Disorder-induced localization in crystalline phase-change materials
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electr...
Saved in:
Published in | Nature materials Vol. 10; no. 3; pp. 202 - 208 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal–insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal–insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.
Phase-change materials are used in computer memories for their switching between amorphous and crystalline phases. However, even the crystalline state shows disorder, with extremely small electron mean free paths. The discovery that, depending on annealing temperature, this disorder leads to a metal–insulator transition in the crystalline phase provides a completely new look at the transport properties of these compounds. |
---|---|
AbstractList | Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. [PUBLICATION ABSTRACT] Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal–insulator transition without a structural change are therefore of interest. Mechanisms leading to metal–insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal–insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal–insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices. Phase-change materials are used in computer memories for their switching between amorphous and crystalline phases. However, even the crystalline state shows disorder, with extremely small electron mean free paths. The discovery that, depending on annealing temperature, this disorder leads to a metal–insulator transition in the crystalline phase provides a completely new look at the transport properties of these compounds. |
Author | Merkelbach, P. Woda, M. Schlockermann, C. Wuttig, M. Jost, P. Volker, H. Siegrist, T. |
Author_xml | – sequence: 1 givenname: T. surname: Siegrist fullname: Siegrist, T. organization: I. Physikalisches Institut (IA), RWTH Aachen University, Department of Chemical and Biomedical Engineering, Florida State University – sequence: 2 givenname: P. surname: Jost fullname: Jost, P. organization: I. Physikalisches Institut (IA), RWTH Aachen University – sequence: 3 givenname: H. surname: Volker fullname: Volker, H. organization: I. Physikalisches Institut (IA), RWTH Aachen University – sequence: 4 givenname: M. surname: Woda fullname: Woda, M. organization: I. Physikalisches Institut (IA), RWTH Aachen University – sequence: 5 givenname: P. surname: Merkelbach fullname: Merkelbach, P. organization: I. Physikalisches Institut (IA), RWTH Aachen University – sequence: 6 givenname: C. surname: Schlockermann fullname: Schlockermann, C. organization: I. Physikalisches Institut (IA), RWTH Aachen University – sequence: 7 givenname: M. surname: Wuttig fullname: Wuttig, M. email: wuttig@physik.rwth-aachen.de organization: I. Physikalisches Institut (IA), RWTH Aachen University, JARA-FIT, RWTH Aachen University, I. Physikalisches Institut (IA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21217692$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0TtPwzAQB3ALgegDJD4BiliAIcXPazKi8pQqscAcObZDXaVOsZOhfHoMbUEqDEzn4Xdn-38DtO8aZxA6IXhEMMuu3EK2NGd8D_UJH0PKAfD-5kwIpT00CGGOMSVCwCHqUULJGHLaR5MbGxqvjU-t050yOqkbJWv7LlvbuMS6RPlVaGVdW2eS5UwGk6qZdK8miXcab2UdjtBBFYs53tQherm7fZ48pNOn-8fJ9TRVnJM2rUCXUJaMlZRqzDWA4CXONGSEZJJVOBOQa65UzoCOy7EgkFUGK54RRSvAbIjO13OXvnnrTGiLhQ3K1LV0pulCkQHnlDDxDykYpQIoRHm2I-dN5138RkQ0jzEREdHpBnXlwuhi6e1C-lWxjTGCizVQvgnBm-qbEFx8bqjYbijS0Q5Vtv0Ku_XS1n81XK4bQpwZc_c_L_xlPwCh-58x |
CitedBy_id | crossref_primary_10_1103_PhysRevB_94_045319 crossref_primary_10_1039_D2CE00691J crossref_primary_10_1155_2022_8344699 crossref_primary_10_1103_PhysRevB_93_094203 crossref_primary_10_1039_C9NA00366E crossref_primary_10_1021_acsphotonics_2c00432 crossref_primary_10_1088_0953_8984_28_28_285601 crossref_primary_10_1063_1_5109380 crossref_primary_10_1021_acs_nanolett_1c02353 crossref_primary_10_1051_epjap_2023230054 crossref_primary_10_1088_1361_6463_aad684 crossref_primary_10_1021_acs_jpcc_8b03027 crossref_primary_10_5757_vacmag_1_3_21 crossref_primary_10_1007_s12274_021_3570_1 crossref_primary_10_1002_pssr_201800506 crossref_primary_10_37188_lam_2021_019 crossref_primary_10_4028_www_scientific_net_AMR_873_825 crossref_primary_10_1088_1361_6641_aa691c crossref_primary_10_1088_1361_6641_ac3c98 crossref_primary_10_1364_OL_385280 crossref_primary_10_1103_PhysRevLett_118_036602 crossref_primary_10_3390_nano13030582 crossref_primary_10_1016_j_actamat_2023_118809 crossref_primary_10_1063_1_4977241 crossref_primary_10_1039_D1TC05970J crossref_primary_10_1016_j_materresbull_2015_01_016 crossref_primary_10_1016_j_mssp_2021_105948 crossref_primary_10_1080_08957959_2014_941361 crossref_primary_10_7567_1882_0786_aaed9d crossref_primary_10_7498_aps_63_177701 crossref_primary_10_1038_srep21466 crossref_primary_10_1016_j_jallcom_2017_12_146 crossref_primary_10_1002_pssr_202300419 crossref_primary_10_3938_jkps_71_42 crossref_primary_10_1021_ja405497p crossref_primary_10_1016_j_mseb_2017_02_002 crossref_primary_10_1063_5_0079370 crossref_primary_10_1016_j_jmst_2020_03_016 crossref_primary_10_1063_1_4795312 crossref_primary_10_1063_1_4922505 crossref_primary_10_1088_2752_5724_aca07b crossref_primary_10_1021_nl304056k crossref_primary_10_1016_j_jallcom_2011_08_050 crossref_primary_10_1039_C5RA20688J crossref_primary_10_1103_PhysRevLett_121_165702 crossref_primary_10_1007_s00339_017_1519_8 crossref_primary_10_1016_j_vacuum_2013_01_024 crossref_primary_10_1016_j_materresbull_2022_111731 crossref_primary_10_1038_s41578_018_0076_x crossref_primary_10_1002_adfm_201002274 crossref_primary_10_1038_s41467_022_29117_7 crossref_primary_10_3390_ma10091046 crossref_primary_10_3139_146_110543 crossref_primary_10_1063_5_0089399 crossref_primary_10_1021_acsomega_0c04922 crossref_primary_10_1063_1_4932666 crossref_primary_10_1002_adfm_201500849 crossref_primary_10_1002_rcm_6833 crossref_primary_10_1002_adfm_201500848 crossref_primary_10_1038_s41535_020_0241_5 crossref_primary_10_1002_adma_202403046 crossref_primary_10_1007_s12043_013_0532_5 crossref_primary_10_1063_1_4933102 crossref_primary_10_1080_10408436_2017_1370575 crossref_primary_10_1016_j_actamat_2023_118863 crossref_primary_10_1002_adma_201502023 crossref_primary_10_1016_j_jallcom_2016_03_019 crossref_primary_10_1021_acsnano_5b03295 crossref_primary_10_1109_TED_2011_2170840 crossref_primary_10_1002_advs_202304323 crossref_primary_10_1016_j_actamat_2025_120896 crossref_primary_10_1038_s41535_018_0119_y crossref_primary_10_1088_1361_6463_ab2ac3 crossref_primary_10_1016_j_matlet_2018_09_125 crossref_primary_10_1002_adma_201908302 crossref_primary_10_1016_j_mssp_2016_07_014 crossref_primary_10_1038_s41598_018_23221_9 crossref_primary_10_1038_srep23843 crossref_primary_10_1002_pssr_202000411 crossref_primary_10_1103_PhysRevApplied_9_054044 crossref_primary_10_1021_acsami_9b12854 crossref_primary_10_1039_C1CC15808B crossref_primary_10_1590_1980_5373_mr_2019_0372 crossref_primary_10_1016_j_mssp_2016_02_006 crossref_primary_10_1016_j_mtphys_2022_100787 crossref_primary_10_1016_j_apsusc_2022_154274 crossref_primary_10_1021_acs_nanolett_5b00755 crossref_primary_10_1016_j_jpcs_2018_02_021 crossref_primary_10_1063_1_4795592 crossref_primary_10_1063_5_0054392 crossref_primary_10_1063_1_5088068 crossref_primary_10_1007_s10973_025_13998_z crossref_primary_10_1002_aisy_202000105 crossref_primary_10_1016_j_jallcom_2015_07_299 crossref_primary_10_1039_D4NH00035H crossref_primary_10_1039_C7CP06992H crossref_primary_10_1002_pssr_202100064 crossref_primary_10_1073_pnas_2213713120 crossref_primary_10_1016_j_jallcom_2017_12_038 crossref_primary_10_1016_j_scriptamat_2012_08_016 crossref_primary_10_1039_C6TC01777K crossref_primary_10_1002_adma_202414031 crossref_primary_10_1063_1_4742980 crossref_primary_10_1016_j_mssp_2022_106907 crossref_primary_10_1103_PhysRevB_108_014420 crossref_primary_10_1021_nl501710r crossref_primary_10_1002_adma_201703568 crossref_primary_10_1038_s41535_019_0196_6 crossref_primary_10_1039_C8CP00901E crossref_primary_10_1016_j_mattod_2020_07_016 crossref_primary_10_1021_acs_nanolett_6b03688 crossref_primary_10_1364_OME_462846 crossref_primary_10_1002_adom_202300481 crossref_primary_10_1557_mrc_2018_168 crossref_primary_10_1038_s41467_021_21175_7 crossref_primary_10_1103_PhysRevB_95_064514 crossref_primary_10_1021_acs_chemmater_4c00088 crossref_primary_10_1002_adma_201904316 crossref_primary_10_1016_j_mee_2013_10_021 crossref_primary_10_1039_C8CE01134F crossref_primary_10_1146_annurev_conmatphys_020911_125105 crossref_primary_10_1063_1_4902513 crossref_primary_10_1088_1361_6528_acb446 crossref_primary_10_1016_j_tsf_2017_01_041 crossref_primary_10_1016_j_jmmm_2021_168312 crossref_primary_10_1063_1_4749839 crossref_primary_10_1088_1361_6641_ac62fa crossref_primary_10_1002_adom_201900548 crossref_primary_10_1016_j_actamat_2013_08_038 crossref_primary_10_1063_1_4939926 crossref_primary_10_1109_LED_2019_2935890 crossref_primary_10_1002_pssb_202000165 crossref_primary_10_1016_j_mssp_2021_106087 crossref_primary_10_1016_j_actamat_2014_03_067 crossref_primary_10_1016_j_microrel_2020_113823 crossref_primary_10_1016_j_jssc_2020_121249 crossref_primary_10_1038_s41467_019_12196_4 crossref_primary_10_1002_pssr_202100472 crossref_primary_10_1103_PhysRevB_97_024513 crossref_primary_10_1002_advs_201500117 crossref_primary_10_1039_C7CE01040K crossref_primary_10_1063_1_5020614 crossref_primary_10_1002_adma_201801787 crossref_primary_10_1039_C8NR06567E crossref_primary_10_1039_C6CS00571C crossref_primary_10_1103_PhysRevMaterials_6_044201 crossref_primary_10_1002_admt_202200214 crossref_primary_10_1007_s00542_019_04451_x crossref_primary_10_1063_1_3595408 crossref_primary_10_1016_j_actamat_2020_01_043 crossref_primary_10_1039_C5TA04038H crossref_primary_10_1103_PhysRevB_94_094103 crossref_primary_10_1103_PhysRevB_90_134402 crossref_primary_10_1038_s41570_020_0173_4 crossref_primary_10_1007_s11669_022_00952_x crossref_primary_10_1002_aelm_201400056 crossref_primary_10_1515_msp_2018_0012 crossref_primary_10_1016_j_jpcs_2022_110671 crossref_primary_10_1134_S1063782621010127 crossref_primary_10_1103_PhysRevB_94_155151 crossref_primary_10_1063_1_5131489 crossref_primary_10_1021_acsami_7b11925 crossref_primary_10_1088_1361_648X_ab680b crossref_primary_10_1039_C9TC04810C crossref_primary_10_1063_5_0030956 crossref_primary_10_1038_s41598_022_21590_w crossref_primary_10_1103_PhysRevB_97_245205 crossref_primary_10_3390_ma18010132 crossref_primary_10_1088_2631_7990_ad1575 crossref_primary_10_1016_j_actamat_2017_07_006 crossref_primary_10_1016_j_jpcs_2018_10_028 crossref_primary_10_1016_j_ssc_2012_02_018 crossref_primary_10_1557_jmr_2015_124 crossref_primary_10_1016_j_jnoncrysol_2017_10_030 crossref_primary_10_1088_0953_8984_26_26_265002 crossref_primary_10_1515_zkri_2014_1829 crossref_primary_10_1557_opl_2012_1405 crossref_primary_10_1103_PhysRevB_97_195105 crossref_primary_10_1039_D2NJ00129B crossref_primary_10_1103_PhysRevB_107_174204 crossref_primary_10_1088_1361_648X_ab76e2 crossref_primary_10_1063_1_4757137 crossref_primary_10_1039_C4NJ00389F crossref_primary_10_1103_PhysRevApplied_10_054070 crossref_primary_10_1063_1_4829358 crossref_primary_10_1002_adfm_201500830 crossref_primary_10_1016_j_actamat_2021_117132 crossref_primary_10_1002_adma_201004255 crossref_primary_10_1021_acs_cgd_9b00856 crossref_primary_10_1063_1_3664132 crossref_primary_10_1007_s11664_017_5932_8 crossref_primary_10_1002_adfm_202503094 crossref_primary_10_1021_acs_chemmater_8b01900 crossref_primary_10_1039_D1TC06045G crossref_primary_10_1103_PhysRevB_103_L241106 crossref_primary_10_1002_pssb_201552803 crossref_primary_10_1038_s41598_019_42634_8 crossref_primary_10_1038_s41598_019_49270_2 crossref_primary_10_1103_PhysRevB_95_094111 crossref_primary_10_1021_nl4006194 crossref_primary_10_1039_C8NR04350G crossref_primary_10_1515_nanoph_2022_0041 crossref_primary_10_1039_D3NR03536K crossref_primary_10_1038_srep22353 crossref_primary_10_1063_1_4816283 crossref_primary_10_1002_adfm_201500826 crossref_primary_10_1002_pssr_201800578 crossref_primary_10_1002_adma_202006469 crossref_primary_10_1063_5_0185388 crossref_primary_10_1063_5_0142536 crossref_primary_10_1103_PhysRevLett_131_196303 crossref_primary_10_1039_D4TA09176K crossref_primary_10_1088_2399_7532_ab4f9d crossref_primary_10_3390_ma15196760 crossref_primary_10_1021_cm200835a crossref_primary_10_1002_adma_202006221 crossref_primary_10_1063_1_4921294 crossref_primary_10_1002_pssb_201200356 crossref_primary_10_1038_s41524_024_01387_3 crossref_primary_10_1134_S106378262002013X crossref_primary_10_1038_s41524_021_00496_7 crossref_primary_10_1063_5_0039607 crossref_primary_10_1039_C5NR05512A crossref_primary_10_1016_j_tsf_2016_07_059 crossref_primary_10_1063_1_4991357 crossref_primary_10_1149_2_011407jss crossref_primary_10_1063_1_5040988 crossref_primary_10_1021_nl4010354 crossref_primary_10_1002_pssb_201200582 crossref_primary_10_1186_s11671_020_03336_7 