Disorder-induced localization in crystalline phase-change materials

Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electr...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 10; no. 3; pp. 202 - 208
Main Authors Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C., Wuttig, M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal–insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal–insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. Phase-change materials are used in computer memories for their switching between amorphous and crystalline phases. However, even the crystalline state shows disorder, with extremely small electron mean free paths. The discovery that, depending on annealing temperature, this disorder leads to a metal–insulator transition in the crystalline phase provides a completely new look at the transport properties of these compounds.
AbstractList Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. [PUBLICATION ABSTRACT]
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal–insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal–insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. Phase-change materials are used in computer memories for their switching between amorphous and crystalline phases. However, even the crystalline state shows disorder, with extremely small electron mean free paths. The discovery that, depending on annealing temperature, this disorder leads to a metal–insulator transition in the crystalline phase provides a completely new look at the transport properties of these compounds.
Author Merkelbach, P.
Woda, M.
Schlockermann, C.
Wuttig, M.
Jost, P.
Volker, H.
Siegrist, T.
Author_xml – sequence: 1
  givenname: T.
  surname: Siegrist
  fullname: Siegrist, T.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University, Department of Chemical and Biomedical Engineering, Florida State University
– sequence: 2
  givenname: P.
  surname: Jost
  fullname: Jost, P.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University
– sequence: 3
  givenname: H.
  surname: Volker
  fullname: Volker, H.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University
– sequence: 4
  givenname: M.
  surname: Woda
  fullname: Woda, M.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University
– sequence: 5
  givenname: P.
  surname: Merkelbach
  fullname: Merkelbach, P.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University
– sequence: 6
  givenname: C.
  surname: Schlockermann
  fullname: Schlockermann, C.
  organization: I. Physikalisches Institut (IA), RWTH Aachen University
– sequence: 7
  givenname: M.
  surname: Wuttig
  fullname: Wuttig, M.
  email: wuttig@physik.rwth-aachen.de
  organization: I. Physikalisches Institut (IA), RWTH Aachen University, JARA-FIT, RWTH Aachen University, I. Physikalisches Institut (IA)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21217692$$D View this record in MEDLINE/PubMed
BookMark eNqN0TtPwzAQB3ALgegDJD4BiliAIcXPazKi8pQqscAcObZDXaVOsZOhfHoMbUEqDEzn4Xdn-38DtO8aZxA6IXhEMMuu3EK2NGd8D_UJH0PKAfD-5kwIpT00CGGOMSVCwCHqUULJGHLaR5MbGxqvjU-t050yOqkbJWv7LlvbuMS6RPlVaGVdW2eS5UwGk6qZdK8miXcab2UdjtBBFYs53tQherm7fZ48pNOn-8fJ9TRVnJM2rUCXUJaMlZRqzDWA4CXONGSEZJJVOBOQa65UzoCOy7EgkFUGK54RRSvAbIjO13OXvnnrTGiLhQ3K1LV0pulCkQHnlDDxDykYpQIoRHm2I-dN5138RkQ0jzEREdHpBnXlwuhi6e1C-lWxjTGCizVQvgnBm-qbEFx8bqjYbijS0Q5Vtv0Ku_XS1n81XK4bQpwZc_c_L_xlPwCh-58x
CitedBy_id crossref_primary_10_1103_PhysRevB_94_045319
crossref_primary_10_1039_D2CE00691J
crossref_primary_10_1155_2022_8344699
crossref_primary_10_1103_PhysRevB_93_094203
crossref_primary_10_1039_C9NA00366E
crossref_primary_10_1021_acsphotonics_2c00432
crossref_primary_10_1088_0953_8984_28_28_285601
crossref_primary_10_1063_1_5109380
crossref_primary_10_1021_acs_nanolett_1c02353
crossref_primary_10_1051_epjap_2023230054
crossref_primary_10_1088_1361_6463_aad684
crossref_primary_10_1021_acs_jpcc_8b03027
crossref_primary_10_5757_vacmag_1_3_21
crossref_primary_10_1007_s12274_021_3570_1
crossref_primary_10_1002_pssr_201800506
crossref_primary_10_37188_lam_2021_019
crossref_primary_10_4028_www_scientific_net_AMR_873_825
crossref_primary_10_1088_1361_6641_aa691c
crossref_primary_10_1088_1361_6641_ac3c98
crossref_primary_10_1364_OL_385280
crossref_primary_10_1103_PhysRevLett_118_036602
crossref_primary_10_3390_nano13030582
crossref_primary_10_1016_j_actamat_2023_118809
crossref_primary_10_1063_1_4977241
crossref_primary_10_1039_D1TC05970J
crossref_primary_10_1016_j_materresbull_2015_01_016
crossref_primary_10_1016_j_mssp_2021_105948
crossref_primary_10_1080_08957959_2014_941361
crossref_primary_10_7567_1882_0786_aaed9d
crossref_primary_10_7498_aps_63_177701
crossref_primary_10_1038_srep21466
crossref_primary_10_1016_j_jallcom_2017_12_146
crossref_primary_10_1002_pssr_202300419
crossref_primary_10_3938_jkps_71_42
crossref_primary_10_1021_ja405497p
crossref_primary_10_1016_j_mseb_2017_02_002
crossref_primary_10_1063_5_0079370
crossref_primary_10_1016_j_jmst_2020_03_016
crossref_primary_10_1063_1_4795312
crossref_primary_10_1063_1_4922505
crossref_primary_10_1088_2752_5724_aca07b
crossref_primary_10_1021_nl304056k
crossref_primary_10_1016_j_jallcom_2011_08_050
crossref_primary_10_1039_C5RA20688J
crossref_primary_10_1103_PhysRevLett_121_165702
crossref_primary_10_1007_s00339_017_1519_8
crossref_primary_10_1016_j_vacuum_2013_01_024
crossref_primary_10_1016_j_materresbull_2022_111731
crossref_primary_10_1038_s41578_018_0076_x
crossref_primary_10_1002_adfm_201002274
crossref_primary_10_1038_s41467_022_29117_7
crossref_primary_10_3390_ma10091046
crossref_primary_10_3139_146_110543
crossref_primary_10_1063_5_0089399
crossref_primary_10_1021_acsomega_0c04922
crossref_primary_10_1063_1_4932666
crossref_primary_10_1002_adfm_201500849
crossref_primary_10_1002_rcm_6833
crossref_primary_10_1002_adfm_201500848
crossref_primary_10_1038_s41535_020_0241_5
crossref_primary_10_1002_adma_202403046
crossref_primary_10_1007_s12043_013_0532_5
crossref_primary_10_1063_1_4933102
crossref_primary_10_1080_10408436_2017_1370575
crossref_primary_10_1016_j_actamat_2023_118863
crossref_primary_10_1002_adma_201502023
crossref_primary_10_1016_j_jallcom_2016_03_019
crossref_primary_10_1021_acsnano_5b03295
crossref_primary_10_1109_TED_2011_2170840
crossref_primary_10_1002_advs_202304323
crossref_primary_10_1016_j_actamat_2025_120896
crossref_primary_10_1038_s41535_018_0119_y
crossref_primary_10_1088_1361_6463_ab2ac3
crossref_primary_10_1016_j_matlet_2018_09_125
crossref_primary_10_1002_adma_201908302
crossref_primary_10_1016_j_mssp_2016_07_014
crossref_primary_10_1038_s41598_018_23221_9
crossref_primary_10_1038_srep23843
crossref_primary_10_1002_pssr_202000411
crossref_primary_10_1103_PhysRevApplied_9_054044
crossref_primary_10_1021_acsami_9b12854
crossref_primary_10_1039_C1CC15808B
crossref_primary_10_1590_1980_5373_mr_2019_0372
crossref_primary_10_1016_j_mssp_2016_02_006
crossref_primary_10_1016_j_mtphys_2022_100787
crossref_primary_10_1016_j_apsusc_2022_154274
crossref_primary_10_1021_acs_nanolett_5b00755
crossref_primary_10_1016_j_jpcs_2018_02_021
crossref_primary_10_1063_1_4795592
crossref_primary_10_1063_5_0054392
crossref_primary_10_1063_1_5088068
crossref_primary_10_1007_s10973_025_13998_z
crossref_primary_10_1002_aisy_202000105
crossref_primary_10_1016_j_jallcom_2015_07_299
crossref_primary_10_1039_D4NH00035H
crossref_primary_10_1039_C7CP06992H
crossref_primary_10_1002_pssr_202100064
crossref_primary_10_1073_pnas_2213713120
crossref_primary_10_1016_j_jallcom_2017_12_038
crossref_primary_10_1016_j_scriptamat_2012_08_016
crossref_primary_10_1039_C6TC01777K
crossref_primary_10_1002_adma_202414031
crossref_primary_10_1063_1_4742980
crossref_primary_10_1016_j_mssp_2022_106907
crossref_primary_10_1103_PhysRevB_108_014420
crossref_primary_10_1021_nl501710r
crossref_primary_10_1002_adma_201703568
crossref_primary_10_1038_s41535_019_0196_6
crossref_primary_10_1039_C8CP00901E
crossref_primary_10_1016_j_mattod_2020_07_016
crossref_primary_10_1021_acs_nanolett_6b03688
crossref_primary_10_1364_OME_462846
crossref_primary_10_1002_adom_202300481
crossref_primary_10_1557_mrc_2018_168
crossref_primary_10_1038_s41467_021_21175_7
crossref_primary_10_1103_PhysRevB_95_064514
crossref_primary_10_1021_acs_chemmater_4c00088
crossref_primary_10_1002_adma_201904316
crossref_primary_10_1016_j_mee_2013_10_021
crossref_primary_10_1039_C8CE01134F
crossref_primary_10_1146_annurev_conmatphys_020911_125105
crossref_primary_10_1063_1_4902513
crossref_primary_10_1088_1361_6528_acb446
crossref_primary_10_1016_j_tsf_2017_01_041
crossref_primary_10_1016_j_jmmm_2021_168312
crossref_primary_10_1063_1_4749839
crossref_primary_10_1088_1361_6641_ac62fa
crossref_primary_10_1002_adom_201900548
crossref_primary_10_1016_j_actamat_2013_08_038
crossref_primary_10_1063_1_4939926
crossref_primary_10_1109_LED_2019_2935890
crossref_primary_10_1002_pssb_202000165
crossref_primary_10_1016_j_mssp_2021_106087
crossref_primary_10_1016_j_actamat_2014_03_067
crossref_primary_10_1016_j_microrel_2020_113823
crossref_primary_10_1016_j_jssc_2020_121249
crossref_primary_10_1038_s41467_019_12196_4
crossref_primary_10_1002_pssr_202100472
crossref_primary_10_1103_PhysRevB_97_024513
crossref_primary_10_1002_advs_201500117
crossref_primary_10_1039_C7CE01040K
crossref_primary_10_1063_1_5020614
crossref_primary_10_1002_adma_201801787
crossref_primary_10_1039_C8NR06567E
crossref_primary_10_1039_C6CS00571C
crossref_primary_10_1103_PhysRevMaterials_6_044201
crossref_primary_10_1002_admt_202200214
crossref_primary_10_1007_s00542_019_04451_x
crossref_primary_10_1063_1_3595408
crossref_primary_10_1016_j_actamat_2020_01_043
crossref_primary_10_1039_C5TA04038H
crossref_primary_10_1103_PhysRevB_94_094103
crossref_primary_10_1103_PhysRevB_90_134402
crossref_primary_10_1038_s41570_020_0173_4
crossref_primary_10_1007_s11669_022_00952_x
crossref_primary_10_1002_aelm_201400056
crossref_primary_10_1515_msp_2018_0012
crossref_primary_10_1016_j_jpcs_2022_110671
crossref_primary_10_1134_S1063782621010127
crossref_primary_10_1103_PhysRevB_94_155151
crossref_primary_10_1063_1_5131489
crossref_primary_10_1021_acsami_7b11925
crossref_primary_10_1088_1361_648X_ab680b
crossref_primary_10_1039_C9TC04810C
crossref_primary_10_1063_5_0030956
crossref_primary_10_1038_s41598_022_21590_w
crossref_primary_10_1103_PhysRevB_97_245205
crossref_primary_10_3390_ma18010132
crossref_primary_10_1088_2631_7990_ad1575
crossref_primary_10_1016_j_actamat_2017_07_006
crossref_primary_10_1016_j_jpcs_2018_10_028
crossref_primary_10_1016_j_ssc_2012_02_018
crossref_primary_10_1557_jmr_2015_124
crossref_primary_10_1016_j_jnoncrysol_2017_10_030
crossref_primary_10_1088_0953_8984_26_26_265002
crossref_primary_10_1515_zkri_2014_1829
crossref_primary_10_1557_opl_2012_1405
crossref_primary_10_1103_PhysRevB_97_195105
crossref_primary_10_1039_D2NJ00129B
crossref_primary_10_1103_PhysRevB_107_174204
crossref_primary_10_1088_1361_648X_ab76e2
crossref_primary_10_1063_1_4757137
crossref_primary_10_1039_C4NJ00389F
crossref_primary_10_1103_PhysRevApplied_10_054070
crossref_primary_10_1063_1_4829358
crossref_primary_10_1002_adfm_201500830
crossref_primary_10_1016_j_actamat_2021_117132
crossref_primary_10_1002_adma_201004255
crossref_primary_10_1021_acs_cgd_9b00856
crossref_primary_10_1063_1_3664132
crossref_primary_10_1007_s11664_017_5932_8
crossref_primary_10_1002_adfm_202503094
crossref_primary_10_1021_acs_chemmater_8b01900
crossref_primary_10_1039_D1TC06045G
crossref_primary_10_1103_PhysRevB_103_L241106
crossref_primary_10_1002_pssb_201552803
crossref_primary_10_1038_s41598_019_42634_8
crossref_primary_10_1038_s41598_019_49270_2
crossref_primary_10_1103_PhysRevB_95_094111
crossref_primary_10_1021_nl4006194
crossref_primary_10_1039_C8NR04350G
crossref_primary_10_1515_nanoph_2022_0041
crossref_primary_10_1039_D3NR03536K
crossref_primary_10_1038_srep22353
crossref_primary_10_1063_1_4816283
crossref_primary_10_1002_adfm_201500826
crossref_primary_10_1002_pssr_201800578
crossref_primary_10_1002_adma_202006469
crossref_primary_10_1063_5_0185388
crossref_primary_10_1063_5_0142536
crossref_primary_10_1103_PhysRevLett_131_196303
crossref_primary_10_1039_D4TA09176K
crossref_primary_10_1088_2399_7532_ab4f9d
crossref_primary_10_3390_ma15196760
crossref_primary_10_1021_cm200835a
crossref_primary_10_1002_adma_202006221
crossref_primary_10_1063_1_4921294
crossref_primary_10_1002_pssb_201200356
crossref_primary_10_1038_s41524_024_01387_3
crossref_primary_10_1134_S106378262002013X
crossref_primary_10_1038_s41524_021_00496_7
crossref_primary_10_1063_5_0039607
crossref_primary_10_1039_C5NR05512A
crossref_primary_10_1016_j_tsf_2016_07_059
crossref_primary_10_1063_1_4991357
crossref_primary_10_1149_2_011407jss
crossref_primary_10_1063_1_5040988
crossref_primary_10_1021_nl4010354
crossref_primary_10_1002_pssb_201200582
crossref_primary_10_1186_s11671_020_03336_7
crossref_primary_10_1557_mrs_2011_357
crossref_primary_10_1002_adma_202109139
crossref_primary_10_1109_TED_2014_2330457
crossref_primary_10_1103_PhysRevB_86_045212
crossref_primary_10_1063_1_4815941
crossref_primary_10_1103_PhysRevB_91_094204
crossref_primary_10_1088_1361_6463_aa70b0
crossref_primary_10_1007_s10853_024_09959_w
crossref_primary_10_1088_1361_6463_ab4c1b
crossref_primary_10_1038_s42005_021_00777_z
crossref_primary_10_1103_PhysRevB_91_035113
crossref_primary_10_1107_S0021889811024095
crossref_primary_10_1364_OE_424676
crossref_primary_10_1038_s41598_017_18964_w
crossref_primary_10_2320_materia_53_45
crossref_primary_10_1088_1361_6463_aae4ae
crossref_primary_10_1038_srep39206
crossref_primary_10_1002_pssb_201200370
crossref_primary_10_1016_j_apsusc_2015_08_215
crossref_primary_10_1039_D2TC01989B
crossref_primary_10_1016_j_jmst_2024_01_066
crossref_primary_10_1557_mrs_2015_227
crossref_primary_10_1038_srep28560
crossref_primary_10_1088_1361_6528_ad1642
crossref_primary_10_1002_pssb_201200377
crossref_primary_10_1016_j_apsusc_2013_07_082
crossref_primary_10_1002_pssb_201200497
crossref_primary_10_1007_s12598_020_01476_4
crossref_primary_10_1039_C6NR09817G
crossref_primary_10_1002_pssb_201200369
crossref_primary_10_1088_0034_4885_78_1_013001
crossref_primary_10_1039_D2MH01449A
crossref_primary_10_1557_jmr_2016_334
crossref_primary_10_1088_1361_6641_aa7c25
crossref_primary_10_1007_s00706_013_0980_0
crossref_primary_10_1109_LED_2014_2320967
crossref_primary_10_1088_1361_6463_ab4e6b
crossref_primary_10_1016_j_jallcom_2023_171794
crossref_primary_10_1063_5_0097229
crossref_primary_10_1063_1_4963889
crossref_primary_10_1021_acs_jpcc_7b07546
crossref_primary_10_1038_s42005_018_0005_8
crossref_primary_10_1063_1_4928630
crossref_primary_10_1039_C6TC03789E
crossref_primary_10_1002_pssb_201200362
crossref_primary_10_1016_j_actamat_2018_04_029
crossref_primary_10_1016_j_fmre_2022_09_010
crossref_primary_10_1021_nl5007036
crossref_primary_10_1088_1361_6528_ad5dc2
crossref_primary_10_1063_1_4996218
crossref_primary_10_1063_1_4959272
crossref_primary_10_1088_0268_1242_29_8_082001
crossref_primary_10_1016_j_ceramint_2018_08_116
crossref_primary_10_1063_1_3691179
crossref_primary_10_1007_s13391_014_4352_7
crossref_primary_10_1063_1_4940977
crossref_primary_10_1016_j_jnoncrysol_2011_12_112
crossref_primary_10_1109_TED_2013_2296305
crossref_primary_10_1088_0022_3727_48_29_295304
crossref_primary_10_1063_1_4884816
crossref_primary_10_1080_14786435_2013_765981
crossref_primary_10_1007_s10854_022_08221_w
crossref_primary_10_1002_adma_202307058
crossref_primary_10_1007_s10853_017_1340_y
crossref_primary_10_1016_j_matchemphys_2020_124172
crossref_primary_10_1038_s41467_021_27121_x
crossref_primary_10_1039_D2TC01281B
crossref_primary_10_1038_s41467_024_45327_7
crossref_primary_10_1016_j_mtphys_2023_101167
crossref_primary_10_1038_s41598_017_02710_3
crossref_primary_10_1016_j_actamat_2020_09_001
crossref_primary_10_1016_j_scriptamat_2012_05_022
crossref_primary_10_1063_1_4903699
crossref_primary_10_1063_1_5118217
crossref_primary_10_1103_PhysRevB_103_174515
crossref_primary_10_1360_TB_2022_0027
crossref_primary_10_1088_1361_6463_ab642d
crossref_primary_10_1007_s10854_019_02442_2
crossref_primary_10_1002_adma_202106868
crossref_primary_10_1016_j_jnoncrysol_2012_07_021
crossref_primary_10_1016_j_matchemphys_2024_128965
crossref_primary_10_1126_sciadv_1501283
crossref_primary_10_1039_D1TC00377A
crossref_primary_10_1002_adfm_202415462
crossref_primary_10_1002_lpor_202100253
crossref_primary_10_1063_1_5039831
crossref_primary_10_1364_OME_439146
crossref_primary_10_1038_s41563_020_0677_9
crossref_primary_10_1038_srep13496
crossref_primary_10_1063_1_3614553
crossref_primary_10_1002_pssr_201700273
crossref_primary_10_1103_PhysRevB_108_054311
crossref_primary_10_1364_JOSAB_471940
crossref_primary_10_1007_s11664_016_4982_7
crossref_primary_10_1038_s41598_023_30160_7
crossref_primary_10_1038_srep37076
crossref_primary_10_1063_1_4961415
crossref_primary_10_1016_j_mattod_2023_08_001
crossref_primary_10_1063_1_4892394
crossref_primary_10_1016_j_sse_2017_06_004
crossref_primary_10_1007_s11665_019_04118_8
crossref_primary_10_2139_ssrn_3985323
crossref_primary_10_1021_acsami_5c01400
crossref_primary_10_1016_j_actamat_2024_119670
crossref_primary_10_1016_j_jallcom_2022_164897
crossref_primary_10_3390_ma10080862
crossref_primary_10_1007_s10909_018_2096_8
crossref_primary_10_1021_acsnano_4c13450
crossref_primary_10_1021_acs_inorgchem_6b02257
crossref_primary_10_1021_acs_nanolett_7b01464
crossref_primary_10_1103_PhysRevB_84_205209
crossref_primary_10_1088_1361_6641_ab4098
crossref_primary_10_1016_j_jechem_2019_09_021
crossref_primary_10_1557_adv_2016_280
crossref_primary_10_1007_s11664_015_4221_7
crossref_primary_10_1039_C7NR01684K
crossref_primary_10_1063_1_4822311
crossref_primary_10_1021_acsaelm_9b00596
crossref_primary_10_2320_materia_59_387
crossref_primary_10_1002_adfm_202214615
crossref_primary_10_1016_j_actamat_2020_09_035
crossref_primary_10_1002_zaac_201200448
crossref_primary_10_1038_nmat2972
crossref_primary_10_1007_s10853_018_2614_8
crossref_primary_10_1103_PhysRevB_106_184103
crossref_primary_10_1002_pssa_201228397
crossref_primary_10_1016_j_jct_2019_106000
crossref_primary_10_1038_s41467_020_20661_8
crossref_primary_10_1103_PhysRevB_93_134408
crossref_primary_10_1016_j_optmat_2021_111450
crossref_primary_10_1103_PhysRevB_94_224208
crossref_primary_10_1155_2022_5747464
crossref_primary_10_1021_acsami_7b06533
crossref_primary_10_1002_adma_202102356
crossref_primary_10_1016_j_jallcom_2025_179764
crossref_primary_10_1038_nature13617
crossref_primary_10_1021_acs_jpcb_0c05075
crossref_primary_10_1016_j_mssp_2019_104625
crossref_primary_10_7567_JJAP_57_04FE06
crossref_primary_10_1088_0957_4484_27_33_335704
crossref_primary_10_1038_s41598_017_17671_w
crossref_primary_10_1038_srep05727
crossref_primary_10_1016_j_physe_2012_11_017
crossref_primary_10_1063_1_4842175
crossref_primary_10_1016_j_matpr_2022_08_015
crossref_primary_10_1007_s10948_019_05395_z
crossref_primary_10_1088_0953_8984_27_48_485402
crossref_primary_10_1088_1674_1056_abeedf
crossref_primary_10_1088_1361_6528_ad0485
crossref_primary_10_1016_j_apsusc_2020_147370
crossref_primary_10_1021_cm500175j
crossref_primary_10_1063_1_4916558
crossref_primary_10_1002_advs_202308578
crossref_primary_10_1063_1_4897997
crossref_primary_10_1021_jp507183f
crossref_primary_10_1002_adfm_202407239
crossref_primary_10_1038_s41427_020_0197_8
crossref_primary_10_1007_s11664_020_08590_0
crossref_primary_10_1002_adma_202208485
crossref_primary_10_1016_j_actamat_2015_12_010
crossref_primary_10_3938_jkps_68_859
crossref_primary_10_1002_pssr_202400416
crossref_primary_10_1021_acs_biomac_5b01653
crossref_primary_10_3390_ma14133514
crossref_primary_10_1063_1_5134075
crossref_primary_10_1002_smll_202304145
crossref_primary_10_1016_j_matt_2021_07_017
crossref_primary_10_3389_fphy_2014_00075
crossref_primary_10_1063_1_3599559
crossref_primary_10_1002_adma_202303646
crossref_primary_10_1038_srep25453
crossref_primary_10_1063_5_0073085
crossref_primary_10_1016_j_energy_2020_118698
crossref_primary_10_1002_aelm_201500240
crossref_primary_10_1103_PhysRevLett_127_127002
crossref_primary_10_1021_acs_jpclett_7b00913
crossref_primary_10_1088_0022_3727_49_49_495302
crossref_primary_10_1134_S1087659621020036
crossref_primary_10_1016_S1003_6326_21_65560_7
crossref_primary_10_1016_j_saa_2018_07_077
crossref_primary_10_1016_j_jallcom_2018_08_169
crossref_primary_10_1002_mgea_62
crossref_primary_10_1039_C7RA01140G
crossref_primary_10_3390_nano11113029
crossref_primary_10_1002_adfm_202003419
crossref_primary_10_1021_acsnano_9b08986
crossref_primary_10_1016_j_scriptamat_2017_08_003
crossref_primary_10_1109_LED_2023_3296807
crossref_primary_10_1016_j_tsf_2015_08_049
crossref_primary_10_1016_j_scriptamat_2020_05_034
crossref_primary_10_1038_s41928_023_01030_x
crossref_primary_10_1016_j_mssp_2020_105148
crossref_primary_10_59717_j_xinn_energy_2024_100049
crossref_primary_10_1103_PhysRevMaterials_3_033603
crossref_primary_10_1038_s41427_019_0140_z
crossref_primary_10_1063_1_4847395
crossref_primary_10_1039_C8TC03176B
crossref_primary_10_1364_OME_7_003741
crossref_primary_10_1038_srep46279
crossref_primary_10_1016_j_apenergy_2018_11_091
crossref_primary_10_1039_C8RA09280J
crossref_primary_10_1557_mrc_2018_131
crossref_primary_10_1109_ACCESS_2020_2990536
crossref_primary_10_1002_adom_201800360
crossref_primary_10_1063_1_4863974
crossref_primary_10_1126_sciadv_abd7097
crossref_primary_10_1103_PhysRevApplied_11_024037
crossref_primary_10_1038_srep18682
crossref_primary_10_1063_1_4974157
crossref_primary_10_1039_C8CE00534F
crossref_primary_10_1063_1_5053574
crossref_primary_10_1016_j_apsusc_2014_08_007
crossref_primary_10_1063_1_4949011
crossref_primary_10_1107_S2052252519006791
crossref_primary_10_1126_science_aao3212
crossref_primary_10_1007_s10854_020_03345_3
crossref_primary_10_1063_1_3603016
crossref_primary_10_1007_s00339_020_04216_8
crossref_primary_10_1016_j_calphad_2022_102432
crossref_primary_10_1021_acsami_2c12936
crossref_primary_10_1103_PhysRevB_108_214309
crossref_primary_10_1016_j_jnoncrysol_2021_121069
crossref_primary_10_1021_acsami_7b16755
crossref_primary_10_1149_2162_8777_ad2332
crossref_primary_10_1038_nphoton_2017_126
crossref_primary_10_3390_nano11010114
crossref_primary_10_1515_joc_2021_0264
crossref_primary_10_1002_pssr_201900320
crossref_primary_10_1038_ncomms10482
crossref_primary_10_1016_j_matdes_2016_11_003
crossref_primary_10_1088_1361_6633_ad8eda
crossref_primary_10_1063_1_5042157
crossref_primary_10_1103_PhysRevB_84_104106
crossref_primary_10_1021_acs_chemmater_7b01595
crossref_primary_10_1038_nmat3456
crossref_primary_10_1063_1_4775351
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1103_PhysRevB_97_094116
crossref_primary_10_1016_j_scriptamat_2019_11_054
crossref_primary_10_1016_j_sse_2020_107871
crossref_primary_10_1016_j_jallcom_2019_01_136
crossref_primary_10_1016_j_vibspec_2018_01_005
crossref_primary_10_1103_PhysRevMaterials_8_013606
crossref_primary_10_1002_adfm_201702875
crossref_primary_10_1021_acsnano_0c04145
crossref_primary_10_1073_pnas_1119754109
crossref_primary_10_1039_C8RA02561D
crossref_primary_10_1016_j_matchemphys_2021_124428
crossref_primary_10_1063_1_4927272
crossref_primary_10_15407_spqeo20_01_069
crossref_primary_10_1016_j_scriptamat_2014_05_008
crossref_primary_10_1039_C9CE01198F
crossref_primary_10_1103_PhysRevB_86_205302
crossref_primary_10_1038_nmat4649
crossref_primary_10_1002_pssr_202000482
crossref_primary_10_1038_s41578_019_0159_3
crossref_primary_10_1038_s41586_022_05617_w
crossref_primary_10_1088_1361_6463_ac585d
crossref_primary_10_1002_slct_202103869
crossref_primary_10_1016_j_isci_2020_101889
crossref_primary_10_1002_adfm_201200641
crossref_primary_10_1038_s41524_023_01098_1
crossref_primary_10_1103_PhysRevB_111_104205
crossref_primary_10_1021_acsnano_8b08579
crossref_primary_10_1016_j_solidstatesciences_2024_107813
crossref_primary_10_1063_5_0011983
crossref_primary_10_1016_j_ceramint_2022_09_242
Cites_doi 10.1103/PhysRevLett.46.137
10.1098/rspa.1982.0086
10.1103/PhysRevB.52.16486
10.1063/1.2963196
10.1007/978-3-662-02403-4
10.1080/00018736700101265
10.1103/RevModPhys.73.251
10.1103/PhysRevB.76.115124
10.1088/0022-3719/12/21/013
10.1103/PhysRevB.69.104111
10.1063/1.3021462
10.1002/0470095067
10.1063/1.1884248
10.1103/PhysRevLett.45.1723
10.1016/j.tsf.2007.04.047
10.1016/0022-3093(68)90002-1
10.1103/PhysRevB.78.224111
10.1080/14786436108243318
10.1103/PhysRevLett.42.673
10.1063/1.1657318
10.1116/1.1430249
10.1038/nmat1807
10.1080/14786437008228147
10.1142/S0217979210064496
10.1038/nmat2009
10.1002/pssa.2210170217
10.1103/PhysRevB.17.2575
10.1038/nmat2330
10.1063/1.3191670
10.1143/JJAP.44.7340
10.1109/IEDM.2007.4418973
10.1103/PhysRevLett.57.1943
10.1103/RevModPhys.75.1085
10.1063/1.1727231
10.1103/PhysRev.109.1492
10.1103/RevModPhys.66.261
10.1103/RevModPhys.40.815
10.1007/BFb0044936
10.1021/j100015a002
10.1038/nmat2226
10.1103/PhysRevLett.100.016402
10.1063/1.373041
10.1038/nmat1539
ContentType Journal Article
Copyright Springer Nature Limited 2011
Copyright Nature Publishing Group Mar 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: Copyright Nature Publishing Group Mar 2011
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7U5
L7M
DOI 10.1038/nmat2934
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 208
ExternalDocumentID 2271980061
21217692
10_1038_nmat2934
Genre Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7U5
L7M
ID FETCH-LOGICAL-c441t-f6db6bb33b22d04d6654b08d68118a3f08569d4cc93627b75168fe0c481c2f603
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Tue Aug 05 11:15:21 EDT 2025
Fri Jul 11 12:31:18 EDT 2025
Fri Jul 25 09:01:16 EDT 2025
Mon Jul 21 05:48:38 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 02:13:51 EDT 2025
Fri Feb 21 02:38:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-f6db6bb33b22d04d6654b08d68118a3f08569d4cc93627b75168fe0c481c2f603
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21217692
PQID 852921715
PQPubID 27576
PageCount 7
ParticipantIDs proquest_miscellaneous_864421350
proquest_miscellaneous_853225626
proquest_journals_852921715
pubmed_primary_21217692
crossref_primary_10_1038_nmat2934
crossref_citationtrail_10_1038_nmat2934
springer_journals_10_1038_nmat2934
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References DynesRCGarnoJPMetal–insulator transition in granular aluminumPhys. Rev. Lett.1981461371401:CAS:528:DyaL3MXls1GrtQ%3D%3D10.1103/PhysRevLett.46.137
TsueiCCNonuniversality of the Mooij correlation—the temperature coefficient of electrical resistivity of disordered metalsPhys. Rev. Lett.198657194319461:CAS:528:DyaL28XmtFOisbc%3D10.1103/PhysRevLett.57.1943
WuttigMThe role of vacancies and local distortions in the design of new phase-change materialsNature Mater.200761221281:CAS:528:DC%2BD2sXhtFyiu70%3D10.1038/nmat1807
MottNFThe transition to the metallic statePhil. Mag.196162873091:CAS:528:DyaF3MXos1Krsg%3D%3D10.1080/14786436108243318
MottNFConduction in glasses containing transition metal ionsJ. Non-Cryst. Solids196811171:CAS:528:DyaF1MXhtV2rtbo%3D10.1016/0022-3093(68)90002-1
ShportkoKResonant bonding in crystalline phase-change materialsNature Mater.200876536581:CAS:528:DC%2BD1cXovFWrtL0%3D10.1038/nmat2226
MatsunagaTYamadaNStructural investigation of GeSb2Te4: A high-speed phase-change materialPhys. Rev. B20046910411110.1103/PhysRevB.69.104111
RosenbaumTFAndresKThomasGABhattRNSharp metal–insulator transition in a random solidPhys. Rev. Lett.198045172317261:CAS:528:DyaL3cXmsVyktLk%3D10.1103/PhysRevLett.45.1723
FriedrichIWeidenhofVNjorogeWFranzPWuttigMStructural transformations of Ge2Sb2Te5 films studied by electrical resistance measurementsJ. Appl. Phys.200087413041341:CAS:528:DC%2BD3cXjtVKhtbc%3D10.1063/1.373041
NjorogeWKWöltgensH-WWuttigMDensity changes upon crystallization of Ge2Sb2.04Te4.74 filmsJ. Vac. Sci. Technol. A2002202302331:CAS:528:DC%2BD38XjsVGrtQ%3D%3D10.1116/1.1430249
van der PauwLJA method of measuring specific resistivity and Hall effect of discs of arbitrary shapePhilips Res. Rep.19581319
LencerDA map for phase-change materialsNature Mater.200879729771:CAS:528:DC%2BD1cXhsVWmu7jJ10.1038/nmat2330
ThoulessDAnderson localization in the seventies and beyondInt. J. Mod. Phys. B201024150715251:CAS:528:DC%2BC3cXnsFGisbc%3D10.1142/S0217979210064496
KleinAChanges in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4Phys. Rev. Lett.20081000164021:STN:280:DC%2BD1c%2Fns1Crug%3D%3D10.1103/PhysRevLett.100.016402
WuttigMYamadaNPhase-change materials for rewritable data storageNature Mater.200768248321:CAS:528:DC%2BD2sXht1CgtLfK10.1038/nmat2009
BahlSKChopraKLAmorphous versus crystalline GeTe films. II. Optical propertiesJ. Appl. Phys.196940494049471:CAS:528:DyaE3cXis1emtA%3D%3D10.1063/1.1657318
KittelChEinführung in die Festkörperphysik199912 Auflage
Baranovski, S. (ed.) Charge Transport in Disordered Solids with Applications in Electronics (John Wiley, 2006).
MottNFElectrons in disordered structuresAdv. Phys.196716491441:CAS:528:DyaF2sXksVOhu7w%3D10.1080/00018736700101265
GoldakJBarrettCSInnesDYoudelisWStructure of alpha GeTeJ. Chem. Phys.196644332333251:CAS:528:DyaF28XktVSksbs%3D10.1063/1.1727231
DaSilvaJLWalshALeeHInsights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compoundsPhys. Rev. B20087822411110.1103/PhysRevB.78.224111
MottNFConduction in non-crystalline systems IV. Anderson localization in a disordered latticePhil. Mag.1970227291:CAS:528:DyaE3cXks1Siurs%3D10.1080/14786437008228147
ProkhorovETrapagaGGonzález-HernándezJStructural and electrical properties of Ge1Sb2Te4 face centered cubic phaseJ. Appl. Phys.200810410371210.1063/1.3021462
MottNReview lecture: Metal–insulator transitionsProc. R. Soc. Lond. A19823821241:CAS:528:DyaL38XltVaht70%3D10.1098/rspa.1982.0086
AlexanderMNHolcombDFSemiconductor-to-metal transition in n-type group IV semiconductorsRev. Mod. Phys.1968408158291:CAS:528:DyaF1MXkt1SnsQ%3D%3D10.1103/RevModPhys.40.815
ZhangTEffect of structural transformation on the electrical properties for Ge1Sb2Te4 thin filmThin Solid Films200751642461:CAS:528:DC%2BD2sXhtFaqu7nE10.1016/j.tsf.2007.04.047
AbrahamsEAndersonPWLicciardelloDCRamakrishnanTVScaling theory of localization: Absence of quantum diffusion in two dimensionsPhys. Rev. Lett.19794267367610.1103/PhysRevLett.42.673
BrunsGNanosecond switching in GeTe phase change memory cellsAppl. Phys. Lett.20099504310810.1063/1.3191670
EdwardsPPRamakrishnanTVRaoCNThe metal–nonmetal transition: A global perspectiveJ. Phys. Chem.199599522852391:CAS:528:DyaK2MXkvVWqsbo%3D10.1021/j100015a002
Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. Tech. Dig. Int. Electron Devices Meet.461–464 (2007).
WangWJFast phase transitions induced by picosecond electrical pulses on phase change memory cellsAppl. Phys. Lett.20089304312110.1063/1.2963196
WelnicWUnravelling the interplay of local structure and physical properties in phase-change materialsNature Mater.2006556621:CAS:528:DC%2BD28XlsVeq10.1038/nmat1539
LeeB-SInvestigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phasesJ. Appl. Phys.20059709350910.1063/1.1884248
OverhofHThomasPElectronic Transport in Hydrogenated Amorphous Semiconductors198910.1007/BFb0044936
ShklovskiiBIEfrosALElectronic Properties of Doped Semiconductors198410.1007/978-3-662-02403-4
EdwardsPPSienkoMJUniversality aspects of the metal–nonmetal transition in condensed mediaPhys. Rev. B197817257525811:CAS:528:DyaE1cXhvVSqur0%3D10.1103/PhysRevB.17.2575
GunnarssonOCalandraMHanJEColloquium: Saturation of electrical resistivityRev. Mod. Phys.2003751085109910.1103/RevModPhys.75.1085
AbrahamsEKravchenkoSVSarachikMPColloquium: Metallic behaviour and related phenomena in two dimensionsRev. Mod. Phys20017 325126610.1103/RevModPhys.73.251
IoffeAFRegelARProgress in Semiconductors Vol. 41960237291
GaymannAGeserichHPLöhneysenHvTemperature dependence of the far-infrared reflectance spectra of Si:P near the metal–insulator transitionPhys. Rev. B19955216486164931:CAS:528:DyaK2MXhtVSku7zP10.1103/PhysRevB.52.16486
KimJJElectronic structure of amorphous and crystalline (GeTe)1−x(Sb2Te3)x investigated using hard X-ray photoemission spectroscopyPhys. Rev. B20077611512410.1103/PhysRevB.76.115124
LittlewoodPBDielectric-constant of cubic IV–VI compoundsJ. Phys. C197912445944681:CAS:528:DyaL3cXhsFKns70%3D10.1088/0022-3719/12/21/013
MooijJHElectrical conduction in concentrated disordered transition metal alloysPhys. Status Solidi A1973175215301:CAS:528:DyaE3sXksFyrtLw%3D10.1002/pssa.2210170217
BelitzDKirkpatrickTRThe Anderson–Mott transitionRev. Mod. Phys.1994662613801:CAS:528:DyaK2cXntFalurg%3D10.1103/RevModPhys.66.261
LeePARamakrishnanTVDisordered electronic systemsRev. Mod. Phys.1985572873371:CAS:528:DyaL2MXktlSks74%3D
AndersonPWAbsence of diffusion in certain random latticesPhys. Rev.1958109149215051:CAS:528:DyaG1cXntVCksA%3D%3D10.1103/PhysRev.109.1492
KatoTTanakaKElectronic properties of amorphous and crystalline Ge2Sb2Te5 filmsJpn. J. Appl. Phys.200544734073441:CAS:528:DC%2BD2MXhtFOrtrjJ10.1143/JJAP.44.7340
H Overhof (BFnmat2934_CR28) 1989
K Shportko (BFnmat2934_CR33) 2008; 7
WK Njoroge (BFnmat2934_CR21) 2002; 20
T Matsunaga (BFnmat2934_CR37) 2004; 69
MN Alexander (BFnmat2934_CR11) 1968; 40
G Bruns (BFnmat2934_CR17) 2009; 95
E Prokhorov (BFnmat2934_CR25) 2008; 104
E Abrahams (BFnmat2934_CR5) 1979; 42
T Zhang (BFnmat2934_CR24) 2007; 516
A Klein (BFnmat2934_CR30) 2008; 100
PA Lee (BFnmat2934_CR13) 1985; 57
NF Mott (BFnmat2934_CR27) 1967; 16
W Welnic (BFnmat2934_CR31) 2006; 5
J Goldak (BFnmat2934_CR47) 1966; 44
PW Anderson (BFnmat2934_CR8) 1958; 109
WJ Wang (BFnmat2934_CR18) 2008; 93
JH Mooij (BFnmat2934_CR44) 1973; 17
BFnmat2934_CR14
PP Edwards (BFnmat2934_CR39) 1978; 17
O Gunnarsson (BFnmat2934_CR29) 2003; 75
M Wuttig (BFnmat2934_CR19) 2007; 6
N Mott (BFnmat2934_CR7) 1982; 382
T Kato (BFnmat2934_CR22) 2005; 44
NF Mott (BFnmat2934_CR26) 1968; 1
Ch Kittel (BFnmat2934_CR1) 1999
BFnmat2934_CR16
E Abrahams (BFnmat2934_CR36) 2001; 7 3
JL DaSilva (BFnmat2934_CR40) 2008; 78
AF Ioffe (BFnmat2934_CR3) 1960
I Friedrich (BFnmat2934_CR15) 2000; 87
NF Mott (BFnmat2934_CR43) 1961; 6
BI Shklovskii (BFnmat2934_CR9) 1984
PB Littlewood (BFnmat2934_CR35) 1979; 12
A Gaymann (BFnmat2934_CR10) 1995; 52
D Belitz (BFnmat2934_CR12) 1994; 66
D Lencer (BFnmat2934_CR34) 2008; 7
NF Mott (BFnmat2934_CR2) 1970; 22
PP Edwards (BFnmat2934_CR6) 1995; 99
M Wuttig (BFnmat2934_CR32) 2007; 6
D Thouless (BFnmat2934_CR42) 2010; 24
SK Bahl (BFnmat2934_CR20) 1969; 40
CC Tsuei (BFnmat2934_CR45) 1986; 57
JJ Kim (BFnmat2934_CR41) 2007; 76
RC Dynes (BFnmat2934_CR38) 1981; 46
TF Rosenbaum (BFnmat2934_CR4) 1980; 45
B-S Lee (BFnmat2934_CR23) 2005; 97
LJ van der Pauw (BFnmat2934_CR46) 1958; 13
9981047 - Phys Rev B Condens Matter. 1995 Dec 15;52(23):16486-16493
19011618 - Nat Mater. 2008 Dec;7(12):972-7
18622406 - Nat Mater. 2008 Aug;7(8):653-8
17972937 - Nat Mater. 2007 Nov;6(11):824-32
21336294 - Nat Mater. 2011 Mar;10(3):170-1
18232793 - Phys Rev Lett. 2008 Jan 11;100(1):016402
10033589 - Phys Rev Lett. 1986 Oct 13;57(15):1943-1946
17173032 - Nat Mater. 2007 Feb;6(2):122-8
References_xml – reference: BahlSKChopraKLAmorphous versus crystalline GeTe films. II. Optical propertiesJ. Appl. Phys.196940494049471:CAS:528:DyaE3cXis1emtA%3D%3D10.1063/1.1657318
– reference: MottNFConduction in glasses containing transition metal ionsJ. Non-Cryst. Solids196811171:CAS:528:DyaF1MXhtV2rtbo%3D10.1016/0022-3093(68)90002-1
– reference: EdwardsPPSienkoMJUniversality aspects of the metal–nonmetal transition in condensed mediaPhys. Rev. B197817257525811:CAS:528:DyaE1cXhvVSqur0%3D10.1103/PhysRevB.17.2575
– reference: MooijJHElectrical conduction in concentrated disordered transition metal alloysPhys. Status Solidi A1973175215301:CAS:528:DyaE3sXksFyrtLw%3D10.1002/pssa.2210170217
– reference: DynesRCGarnoJPMetal–insulator transition in granular aluminumPhys. Rev. Lett.1981461371401:CAS:528:DyaL3MXls1GrtQ%3D%3D10.1103/PhysRevLett.46.137
– reference: BelitzDKirkpatrickTRThe Anderson–Mott transitionRev. Mod. Phys.1994662613801:CAS:528:DyaK2cXntFalurg%3D10.1103/RevModPhys.66.261
– reference: TsueiCCNonuniversality of the Mooij correlation—the temperature coefficient of electrical resistivity of disordered metalsPhys. Rev. Lett.198657194319461:CAS:528:DyaL28XmtFOisbc%3D10.1103/PhysRevLett.57.1943
– reference: LencerDA map for phase-change materialsNature Mater.200879729771:CAS:528:DC%2BD1cXhsVWmu7jJ10.1038/nmat2330
– reference: van der PauwLJA method of measuring specific resistivity and Hall effect of discs of arbitrary shapePhilips Res. Rep.19581319
– reference: KleinAChanges in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4Phys. Rev. Lett.20081000164021:STN:280:DC%2BD1c%2Fns1Crug%3D%3D10.1103/PhysRevLett.100.016402
– reference: KatoTTanakaKElectronic properties of amorphous and crystalline Ge2Sb2Te5 filmsJpn. J. Appl. Phys.200544734073441:CAS:528:DC%2BD2MXhtFOrtrjJ10.1143/JJAP.44.7340
– reference: MottNFConduction in non-crystalline systems IV. Anderson localization in a disordered latticePhil. Mag.1970227291:CAS:528:DyaE3cXks1Siurs%3D10.1080/14786437008228147
– reference: MottNFElectrons in disordered structuresAdv. Phys.196716491441:CAS:528:DyaF2sXksVOhu7w%3D10.1080/00018736700101265
– reference: LittlewoodPBDielectric-constant of cubic IV–VI compoundsJ. Phys. C197912445944681:CAS:528:DyaL3cXhsFKns70%3D10.1088/0022-3719/12/21/013
– reference: ThoulessDAnderson localization in the seventies and beyondInt. J. Mod. Phys. B201024150715251:CAS:528:DC%2BC3cXnsFGisbc%3D10.1142/S0217979210064496
– reference: EdwardsPPRamakrishnanTVRaoCNThe metal–nonmetal transition: A global perspectiveJ. Phys. Chem.199599522852391:CAS:528:DyaK2MXkvVWqsbo%3D10.1021/j100015a002
– reference: AbrahamsEKravchenkoSVSarachikMPColloquium: Metallic behaviour and related phenomena in two dimensionsRev. Mod. Phys20017 325126610.1103/RevModPhys.73.251
– reference: AndersonPWAbsence of diffusion in certain random latticesPhys. Rev.1958109149215051:CAS:528:DyaG1cXntVCksA%3D%3D10.1103/PhysRev.109.1492
– reference: MottNFThe transition to the metallic statePhil. Mag.196162873091:CAS:528:DyaF3MXos1Krsg%3D%3D10.1080/14786436108243318
– reference: GaymannAGeserichHPLöhneysenHvTemperature dependence of the far-infrared reflectance spectra of Si:P near the metal–insulator transitionPhys. Rev. B19955216486164931:CAS:528:DyaK2MXhtVSku7zP10.1103/PhysRevB.52.16486
– reference: BrunsGNanosecond switching in GeTe phase change memory cellsAppl. Phys. Lett.20099504310810.1063/1.3191670
– reference: MatsunagaTYamadaNStructural investigation of GeSb2Te4: A high-speed phase-change materialPhys. Rev. B20046910411110.1103/PhysRevB.69.104111
– reference: AbrahamsEAndersonPWLicciardelloDCRamakrishnanTVScaling theory of localization: Absence of quantum diffusion in two dimensionsPhys. Rev. Lett.19794267367610.1103/PhysRevLett.42.673
– reference: GunnarssonOCalandraMHanJEColloquium: Saturation of electrical resistivityRev. Mod. Phys.2003751085109910.1103/RevModPhys.75.1085
– reference: AlexanderMNHolcombDFSemiconductor-to-metal transition in n-type group IV semiconductorsRev. Mod. Phys.1968408158291:CAS:528:DyaF1MXkt1SnsQ%3D%3D10.1103/RevModPhys.40.815
– reference: LeeB-SInvestigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phasesJ. Appl. Phys.20059709350910.1063/1.1884248
– reference: LeePARamakrishnanTVDisordered electronic systemsRev. Mod. Phys.1985572873371:CAS:528:DyaL2MXktlSks74%3D
– reference: DaSilvaJLWalshALeeHInsights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compoundsPhys. Rev. B20087822411110.1103/PhysRevB.78.224111
– reference: ProkhorovETrapagaGGonzález-HernándezJStructural and electrical properties of Ge1Sb2Te4 face centered cubic phaseJ. Appl. Phys.200810410371210.1063/1.3021462
– reference: Baranovski, S. (ed.) Charge Transport in Disordered Solids with Applications in Electronics (John Wiley, 2006).
– reference: ZhangTEffect of structural transformation on the electrical properties for Ge1Sb2Te4 thin filmThin Solid Films200751642461:CAS:528:DC%2BD2sXhtFaqu7nE10.1016/j.tsf.2007.04.047
– reference: GoldakJBarrettCSInnesDYoudelisWStructure of alpha GeTeJ. Chem. Phys.196644332333251:CAS:528:DyaF28XktVSksbs%3D10.1063/1.1727231
– reference: ShklovskiiBIEfrosALElectronic Properties of Doped Semiconductors198410.1007/978-3-662-02403-4
– reference: ShportkoKResonant bonding in crystalline phase-change materialsNature Mater.200876536581:CAS:528:DC%2BD1cXovFWrtL0%3D10.1038/nmat2226
– reference: WuttigMThe role of vacancies and local distortions in the design of new phase-change materialsNature Mater.200761221281:CAS:528:DC%2BD2sXhtFyiu70%3D10.1038/nmat1807
– reference: OverhofHThomasPElectronic Transport in Hydrogenated Amorphous Semiconductors198910.1007/BFb0044936
– reference: WangWJFast phase transitions induced by picosecond electrical pulses on phase change memory cellsAppl. Phys. Lett.20089304312110.1063/1.2963196
– reference: FriedrichIWeidenhofVNjorogeWFranzPWuttigMStructural transformations of Ge2Sb2Te5 films studied by electrical resistance measurementsJ. Appl. Phys.200087413041341:CAS:528:DC%2BD3cXjtVKhtbc%3D10.1063/1.373041
– reference: KimJJElectronic structure of amorphous and crystalline (GeTe)1−x(Sb2Te3)x investigated using hard X-ray photoemission spectroscopyPhys. Rev. B20077611512410.1103/PhysRevB.76.115124
– reference: WelnicWUnravelling the interplay of local structure and physical properties in phase-change materialsNature Mater.2006556621:CAS:528:DC%2BD28XlsVeq10.1038/nmat1539
– reference: IoffeAFRegelARProgress in Semiconductors Vol. 41960237291
– reference: RosenbaumTFAndresKThomasGABhattRNSharp metal–insulator transition in a random solidPhys. Rev. Lett.198045172317261:CAS:528:DyaL3cXmsVyktLk%3D10.1103/PhysRevLett.45.1723
– reference: MottNReview lecture: Metal–insulator transitionsProc. R. Soc. Lond. A19823821241:CAS:528:DyaL38XltVaht70%3D10.1098/rspa.1982.0086
– reference: Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. Tech. Dig. Int. Electron Devices Meet.461–464 (2007).
– reference: NjorogeWKWöltgensH-WWuttigMDensity changes upon crystallization of Ge2Sb2.04Te4.74 filmsJ. Vac. Sci. Technol. A2002202302331:CAS:528:DC%2BD38XjsVGrtQ%3D%3D10.1116/1.1430249
– reference: KittelChEinführung in die Festkörperphysik199912 Auflage
– reference: WuttigMYamadaNPhase-change materials for rewritable data storageNature Mater.200768248321:CAS:528:DC%2BD2sXht1CgtLfK10.1038/nmat2009
– start-page: 237
  volume-title: Progress in Semiconductors Vol. 4
  year: 1960
  ident: BFnmat2934_CR3
– volume: 46
  start-page: 137
  year: 1981
  ident: BFnmat2934_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.137
– volume: 382
  start-page: 1
  year: 1982
  ident: BFnmat2934_CR7
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1982.0086
– volume: 52
  start-page: 16486
  year: 1995
  ident: BFnmat2934_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.52.16486
– volume: 93
  start-page: 043121
  year: 2008
  ident: BFnmat2934_CR18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2963196
– volume-title: Electronic Properties of Doped Semiconductors
  year: 1984
  ident: BFnmat2934_CR9
  doi: 10.1007/978-3-662-02403-4
– volume: 16
  start-page: 49
  year: 1967
  ident: BFnmat2934_CR27
  publication-title: Adv. Phys.
  doi: 10.1080/00018736700101265
– volume: 7 3
  start-page: 251
  year: 2001
  ident: BFnmat2934_CR36
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.73.251
– volume: 76
  start-page: 115124
  year: 2007
  ident: BFnmat2934_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.115124
– volume: 12
  start-page: 4459
  year: 1979
  ident: BFnmat2934_CR35
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/12/21/013
– volume: 69
  start-page: 104111
  year: 2004
  ident: BFnmat2934_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.104111
– volume: 104
  start-page: 103712
  year: 2008
  ident: BFnmat2934_CR25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3021462
– ident: BFnmat2934_CR14
  doi: 10.1002/0470095067
– volume: 97
  start-page: 093509
  year: 2005
  ident: BFnmat2934_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1884248
– volume: 45
  start-page: 1723
  year: 1980
  ident: BFnmat2934_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1723
– volume: 516
  start-page: 42
  year: 2007
  ident: BFnmat2934_CR24
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.04.047
– volume: 1
  start-page: 1
  year: 1968
  ident: BFnmat2934_CR26
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/0022-3093(68)90002-1
– volume: 78
  start-page: 224111
  year: 2008
  ident: BFnmat2934_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.224111
– volume: 6
  start-page: 287
  year: 1961
  ident: BFnmat2934_CR43
  publication-title: Phil. Mag.
  doi: 10.1080/14786436108243318
– volume: 42
  start-page: 673
  year: 1979
  ident: BFnmat2934_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.673
– volume: 40
  start-page: 4940
  year: 1969
  ident: BFnmat2934_CR20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1657318
– volume: 20
  start-page: 230
  year: 2002
  ident: BFnmat2934_CR21
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.1430249
– volume: 6
  start-page: 122
  year: 2007
  ident: BFnmat2934_CR32
  publication-title: Nature Mater.
  doi: 10.1038/nmat1807
– volume: 22
  start-page: 7
  year: 1970
  ident: BFnmat2934_CR2
  publication-title: Phil. Mag.
  doi: 10.1080/14786437008228147
– volume: 24
  start-page: 1507
  year: 2010
  ident: BFnmat2934_CR42
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979210064496
– volume: 6
  start-page: 824
  year: 2007
  ident: BFnmat2934_CR19
  publication-title: Nature Mater.
  doi: 10.1038/nmat2009
– volume: 57
  start-page: 287
  year: 1985
  ident: BFnmat2934_CR13
  publication-title: Rev. Mod. Phys.
– volume: 17
  start-page: 521
  year: 1973
  ident: BFnmat2934_CR44
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.2210170217
– volume: 17
  start-page: 2575
  year: 1978
  ident: BFnmat2934_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.17.2575
– volume: 7
  start-page: 972
  year: 2008
  ident: BFnmat2934_CR34
  publication-title: Nature Mater.
  doi: 10.1038/nmat2330
– volume: 95
  start-page: 043108
  year: 2009
  ident: BFnmat2934_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3191670
– volume: 44
  start-page: 7340
  year: 2005
  ident: BFnmat2934_CR22
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.44.7340
– ident: BFnmat2934_CR16
  doi: 10.1109/IEDM.2007.4418973
– volume: 57
  start-page: 1943
  year: 1986
  ident: BFnmat2934_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.1943
– volume: 75
  start-page: 1085
  year: 2003
  ident: BFnmat2934_CR29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.75.1085
– volume: 44
  start-page: 3323
  year: 1966
  ident: BFnmat2934_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1727231
– volume: 109
  start-page: 1492
  year: 1958
  ident: BFnmat2934_CR8
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.109.1492
– volume: 66
  start-page: 261
  year: 1994
  ident: BFnmat2934_CR12
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.261
– volume: 13
  start-page: 1
  year: 1958
  ident: BFnmat2934_CR46
  publication-title: Philips Res. Rep.
– start-page: 12 Auflage
  volume-title: Einführung in die Festkörperphysik
  year: 1999
  ident: BFnmat2934_CR1
– volume: 40
  start-page: 815
  year: 1968
  ident: BFnmat2934_CR11
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.40.815
– volume-title: Electronic Transport in Hydrogenated Amorphous Semiconductors
  year: 1989
  ident: BFnmat2934_CR28
  doi: 10.1007/BFb0044936
– volume: 99
  start-page: 5228
  year: 1995
  ident: BFnmat2934_CR6
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100015a002
– volume: 7
  start-page: 653
  year: 2008
  ident: BFnmat2934_CR33
  publication-title: Nature Mater.
  doi: 10.1038/nmat2226
– volume: 100
  start-page: 016402
  year: 2008
  ident: BFnmat2934_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.016402
– volume: 87
  start-page: 4130
  year: 2000
  ident: BFnmat2934_CR15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373041
– volume: 5
  start-page: 56
  year: 2006
  ident: BFnmat2934_CR31
  publication-title: Nature Mater.
  doi: 10.1038/nmat1539
– reference: 18622406 - Nat Mater. 2008 Aug;7(8):653-8
– reference: 18232793 - Phys Rev Lett. 2008 Jan 11;100(1):016402
– reference: 9981047 - Phys Rev B Condens Matter. 1995 Dec 15;52(23):16486-16493
– reference: 21336294 - Nat Mater. 2011 Mar;10(3):170-1
– reference: 10033589 - Phys Rev Lett. 1986 Oct 13;57(15):1943-1946
– reference: 17173032 - Nat Mater. 2007 Feb;6(2):122-8
– reference: 19011618 - Nat Mater. 2008 Dec;7(12):972-7
– reference: 17972937 - Nat Mater. 2007 Nov;6(11):824-32
SSID ssj0021556
Score 2.5465848
Snippet Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 202
SubjectTerms 639/301/1005/1008
639/301/119/1000
639/301/119/995
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Correlation
Crystal structure
Crystallization
Devices
Disorders
Electrons
Localization
Materials Science
Metal-insulator transition
Metals
Multilevel
Nanotechnology
Optical and Electronic Materials
Phase transitions
Position (location)
Solids
Title Disorder-induced localization in crystalline phase-change materials
URI https://link.springer.com/article/10.1038/nmat2934
https://www.ncbi.nlm.nih.gov/pubmed/21217692
https://www.proquest.com/docview/852921715
https://www.proquest.com/docview/853225626
https://www.proquest.com/docview/864421350
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7UvehBfFtfVBE8hW3SNklPoourCC4iLuytNEmLgnTXfRz89076WnVlL700pcNMmu-bTvINwCVihqAqCAktRLWTNCAJExHJKDVUKB2ZwJ4dfurxh37wOAgH1d6cSbWtsl4Ti4XaDLX9R96WIYuQPtPwevRJbNMoW1ytOmisQssql9kdXWIwz7cQKsvDRYKjKYzV2rO-bOdIBxHogt9otEAxF8qjBep0t2CzoovuTRnfbVhJ8x3Y-CEiuAudWkCTYHqNgTJugU_V-Ur3PXf1-As5oBXfTt3RG8IWKY_7umheOQH3oN-9e-08kKo1AtHIX6Yk40ZxpXxfMWa8wNgewsqThktMGBI_QyLF0c1aRwhQQomQcpmlng4k1Szjnr8Pa_kwTw_BTXhgdCgFPmvVvUzkZcx2tBKJQQfJxIGr2kWxrnTDbfuKj7ioX_syrp3pwHkzclRqZfwz5rj2clx9LZO4ia0DbnMXp7mtXSR5OpzZIXblwexryRCkdoz6oefAQRm-xgrEZyp4xBy4qOM5f_tfE4-WmngM6-VvZbsN7QTWpuNZeoq8ZKrOitmHV9m9P4PW7V3v-eUbtc7jog
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dD2gEofNKUtbtWKk0X8iO0cqqqibJfyOIHELY3tRFSqsltYhPZH8R8ZJ3H6AHHjnEkyGY9nvvFkZgA-oM_QzMqMsrapdllJWnKd05oxz7R1uZehdvjgUE2O5feT7GQJrmItTPitMtrE1lD7qQtn5Fsm4znCZ5Z9nv2mYWhUSK7GCRqdVuxVi0uM2M4_7X7F5f3I-XjnaHtC-6EC1KHnn9NaeausFcJy7lPpw_RdmxqvDELtUtQIQRQy6FyOpl1bnTFl6ip10jDHa5UKfO4DWJZC5GFDmfG3Ib5D19wVM2mFn8557HUrzFaD8BMdq_zX-92AtDfSsa2XGz-BlR6eki-dPq3CUtU8hcd_NS18BtuxYSfFcB4Vw5PWH_b1nORnQ9zZAjFnaPZdkdkpuknalRcTZK9T-OdwfC9SewGjZtpUL4GUSnqXGY33hm5iPk9rHiZo6dKjgEyZwGYUUeH6PuVhXMavos2XC1NEYSbwbqCcdb05bqFZj1Iu-t15Xgy6lAAZruK2CrmSsqmmF4EkWDqM9u4gQSjJmcjSBNa65Ru4QDzAtMp5Au_jev55-_8svrqTxQ14ODk62C_2dw_31uFRd6QdfoF7DaP52UX1BjHR3L5tNZHAj_tW_Ws9Uxy3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tQULlgHi0EJaHqah6sjZ2Ets5oKoCVryKOIC0tzS2E4GEsgssqvhp_XeMk3h5Vdw4Z5KMxuOZbzyeGYBt9BmS6TihrG6qnRcxzblMacmYZVKb1Maudvj3qTi4iI8GyaAD_3wtjLtW6W1ibajt0Lgz8p5KeIrwmSW9sr0VcbbX_zm6oW6AlEu0-mkajYYcFw9_MXq72zncw6X-znl__3z3gLYDBqhBFDCmpbBaaB1FmnMbxtZN4tWhskIh7M6jEuGIQGaNSdHMSy0TJlRZhCZWzPBShBF-9xNMyyhhbovJwVOsh266KWySAsXAue97G6lehVAUnWz80hO-gbdvUrO1x-vPw1wLVcmvRrcWoFNUizD7rIHhEuz65p0UQ3tUEktq39jWdpKripjbB8SfrvF3QUaX6DJpU2pMkL1G-b_AxYdI7StMVcOqWAGSi9iaREl813UWs2lYcjdNS-YWBaTyAH54EWWm7VnuRmdcZ3XuPFKZF2YAWxPKUdOn4z80XS_lrN2pd9lErwIgk6e4xVzeJK-K4b0jcVYPI793SBBWchYlYQDLzfJNuEBswKRIeQDf_Ho-_f01i6vvsrgJM6j02cnh6XEXPjen2-423BpMjW_vi3WER2O9USsigT8frfmPSfsg5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disorder-induced+localization+in+crystalline+phase-change+materials&rft.jtitle=Nature+materials&rft.au=Siegrist%2C+T&rft.au=Jost%2C+P&rft.au=Volker%2C+H&rft.au=Woda%2C+M&rft.date=2011-03-01&rft.issn=1476-1122&rft.volume=10&rft.issue=3&rft.spage=202&rft_id=info:doi/10.1038%2Fnmat2934&rft_id=info%3Apmid%2F21217692&rft.externalDocID=21217692
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon