 year: 2014 end-page: 250 ident: CR10 article-title: Classification of body movements based on posturographic data publication-title: Hum Mov Sci. doi: 10.1016/j.humov.2013.09.004 – volume: 13 start-page: 2 year: 1998 end-page: 23 ident: CR22 article-title: Consensus statement of the movement disorder society on tremor publication-title: Ad Hoc Scientific Committee. Mov Disord. doi: 10.1002/mds.870131303 – volume: 140 start-page: 83 year: 2017 end-page: 97 ident: CR16 article-title: Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance publication-title: Brain doi: 10.1093/brain/aww268 – ident: CR30 – volume: 4 start-page: 221 year: 1994 end-page: 230 ident: CR12 article-title: Postural sway of patients with vestibular disorders during optic flow publication-title: J Vestib Res. – volume: 5 start-page: 324 year: 2015 ident: CR15 article-title: Orthostatic tremor: a spectrum of fast and slow frequencies or distinct entities? publication-title: Tremor Other Hyperkinet Mov (N Y). – volume: 56 start-page: 438 year: 2001 end-page: 447 ident: CR44 article-title: Trunk sway measures of postural stability during clinical balance tests: effects of age publication-title: J Gerontol Ser A Biol Sci Med Sci. doi: 10.1093/gerona/56.7.M438 – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: CR36 article-title: Extremely randomized trees publication-title: Mach Learn. doi: 10.1007/s10994-006-6226-1 – volume: 85 start-page: 41 year: 2011 end-page: 75 ident: CR31 article-title: Dual coordinate descent methods for logistic regression and maximum entropy models publication-title: Mach Learn. doi: 10.1007/s10994-010-5221-8 – volume: 8 start-page: 14152 year: 2018 ident: CR47 article-title: Walking in orthostatic tremor modulates tremor features and is characterized by impaired gait stability publication-title: Sci Rep. doi: 10.1038/s41598-018-32526-8 – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR40 article-title: Visualizing high-dimensional data using t-SNE publication-title: J Mach Learn Res. – volume: 32 start-page: 317 year: 2010 end-page: 320 ident: CR8 article-title: Identification of peripheral neuropathy in type-2 diabetic subjects by static posturography and linear discriminant analysis publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2010.05.017 – volume: 46 start-page: 1515 year: 1996 end-page: 1519 ident: CR27 article-title: Phobic postural vertigo publication-title: Neurology. doi: 10.1212/WNL.46.6.1515 – volume: 117 start-page: 1692 year: 2006 end-page: 1698 ident: CR7 article-title: Artificial neural network: a new diagnostic posturographic tool for disorders of stance publication-title: Clin Neurophysiol. doi: 10.1016/j.clinph.2006.04.022 – ident: CR48 – volume: 117 start-page: 394 year: 1997 end-page: 398 ident: CR6 article-title: Computerized dynamic platform posturography publication-title: Otolaryngol Head Neck Surg doi: 10.1016/S0194-5998(97)70132-3 – volume: 57 start-page: 134 year: 1984 end-page: 142 ident: CR13 article-title: Quantification of postural sway in normals and patients with cerebellar diseases publication-title: Clin Neurophysiol. Elsevier doi: 10.1016/0013-4694(84)90172-X – volume: 139 start-page: 2182 year: 2016 end-page: 2197 ident: CR42 article-title: Orthostatic tremor: a cerebellar pathology? publication-title: Brain doi: 10.1093/brain/aww140 – volume: 228 start-page: 135 year: 1980 end-page: 150 ident: CR28 article-title: Some methods and parameters of body sway quantification and their neurological applications publication-title: Arch Psychiatr Nervenkr. doi: 10.1007/BF00365601 – volume: 14 start-page: 217 year: 2001 end-page: 226 ident: CR19 article-title: Differential diagnosis of proprioceptive and vestibular deficits using dynamic support-surface posturography publication-title: Gait Posture. doi: 10.1016/S0966-6362(01)00142-4 – volume: 12 start-page: 5 year: 1999 end-page: 11 ident: CR21 article-title: Visual-vestibular control of posture and gait: physiological mechanisms and disorders publication-title: Curr Opin Neurol. doi: 10.1097/00019052-199902000-00002 – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: CR38 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 23 start-page: 349 year: 2008 end-page: 356 ident: CR26 article-title: An exploration of step time variability on smooth and irregular surfaces in older persons with neuropathy publication-title: Clin Biomech. doi: 10.1016/j.clinbiomech.2007.10.004 – volume: 55 start-page: 111 year: 1999 end-page: 136 ident: CR24 article-title: Vestibular neuritis publication-title: Adv Otorhinolaryngol. – ident: CR41 – volume: 21 start-page: 905 year: 2015 end-page: 910 ident: CR45 article-title: Long-term course of orthostatic tremor in serial posturographic measurement publication-title: Park Relat Disord. doi: 10.1016/j.parkreldis.2015.05.021 – volume: 31 start-page: 28 year: 2014 end-page: 34 ident: CR20 article-title: Intraobserver reliability of posturography in patients with vestibular neuritis publication-title: Somatosens Mot Res. doi: 10.3109/08990220.2013.822364 – volume: 228 start-page: 135 year: 1980 ident: 9458_CR28 publication-title: Arch Psychiatr Nervenkr. doi: 10.1007/BF00365601 – volume: 15 start-page: 261 year: 2010 ident: 9458_CR11 publication-title: Audiol Neurotol. doi: 10.1159/000258682 – volume: 221 start-page: 1291 year: 2016 ident: 9458_CR49 publication-title: Brain Struct Funct. doi: 10.1007/s00429-014-0971-x – volume: 5 start-page: 324 year: 2015 ident: 9458_CR15 publication-title: Tremor Other Hyperkinet Mov (N Y). doi: 10.5334/tohm.238 – volume: 108 start-page: 197 year: 2011 ident: 9458_CR23 publication-title: Dtsch Arztebl Int. – volume: 124 start-page: 322 year: 2001 ident: 9458_CR46 publication-title: Brain doi: 10.1093/brain/124.2.322 – volume: 14 start-page: 217 year: 2001 ident: 9458_CR19 publication-title: Gait Posture. doi: 10.1016/S0966-6362(01)00142-4 – volume: 12 start-page: 5 year: 1999 ident: 9458_CR21 publication-title: Curr Opin Neurol. doi: 10.1097/00019052-199902000-00002 – ident: 9458_CR5 doi: 10.1007/978-3-540-29678-2_6304 – volume: 9 start-page: 2579 year: 2008 ident: 9458_CR40 publication-title: J Mach Learn Res. – volume: 117 start-page: 394 year: 1997 ident: 9458_CR6 publication-title: Otolaryngol Head Neck Surg doi: 10.1016/S0194-5998(97)70132-3 – volume: 55 start-page: 111 year: 1999 ident: 9458_CR24 publication-title: Adv Otorhinolaryngol. – ident: 9458_CR39 – ident: 9458_CR35 doi: 10.1561/9781601985415 – volume: 57 start-page: 134 year: 1984 ident: 9458_CR13 publication-title: Clin Neurophysiol. Elsevier doi: 10.1016/0013-4694(84)90172-X – volume: 21 start-page: 905 year: 2015 ident: 9458_CR45 publication-title: Park Relat Disord. doi: 10.1016/j.parkreldis.2015.05.021 – volume: 23 start-page: 349 year: 2008 ident: 9458_CR26 publication-title: Clin Biomech. doi: 10.1016/j.clinbiomech.2007.10.004 – volume: 46 start-page: 1515 year: 1996 ident: 9458_CR27 publication-title: Neurology. doi: 10.1212/WNL.46.6.1515 – volume: 40 start-page: 185 year: 1989 ident: 9458_CR33 publication-title: Artif Intell. doi: 10.1016/0004-3702(89)90049-0 – volume: 12 start-page: 2825 year: 2011 ident: 9458_CR37 publication-title: J Mach Learn Res. – volume: 117 start-page: 1692 year: 2006 ident: 9458_CR7 publication-title: Clin Neurophysiol. doi: 10.1016/j.clinph.2006.04.022 – volume: 12 start-page: e0168808 year: 2017 ident: 9458_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0168808 – volume: 5 start-page: 241 year: 1992 ident: 9458_CR38 publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 4 start-page: 221 year: 1994 ident: 9458_CR12 publication-title: J Vestib Res. – volume: 56 start-page: 33 year: 1999 ident: 9458_CR25 publication-title: Arch Neurol. doi: 10.1001/archneur.56.1.33 – volume: 13 start-page: 352 year: 2017 ident: 9458_CR2 publication-title: Nat Rev Neurol. doi: 10.1038/nrneurol.2017.58 – volume: 46 start-page: 175 year: 1992 ident: 9458_CR32 publication-title: Am Stat. doi: 10.1080/00031305.1992.10475879 – ident: 9458_CR48 doi: 10.1109/ICSMC.2009.5345909 – volume: 139 start-page: 2182 year: 2016 ident: 9458_CR42 publication-title: Brain doi: 10.1093/brain/aww140 – volume: 31 start-page: 28 year: 2014 ident: 9458_CR20 publication-title: Somatosens Mot Res. doi: 10.3109/08990220.2013.822364 – volume: 12 start-page: 1 year: 2017 ident: 9458_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0172398 – ident: 9458_CR30 doi: 10.1145/1390156.1390169 – volume: 56 start-page: 438 year: 2001 ident: 9458_CR44 publication-title: J Gerontol Ser A Biol Sci Med Sci. doi: 10.1093/gerona/56.7.M438 – volume: 63 start-page: 3 year: 2006 ident: 9458_CR36 publication-title: Mach Learn. doi: 10.1007/s10994-006-6226-1 – volume: 8 start-page: 14152 year: 2018 ident: 9458_CR47 publication-title: Sci Rep. doi: 10.1038/s41598-018-32526-8 – volume: 25 start-page: 413 year: 2015 ident: 9458_CR50 publication-title: J Electromyogr Kinesiol. doi: 10.1016/j.jelekin.2015.01.004 – volume: 27 start-page: 191 year: 2017 ident: 9458_CR3 publication-title: J Vestib Res. doi: 10.3233/VES-170622 – volume: 942 start-page: 446 year: 2001 ident: 9458_CR4 publication-title: Ann N Y Acad Sci. doi: 10.1111/j.1749-6632.2001.tb03765.x – volume: 4 start-page: 20 year: 2012 ident: 9458_CR17 publication-title: Front Aging Neurosci. doi: 10.3389/fnagi.2012.00020 – volume: 85 start-page: 41 year: 2011 ident: 9458_CR31 publication-title: Mach Learn. doi: 10.1007/s10994-010-5221-8 – volume: 13 start-page: 2 year: 1998 ident: 9458_CR22 publication-title: Ad Hoc Scientific Committee. Mov Disord. doi: 10.1002/mds.870131303 – volume: 1343 start-page: 10 year: 2015 ident: 9458_CR1 publication-title: Ann N Y Acad Sci. doi: 10.1111/nyas.12585 – volume: 33 start-page: 238 year: 2014 ident: 9458_CR10 publication-title: Hum Mov Sci. doi: 10.1016/j.humov.2013.09.004 – volume: 374 start-page: 636 year: 1981 ident: 9458_CR29 publication-title: Ann N Y Acad Sci. doi: 10.1111/j.1749-6632.1981.tb30907.x – volume: 14 start-page: 199 year: 2004 ident: 9458_CR34 publication-title: Stat Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – ident: 9458_CR41 – ident: 9458_CR18 doi: 10.1007/s00415-011-6124-8 – volume: 32 start-page: 317 year: 2010 ident: 9458_CR8 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2010.05.017 – volume: 76 start-page: 961 year: 1995 ident: 9458_CR43 publication-title: Arch Phys Med Rehabil. doi: 10.1016/S0003-9993(95)80075-1 – volume: 140 start-page: 83 year: 2017 ident: 9458_CR16 publication-title: Brain doi: 10.1093/brain/aww268 |
SSID | ssj0008459 |
Score | 2.4093342 |
Snippet | We perform classification, ranking and mapping of body sway parameters from static posturography data of patients using recent machine-learning and data-mining... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 108 |
SubjectTerms | Adult Artificial intelligence Atrophy Cerebellum Classification Cohort Studies Data Mining - methods Data processing Diagnosis, Computer-Assisted - methods Embedding Female Humans Learning algorithms Machine Learning Male Mapping Medicine Medicine & Public Health Movement disorders Nervous System Diseases - diagnosis Nervous System Diseases - physiopathology Neurodegenerative diseases Neurological diseases Neurology Neuroradiology Neurosciences Nystagmus Original Communication Parkinson's disease Polyneuropathy Postural Balance - physiology Rubber Tremor Vertigo |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLyIb9cXEbxpoW2SpvEmooigJxe8lTxF0O5iV2T1z5tJ04r4AM-ZpqUzmfnCzHyD0KGxQDqmSMIl4f6CUqhE6MIlmSlzBakYR6HB-fqmuBzSqzt2F5vCmq7avUtJBk_dN7sBNRQUmkGJD2VlMp1F8wzu7t6Kh_lp739LGkakpYSmCSOMxlaZn_f4Go6-Ycxv-dEQdi6W0VLEi_i0VfAKmrH1Klq4jhnxNfR-G-peG6zjeIaHN2uwaQvoHho8cjhQVkYXhwEMaotNJN1sTjDUiOKnMCcCy9rgp1BeaXGcJ3EPW4xHjQ9Nkd06SDWvcrqOhhfnt2eXSRyokGiPeiaJczx1eSYtnHItLANqTma4ZMLSzBAPDrXMINOaGsKMMFLpUufccY9qKOdkA83Vo9puIeyRieLOalUKTbXHRCJTTopcKsEcV8UAZd1_rXRkG4ehF49Vz5McdFF5XVRBF9V0gI76Z8Yt18af0ruduqp47prKeyfIq-acDdBBv-xPDKRBZG1HL0GGsqwUKRmgzVbN_euID9dFDivHnd4_N__9W7b_J76DFvPWBr0p7qK5yfOL3fPYZqL2gyl_APgY8PA priority: 102 providerName: Springer Nature |
Title | Towards computerized diagnosis of neurological stance disorders: data mining and machine learning of posturography and sway |
URI | https://link.springer.com/article/10.1007/s00415-019-09458-y https://www.ncbi.nlm.nih.gov/pubmed/31286203 https://www.proquest.com/docview/2253645275 https://www.proquest.com/docview/2254518903 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1daxQxFA3agvgirZ9ra4ngmwZnJslk4ovsll2L0kWkC-vTkE8p2JltZ4us_nlzM9kpUuzTPCSTCXNvkpPcm3MQemMdkI5pSoSiImxQSk2kKT3JbVVoCMV4BhecT-flyYJ9XvJlOnDrUlrldk6ME7VtDZyRvw9-BxGzQvCPq0sCqlEQXU0SGvfRLlCXQUqXWA4brqxiUSwtoywjnHKWLs3Eq3NANAVpa5AwxHhFNv8uTLfQ5q1IaVyAZnvoUUKOeNybeh_dc81j9OA0xcafoD9nMQO2wyYJNZz_dhbbPpXuvMOtx5G8Mk12GGChcdgm-s3uA4ZsUXwRFSOwaiy-iImWDidliR_QxKrtwiKVeK5jre6X2jxFi9n07PiEJGkFYgL-WRPvReaLXDkY70Y6DiSd3ArFpWO5pQEmGpVDzDWzlFtplTaVKYQXAd8wIegztNO0jXuBcMAoWnhndCUNMwEdyVx7JQulJfdClyOUb_9rbRLvOMhf_KwHxuRoizrYoo62qDcj9HZ4Z9WzbtxZ-3BrrjqNwK6-8ZcRej0Uh7EDARHVuPY61mE8r2RGR-h5b-bhczQs3GUBJe-2dr9p_P99eXl3Xw7Qw6L3ueB6h2hnfXXtXgVUs9ZH0XWP0O54NpnM4fnp-5dpeE6m86_fQumiGP8FsjH5Bg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WChgJThCRxHacICHEo9WWdlcIbaXeUr9SVWqThWxVLfwnfiMex0mFKnrrOY5jecYz48zM9wG8NBZBxxSNhKTCXVAyFRU6q6LE5KnCVEzFsMF5Ossme-zrPt9fgz99LwyWVfY20Rtq02j8R_7W6R1mzFLBPyx-RMgahdnVnkKjU4sduzpzV7b2_fYXJ99Xabq1Of88iQKrQKSd619GVSXiKk2kRVXXheWIT8mNkLywLDHURUhaJphujA3lpjBS6VynohLOtTMhqJv3Gqwz6q4yI1j_tDn79n2w_Tnz9GwxZXHEKWehTcc36yG0FRbKYYkS43m0-tcVXohvL-Rmvcvbug23QqxKPnbKdQfWbH0Xrk9DNv4e_J77mtuW6EANcfTLGmK64r2jljQV8XCZwbwSDES1JSYAfrbvCNankhPPUUFkbciJL-20JHBZHOIUi6Z1bjEga_tR7Zlc3Ye9K9n2BzCqm9o-AuKiIiUqq1VeaKZdPFYkqpJFKlXBK6GyMST9vpY6IJ0j4cZxOWA0e1mUThall0W5GsPr4Z1Fh_Nx6eiNXlxlOPNtea6hY3gxPHanFVMwsrbNqR_DeJIXMR3Dw07Mw-eoCxWyFJ-86eV-Pvn_1_L48rU8hxuT-XS33N2e7TyBm2mnf04NN2C0_Hlqn7qYaqmeBUUmcHDVZ-cvejkwcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcKt4sFDASnCBqEttxgoQQoqxaSisOrbS34Ceq1CYL2apa-s_66_A4TipU0VvPcRzLM-P5nJn5BuC1sUg6pmgiJBX-glKopNKFSzJT5gpDMY5hgfPefrF9yL7O-GwFLoZaGEyrHM7EcFCbVuM_8k2vdxgxywXfdDEt4vvW9OP8V4IdpDDSOrTT6FVk1y7P_PWt-7Cz5WX9Js-nXw4-byexw0CiPQxYJM6J1OWZtKj2urIcuSq5EZJXlmWGerSkZYahx9RQbiojlS51Lpzwbp4JQf28t-C2oDxDGxOz8bKXliw0akspSxNOOYsFO6FsD0muMGUOk5UYL5Plv07xCtK9EqUNzm96F9YjaiWfejW7Byu2uQ9rezEu_wDOD0L2bUd0bBJx9McaYvo0vqOOtI4E4sx40BKEpNoSE6k_u_cEM1XJSehWQWRjyElI8rQkdrX4iVPM2847yMixHUZ1Z3L5EA5vZNMfwWrTNvYJEI-PlHBWq7LSTHtkVmXKySqXquJOqGIC2bCvtY6c59h647ge2ZqDLGovizrIol5O4O34zrxn_Lh29MYgrjpaf1df6uoEXo2Pvd1iMEY2tj0NYxjPyiqlE3jci3n8HPWgocjxybtB7peT_38tT69fy0tY8xZTf9vZ330Gd_Je_bwWbsDq4vepfe7B1UK9CFpM4MdNm81fepczQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+computerized+diagnosis+of+neurological+stance+disorders%3A+data+mining+and+machine+learning+of+posturography+and+sway&rft.jtitle=Journal+of+neurology&rft.au=Ahmadi%2C+Seyed-Ahmad&rft.au=Vivar%2C+Gerome&rft.au=Frei%2C+Johann&rft.au=Nowoshilow%2C+Sergej&rft.date=2019-09-01&rft.issn=0340-5354&rft.eissn=1432-1459&rft.volume=266&rft.issue=S1&rft.spage=108&rft.epage=117&rft_id=info:doi/10.1007%2Fs00415-019-09458-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00415_019_09458_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-5354&client=summon |