crossref_primary_10_1557_mrs_2011_357 crossref_primary_10_1002_adma_202109139 crossref_primary_10_1109_TED_2014_2330457 crossref_primary_10_1103_PhysRevB_86_045212 crossref_primary_10_1063_1_4815941 crossref_primary_10_1103_PhysRevB_91_094204 crossref_primary_10_1088_1361_6463_aa70b0 crossref_primary_10_1007_s10853_024_09959_w crossref_primary_10_1088_1361_6463_ab4c1b crossref_primary_10_1038_s42005_021_00777_z crossref_primary_10_1103_PhysRevB_91_035113 crossref_primary_10_1107_S0021889811024095 crossref_primary_10_1364_OE_424676 crossref_primary_10_1038_s41598_017_18964_w crossref_primary_10_2320_materia_53_45 crossref_primary_10_1088_1361_6463_aae4ae crossref_primary_10_1038_srep39206 crossref_primary_10_1002_pssb_201200370 crossref_primary_10_1016_j_apsusc_2015_08_215 crossref_primary_10_1039_D2TC01989B crossref_primary_10_1016_j_jmst_2024_01_066 crossref_primary_10_1557_mrs_2015_227 crossref_primary_10_1038_srep28560 crossref_primary_10_1088_1361_6528_ad1642 crossref_primary_10_1002_pssb_201200377 crossref_primary_10_1016_j_apsusc_2013_07_082 crossref_primary_10_1002_pssb_201200497 crossref_primary_10_1007_s12598_020_01476_4 crossref_primary_10_1039_C6NR09817G crossref_primary_10_1002_pssb_201200369 crossref_primary_10_1088_0034_4885_78_1_013001 crossref_primary_10_1039_D2MH01449A crossref_primary_10_1557_jmr_2016_334 crossref_primary_10_1088_1361_6641_aa7c25 crossref_primary_10_1007_s00706_013_0980_0 crossref_primary_10_1109_LED_2014_2320967 crossref_primary_10_1088_1361_6463_ab4e6b crossref_primary_10_1016_j_jallcom_2023_171794 crossref_primary_10_1063_5_0097229 crossref_primary_10_1063_1_4963889 crossref_primary_10_1021_acs_jpcc_7b07546 crossref_primary_10_1038_s42005_018_0005_8 crossref_primary_10_1063_1_4928630 crossref_primary_10_1039_C6TC03789E crossref_primary_10_1002_pssb_201200362 crossref_primary_10_1016_j_actamat_2018_04_029 crossref_primary_10_1016_j_fmre_2022_09_010 crossref_primary_10_1021_nl5007036 crossref_primary_10_1088_1361_6528_ad5dc2 crossref_primary_10_1063_1_4996218 crossref_primary_10_1063_1_4959272 crossref_primary_10_1088_0268_1242_29_8_082001 crossref_primary_10_1016_j_ceramint_2018_08_116 crossref_primary_10_1063_1_3691179 crossref_primary_10_1007_s13391_014_4352_7 crossref_primary_10_1063_1_4940977 crossref_primary_10_1016_j_jnoncrysol_2011_12_112 crossref_primary_10_1109_TED_2013_2296305 crossref_primary_10_1088_0022_3727_48_29_295304 crossref_primary_10_1063_1_4884816 crossref_primary_10_1080_14786435_2013_765981 crossref_primary_10_1007_s10854_022_08221_w crossref_primary_10_1002_adma_202307058 crossref_primary_10_1007_s10853_017_1340_y crossref_primary_10_1016_j_matchemphys_2020_124172 crossref_primary_10_1038_s41467_021_27121_x crossref_primary_10_1039_D2TC01281B crossref_primary_10_1038_s41467_024_45327_7 crossref_primary_10_1016_j_mtphys_2023_101167 crossref_primary_10_1038_s41598_017_02710_3 crossref_primary_10_1016_j_actamat_2020_09_001 crossref_primary_10_1016_j_scriptamat_2012_05_022 crossref_primary_10_1063_1_4903699 crossref_primary_10_1063_1_5118217 crossref_primary_10_1103_PhysRevB_103_174515 crossref_primary_10_1360_TB_2022_0027 crossref_primary_10_1088_1361_6463_ab642d crossref_primary_10_1007_s10854_019_02442_2 crossref_primary_10_1002_adma_202106868 crossref_primary_10_1016_j_jnoncrysol_2012_07_021 crossref_primary_10_1016_j_matchemphys_2024_128965 crossref_primary_10_1126_sciadv_1501283 crossref_primary_10_1039_D1TC00377A crossref_primary_10_1002_adfm_202415462 crossref_primary_10_1002_lpor_202100253 crossref_primary_10_1063_1_5039831 crossref_primary_10_1364_OME_439146 crossref_primary_10_1038_s41563_020_0677_9 crossref_primary_10_1038_srep13496 crossref_primary_10_1063_1_3614553 crossref_primary_10_1002_pssr_201700273 crossref_primary_10_1103_PhysRevB_108_054311 crossref_primary_10_1364_JOSAB_471940 crossref_primary_10_1007_s11664_016_4982_7 crossref_primary_10_1038_s41598_023_30160_7 crossref_primary_10_1038_srep37076 crossref_primary_10_1063_1_4961415 crossref_primary_10_1016_j_mattod_2023_08_001 crossref_primary_10_1063_1_4892394 crossref_primary_10_1016_j_sse_2017_06_004 crossref_primary_10_1007_s11665_019_04118_8 crossref_primary_10_2139_ssrn_3985323 crossref_primary_10_1021_acsami_5c01400 crossref_primary_10_1016_j_actamat_2024_119670 crossref_primary_10_1016_j_jallcom_2022_164897 crossref_primary_10_3390_ma10080862 crossref_primary_10_1007_s10909_018_2096_8 crossref_primary_10_1021_acsnano_4c13450 crossref_primary_10_1021_acs_inorgchem_6b02257 crossref_primary_10_1021_acs_nanolett_7b01464 crossref_primary_10_1103_PhysRevB_84_205209 crossref_primary_10_1088_1361_6641_ab4098 crossref_primary_10_1016_j_jechem_2019_09_021 crossref_primary_10_1557_adv_2016_280 crossref_primary_10_1007_s11664_015_4221_7 crossref_primary_10_1039_C7NR01684K crossref_primary_10_1063_1_4822311 crossref_primary_10_1021_acsaelm_9b00596 crossref_primary_10_2320_materia_59_387 crossref_primary_10_1002_adfm_202214615 crossref_primary_10_1016_j_actamat_2020_09_035 crossref_primary_10_1002_zaac_201200448 crossref_primary_10_1038_nmat2972 crossref_primary_10_1007_s10853_018_2614_8 crossref_primary_10_1103_PhysRevB_106_184103 crossref_primary_10_1002_pssa_201228397 crossref_primary_10_1016_j_jct_2019_106000 crossref_primary_10_1038_s41467_020_20661_8 crossref_primary_10_1103_PhysRevB_93_134408 crossref_primary_10_1016_j_optmat_2021_111450 crossref_primary_10_1103_PhysRevB_94_224208 crossref_primary_10_1155_2022_5747464 crossref_primary_10_1021_acsami_7b06533 crossref_primary_10_1002_adma_202102356 crossref_primary_10_1016_j_jallcom_2025_179764 crossref_primary_10_1038_nature13617 crossref_primary_10_1021_acs_jpcb_0c05075 crossref_primary_10_1016_j_mssp_2019_104625 crossref_primary_10_7567_JJAP_57_04FE06 crossref_primary_10_1088_0957_4484_27_33_335704 crossref_primary_10_1038_s41598_017_17671_w crossref_primary_10_1038_srep05727 crossref_primary_10_1016_j_physe_2012_11_017 crossref_primary_10_1063_1_4842175 crossref_primary_10_1016_j_matpr_2022_08_015 crossref_primary_10_1007_s10948_019_05395_z crossref_primary_10_1088_0953_8984_27_48_485402 crossref_primary_10_1088_1674_1056_abeedf crossref_primary_10_1088_1361_6528_ad0485 crossref_primary_10_1016_j_apsusc_2020_147370 crossref_primary_10_1021_cm500175j crossref_primary_10_1063_1_4916558 crossref_primary_10_1002_advs_202308578 crossref_primary_10_1063_1_4897997 crossref_primary_10_1021_jp507183f crossref_primary_10_1002_adfm_202407239 crossref_primary_10_1038_s41427_020_0197_8 crossref_primary_10_1007_s11664_020_08590_0 crossref_primary_10_1002_adma_202208485 crossref_primary_10_1016_j_actamat_2015_12_010 crossref_primary_10_3938_jkps_68_859 crossref_primary_10_1002_pssr_202400416 crossref_primary_10_1021_acs_biomac_5b01653 crossref_primary_10_3390_ma14133514 crossref_primary_10_1063_1_5134075 crossref_primary_10_1002_smll_202304145 crossref_primary_10_1016_j_matt_2021_07_017 crossref_primary_10_3389_fphy_2014_00075 crossref_primary_10_1063_1_3599559 crossref_primary_10_1002_adma_202303646 crossref_primary_10_1038_srep25453 crossref_primary_10_1063_5_0073085 crossref_primary_10_1016_j_energy_2020_118698 crossref_primary_10_1002_aelm_201500240 crossref_primary_10_1103_PhysRevLett_127_127002 crossref_primary_10_1021_acs_jpclett_7b00913 crossref_primary_10_1088_0022_3727_49_49_495302 crossref_primary_10_1134_S1087659621020036 crossref_primary_10_1016_S1003_6326_21_65560_7 crossref_primary_10_1016_j_saa_2018_07_077 crossref_primary_10_1016_j_jallcom_2018_08_169 crossref_primary_10_1002_mgea_62 crossref_primary_10_1039_C7RA01140G crossref_primary_10_3390_nano11113029 crossref_primary_10_1002_adfm_202003419 crossref_primary_10_1021_acsnano_9b08986 crossref_primary_10_1016_j_scriptamat_2017_08_003 crossref_primary_10_1109_LED_2023_3296807 crossref_primary_10_1016_j_tsf_2015_08_049 crossref_primary_10_1016_j_scriptamat_2020_05_034 crossref_primary_10_1038_s41928_023_01030_x crossref_primary_10_1016_j_mssp_2020_105148 crossref_primary_10_59717_j_xinn_energy_2024_100049 crossref_primary_10_1103_PhysRevMaterials_3_033603 crossref_primary_10_1038_s41427_019_0140_z crossref_primary_10_1063_1_4847395 crossref_primary_10_1039_C8TC03176B crossref_primary_10_1364_OME_7_003741 crossref_primary_10_1038_srep46279 crossref_primary_10_1016_j_apenergy_2018_11_091 crossref_primary_10_1039_C8RA09280J crossref_primary_10_1557_mrc_2018_131 crossref_primary_10_1109_ACCESS_2020_2990536 crossref_primary_10_1002_adom_201800360 crossref_primary_10_1063_1_4863974 crossref_primary_10_1126_sciadv_abd7097 crossref_primary_10_1103_PhysRevApplied_11_024037 crossref_primary_10_1038_srep18682 crossref_primary_10_1063_1_4974157 crossref_primary_10_1039_C8CE00534F crossref_primary_10_1063_1_5053574 crossref_primary_10_1016_j_apsusc_2014_08_007 crossref_primary_10_1063_1_4949011 crossref_primary_10_1107_S2052252519006791 crossref_primary_10_1126_science_aao3212 crossref_primary_10_1007_s10854_020_03345_3 crossref_primary_10_1063_1_3603016 crossref_primary_10_1007_s00339_020_04216_8 crossref_primary_10_1016_j_calphad_2022_102432 crossref_primary_10_1021_acsami_2c12936 crossref_primary_10_1103_PhysRevB_108_214309 crossref_primary_10_1016_j_jnoncrysol_2021_121069 crossref_primary_10_1021_acsami_7b16755 crossref_primary_10_1149_2162_8777_ad2332 crossref_primary_10_1038_nphoton_2017_126 crossref_primary_10_3390_nano11010114 crossref_primary_10_1515_joc_2021_0264 crossref_primary_10_1002_pssr_201900320 crossref_primary_10_1038_ncomms10482 crossref_primary_10_1016_j_matdes_2016_11_003 crossref_primary_10_1088_1361_6633_ad8eda crossref_primary_10_1063_1_5042157 crossref_primary_10_1103_PhysRevB_84_104106 crossref_primary_10_1021_acs_chemmater_7b01595 crossref_primary_10_1038_nmat3456 crossref_primary_10_1063_1_4775351 crossref_primary_10_1016_j_mser_2024_100825 crossref_primary_10_1103_PhysRevB_97_094116 crossref_primary_10_1016_j_scriptamat_2019_11_054 crossref_primary_10_1016_j_sse_2020_107871 crossref_primary_10_1016_j_jallcom_2019_01_136 crossref_primary_10_1016_j_vibspec_2018_01_005 crossref_primary_10_1103_PhysRevMaterials_8_013606 crossref_primary_10_1002_adfm_201702875 crossref_primary_10_1021_acsnano_0c04145 crossref_primary_10_1073_pnas_1119754109 crossref_primary_10_1039_C8RA02561D crossref_primary_10_1016_j_matchemphys_2021_124428 crossref_primary_10_1063_1_4927272 crossref_primary_10_15407_spqeo20_01_069 crossref_primary_10_1016_j_scriptamat_2014_05_008 crossref_primary_10_1039_C9CE01198F crossref_primary_10_1103_PhysRevB_86_205302 crossref_primary_10_1038_nmat4649 crossref_primary_10_1002_pssr_202000482 crossref_primary_10_1038_s41578_019_0159_3 crossref_primary_10_1038_s41586_022_05617_w crossref_primary_10_1088_1361_6463_ac585d crossref_primary_10_1002_slct_202103869 crossref_primary_10_1016_j_isci_2020_101889 crossref_primary_10_1002_adfm_201200641 crossref_primary_10_1038_s41524_023_01098_1 crossref_primary_10_1103_PhysRevB_111_104205 crossref_primary_10_1021_acsnano_8b08579 crossref_primary_10_1016_j_solidstatesciences_2024_107813 crossref_primary_10_1063_5_0011983 crossref_primary_10_1016_j_ceramint_2022_09_242 |
Cites_doi | 10.1103/PhysRevLett.46.137 10.1098/rspa.1982.0086 10.1103/PhysRevB.52.16486 10.1063/1.2963196 10.1007/978-3-662-02403-4 10.1080/00018736700101265 10.1103/RevModPhys.73.251 10.1103/PhysRevB.76.115124 10.1088/0022-3719/12/21/013 10.1103/PhysRevB.69.104111 10.1063/1.3021462 10.1002/0470095067 10.1063/1.1884248 10.1103/PhysRevLett.45.1723 10.1016/j.tsf.2007.04.047 10.1016/0022-3093(68)90002-1 10.1103/PhysRevB.78.224111 10.1080/14786436108243318 10.1103/PhysRevLett.42.673 10.1063/1.1657318 10.1116/1.1430249 10.1038/nmat1807 10.1080/14786437008228147 10.1142/S0217979210064496 10.1038/nmat2009 10.1002/pssa.2210170217 10.1103/PhysRevB.17.2575 10.1038/nmat2330 10.1063/1.3191670 10.1143/JJAP.44.7340 10.1109/IEDM.2007.4418973 10.1103/PhysRevLett.57.1943 10.1103/RevModPhys.75.1085 10.1063/1.1727231 10.1103/PhysRev.109.1492 10.1103/RevModPhys.66.261 10.1103/RevModPhys.40.815 10.1007/BFb0044936 10.1021/j100015a002 10.1038/nmat2226 10.1103/PhysRevLett.100.016402 10.1063/1.373041 10.1038/nmat1539 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 Copyright Nature Publishing Group Mar 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: Copyright Nature Publishing Group Mar 2011 |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7U5 L7M |
DOI | 10.1038/nmat2934 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Proquest Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 208 |
ExternalDocumentID | 2271980061 21217692 10_1038_nmat2934 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 7U5 L7M |
ID | FETCH-LOGICAL-c441t-f6db6bb33b22d04d6654b08d68118a3f08569d4cc93627b75168fe0c481c2f603 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Tue Aug 05 11:15:21 EDT 2025 Fri Jul 11 12:31:18 EDT 2025 Fri Jul 25 09:01:16 EDT 2025 Mon Jul 21 05:48:38 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 02:13:51 EDT 2025 Fri Feb 21 02:38:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-f6db6bb33b22d04d6654b08d68118a3f08569d4cc93627b75168fe0c481c2f603 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21217692 |
PQID | 852921715 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_864421350 proquest_miscellaneous_853225626 proquest_journals_852921715 pubmed_primary_21217692 crossref_primary_10_1038_nmat2934 crossref_citationtrail_10_1038_nmat2934 springer_journals_10_1038_nmat2934 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | DynesRCGarnoJPMetal–insulator transition in granular aluminumPhys. Rev. Lett.1981461371401:CAS:528:DyaL3MXls1GrtQ%3D%3D10.1103/PhysRevLett.46.137 TsueiCCNonuniversality of the Mooij correlation—the temperature coefficient of electrical resistivity of disordered metalsPhys. Rev. Lett.198657194319461:CAS:528:DyaL28XmtFOisbc%3D10.1103/PhysRevLett.57.1943 WuttigMThe role of vacancies and local distortions in the design of new phase-change materialsNature Mater.200761221281:CAS:528:DC%2BD2sXhtFyiu70%3D10.1038/nmat1807 MottNFThe transition to the metallic statePhil. Mag.196162873091:CAS:528:DyaF3MXos1Krsg%3D%3D10.1080/14786436108243318 MottNFConduction in glasses containing transition metal ionsJ. Non-Cryst. Solids196811171:CAS:528:DyaF1MXhtV2rtbo%3D10.1016/0022-3093(68)90002-1 ShportkoKResonant bonding in crystalline phase-change materialsNature Mater.200876536581:CAS:528:DC%2BD1cXovFWrtL0%3D10.1038/nmat2226 MatsunagaTYamadaNStructural investigation of GeSb2Te4: A high-speed phase-change materialPhys. Rev. B20046910411110.1103/PhysRevB.69.104111 RosenbaumTFAndresKThomasGABhattRNSharp metal–insulator transition in a random solidPhys. Rev. Lett.198045172317261:CAS:528:DyaL3cXmsVyktLk%3D10.1103/PhysRevLett.45.1723 FriedrichIWeidenhofVNjorogeWFranzPWuttigMStructural transformations of Ge2Sb2Te5 films studied by electrical resistance measurementsJ. Appl. Phys.200087413041341:CAS:528:DC%2BD3cXjtVKhtbc%3D10.1063/1.373041 NjorogeWKWöltgensH-WWuttigMDensity changes upon crystallization of Ge2Sb2.04Te4.74 filmsJ. Vac. Sci. Technol. A2002202302331:CAS:528:DC%2BD38XjsVGrtQ%3D%3D10.1116/1.1430249 van der PauwLJA method of measuring specific resistivity and Hall effect of discs of arbitrary shapePhilips Res. Rep.19581319 LencerDA map for phase-change materialsNature Mater.200879729771:CAS:528:DC%2BD1cXhsVWmu7jJ10.1038/nmat2330 ThoulessDAnderson localization in the seventies and beyondInt. J. Mod. Phys. B201024150715251:CAS:528:DC%2BC3cXnsFGisbc%3D10.1142/S0217979210064496 KleinAChanges in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4Phys. Rev. Lett.20081000164021:STN:280:DC%2BD1c%2Fns1Crug%3D%3D10.1103/PhysRevLett.100.016402 WuttigMYamadaNPhase-change materials for rewritable data storageNature Mater.200768248321:CAS:528:DC%2BD2sXht1CgtLfK10.1038/nmat2009 BahlSKChopraKLAmorphous versus crystalline GeTe films. II. Optical propertiesJ. Appl. Phys.196940494049471:CAS:528:DyaE3cXis1emtA%3D%3D10.1063/1.1657318 KittelChEinführung in die Festkörperphysik199912 Auflage Baranovski, S. (ed.) Charge Transport in Disordered Solids with Applications in Electronics (John Wiley, 2006). MottNFElectrons in disordered structuresAdv. Phys.196716491441:CAS:528:DyaF2sXksVOhu7w%3D10.1080/00018736700101265 GoldakJBarrettCSInnesDYoudelisWStructure of alpha GeTeJ. Chem. Phys.196644332333251:CAS:528:DyaF28XktVSksbs%3D10.1063/1.1727231 DaSilvaJLWalshALeeHInsights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compoundsPhys. Rev. B20087822411110.1103/PhysRevB.78.224111 MottNFConduction in non-crystalline systems IV. Anderson localization in a disordered latticePhil. Mag.1970227291:CAS:528:DyaE3cXks1Siurs%3D10.1080/14786437008228147 ProkhorovETrapagaGGonzález-HernándezJStructural and electrical properties of Ge1Sb2Te4 face centered cubic phaseJ. Appl. Phys.200810410371210.1063/1.3021462 MottNReview lecture: Metal–insulator transitionsProc. R. Soc. Lond. A19823821241:CAS:528:DyaL38XltVaht70%3D10.1098/rspa.1982.0086 AlexanderMNHolcombDFSemiconductor-to-metal transition in n-type group IV semiconductorsRev. Mod. Phys.1968408158291:CAS:528:DyaF1MXkt1SnsQ%3D%3D10.1103/RevModPhys.40.815 ZhangTEffect of structural transformation on the electrical properties for Ge1Sb2Te4 thin filmThin Solid Films200751642461:CAS:528:DC%2BD2sXhtFaqu7nE10.1016/j.tsf.2007.04.047 AbrahamsEAndersonPWLicciardelloDCRamakrishnanTVScaling theory of localization: Absence of quantum diffusion in two dimensionsPhys. Rev. Lett.19794267367610.1103/PhysRevLett.42.673 BrunsGNanosecond switching in GeTe phase change memory cellsAppl. Phys. Lett.20099504310810.1063/1.3191670 EdwardsPPRamakrishnanTVRaoCNThe metal–nonmetal transition: A global perspectiveJ. Phys. Chem.199599522852391:CAS:528:DyaK2MXkvVWqsbo%3D10.1021/j100015a002 Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. Tech. Dig. Int. Electron Devices Meet.461–464 (2007). WangWJFast phase transitions induced by picosecond electrical pulses on phase change memory cellsAppl. Phys. Lett.20089304312110.1063/1.2963196 WelnicWUnravelling the interplay of local structure and physical properties in phase-change materialsNature Mater.2006556621:CAS:528:DC%2BD28XlsVeq10.1038/nmat1539 LeeB-SInvestigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phasesJ. Appl. Phys.20059709350910.1063/1.1884248 OverhofHThomasPElectronic Transport in Hydrogenated Amorphous Semiconductors198910.1007/BFb0044936 ShklovskiiBIEfrosALElectronic Properties of Doped Semiconductors198410.1007/978-3-662-02403-4 EdwardsPPSienkoMJUniversality aspects of the metal–nonmetal transition in condensed mediaPhys. Rev. B197817257525811:CAS:528:DyaE1cXhvVSqur0%3D10.1103/PhysRevB.17.2575 GunnarssonOCalandraMHanJEColloquium: Saturation of electrical resistivityRev. Mod. Phys.2003751085109910.1103/RevModPhys.75.1085 AbrahamsEKravchenkoSVSarachikMPColloquium: Metallic behaviour and related phenomena in two dimensionsRev. Mod. Phys20017 325126610.1103/RevModPhys.73.251 IoffeAFRegelARProgress in Semiconductors Vol. 41960237291 GaymannAGeserichHPLöhneysenHvTemperature dependence of the far-infrared reflectance spectra of Si:P near the metal–insulator transitionPhys. Rev. B19955216486164931:CAS:528:DyaK2MXhtVSku7zP10.1103/PhysRevB.52.16486 KimJJElectronic structure of amorphous and crystalline (GeTe)1−x(Sb2Te3)x investigated using hard X-ray photoemission spectroscopyPhys. Rev. B20077611512410.1103/PhysRevB.76.115124 LittlewoodPBDielectric-constant of cubic IV–VI compoundsJ. Phys. C197912445944681:CAS:528:DyaL3cXhsFKns70%3D10.1088/0022-3719/12/21/013 MooijJHElectrical conduction in concentrated disordered transition metal alloysPhys. Status Solidi A1973175215301:CAS:528:DyaE3sXksFyrtLw%3D10.1002/pssa.2210170217 BelitzDKirkpatrickTRThe Anderson–Mott transitionRev. Mod. Phys.1994662613801:CAS:528:DyaK2cXntFalurg%3D10.1103/RevModPhys.66.261 LeePARamakrishnanTVDisordered electronic systemsRev. Mod. Phys.1985572873371:CAS:528:DyaL2MXktlSks74%3D AndersonPWAbsence of diffusion in certain random latticesPhys. Rev.1958109149215051:CAS:528:DyaG1cXntVCksA%3D%3D10.1103/PhysRev.109.1492 KatoTTanakaKElectronic properties of amorphous and crystalline Ge2Sb2Te5 filmsJpn. J. Appl. Phys.200544734073441:CAS:528:DC%2BD2MXhtFOrtrjJ10.1143/JJAP.44.7340 H Overhof (BFnmat2934_CR28) 1989 K Shportko (BFnmat2934_CR33) 2008; 7 WK Njoroge (BFnmat2934_CR21) 2002; 20 T Matsunaga (BFnmat2934_CR37) 2004; 69 MN Alexander (BFnmat2934_CR11) 1968; 40 G Bruns (BFnmat2934_CR17) 2009; 95 E Prokhorov (BFnmat2934_CR25) 2008; 104 E Abrahams (BFnmat2934_CR5) 1979; 42 T Zhang (BFnmat2934_CR24) 2007; 516 A Klein (BFnmat2934_CR30) 2008; 100 PA Lee (BFnmat2934_CR13) 1985; 57 NF Mott (BFnmat2934_CR27) 1967; 16 W Welnic (BFnmat2934_CR31) 2006; 5 J Goldak (BFnmat2934_CR47) 1966; 44 PW Anderson (BFnmat2934_CR8) 1958; 109 WJ Wang (BFnmat2934_CR18) 2008; 93 JH Mooij (BFnmat2934_CR44) 1973; 17 BFnmat2934_CR14 PP Edwards (BFnmat2934_CR39) 1978; 17 O Gunnarsson (BFnmat2934_CR29) 2003; 75 M Wuttig (BFnmat2934_CR19) 2007; 6 N Mott (BFnmat2934_CR7) 1982; 382 T Kato (BFnmat2934_CR22) 2005; 44 NF Mott (BFnmat2934_CR26) 1968; 1 Ch Kittel (BFnmat2934_CR1) 1999 BFnmat2934_CR16 E Abrahams (BFnmat2934_CR36) 2001; 7 3 JL DaSilva (BFnmat2934_CR40) 2008; 78 AF Ioffe (BFnmat2934_CR3) 1960 I Friedrich (BFnmat2934_CR15) 2000; 87 NF Mott (BFnmat2934_CR43) 1961; 6 BI Shklovskii (BFnmat2934_CR9) 1984 PB Littlewood (BFnmat2934_CR35) 1979; 12 A Gaymann (BFnmat2934_CR10) 1995; 52 D Belitz (BFnmat2934_CR12) 1994; 66 D Lencer (BFnmat2934_CR34) 2008; 7 NF Mott (BFnmat2934_CR2) 1970; 22 PP Edwards (BFnmat2934_CR6) 1995; 99 M Wuttig (BFnmat2934_CR32) 2007; 6 D Thouless (BFnmat2934_CR42) 2010; 24 SK Bahl (BFnmat2934_CR20) 1969; 40 CC Tsuei (BFnmat2934_CR45) 1986; 57 JJ Kim (BFnmat2934_CR41) 2007; 76 RC Dynes (BFnmat2934_CR38) 1981; 46 TF Rosenbaum (BFnmat2934_CR4) 1980; 45 B-S Lee (BFnmat2934_CR23) 2005; 97 LJ van der Pauw (BFnmat2934_CR46) 1958; 13 9981047 - Phys Rev B Condens Matter. 1995 Dec 15;52(23):16486-16493 19011618 - Nat Mater. 2008 Dec;7(12):972-7 18622406 - Nat Mater. 2008 Aug;7(8):653-8 17972937 - Nat Mater. 2007 Nov;6(11):824-32 21336294 - Nat Mater. 2011 Mar;10(3):170-1 18232793 - Phys Rev Lett. 2008 Jan 11;100(1):016402 10033589 - Phys Rev Lett. 1986 Oct 13;57(15):1943-1946 17173032 - Nat Mater. 2007 Feb;6(2):122-8 |
References_xml | – reference: BahlSKChopraKLAmorphous versus crystalline GeTe films. II. Optical propertiesJ. Appl. Phys.196940494049471:CAS:528:DyaE3cXis1emtA%3D%3D10.1063/1.1657318 – reference: MottNFConduction in glasses containing transition metal ionsJ. Non-Cryst. Solids196811171:CAS:528:DyaF1MXhtV2rtbo%3D10.1016/0022-3093(68)90002-1 – reference: EdwardsPPSienkoMJUniversality aspects of the metal–nonmetal transition in condensed mediaPhys. Rev. B197817257525811:CAS:528:DyaE1cXhvVSqur0%3D10.1103/PhysRevB.17.2575 – reference: MooijJHElectrical conduction in concentrated disordered transition metal alloysPhys. Status Solidi A1973175215301:CAS:528:DyaE3sXksFyrtLw%3D10.1002/pssa.2210170217 – reference: DynesRCGarnoJPMetal–insulator transition in granular aluminumPhys. Rev. Lett.1981461371401:CAS:528:DyaL3MXls1GrtQ%3D%3D10.1103/PhysRevLett.46.137 – reference: BelitzDKirkpatrickTRThe Anderson–Mott transitionRev. Mod. Phys.1994662613801:CAS:528:DyaK2cXntFalurg%3D10.1103/RevModPhys.66.261 – reference: TsueiCCNonuniversality of the Mooij correlation—the temperature coefficient of electrical resistivity of disordered metalsPhys. Rev. Lett.198657194319461:CAS:528:DyaL28XmtFOisbc%3D10.1103/PhysRevLett.57.1943 – reference: LencerDA map for phase-change materialsNature Mater.200879729771:CAS:528:DC%2BD1cXhsVWmu7jJ10.1038/nmat2330 – reference: van der PauwLJA method of measuring specific resistivity and Hall effect of discs of arbitrary shapePhilips Res. Rep.19581319 – reference: KleinAChanges in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4Phys. Rev. Lett.20081000164021:STN:280:DC%2BD1c%2Fns1Crug%3D%3D10.1103/PhysRevLett.100.016402 – reference: KatoTTanakaKElectronic properties of amorphous and crystalline Ge2Sb2Te5 filmsJpn. J. Appl. Phys.200544734073441:CAS:528:DC%2BD2MXhtFOrtrjJ10.1143/JJAP.44.7340 – reference: MottNFConduction in non-crystalline systems IV. Anderson localization in a disordered latticePhil. Mag.1970227291:CAS:528:DyaE3cXks1Siurs%3D10.1080/14786437008228147 – reference: MottNFElectrons in disordered structuresAdv. Phys.196716491441:CAS:528:DyaF2sXksVOhu7w%3D10.1080/00018736700101265 – reference: LittlewoodPBDielectric-constant of cubic IV–VI compoundsJ. Phys. C197912445944681:CAS:528:DyaL3cXhsFKns70%3D10.1088/0022-3719/12/21/013 – reference: ThoulessDAnderson localization in the seventies and beyondInt. J. Mod. Phys. B201024150715251:CAS:528:DC%2BC3cXnsFGisbc%3D10.1142/S0217979210064496 – reference: EdwardsPPRamakrishnanTVRaoCNThe metal–nonmetal transition: A global perspectiveJ. Phys. Chem.199599522852391:CAS:528:DyaK2MXkvVWqsbo%3D10.1021/j100015a002 – reference: AbrahamsEKravchenkoSVSarachikMPColloquium: Metallic behaviour and related phenomena in two dimensionsRev. Mod. Phys20017 325126610.1103/RevModPhys.73.251 – reference: AndersonPWAbsence of diffusion in certain random latticesPhys. Rev.1958109149215051:CAS:528:DyaG1cXntVCksA%3D%3D10.1103/PhysRev.109.1492 – reference: MottNFThe transition to the metallic statePhil. Mag.196162873091:CAS:528:DyaF3MXos1Krsg%3D%3D10.1080/14786436108243318 – reference: GaymannAGeserichHPLöhneysenHvTemperature dependence of the far-infrared reflectance spectra of Si:P near the metal–insulator transitionPhys. Rev. B19955216486164931:CAS:528:DyaK2MXhtVSku7zP10.1103/PhysRevB.52.16486 – reference: BrunsGNanosecond switching in GeTe phase change memory cellsAppl. Phys. Lett.20099504310810.1063/1.3191670 – reference: MatsunagaTYamadaNStructural investigation of GeSb2Te4: A high-speed phase-change materialPhys. Rev. B20046910411110.1103/PhysRevB.69.104111 – reference: AbrahamsEAndersonPWLicciardelloDCRamakrishnanTVScaling theory of localization: Absence of quantum diffusion in two dimensionsPhys. Rev. Lett.19794267367610.1103/PhysRevLett.42.673 – reference: GunnarssonOCalandraMHanJEColloquium: Saturation of electrical resistivityRev. Mod. Phys.2003751085109910.1103/RevModPhys.75.1085 – reference: AlexanderMNHolcombDFSemiconductor-to-metal transition in n-type group IV semiconductorsRev. Mod. Phys.1968408158291:CAS:528:DyaF1MXkt1SnsQ%3D%3D10.1103/RevModPhys.40.815 – reference: LeeB-SInvestigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phasesJ. Appl. Phys.20059709350910.1063/1.1884248 – reference: LeePARamakrishnanTVDisordered electronic systemsRev. Mod. Phys.1985572873371:CAS:528:DyaL2MXktlSks74%3D – reference: DaSilvaJLWalshALeeHInsights into the structure of the stable and metastable (GeTe)m(Sb2Te3)n compoundsPhys. Rev. B20087822411110.1103/PhysRevB.78.224111 – reference: ProkhorovETrapagaGGonzález-HernándezJStructural and electrical properties of Ge1Sb2Te4 face centered cubic phaseJ. Appl. Phys.200810410371210.1063/1.3021462 – reference: Baranovski, S. (ed.) Charge Transport in Disordered Solids with Applications in Electronics (John Wiley, 2006). – reference: ZhangTEffect of structural transformation on the electrical properties for Ge1Sb2Te4 thin filmThin Solid Films200751642461:CAS:528:DC%2BD2sXhtFaqu7nE10.1016/j.tsf.2007.04.047 – reference: GoldakJBarrettCSInnesDYoudelisWStructure of alpha GeTeJ. Chem. Phys.196644332333251:CAS:528:DyaF28XktVSksbs%3D10.1063/1.1727231 – reference: ShklovskiiBIEfrosALElectronic Properties of Doped Semiconductors198410.1007/978-3-662-02403-4 – reference: ShportkoKResonant bonding in crystalline phase-change materialsNature Mater.200876536581:CAS:528:DC%2BD1cXovFWrtL0%3D10.1038/nmat2226 – reference: WuttigMThe role of vacancies and local distortions in the design of new phase-change materialsNature Mater.200761221281:CAS:528:DC%2BD2sXhtFyiu70%3D10.1038/nmat1807 – reference: OverhofHThomasPElectronic Transport in Hydrogenated Amorphous Semiconductors198910.1007/BFb0044936 – reference: WangWJFast phase transitions induced by picosecond electrical pulses on phase change memory cellsAppl. Phys. Lett.20089304312110.1063/1.2963196 – reference: FriedrichIWeidenhofVNjorogeWFranzPWuttigMStructural transformations of Ge2Sb2Te5 films studied by electrical resistance measurementsJ. Appl. Phys.200087413041341:CAS:528:DC%2BD3cXjtVKhtbc%3D10.1063/1.373041 – reference: KimJJElectronic structure of amorphous and crystalline (GeTe)1−x(Sb2Te3)x investigated using hard X-ray photoemission spectroscopyPhys. Rev. B20077611512410.1103/PhysRevB.76.115124 – reference: WelnicWUnravelling the interplay of local structure and physical properties in phase-change materialsNature Mater.2006556621:CAS:528:DC%2BD28XlsVeq10.1038/nmat1539 – reference: IoffeAFRegelARProgress in Semiconductors Vol. 41960237291 – reference: RosenbaumTFAndresKThomasGABhattRNSharp metal–insulator transition in a random solidPhys. Rev. Lett.198045172317261:CAS:528:DyaL3cXmsVyktLk%3D10.1103/PhysRevLett.45.1723 – reference: MottNReview lecture: Metal–insulator transitionsProc. R. Soc. Lond. A19823821241:CAS:528:DyaL38XltVaht70%3D10.1098/rspa.1982.0086 – reference: Nirschl, T. et al. Write strategies for 2 and 4-bit multi-level phase-change memory. Tech. Dig. Int. Electron Devices Meet.461–464 (2007). – reference: NjorogeWKWöltgensH-WWuttigMDensity changes upon crystallization of Ge2Sb2.04Te4.74 filmsJ. Vac. Sci. Technol. A2002202302331:CAS:528:DC%2BD38XjsVGrtQ%3D%3D10.1116/1.1430249 – reference: KittelChEinführung in die Festkörperphysik199912 Auflage – reference: WuttigMYamadaNPhase-change materials for rewritable data storageNature Mater.200768248321:CAS:528:DC%2BD2sXht1CgtLfK10.1038/nmat2009 – start-page: 237 volume-title: Progress in Semiconductors Vol. 4 year: 1960 ident: BFnmat2934_CR3 – volume: 46 start-page: 137 year: 1981 ident: BFnmat2934_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.137 – volume: 382 start-page: 1 year: 1982 ident: BFnmat2934_CR7 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1982.0086 – volume: 52 start-page: 16486 year: 1995 ident: BFnmat2934_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.52.16486 – volume: 93 start-page: 043121 year: 2008 ident: BFnmat2934_CR18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2963196 – volume-title: Electronic Properties of Doped Semiconductors year: 1984 ident: BFnmat2934_CR9 doi: 10.1007/978-3-662-02403-4 – volume: 16 start-page: 49 year: 1967 ident: BFnmat2934_CR27 publication-title: Adv. Phys. doi: 10.1080/00018736700101265 – volume: 7 3 start-page: 251 year: 2001 ident: BFnmat2934_CR36 publication-title: Rev. Mod. Phys doi: 10.1103/RevModPhys.73.251 – volume: 76 start-page: 115124 year: 2007 ident: BFnmat2934_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.115124 – volume: 12 start-page: 4459 year: 1979 ident: BFnmat2934_CR35 publication-title: J. Phys. C doi: 10.1088/0022-3719/12/21/013 – volume: 69 start-page: 104111 year: 2004 ident: BFnmat2934_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.104111 – volume: 104 start-page: 103712 year: 2008 ident: BFnmat2934_CR25 publication-title: J. Appl. Phys. doi: 10.1063/1.3021462 – ident: BFnmat2934_CR14 doi: 10.1002/0470095067 – volume: 97 start-page: 093509 year: 2005 ident: BFnmat2934_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.1884248 – volume: 45 start-page: 1723 year: 1980 ident: BFnmat2934_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1723 – volume: 516 start-page: 42 year: 2007 ident: BFnmat2934_CR24 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.04.047 – volume: 1 start-page: 1 year: 1968 ident: BFnmat2934_CR26 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(68)90002-1 – volume: 78 start-page: 224111 year: 2008 ident: BFnmat2934_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.224111 – volume: 6 start-page: 287 year: 1961 ident: BFnmat2934_CR43 publication-title: Phil. Mag. doi: 10.1080/14786436108243318 – volume: 42 start-page: 673 year: 1979 ident: BFnmat2934_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.42.673 – volume: 40 start-page: 4940 year: 1969 ident: BFnmat2934_CR20 publication-title: J. Appl. Phys. doi: 10.1063/1.1657318 – volume: 20 start-page: 230 year: 2002 ident: BFnmat2934_CR21 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.1430249 – volume: 6 start-page: 122 year: 2007 ident: BFnmat2934_CR32 publication-title: Nature Mater. doi: 10.1038/nmat1807 – volume: 22 start-page: 7 year: 1970 ident: BFnmat2934_CR2 publication-title: Phil. Mag. doi: 10.1080/14786437008228147 – volume: 24 start-page: 1507 year: 2010 ident: BFnmat2934_CR42 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979210064496 – volume: 6 start-page: 824 year: 2007 ident: BFnmat2934_CR19 publication-title: Nature Mater. doi: 10.1038/nmat2009 – volume: 57 start-page: 287 year: 1985 ident: BFnmat2934_CR13 publication-title: Rev. Mod. Phys. – volume: 17 start-page: 521 year: 1973 ident: BFnmat2934_CR44 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2210170217 – volume: 17 start-page: 2575 year: 1978 ident: BFnmat2934_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.17.2575 – volume: 7 start-page: 972 year: 2008 ident: BFnmat2934_CR34 publication-title: Nature Mater. doi: 10.1038/nmat2330 – volume: 95 start-page: 043108 year: 2009 ident: BFnmat2934_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3191670 – volume: 44 start-page: 7340 year: 2005 ident: BFnmat2934_CR22 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.44.7340 – ident: BFnmat2934_CR16 doi: 10.1109/IEDM.2007.4418973 – volume: 57 start-page: 1943 year: 1986 ident: BFnmat2934_CR45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.1943 – volume: 75 start-page: 1085 year: 2003 ident: BFnmat2934_CR29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.75.1085 – volume: 44 start-page: 3323 year: 1966 ident: BFnmat2934_CR47 publication-title: J. Chem. Phys. doi: 10.1063/1.1727231 – volume: 109 start-page: 1492 year: 1958 ident: BFnmat2934_CR8 publication-title: Phys. Rev. doi: 10.1103/PhysRev.109.1492 – volume: 66 start-page: 261 year: 1994 ident: BFnmat2934_CR12 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.66.261 – volume: 13 start-page: 1 year: 1958 ident: BFnmat2934_CR46 publication-title: Philips Res. Rep. – start-page: 12 Auflage volume-title: Einführung in die Festkörperphysik year: 1999 ident: BFnmat2934_CR1 – volume: 40 start-page: 815 year: 1968 ident: BFnmat2934_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.40.815 – volume-title: Electronic Transport in Hydrogenated Amorphous Semiconductors year: 1989 ident: BFnmat2934_CR28 doi: 10.1007/BFb0044936 – volume: 99 start-page: 5228 year: 1995 ident: BFnmat2934_CR6 publication-title: J. Phys. Chem. doi: 10.1021/j100015a002 – volume: 7 start-page: 653 year: 2008 ident: BFnmat2934_CR33 publication-title: Nature Mater. doi: 10.1038/nmat2226 – volume: 100 start-page: 016402 year: 2008 ident: BFnmat2934_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.016402 – volume: 87 start-page: 4130 year: 2000 ident: BFnmat2934_CR15 publication-title: J. Appl. Phys. doi: 10.1063/1.373041 – volume: 5 start-page: 56 year: 2006 ident: BFnmat2934_CR31 publication-title: Nature Mater. doi: 10.1038/nmat1539 – reference: 18622406 - Nat Mater. 2008 Aug;7(8):653-8 – reference: 18232793 - Phys Rev Lett. 2008 Jan 11;100(1):016402 – reference: 9981047 - Phys Rev B Condens Matter. 1995 Dec 15;52(23):16486-16493 – reference: 21336294 - Nat Mater. 2011 Mar;10(3):170-1 – reference: 10033589 - Phys Rev Lett. 1986 Oct 13;57(15):1943-1946 – reference: 17173032 - Nat Mater. 2007 Feb;6(2):122-8 – reference: 19011618 - Nat Mater. 2008 Dec;7(12):972-7 – reference: 17972937 - Nat Mater. 2007 Nov;6(11):824-32 |
SSID | ssj0021556 |
Score | 2.5465848 |
Snippet | Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 202 |
SubjectTerms | 639/301/1005/1008 639/301/119/1000 639/301/119/995 Biomaterials Chemistry and Materials Science Condensed Matter Physics Correlation Crystal structure Crystallization Devices Disorders Electrons Localization Materials Science Metal-insulator transition Metals Multilevel Nanotechnology Optical and Electronic Materials Phase transitions Position (location) Solids |
Title | Disorder-induced localization in crystalline phase-change materials |
URI | https://link.springer.com/article/10.1038/nmat2934 https://www.ncbi.nlm.nih.gov/pubmed/21217692 https://www.proquest.com/docview/852921715 https://www.proquest.com/docview/853225626 https://www.proquest.com/docview/864421350 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7UvehBfFtfVBE8hW3SNklPoourCC4iLuytNEmLgnTXfRz89076WnVlL700pcNMmu-bTvINwCVihqAqCAktRLWTNCAJExHJKDVUKB2ZwJ4dfurxh37wOAgH1d6cSbWtsl4Ti4XaDLX9R96WIYuQPtPwevRJbNMoW1ytOmisQssql9kdXWIwz7cQKsvDRYKjKYzV2rO-bOdIBxHogt9otEAxF8qjBep0t2CzoovuTRnfbVhJ8x3Y-CEiuAudWkCTYHqNgTJugU_V-Ur3PXf1-As5oBXfTt3RG8IWKY_7umheOQH3oN-9e-08kKo1AtHIX6Yk40ZxpXxfMWa8wNgewsqThktMGBI_QyLF0c1aRwhQQomQcpmlng4k1Szjnr8Pa_kwTw_BTXhgdCgFPmvVvUzkZcx2tBKJQQfJxIGr2kWxrnTDbfuKj7ioX_syrp3pwHkzclRqZfwz5rj2clx9LZO4ia0DbnMXp7mtXSR5OpzZIXblwexryRCkdoz6oefAQRm-xgrEZyp4xBy4qOM5f_tfE4-WmngM6-VvZbsN7QTWpuNZeoq8ZKrOitmHV9m9P4PW7V3v-eUbtc7jog |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dD2gEofNKUtbtWKk0X8iO0cqqqibJfyOIHELY3tRFSqsltYhPZH8R8ZJ3H6AHHjnEkyGY9nvvFkZgA-oM_QzMqMsrapdllJWnKd05oxz7R1uZehdvjgUE2O5feT7GQJrmItTPitMtrE1lD7qQtn5Fsm4znCZ5Z9nv2mYWhUSK7GCRqdVuxVi0uM2M4_7X7F5f3I-XjnaHtC-6EC1KHnn9NaeausFcJy7lPpw_RdmxqvDELtUtQIQRQy6FyOpl1bnTFl6ip10jDHa5UKfO4DWJZC5GFDmfG3Ib5D19wVM2mFn8557HUrzFaD8BMdq_zX-92AtDfSsa2XGz-BlR6eki-dPq3CUtU8hcd_NS18BtuxYSfFcB4Vw5PWH_b1nORnQ9zZAjFnaPZdkdkpuknalRcTZK9T-OdwfC9SewGjZtpUL4GUSnqXGY33hm5iPk9rHiZo6dKjgEyZwGYUUeH6PuVhXMavos2XC1NEYSbwbqCcdb05bqFZj1Iu-t15Xgy6lAAZruK2CrmSsqmmF4EkWDqM9u4gQSjJmcjSBNa65Ru4QDzAtMp5Au_jev55-_8svrqTxQ14ODk62C_2dw_31uFRd6QdfoF7DaP52UX1BjHR3L5tNZHAj_tW_Ws9Uxy3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5tQULlgHi0EJaHqah6sjZ2Ets5oKoCVryKOIC0tzS2E4GEsgssqvhp_XeMk3h5Vdw4Z5KMxuOZbzyeGYBt9BmS6TihrG6qnRcxzblMacmYZVKb1Maudvj3qTi4iI8GyaAD_3wtjLtW6W1ibajt0Lgz8p5KeIrwmSW9sr0VcbbX_zm6oW6AlEu0-mkajYYcFw9_MXq72zncw6X-znl__3z3gLYDBqhBFDCmpbBaaB1FmnMbxtZN4tWhskIh7M6jEuGIQGaNSdHMSy0TJlRZhCZWzPBShBF-9xNMyyhhbovJwVOsh266KWySAsXAue97G6lehVAUnWz80hO-gbdvUrO1x-vPw1wLVcmvRrcWoFNUizD7rIHhEuz65p0UQ3tUEktq39jWdpKripjbB8SfrvF3QUaX6DJpU2pMkL1G-b_AxYdI7StMVcOqWAGSi9iaREl813UWs2lYcjdNS-YWBaTyAH54EWWm7VnuRmdcZ3XuPFKZF2YAWxPKUdOn4z80XS_lrN2pd9lErwIgk6e4xVzeJK-K4b0jcVYPI793SBBWchYlYQDLzfJNuEBswKRIeQDf_Ho-_f01i6vvsrgJM6j02cnh6XEXPjen2-423BpMjW_vi3WER2O9USsigT8frfmPSfsg5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disorder-induced+localization+in+crystalline+phase-change+materials&rft.jtitle=Nature+materials&rft.au=Siegrist%2C+T&rft.au=Jost%2C+P&rft.au=Volker%2C+H&rft.au=Woda%2C+M&rft.date=2011-03-01&rft.issn=1476-1122&rft.volume=10&rft.issue=3&rft.spage=202&rft_id=info:doi/10.1038%2Fnmat2934&rft_id=info%3Apmid%2F21217692&rft.externalDocID=21217692 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |