A molecular interaction–diffusion framework for predicting organic solar cell stability
Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental inte...
Saved in:
Published in | Nature materials Vol. 20; no. 4; pp. 525 - 532 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1476-1122 1476-4660 1476-4660 |
DOI | 10.1038/s41563-020-00872-6 |
Cover
Loading…
Abstract | Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property–function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy
E
a
scales linearly with the enthalpic interaction parameters
χ
H
between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high
χ
) are the most kinetically stabilized. We relate the differences in
E
a
to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property–function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.
Studies on the morphology stability of polymer donor–small-molecule acceptor blends relevant to solar cell stability reveal relationships between their intermolecular interactions and the thermodynamic, kinetic, thermal and mechanical properties. |
---|---|
AbstractList | Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property–function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy Ea scales linearly with the enthalpic interaction parameters χH between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in Ea to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property–function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.Studies on the morphology stability of polymer donor–small-molecule acceptor blends relevant to solar cell stability reveal relationships between their intermolecular interactions and the thermodynamic, kinetic, thermal and mechanical properties. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy E scales linearly with the enthalpic interaction parameters χ between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in E to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy Ea scales linearly with the enthalpic interaction parameters χH between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in Ea to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability.Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property-function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy Ea scales linearly with the enthalpic interaction parameters χH between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ) are the most kinetically stabilized. We relate the differences in Ea to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property-function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability. Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule acceptors (NF-SMAs). Although the morphological stability of these NF-SMA devices critically affects their intrinsic lifetime, their fundamental intermolecular interactions and how they govern property–function relations and morphological stability of OSCs remain elusive. Here, we discover that the diffusion of an NF-SMA into the donor polymer exhibits Arrhenius behaviour and that the activation energy E a scales linearly with the enthalpic interaction parameters χ H between the polymer and the NF-SMA. Consequently, the thermodynamically most unstable, hypo-miscible systems (high χ ) are the most kinetically stabilized. We relate the differences in E a to measured and selectively simulated molecular self-interaction properties of the constituent materials and develop quantitative property–function relations that link thermal and mechanical characteristics of the NF-SMA and polymer to predict relative diffusion properties and thus morphological stability. Studies on the morphology stability of polymer donor–small-molecule acceptor blends relevant to solar cell stability reveal relationships between their intermolecular interactions and the thermodynamic, kinetic, thermal and mechanical properties. |
Author | Ghasemi, Masoud McCulloch, Iain Kim, Taesoo Hu, Huawei Balar, Nrup Ade, Harald Peng, Zhengxing Risko, Chad Rech, Jeromy J. You, Wei Qin, Yunpeng O’Connor, Brendan T. Bidwell, Matthew Amassian, Aram Mask, Walker |
Author_xml | – sequence: 1 givenname: Masoud surname: Ghasemi fullname: Ghasemi, Masoud organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 2 givenname: Nrup orcidid: 0000-0003-3243-3583 surname: Balar fullname: Balar, Nrup organization: Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 3 givenname: Zhengxing surname: Peng fullname: Peng, Zhengxing organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 4 givenname: Huawei orcidid: 0000-0002-9790-8837 surname: Hu fullname: Hu, Huawei organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 5 givenname: Yunpeng surname: Qin fullname: Qin, Yunpeng organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 6 givenname: Taesoo surname: Kim fullname: Kim, Taesoo organization: Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 7 givenname: Jeromy J. orcidid: 0000-0001-7963-9357 surname: Rech fullname: Rech, Jeromy J. organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 8 givenname: Matthew orcidid: 0000-0002-2927-9629 surname: Bidwell fullname: Bidwell, Matthew organization: Department of Chemistry and Centre for Plastic Electronics, Imperial College London – sequence: 9 givenname: Walker surname: Mask fullname: Mask, Walker organization: Department of Chemistry and Center for Applied Energy Research, University of Kentucky – sequence: 10 givenname: Iain surname: McCulloch fullname: McCulloch, Iain organization: King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division, Department of Chemistry, Chemistry Research Laboratory, University of Oxford – sequence: 11 givenname: Wei orcidid: 0000-0003-0354-1948 surname: You fullname: You, Wei organization: Department of Chemistry, University of North Carolina at Chapel Hill – sequence: 12 givenname: Aram orcidid: 0000-0002-5734-1194 surname: Amassian fullname: Amassian, Aram organization: Department of Materials Science and Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 13 givenname: Chad orcidid: 0000-0001-9838-5233 surname: Risko fullname: Risko, Chad organization: Department of Chemistry and Center for Applied Energy Research, University of Kentucky – sequence: 14 givenname: Brendan T. orcidid: 0000-0002-8999-5184 surname: O’Connor fullname: O’Connor, Brendan T. email: btoconno@ncsu.edu organization: Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University – sequence: 15 givenname: Harald orcidid: 0000-0002-1853-5471 surname: Ade fullname: Ade, Harald email: hwade@ncsu.edu organization: Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33432145$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOHTEQhi1ExP0FUkQr0dBsMr57S4SSgIREAwWVZbz2kcmufWLvCtHxDnnDPAnenIMiUVDNFN83-jX_IdqNKTqEPmP4ioGqb4VhLmgLBFoAJUkrdtABZlK0TAjY3e4YE7KPDkt5BCCYc7GH9illlGDGD9D9eTOmwdl5MLkJcXLZ2Cmk-PflTx-8n0vdG5_N6J5S_tX4lJt1dn2oUFw1Ka9MDLYpadGtG4amTOYhDGF6PkafvBmKO9nOI3T34_vtxWV7ffPz6uL8urWM4an1xijMu171FAN4oNJzb1SHoffKgHfSGdrZzkphcWexFUJJCYpZ1REggh6hs83ddU6_Z1cmPYayRDHRpblowqQkggOnFT19hz6mOceaTpMKcEkwkZX6sqXmh9H1ep3DaPKzfntaBdQGsDmVkp3XNkxm-dqUTRg0Br30ozf96NqP_tePXsKSd-rb9Q8lupFKhePK5f-xP7BeAa12ors |
CitedBy_id | crossref_primary_10_1002_aenm_202304449 crossref_primary_10_1002_adfm_202214956 crossref_primary_10_1016_j_joule_2021_05_020 crossref_primary_10_1002_aenm_202102135 crossref_primary_10_1021_acs_est_3c07536 crossref_primary_10_1002_cssc_202301559 crossref_primary_10_1007_s11426_023_1923_4 crossref_primary_10_1002_cjoc_202400573 crossref_primary_10_1002_adfm_202415499 crossref_primary_10_1021_acsami_2c10286 crossref_primary_10_1021_acsami_2c12220 crossref_primary_10_1016_j_mtener_2024_101548 crossref_primary_10_1002_anie_202415141 crossref_primary_10_1021_acs_chemmater_3c00714 crossref_primary_10_1039_D4EE00291A crossref_primary_10_1016_j_joule_2023_01_009 crossref_primary_10_1021_jacs_4c13856 crossref_primary_10_1039_D2TA07671C crossref_primary_10_1021_acsenergylett_1c02244 crossref_primary_10_1002_solr_202400047 crossref_primary_10_1039_D3EE01427D crossref_primary_10_1002_adma_202403890 crossref_primary_10_1021_acsami_3c03962 crossref_primary_10_1016_j_cej_2024_157083 crossref_primary_10_1021_acsomega_3c00598 crossref_primary_10_1038_s41578_023_00642_1 crossref_primary_10_1002_adma_202313393 crossref_primary_10_1039_D3EE00272A crossref_primary_10_1002_marc_202400628 crossref_primary_10_1038_s41467_022_33754_3 crossref_primary_10_1039_D3CS00833A crossref_primary_10_1002_adma_202101833 crossref_primary_10_1016_j_nanoen_2022_106923 crossref_primary_10_1021_acs_chemmater_2c01705 crossref_primary_10_1038_s41560_021_00923_5 crossref_primary_10_1007_s11426_021_1087_8 crossref_primary_10_1021_acsenergylett_4c02897 crossref_primary_10_1039_D2EE03483B crossref_primary_10_3389_fchem_2021_687996 crossref_primary_10_1002_adfm_202203487 crossref_primary_10_1039_D4CS00132J crossref_primary_10_1002_advs_202414042 crossref_primary_10_1002_ange_202309713 crossref_primary_10_1038_s41467_023_39830_6 crossref_primary_10_1021_acs_chemmater_3c00849 crossref_primary_10_1038_s41893_023_01071_2 crossref_primary_10_1002_ange_202206930 crossref_primary_10_26599_NRE_2022_9120088 crossref_primary_10_1002_admt_202101556 crossref_primary_10_1002_advs_202305948 crossref_primary_10_1038_s41467_023_43846_3 crossref_primary_10_1038_s41566_025_01644_x crossref_primary_10_1002_adma_202206563 crossref_primary_10_1021_acsmaterialslett_3c01020 crossref_primary_10_1002_adma_202208986 crossref_primary_10_1021_acs_chemrev_2c00905 crossref_primary_10_1038_s41565_024_01653_x crossref_primary_10_1021_acsami_4c03111 crossref_primary_10_1093_nsr_nwab151 crossref_primary_10_1016_j_nanoen_2023_108853 crossref_primary_10_1002_ange_202303066 crossref_primary_10_1002_pol_20210282 crossref_primary_10_1002_smll_202412230 crossref_primary_10_1021_acsaelm_2c01411 crossref_primary_10_1007_s10562_023_04543_4 crossref_primary_10_1039_D1TC05548H crossref_primary_10_1039_D4TA08402K crossref_primary_10_1007_s40843_024_3074_6 crossref_primary_10_1039_D3EE02540C crossref_primary_10_1080_10601325_2023_2212707 crossref_primary_10_1002_aenm_202103371 crossref_primary_10_1016_j_joule_2024_06_013 crossref_primary_10_1016_j_cej_2022_135894 crossref_primary_10_1016_j_cej_2025_160416 crossref_primary_10_1002_adma_202414080 crossref_primary_10_1007_s11426_022_1290_y crossref_primary_10_1002_adfm_202214392 crossref_primary_10_1002_aenm_202304242 crossref_primary_10_1016_j_nanoen_2023_108501 crossref_primary_10_1002_anie_202308595 crossref_primary_10_1039_D4EE01705F crossref_primary_10_1021_acsenergylett_2c01732 crossref_primary_10_1002_anie_202303066 crossref_primary_10_1002_adma_202302861 crossref_primary_10_1002_adma_202308606 crossref_primary_10_1016_j_orgel_2022_106560 crossref_primary_10_1002_adfm_202105597 crossref_primary_10_1016_j_mssp_2023_107541 crossref_primary_10_1002_smll_202404066 crossref_primary_10_1016_j_joule_2023_10_006 crossref_primary_10_1002_aenm_202202224 crossref_primary_10_1002_solr_202300531 crossref_primary_10_1007_s11426_023_1816_5 crossref_primary_10_1021_acsami_3c18454 crossref_primary_10_1021_acsaem_4c02184 crossref_primary_10_1002_marc_202200530 crossref_primary_10_1038_s41467_024_52821_5 crossref_primary_10_1007_s11426_022_1281_0 crossref_primary_10_1016_j_joule_2022_02_001 crossref_primary_10_1002_pol_20230671 crossref_primary_10_1002_smll_202305437 crossref_primary_10_1021_acsenergylett_3c01304 crossref_primary_10_1002_adfm_202414803 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1016_j_dyepig_2022_110081 crossref_primary_10_1002_anie_202417643 crossref_primary_10_1016_j_joule_2023_07_003 crossref_primary_10_1039_D1QM00060H crossref_primary_10_1039_D3TA06617G crossref_primary_10_1016_j_giant_2024_100336 crossref_primary_10_1039_D3TA06835H crossref_primary_10_1021_acsami_3c06596 crossref_primary_10_1002_adfm_202302089 crossref_primary_10_1039_D2TA09936E crossref_primary_10_1002_aenm_202201267 crossref_primary_10_1016_j_nanoen_2023_109218 crossref_primary_10_1002_anie_202308496 crossref_primary_10_1007_s10118_021_2642_8 crossref_primary_10_1039_D4TA09019E crossref_primary_10_1016_j_wees_2024_04_001 crossref_primary_10_1002_advs_202405716 crossref_primary_10_1002_ange_202417643 crossref_primary_10_1002_adfm_202402045 crossref_primary_10_1039_D1TC03655F crossref_primary_10_1002_aenm_202102596 crossref_primary_10_1002_anie_202403005 crossref_primary_10_1002_adfm_202413611 crossref_primary_10_1002_anie_202209021 crossref_primary_10_1021_acs_macromol_4c03081 crossref_primary_10_1038_s41578_023_00541_5 crossref_primary_10_1021_acs_chemmater_2c00929 crossref_primary_10_1002_adfm_202308618 crossref_primary_10_1039_D1MH01349A crossref_primary_10_1002_anie_202306303 crossref_primary_10_1021_acsmacrolett_1c00396 crossref_primary_10_1016_j_cej_2022_139490 crossref_primary_10_1039_D2EE02695C crossref_primary_10_1038_s41563_020_00889_x crossref_primary_10_1039_D3EE01270K crossref_primary_10_1002_aenm_202401433 crossref_primary_10_1016_j_polymertesting_2022_107791 crossref_primary_10_1002_smll_202409411 crossref_primary_10_1021_acsami_3c03860 crossref_primary_10_1021_acsenergylett_2c01082 crossref_primary_10_1002_adfm_202105820 crossref_primary_10_1002_ange_202318756 crossref_primary_10_1021_acsnano_1c07471 crossref_primary_10_1002_ange_202403005 crossref_primary_10_1063_5_0124743 crossref_primary_10_1002_ange_202319295 crossref_primary_10_1038_s41467_024_55375_8 crossref_primary_10_1002_ange_202306303 crossref_primary_10_1063_5_0225928 crossref_primary_10_1039_D3SM01066J crossref_primary_10_1002_cssc_202101383 crossref_primary_10_1016_j_nanoen_2022_107793 crossref_primary_10_26599_NRE_2023_9120088 crossref_primary_10_1002_aenm_202301696 crossref_primary_10_1038_s41560_022_01155_x crossref_primary_10_1039_D4CC03254C crossref_primary_10_1039_D4EE05083E crossref_primary_10_1002_ange_202418439 crossref_primary_10_1002_solr_202100838 crossref_primary_10_1016_j_solmat_2022_111798 crossref_primary_10_1002_adfm_202308047 crossref_primary_10_1002_anie_202318756 crossref_primary_10_1002_adfm_202410092 crossref_primary_10_1021_acs_chemmater_3c02055 crossref_primary_10_1002_ange_202400590 crossref_primary_10_3390_molecules26247439 crossref_primary_10_1002_adfm_202305445 crossref_primary_10_1088_2058_8585_ad7ece crossref_primary_10_1039_D3CS00492A crossref_primary_10_1002_anie_202319295 crossref_primary_10_1021_acsami_4c01354 crossref_primary_10_1002_adfm_202418805 crossref_primary_10_2139_ssrn_4020826 crossref_primary_10_1002_ange_202308595 crossref_primary_10_1088_2515_7639_ac2291 crossref_primary_10_1002_anie_202206930 crossref_primary_10_1021_acs_chemmater_3c02181 crossref_primary_10_1002_adfm_202103705 crossref_primary_10_1002_aenm_202404567 crossref_primary_10_1002_smll_202311109 crossref_primary_10_1039_D4EE04208E crossref_primary_10_1021_acsami_2c17082 crossref_primary_10_1002_ange_202209021 crossref_primary_10_1002_agt2_190 crossref_primary_10_1016_j_nanoen_2022_107611 crossref_primary_10_1021_acsenergylett_4c01284 crossref_primary_10_1039_D4EE00860J crossref_primary_10_1021_acsnano_3c11193 crossref_primary_10_1002_ange_202415141 crossref_primary_10_1002_anie_202411155 crossref_primary_10_1039_D1TA09392D crossref_primary_10_1002_smll_202308961 crossref_primary_10_1146_annurev_chembioeng_100722_104623 crossref_primary_10_1021_jacs_4c13471 crossref_primary_10_1007_s11426_022_1256_8 crossref_primary_10_1039_D1TA09106A crossref_primary_10_1002_adfm_202211385 crossref_primary_10_1002_aenm_202203697 crossref_primary_10_1016_j_dyepig_2022_111033 crossref_primary_10_1039_D3EE01683H crossref_primary_10_1002_anie_202417143 crossref_primary_10_1016_j_jpowsour_2022_231206 crossref_primary_10_1038_s41467_024_45455_0 crossref_primary_10_1002_aenm_202303785 crossref_primary_10_2139_ssrn_4093761 crossref_primary_10_1016_j_joule_2023_06_002 crossref_primary_10_1002_ange_202308496 crossref_primary_10_1002_anie_202411044 crossref_primary_10_1002_solr_202400542 crossref_primary_10_1002_anie_202309713 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_1039_D3CS00895A crossref_primary_10_1016_j_matt_2024_10_007 crossref_primary_10_1021_acs_jpclett_1c02848 crossref_primary_10_1063_5_0239969 crossref_primary_10_1039_D3MH01133J crossref_primary_10_1021_acs_chemmater_1c01305 crossref_primary_10_1002_adma_202203690 crossref_primary_10_1038_s41570_022_00409_2 crossref_primary_10_1038_s41467_023_38673_5 crossref_primary_10_1016_j_cej_2025_160133 crossref_primary_10_1016_j_nanoen_2024_109338 crossref_primary_10_1039_D3TA03236A crossref_primary_10_1016_j_xcrp_2023_101303 crossref_primary_10_1002_aenm_202303799 crossref_primary_10_1002_ange_202417143 crossref_primary_10_6023_A22020081 crossref_primary_10_1002_adfm_202300878 crossref_primary_10_1016_j_synthmet_2025_117864 crossref_primary_10_1002_marc_202400433 crossref_primary_10_1002_advs_202205485 crossref_primary_10_1002_smll_202201589 crossref_primary_10_1002_adma_202203820 crossref_primary_10_1021_acs_macromol_3c01636 crossref_primary_10_1021_acsami_1c15792 crossref_primary_10_1021_acsami_3c05411 crossref_primary_10_1016_j_dyepig_2022_110911 crossref_primary_10_1021_acs_chemmater_1c03951 crossref_primary_10_1002_adfm_202214361 crossref_primary_10_1002_ange_202316295 crossref_primary_10_1016_j_jcis_2022_07_096 crossref_primary_10_1002_ange_202411155 crossref_primary_10_1021_acsami_2c15657 crossref_primary_10_1093_nsr_nwaf019 crossref_primary_10_1039_D2TC04916C crossref_primary_10_1002_adfm_202206042 crossref_primary_10_1016_j_xcrp_2022_100983 crossref_primary_10_1021_acsami_3c05668 crossref_primary_10_1039_D1EE02320A crossref_primary_10_1021_acsenergylett_2c02679 crossref_primary_10_1002_adfm_202104552 crossref_primary_10_1038_s41467_021_24937_5 crossref_primary_10_1038_s41578_023_00606_5 crossref_primary_10_1038_s41560_022_01140_4 crossref_primary_10_1002_ange_202316039 crossref_primary_10_1002_anie_202400590 crossref_primary_10_1021_acs_chemmater_2c00533 crossref_primary_10_1039_D1TC01536B crossref_primary_10_1039_D4EE04879B crossref_primary_10_1038_s41467_023_38306_x crossref_primary_10_1039_D3NH00122A crossref_primary_10_1039_D4EE03754E crossref_primary_10_1002_ange_202411044 crossref_primary_10_1039_D1EE01062J crossref_primary_10_1002_adma_202302005 crossref_primary_10_1016_j_nanoen_2025_110773 crossref_primary_10_1016_j_dyepig_2024_112240 crossref_primary_10_1016_j_joule_2021_06_006 crossref_primary_10_1021_acs_chemmater_4c02003 crossref_primary_10_1002_ange_202501302 crossref_primary_10_1002_eem2_12443 crossref_primary_10_6023_A22110462 crossref_primary_10_1021_acsaem_4c00735 crossref_primary_10_1039_D3EE02527F crossref_primary_10_1002_smtd_202300397 crossref_primary_10_1002_anie_202316039 crossref_primary_10_1126_science_adp9709 crossref_primary_10_1002_aenm_202201076 crossref_primary_10_1039_D2TA00145D crossref_primary_10_1002_aenm_202103957 crossref_primary_10_1002_smll_202405573 crossref_primary_10_1021_acsenergylett_3c00272 crossref_primary_10_1002_adfm_202409764 crossref_primary_10_1021_acs_jpcc_5c00343 crossref_primary_10_1021_acs_jpclett_3c01004 crossref_primary_10_1002_anie_202501302 crossref_primary_10_1039_D3EE02354K crossref_primary_10_1002_anie_202418439 crossref_primary_10_1002_adfm_202400810 crossref_primary_10_1016_j_xcrp_2024_102027 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1002_anie_202316295 crossref_primary_10_1016_j_joule_2024_07_008 crossref_primary_10_1016_j_orgel_2022_106737 crossref_primary_10_1039_D2EE01894B crossref_primary_10_1002_adma_202407119 crossref_primary_10_1039_D4EE01943A |
Cites_doi | 10.1016/j.softx.2015.06.001 10.1002/aenm.201000023 10.1016/j.joule.2019.03.020 10.1016/j.joule.2018.11.006 10.1021/acs.chemmater.9b01011 10.1002/adfm.201806977 10.1002/aenm.201703339 10.1021/jz101276h 10.1002/adma.201600281 10.1021/acs.chemmater.7b03922 10.1002/adma.201701156 10.1021/ma302337p 10.1021/acs.macromol.7b01282 10.1021/ja305875u 10.1021/ja9621760 10.1002/apmc.1982.051050113 10.1038/nmat1175 10.1002/aenm.201200912 10.1021/acs.chemmater.7b00242 10.1016/0032-5910(91)80176-J 10.1021/acs.macromol.7b00430 10.1038/nmat4797 10.1002/pen.760271314 10.1021/ma200855r 10.1002/adma.201908305 10.1002/aenm.201703058 10.1016/j.joule.2019.01.004 10.1002/aenm.201200637 10.1038/ncomms14541 10.1016/j.joule.2018.09.001 10.1021/acs.macromol.5b00524 10.1002/aenm.201900376 10.1038/s41563-017-0005-1 10.1002/adma.201705208 10.1002/adma.201602776 10.1002/adma.201604603 10.1103/PhysRevLett.83.3218 10.1002/adma.200903193 10.1039/C9CP00777F 10.1007/BF00586285 10.1021/acs.chemrev.7b00535 10.1002/(SICI)1099-0488(199612)34:17<2987::AID-POLB11>3.0.CO;2-4 10.1038/s41467-020-14926-5 10.1002/aenm.201800234 10.1016/0032-3861(82)90093-3 10.1039/C7TA03505E 10.1021/nn404687s 10.1002/0471757128 10.1002/apmc.1979.050830105 10.1093/oso/9780198520597.001.0001 10.1007/978-3-540-71488-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-020-00872-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database Engineering Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 532 |
ExternalDocumentID | 33432145 10_1038_s41563_020_00872_6 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: United States Department of Defense | United States Navy | Office of Naval Research (ONR) grantid: N000141712204; N000141712204 funderid: https://doi.org/10.13039/100000006 – fundername: NSF | ENG/OAD | Division of Civil, Mechanical and Manufacturing Innovation (CMMI) grantid: CMMI-1554322 funderid: https://doi.org/10.13039/100000147 – fundername: KAUST | Global Collaborative Research, King Abdullah University of Science and Technology (GCR, KAUST) grantid: No. 3321; No. 3321; No. 3321; No. 3321 funderid: https://doi.org/10.13039/501100003422 – fundername: NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) grantid: CBET-1639429; CBET-1639429 funderid: https://doi.org/10.13039/100000146 – fundername: United States Department of Defense | United States Navy | ONR | Office of Naval Research Global (ONR Global) grantid: N000141712204; N00014-18-1-2448; N00014-18-1-2448 funderid: https://doi.org/10.13039/100007297 – fundername: North Carolina State University (NC State University) grantid: Start-up Fund; Start-up fund; Start-up funds funderid: https://doi.org/10.13039/100007703 – fundername: NSF | Directorate for Mathematical & Physical Sciences | Division of Astronomical Sciences (AST) grantid: Career, CMMI-1554322 funderid: https://doi.org/10.13039/100000164 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c441t-faa8159d8d3100f037f5fa8910df8a0fe7ea39c9c76c19c1c66877084c8920263 |
IEDL.DBID | 8FG |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Sep 05 06:07:37 EDT 2025 Fri Jul 25 08:55:00 EDT 2025 Wed Feb 19 02:23:43 EST 2025 Tue Jul 01 02:14:02 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-faa8159d8d3100f037f5fa8910df8a0fe7ea39c9c76c19c1c66877084c8920263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7963-9357 0000-0002-5734-1194 0000-0002-1853-5471 0000-0003-0354-1948 0000-0001-9838-5233 0000-0003-3243-3583 0000-0002-9790-8837 0000-0002-8999-5184 0000-0002-2927-9629 |
PMID | 33432145 |
PQID | 2505572127 |
PQPubID | 27576 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2477265053 proquest_journals_2505572127 pubmed_primary_33432145 crossref_citationtrail_10_1038_s41563_020_00872_6 crossref_primary_10_1038_s41563_020_00872_6 springer_journals_10_1038_s41563_020_00872_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Jorgensen, Maxwell, Tirado-Rives (CR53) 1996; 118 Zhao (CR21) 2016; 28 Yang (CR18) 2020; 11 Li (CR26) 2016; 28 Hu (CR11) 2018; 8 Ghasemi (CR15) 2017; 29 Root, Alkhadra, Rodriquez, Printz, Lipomi (CR33) 2017; 29 Treat (CR13) 2012; 134 CR39 Deppe, Miller, Torkelson (CR48) 1996; 34 CR36 Batzer, Kreibich (CR29) 1982; 105 Zhang (CR14) 2017; 5 Bartelt (CR25) 2013; 3 Collins (CR44) 2010; 1 Du (CR3) 2019; 3 Yuan (CR17) 2019; 3 Ye (CR19) 2018; 8 Treat (CR22) 2011; 1 Ma (CR12) 2013; 3 CR47 CR45 Treat, Mates, Hawker, Kramer, Chabinyc (CR20) 2013; 46 Balar (CR35) 2019; 31 Du (CR5) 2020; 32 Virkar, Mannsfeld, Bao, Stingelin (CR42) 2010; 22 Ye (CR23) 2019; 3 Kim (CR43) 2015; 48 Ryno, Risko (CR55) 2019; 21 Ye (CR10) 2018; 17 Stafford (CR41) 2004; 3 Balar, O’Connor (CR40) 2017; 50 White (CR46) 1981; 16 Kreibich, Batzer (CR30) 1979; 83 Kozub (CR51) 2011; 44 Sharma, Pan, Campbell, Andersson, Lewis (CR34) 2017; 50 Cha (CR4) 2017; 29 Zhang (CR1) 2018; 118 Li (CR16) 2018; 30 CR54 Li (CR6) 2017; 8 Roberts, Rowe, York (CR32) 1991; 65 Carpenter (CR49) 2019; 29 Ghasemi (CR7) 2019; 3 Yazmaciyan (CR24) 2018; 8 Lodge (CR37) 1999; 83 Alkhadra (CR50) 2017; 29 Zhu (CR9) 2019; 9 CR28 CR27 Lee (CR31) 1987; 27 Wong (CR8) 2014; 8 Abraham (CR52) 2015; 1-2 Baran (CR2) 2016; 16 Thomas, Windle (CR38) 1982; 23 N Li (872_CR6) 2017; 8 A Sharma (872_CR34) 2017; 50 TP Lodge (872_CR37) 1999; 83 D Baran (872_CR2) 2016; 16 JH Carpenter (872_CR49) 2019; 29 A Yazmaciyan (872_CR24) 2018; 8 HC Wong (872_CR8) 2014; 8 U Kreibich (872_CR30) 1979; 83 AA Virkar (872_CR42) 2010; 22 872_CR54 872_CR39 S Li (872_CR16) 2018; 30 CJ Lee (872_CR31) 1987; 27 JA Bartelt (872_CR25) 2013; 3 N Balar (872_CR35) 2019; 31 ND Treat (872_CR13) 2012; 134 G Zhang (872_CR1) 2018; 118 W Yang (872_CR18) 2020; 11 L Ye (872_CR23) 2019; 3 872_CR45 872_CR47 L Ye (872_CR19) 2018; 8 N Balar (872_CR40) 2017; 50 RJ Roberts (872_CR32) 1991; 65 WL Jorgensen (872_CR53) 1996; 118 DR Kozub (872_CR51) 2011; 44 M Ghasemi (872_CR15) 2017; 29 872_CR28 872_CR27 JR White (872_CR46) 1981; 16 W Ma (872_CR12) 2013; 3 MA Alkhadra (872_CR50) 2017; 29 SE Root (872_CR33) 2017; 29 ND Treat (872_CR20) 2013; 46 X Du (872_CR3) 2019; 3 NL Thomas (872_CR38) 1982; 23 S Li (872_CR26) 2016; 28 872_CR36 MJ Abraham (872_CR52) 2015; 1-2 H Cha (872_CR4) 2017; 29 Y Zhu (872_CR9) 2019; 9 J Yuan (872_CR17) 2019; 3 BA Collins (872_CR44) 2010; 1 DD Deppe (872_CR48) 1996; 34 C Zhang (872_CR14) 2017; 5 W Zhao (872_CR21) 2016; 28 J-S Kim (872_CR43) 2015; 48 M Ghasemi (872_CR7) 2019; 3 ND Treat (872_CR22) 2011; 1 H Batzer (872_CR29) 1982; 105 CM Stafford (872_CR41) 2004; 3 H Hu (872_CR11) 2018; 8 L Ye (872_CR10) 2018; 17 SM Ryno (872_CR55) 2019; 21 X Du (872_CR5) 2020; 32 33432146 - Nat Mater. 2021 Apr;20(4):447-448 |
References_xml | – ident: CR45 – volume: 1-2 start-page: 19 year: 2015 end-page: 25 ident: CR52 article-title: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 1 start-page: 82 year: 2011 end-page: 89 ident: CR22 article-title: Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000023 – volume: 3 start-page: 1328 year: 2019 end-page: 1348 ident: CR7 article-title: Delineation of thermodynamic and kinetic factors that control stability in non-fullerene organic solar cells publication-title: Joule doi: 10.1016/j.joule.2019.03.020 – volume: 3 start-page: 443 year: 2019 end-page: 458 ident: CR23 article-title: Quenching to the percolation threshold in organic solar cells publication-title: Joule doi: 10.1016/j.joule.2018.11.006 – volume: 31 start-page: 5124 year: 2019 end-page: 5132 ident: CR35 article-title: The importance of entanglements in optimizing the mechanical and electrical performance of all-polymer solar cells publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01011 – volume: 29 start-page: 1806977 year: 2019 ident: CR49 article-title: Competition between exceptionally long-range alkyl sidechain ordering and backbone ordering in semiconducting polymers and its impact on electronic and optoelectronic properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806977 – ident: CR39 – volume: 8 start-page: 1703339 year: 2018 ident: CR24 article-title: Recombination losses above and below the transport percolation threshold in bulk heterojunction organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703339 – volume: 1 start-page: 3160 year: 2010 end-page: 3166 ident: CR44 article-title: Molecular miscibility of polymer−fullerene blends publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101276h – ident: CR54 – volume: 28 start-page: 4734 year: 2016 end-page: 4739 ident: CR21 article-title: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability publication-title: Adv. Mater. doi: 10.1002/adma.201600281 – volume: 29 start-page: 10139 year: 2017 end-page: 10149 ident: CR50 article-title: Quantifying the fracture behavior of brittle and ductile thin films of semiconducting polymers publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03922 – volume: 29 start-page: 1701156 year: 2017 ident: CR4 article-title: An efficient, ‘burn in’ free organic solar cell employing a nonfullerene electron acceptor publication-title: Adv. Mater. doi: 10.1002/adma.201701156 – volume: 46 start-page: 1002 year: 2013 end-page: 1007 ident: CR20 article-title: Temperature dependence of the diffusion coefficient of PCBM in poly(3-hexylthiophene) publication-title: Macromolecules doi: 10.1021/ma302337p – volume: 50 start-page: 8611 year: 2017 end-page: 8618 ident: CR40 article-title: Correlating crack onset strain and cohesive fracture energy in polymer semiconductor films publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01282 – volume: 134 start-page: 15869 year: 2012 end-page: 15879 ident: CR13 article-title: Polymer–fullerene miscibility: a metric for screening new materials for high-performance organic solar cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305875u – volume: 118 start-page: 11225 year: 1996 end-page: 11236 ident: CR53 article-title: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 105 start-page: 113 year: 1982 end-page: 130 ident: CR29 article-title: Connections between glass transition-temperature, thermodynamic and mechanic values for predicting material properties from the chemical-structure publication-title: Die Angew. Makromol. Chem. doi: 10.1002/apmc.1982.051050113 – volume: 3 start-page: 545 year: 2004 end-page: 550 ident: CR41 article-title: A buckling-based metrology for measuring the elastic moduli of polymeric thin films publication-title: Nat. Mater. doi: 10.1038/nmat1175 – volume: 3 start-page: 864 year: 2013 end-page: 872 ident: CR12 article-title: Domain purity, miscibility, and molecular orientation at donor/acceptor interfaces in high performance organic solar cells: paths to further improvement publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200912 – volume: 29 start-page: 2646 year: 2017 end-page: 2654 ident: CR33 article-title: Measuring the glass transition temperature of conjugated polymer films with ultraviolet–visible spectroscopy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00242 – ident: CR36 – volume: 65 start-page: 139 year: 1991 end-page: 146 ident: CR32 article-title: The relationship between Young’s modulus of elasticity of organic solids and their molecular structure publication-title: Powder Technol. doi: 10.1016/0032-5910(91)80176-J – volume: 50 start-page: 3347 year: 2017 end-page: 3354 ident: CR34 article-title: Unravelling the thermomechanical properties of bulk heterojunction blends in polymer solar cells publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00430 – volume: 16 start-page: 363 year: 2016 end-page: 369 ident: CR2 article-title: Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells publication-title: Nat. Mater. doi: 10.1038/nmat4797 – volume: 27 start-page: 1015 year: 1987 end-page: 1017 ident: CR31 article-title: Correlations of elastic modulus, cohesive energy density and heat capacity jump of glassy polymers publication-title: Polyrn. Eng. Sci. doi: 10.1002/pen.760271314 – volume: 44 start-page: 5722 year: 2011 end-page: 5726 ident: CR51 article-title: Polymer crystallization of partially miscible polythiophene/fullerene mixtures controls morphology publication-title: Macromolecules doi: 10.1021/ma200855r – volume: 32 start-page: 1908305 year: 2020 ident: CR5 article-title: Unraveling the microstructure-related device stability for polymer solar cells based on nonfullerene small–molecular acceptors publication-title: Adv. Mater. doi: 10.1002/adma.201908305 – ident: CR47 – volume: 8 start-page: 1703058 year: 2018 ident: CR19 article-title: Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to percolation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703058 – volume: 3 start-page: 1140 year: 2019 end-page: 1151 ident: CR17 article-title: Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 3 start-page: 364 year: 2013 end-page: 374 ident: CR25 article-title: The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200637 – volume: 8 year: 2017 ident: CR6 article-title: Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor–acceptor demixing publication-title: Nat. Commun. doi: 10.1038/ncomms14541 – volume: 3 start-page: 215 year: 2019 end-page: 226 ident: CR3 article-title: Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years publication-title: Joule doi: 10.1016/j.joule.2018.09.001 – volume: 48 start-page: 4339 year: 2015 end-page: 4346 ident: CR43 article-title: Tuning mechanical and optoelectrical properties of poly(3-hexylthiophene) through systematic regioregularity control publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00524 – volume: 9 start-page: 1900376 year: 2019 ident: CR9 article-title: Rational strategy to stabilize an unstable high-efficiency binary nonfullerene organic solar cells with a third component publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900376 – ident: CR27 – volume: 17 start-page: 253 year: 2018 end-page: 260 ident: CR10 article-title: Quantitative relations between interaction parameter, miscibility and function in organic solar cells publication-title: Nat. Mater. doi: 10.1038/s41563-017-0005-1 – volume: 30 start-page: 1705208 year: 2018 ident: CR16 article-title: An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201705208 – volume: 28 start-page: 9423 year: 2016 end-page: 9429 ident: CR26 article-title: Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201602776 – volume: 29 start-page: 1604603 year: 2017 ident: CR15 article-title: Panchromatic sequentially cast ternary polymer solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201604603 – volume: 83 start-page: 3218 year: 1999 end-page: 3221 ident: CR37 article-title: Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3218 – volume: 22 start-page: 3857 year: 2010 end-page: 3875 ident: CR42 article-title: Organic semiconductor growth and morphology considerations for organic thin-film transistors publication-title: Adv. Mater. doi: 10.1002/adma.200903193 – volume: 83 start-page: 57 year: 1979 end-page: 112 ident: CR30 article-title: Influence of the segment structure and crosslinking on the glass-transition -possibilities of predicting using the values of cohesive energy ecoh publication-title: Die Angew. Makromol. Chem. – volume: 21 start-page: 7802 year: 2019 end-page: 7813 ident: CR55 article-title: Deconstructing the behavior of donor–acceptor copolymers in solution & the melt: the case of PTB7 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP00777F – volume: 16 start-page: 3249 year: 1981 end-page: 3262 ident: CR46 article-title: On internal stress and activation volume in polymers publication-title: J. Mater. Sci. doi: 10.1007/BF00586285 – volume: 118 start-page: 3447 year: 2018 end-page: 3507 ident: CR1 article-title: Nonfullerene acceptor molecules for bulk heterojunction organic solar cells publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00535 – volume: 34 start-page: 2987 year: 1996 end-page: 2997 ident: CR48 article-title: Small molecule diffusion in a rubbery polymer near : effects of probe size, shape, and flexibility publication-title: J. Polym. Sci., B: Polym. Phys. doi: 10.1002/(SICI)1099-0488(199612)34:17<2987::AID-POLB11>3.0.CO;2-4 – volume: 11 year: 2020 ident: CR18 article-title: Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive publication-title: Nat. Commun. doi: 10.1038/s41467-020-14926-5 – volume: 8 start-page: 1800234 year: 2018 ident: CR11 article-title: Effect of ring-fusion on miscibility and domain purity: key factors determining the performance of PDI-based nonfullerene organic solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800234 – volume: 23 start-page: 529 year: 1982 end-page: 542 ident: CR38 article-title: A theory of case II diffusion publication-title: Polymer doi: 10.1016/0032-3861(82)90093-3 – volume: 5 start-page: 17570 year: 2017 end-page: 17579 ident: CR14 article-title: Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer–fullerene solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03505E – ident: CR28 – volume: 8 start-page: 1297 year: 2014 end-page: 1308 ident: CR8 article-title: Morphological stability and performance of polymer–fullerene solar cells under thermal stress: the impact of photoinduced PC60BM oligomerization publication-title: ACS Nano doi: 10.1021/nn404687s – ident: 872_CR27 – volume: 22 start-page: 3857 year: 2010 ident: 872_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.200903193 – volume: 118 start-page: 11225 year: 1996 ident: 872_CR53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 27 start-page: 1015 year: 1987 ident: 872_CR31 publication-title: Polyrn. Eng. Sci. doi: 10.1002/pen.760271314 – volume: 3 start-page: 1328 year: 2019 ident: 872_CR7 publication-title: Joule doi: 10.1016/j.joule.2019.03.020 – volume: 8 start-page: 1703058 year: 2018 ident: 872_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703058 – volume: 44 start-page: 5722 year: 2011 ident: 872_CR51 publication-title: Macromolecules doi: 10.1021/ma200855r – ident: 872_CR36 doi: 10.1002/0471757128 – volume: 1 start-page: 82 year: 2011 ident: 872_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201000023 – volume: 3 start-page: 215 year: 2019 ident: 872_CR3 publication-title: Joule doi: 10.1016/j.joule.2018.09.001 – volume: 29 start-page: 1806977 year: 2019 ident: 872_CR49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806977 – volume: 29 start-page: 2646 year: 2017 ident: 872_CR33 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00242 – volume: 28 start-page: 9423 year: 2016 ident: 872_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201602776 – volume: 8 start-page: 1800234 year: 2018 ident: 872_CR11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800234 – volume: 118 start-page: 3447 year: 2018 ident: 872_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00535 – volume: 29 start-page: 10139 year: 2017 ident: 872_CR50 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03922 – volume: 21 start-page: 7802 year: 2019 ident: 872_CR55 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP00777F – volume: 83 start-page: 57 year: 1979 ident: 872_CR30 publication-title: Die Angew. Makromol. Chem. doi: 10.1002/apmc.1979.050830105 – volume: 29 start-page: 1701156 year: 2017 ident: 872_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201701156 – volume: 31 start-page: 5124 year: 2019 ident: 872_CR35 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01011 – volume: 3 start-page: 1140 year: 2019 ident: 872_CR17 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 – volume: 1 start-page: 3160 year: 2010 ident: 872_CR44 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101276h – volume: 134 start-page: 15869 year: 2012 ident: 872_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305875u – volume: 9 start-page: 1900376 year: 2019 ident: 872_CR9 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900376 – volume: 16 start-page: 363 year: 2016 ident: 872_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat4797 – volume: 50 start-page: 3347 year: 2017 ident: 872_CR34 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b00430 – volume: 3 start-page: 364 year: 2013 ident: 872_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200637 – ident: 872_CR54 – volume: 3 start-page: 864 year: 2013 ident: 872_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200912 – volume: 8 start-page: 1297 year: 2014 ident: 872_CR8 publication-title: ACS Nano doi: 10.1021/nn404687s – ident: 872_CR39 – volume: 1-2 start-page: 19 year: 2015 ident: 872_CR52 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 83 start-page: 3218 year: 1999 ident: 872_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.3218 – volume: 48 start-page: 4339 year: 2015 ident: 872_CR43 publication-title: Macromolecules doi: 10.1021/acs.macromol.5b00524 – ident: 872_CR28 doi: 10.1093/oso/9780198520597.001.0001 – ident: 872_CR47 doi: 10.1007/978-3-540-71488-0 – volume: 23 start-page: 529 year: 1982 ident: 872_CR38 publication-title: Polymer doi: 10.1016/0032-3861(82)90093-3 – volume: 17 start-page: 253 year: 2018 ident: 872_CR10 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0005-1 – volume: 11 year: 2020 ident: 872_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14926-5 – volume: 34 start-page: 2987 year: 1996 ident: 872_CR48 publication-title: J. Polym. Sci., B: Polym. Phys. doi: 10.1002/(SICI)1099-0488(199612)34:17<2987::AID-POLB11>3.0.CO;2-4 – volume: 105 start-page: 113 year: 1982 ident: 872_CR29 publication-title: Die Angew. Makromol. Chem. doi: 10.1002/apmc.1982.051050113 – volume: 16 start-page: 3249 year: 1981 ident: 872_CR46 publication-title: J. Mater. Sci. doi: 10.1007/BF00586285 – volume: 46 start-page: 1002 year: 2013 ident: 872_CR20 publication-title: Macromolecules doi: 10.1021/ma302337p – volume: 32 start-page: 1908305 year: 2020 ident: 872_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201908305 – volume: 8 start-page: 1703339 year: 2018 ident: 872_CR24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703339 – volume: 30 start-page: 1705208 year: 2018 ident: 872_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201705208 – volume: 50 start-page: 8611 year: 2017 ident: 872_CR40 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01282 – volume: 28 start-page: 4734 year: 2016 ident: 872_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201600281 – volume: 29 start-page: 1604603 year: 2017 ident: 872_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201604603 – volume: 65 start-page: 139 year: 1991 ident: 872_CR32 publication-title: Powder Technol. doi: 10.1016/0032-5910(91)80176-J – volume: 3 start-page: 443 year: 2019 ident: 872_CR23 publication-title: Joule doi: 10.1016/j.joule.2018.11.006 – volume: 5 start-page: 17570 year: 2017 ident: 872_CR14 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03505E – volume: 8 year: 2017 ident: 872_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms14541 – ident: 872_CR45 – volume: 3 start-page: 545 year: 2004 ident: 872_CR41 publication-title: Nat. Mater. doi: 10.1038/nmat1175 – reference: 33432146 - Nat Mater. 2021 Apr;20(4):447-448 |
SSID | ssj0021556 |
Score | 2.6980367 |
Snippet | Rapid increase in the power conversion efficiency of organic solar cells (OSCs) has been achieved with the development of non-fullerene small-molecule... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 525 |
SubjectTerms | 639/301/1005/1007 639/301/299/946 639/301/923/1028 639/301/923/3931 Biomaterials Chemistry and Materials Science Condensed Matter Physics Diffusion Electric Power Supplies Energy conversion efficiency Interaction parameters Kinetics Materials Science Mechanical properties Models, Chemical Molecular interactions Morphology Nanotechnology Optical and Electronic Materials Organic Chemicals - chemistry Photovoltaic cells Polymer blends Polymers Polymers - chemistry Solar cells Stability Sunlight Thermodynamic properties Thermodynamics |
Title | A molecular interaction–diffusion framework for predicting organic solar cell stability |
URI | https://link.springer.com/article/10.1038/s41563-020-00872-6 https://www.ncbi.nlm.nih.gov/pubmed/33432145 https://www.proquest.com/docview/2505572127 https://www.proquest.com/docview/2477265053 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeBMolZHYICKJk9iZUEGUCgmEEEhlilzHnqAtfQxs_Af-Ib-EuzxaEKJznMS68_m-ewMcR1pFXGmF8i0CGmGWuSpTkYvKyBrPeIlU5Bq4vYs7T-FNN-qWDrdxmVZZ3Yn5RZ0NNPnIz0hVR4L6kZ8P31yaGkXR1XKExjLUfdQ0dM5l-3pmcKGuLKqLROwirgjKohmPy7MxGS4UwaS6aonbjH8rpj9o80-kNFdA7XVYK5EjaxWs3oAl09-E1R_9BLfgucVeq3G3jBpBjIqyha-PTxqEMiXPGLNVOhZDvMqGI4rUUO4zKwY8aTYma5eRR58hdMyTZ9-34al99XjZccvZCa5GgDNxrVISkUomM_LgW48LG1klERxkVirPGmEUT3SiRaz9RPs6jqUQngy1TAK0y_gO1PqDvtkDFvg2CAU32nCD4p71ZGwR1vWQpWGoVeCAXxEu1WVjcZpv8ZLmAW4u04LYKRI7zYmdxg6czN4ZFm01Fq5uVPxISxEbp_MD4cDR7DEKB9FH9c1gimtCNB4Qg0bcgd2Cj7PfcSqp9cPIgdOKsfOP_7-X_cV7OYCVgLJe8tyeBtQmo6k5RNgy6TVhWXRFMz-hTahfXN3dP3wDOtHqiA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6iw6HtAUEXCFtdqT21EYmdxM4BIVYNBUZVBRI9GY9jn9qZ6SxC3PgP_A9-FL-E97IMrVC5cY7jRG_x-57fBvAptSYVxhrUb8lphFkRmsKkIRoj7yIX5crQ1cBJJ2ufJd_O0_MZuG1qYSitsjkTy4O66Fu6I98gU51K6ke-NfgT0tQoiq42IzQqsThyV5foso02D_eQv585P9g_3W2H9VSB0KLpH4feGIU2vFAF3W37SEifeqPQbBZemcg76YzIbW5lZuPcxjbLlJSRSqzKOXosAvd9AbMJVbS2YHZnv_P9x9TFQ-tc1TPJLEQkw-synUiojRG5ShQzpUpuhYTJ_jWFj_Dto9hsafIO5mGuxqpsuxKuBZhxvTfw-q8Ohm_h5zb73QzYZdR6YlgVStxd39DolQndxTHfJIAxRMhsMKTYEGVbs2qklGUj8q8ZxRAYgtUyXffqHZw9C13fQ6vX77klYDz2PJHCWSccHjBFV2UegWQXhShJrOEBxA3htK1bmdNEjV-6DKkLpStiayS2LomtswC-TN8ZVI08nly92vBD10o90g8iGMDH6WNUR6KP6bn-BNck6K4g6k1FAIsVH6efE1TEGydpAF8bxj5s_v9_WX76Xz7Ay_bpybE-PuwcrcArTjk3ZWbRKrTGw4lbQ9A07q7Xksrg4rmV4x56jyWT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRarKoYI-IOXlSu2pjTaxk9g5IISAFZQW9VCk7cn1OvYJdrf7UMWN_8C_4efwS5jJY5cKwY1zHCeah-cbzwvgU2pNKow1qN-S0wizIjSFSUM0Rt5FLsqVoauBH6fZ0VnyrZt2F-CmqYWhtMrmTCwP6mJg6Y68TaY6ldSPvO3rtIifB53d4d-QJkhRpLUZp1GJyIm7_Ifu23jn-AB5_ZnzzuGv_aOwnjAQWoQBk9Abo9CeF6qge24fCelTbxSa0MIrE3knnRG5za3MbJzb2GaZkjJSiVU5R-9F4L4vYFEKRFWoS7I7d_bQTleVTTILEdPwumAnEqo9JqeJoqdU062QRNn_RvEB0n0QpS2NX2cZXteole1VYrYCC67_Bpbu9TJ8C7_32EUzapdRE4pRVTJxe3VNQ1imdCvHfJMKxhArs-GIokSUd82q4VKWjcnTZhRNYAhby8Tdy3dw9ixUfQ-t_qDv1oDx2PNECmedcHjUFD2VeYSUPRSnJLGGBxA3hNO2bmpOszXOdRlcF0pXxNZIbF0SW2cBfJm9M6xaejy5eqPhh67Ve6znwhjAx9ljVEyij-m7wRTXJOi4IP5NRQCrFR9nnxNUzhsnaQBfG8bON3_8Xz48_S_b8BJVQn8_Pj1Zh1eckm_KFKMNaE1GU7eJ6GnS2yrFlMGf59aLOwtLKFo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+molecular+interaction%E2%80%93diffusion+framework+for+predicting+organic+solar+cell+stability&rft.jtitle=Nature+materials&rft.au=Ghasemi%2C+Masoud&rft.au=Balar%2C+Nrup&rft.au=Peng%2C+Zhengxing&rft.au=Hu%2C+Huawei&rft.date=2021-04-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=4&rft.spage=525&rft.epage=532&rft_id=info:doi/10.1038%2Fs41563-020-00872-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_020_00872_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |