Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables
Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart anno...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 8; p. 1820 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
16.04.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s19081820 |
Cover
Abstract | Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms. |
---|---|
AbstractList | Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms. Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms. |
Author | Eskofier, Bjoern M. Sprager, Sebastijan Martindale, Christine F. |
AuthorAffiliation | 1 Machine Learning and Data Analytics Lab, Computer Science Department, 91052 Erlangen, Germany; bjoern.eskofier@fau.de 2 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; sebastijan.sprager@fri.uni-lj.si |
AuthorAffiliation_xml | – name: 1 Machine Learning and Data Analytics Lab, Computer Science Department, 91052 Erlangen, Germany; bjoern.eskofier@fau.de – name: 2 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; sebastijan.sprager@fri.uni-lj.si |
Author_xml | – sequence: 1 givenname: Christine F. orcidid: 0000-0002-9397-5944 surname: Martindale fullname: Martindale, Christine F. – sequence: 2 givenname: Sebastijan orcidid: 0000-0003-3711-1110 surname: Sprager fullname: Sprager, Sebastijan – sequence: 3 givenname: Bjoern M. orcidid: 0000-0002-0417-0336 surname: Eskofier fullname: Eskofier, Bjoern M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30995789$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktvEzEQgC1URB9w4A8gH-Gw1I91dveClKZPqRUSFHG0xvZs6nZjF3sTKf--blOiFnGy5fn8zYxm9slOiAEJ-cjZVyk7dph5x1reCvaG7PFa1FUrBNt5cd8l-znfMiaklO07sitZ16mm7fbI4tw7h4FeQbqLK3oVHQ7VEWR09OcC0kinIcQRRh8D7WOiRxjsTQnc0dnaDt7SqR39yo9r-gNtnAf_RB7DCKZI6K_sw5z-RkhgBszvydsehowfns8Dcn16cj07ry6_n13MppeVrWs-Vn2NSkAvLEOoAScouevrrrUtQ-tapyRzjIOQrmkdMokOOsHAOd43HTh5QC42WhfhVt8nXwpe6whePz3ENNelNW8H1NagbfqGTZrG1Moow6UxEkpSxqVq-uL6tnHdL80CncUwJhheSV9Hgr_R87jSE8UVZ5Mi-PwsSPHPEvOoFz5bHAYIGJdZC8G5FA0XqqCfXubaJvk7rgJ82QA2xZwT9luEM_24Cnq7CoU9_Ie1fjPIUqYf_vPjAaC4t3I |
CitedBy_id | crossref_primary_10_1016_j_neucom_2020_08_079 crossref_primary_10_1177_09544119211040588 crossref_primary_10_3390_s23031390 crossref_primary_10_1109_JSEN_2024_3487018 crossref_primary_10_3390_s19194242 crossref_primary_10_3390_s23229241 crossref_primary_10_3390_s22041678 crossref_primary_10_3390_s20030651 crossref_primary_10_1109_JBHI_2019_2937574 crossref_primary_10_1136_bmjmilitary_2020_001585 crossref_primary_10_3389_fbioe_2023_1143248 crossref_primary_10_1186_s12984_021_00883_7 crossref_primary_10_3390_s20113090 crossref_primary_10_1007_s10489_020_02005_7 crossref_primary_10_1109_ACCESS_2020_3030776 crossref_primary_10_1109_ACCESS_2024_3361754 |
Cites_doi | 10.1109/TKDE.2009.191 10.1007/s40279-016-0663-1 10.1109/ICMLC.2010.5581050 10.1016/j.pmcj.2017.01.003 10.1249/MSS.0000000000001569 10.1109/TCYB.2014.2361287 10.1109/WACV.2013.6474999 10.1109/CIT/IUCC/DASC/PICOM.2015.170 10.1016/j.gaitpost.2016.09.023 10.1089/tmj.2017.0264 10.3390/s17071513 10.1371/journal.pone.0075196 10.1109/PERCOMW.2018.8480380 10.1145/2971648.2971721 10.1109/BSN.2014.37 10.1049/ic.2016.0050 10.3390/s16010066 10.1007/978-3-642-25167-2_12 10.3390/s18041091 10.3390/s18072134 10.1145/2493432.2493449 10.3390/s150306419 10.1109/BSN.2016.7516238 10.1109/PERCOMW.2018.8480193 10.1109/PERCOM.2016.7456521 10.1109/PERCOM.2018.8444594 10.3390/s17102328 10.3390/s18082639 10.1109/ICB.2012.6199833 10.1109/THMS.2015.2489688 10.1109/PERCOMW.2017.7917542 10.3390/s17071522 10.1016/j.pmcj.2016.08.017 10.1109/EMBC.2018.8513508 10.21437/Interspeech.2011-821 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s19081820 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_cbec7f70677b45b5b13bb3aae601357f PMC6515106 30995789 10_3390_s19081820 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EIT health grantid: HOOP 2.0 – fundername: Deutsche Forschungsgemeinschaft grantid: ES 434/8-1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M NPM 7X8 PJZUB PPXIY PUEGO 5PM |
ID | FETCH-LOGICAL-c441t-f4e52af2c0ea4ae6e31df498c80ecd8d530d01a23d78de03eda920add1f79ad3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:27:13 EDT 2025 Thu Aug 21 18:19:50 EDT 2025 Thu Sep 04 20:39:20 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Tue Jul 01 00:41:55 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | inertial measurement unit home monitoring cyclic activities benchmark database semi-supervised learning gait phases smart annotation gait analysis activity recognition |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-f4e52af2c0ea4ae6e31df498c80ecd8d530d01a23d78de03eda920add1f79ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This paper is an extended version of our paper published in Martindale, C., Roth, N.; Hannink, J.; Sprager, S.; Eskofier, B. Smart Annotation Tool for Multi-sensor gait-based daily activity data. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018. |
ORCID | 0000-0002-9397-5944 0000-0003-3711-1110 0000-0002-0417-0336 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19081820 |
PMID | 30995789 |
PQID | 2211327125 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cbec7f70677b45b5b13bb3aae601357f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515106 proquest_miscellaneous_2211327125 pubmed_primary_30995789 crossref_primary_10_3390_s19081820 crossref_citationtrail_10_3390_s19081820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190416 |
PublicationDateYYYYMMDD | 2019-04-16 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190416 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Bassett (ref_1) 2017; 47 Toth (ref_4) 2018; 50 ref_14 ref_36 ref_13 ref_35 ref_12 ref_34 ref_11 ref_10 ref_32 Pan (ref_19) 2010; 22 ref_31 ref_18 ref_17 Hossain (ref_23) 2017; 38 ref_16 ref_38 ref_15 ref_37 Hong (ref_25) 2016; 46 Khandelwal (ref_9) 2017; 51 Zhang (ref_30) 2015; 45 Sadri (ref_21) 2017; 38 ref_24 Barth (ref_33) 2015; 15 ref_22 ref_20 Bunn (ref_3) 2018; 11 ref_2 ref_29 ref_28 ref_27 ref_26 ref_8 ref_5 ref_7 ref_6 |
References_xml | – volume: 22 start-page: 1345 year: 2010 ident: ref_19 article-title: A Survey on Transfer Learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 47 start-page: 1303 year: 2017 ident: ref_1 article-title: Step Counting: A Review of Measurement Considerations and Health-Related Applications publication-title: Sports Med. doi: 10.1007/s40279-016-0663-1 – ident: ref_5 – ident: ref_22 doi: 10.1109/ICMLC.2010.5581050 – volume: 38 start-page: 92 year: 2017 ident: ref_21 article-title: Information gain-based metric for recognizing transitions in human activities publication-title: Pervasive Mobile Comput. doi: 10.1016/j.pmcj.2017.01.003 – volume: 50 start-page: 1315 year: 2018 ident: ref_4 article-title: Video-Recorded Validation of Wearable Step Counters under Free-living Conditions publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001569 – volume: 45 start-page: 1864 year: 2015 ident: ref_30 article-title: Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2361287 – ident: ref_7 doi: 10.1109/WACV.2013.6474999 – ident: ref_15 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.170 – volume: 51 start-page: 84 year: 2017 ident: ref_9 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.09.023 – ident: ref_2 doi: 10.1089/tmj.2017.0264 – ident: ref_11 doi: 10.3390/s17071513 – ident: ref_35 – ident: ref_6 doi: 10.1371/journal.pone.0075196 – ident: ref_13 doi: 10.1109/PERCOMW.2018.8480380 – ident: ref_24 doi: 10.1145/2971648.2971721 – ident: ref_32 doi: 10.1109/BSN.2014.37 – ident: ref_12 doi: 10.1049/ic.2016.0050 – ident: ref_37 doi: 10.3390/s16010066 – ident: ref_27 doi: 10.1007/978-3-642-25167-2_12 – ident: ref_17 doi: 10.3390/s18041091 – ident: ref_20 doi: 10.3390/s18072134 – ident: ref_29 doi: 10.1145/2493432.2493449 – volume: 15 start-page: 6419 year: 2015 ident: ref_33 article-title: Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data publication-title: Sensors doi: 10.3390/s150306419 – ident: ref_34 doi: 10.1109/BSN.2016.7516238 – ident: ref_16 doi: 10.1109/PERCOMW.2018.8480193 – ident: ref_28 doi: 10.1109/PERCOM.2016.7456521 – ident: ref_18 doi: 10.1109/PERCOM.2018.8444594 – volume: 11 start-page: 503 year: 2018 ident: ref_3 article-title: Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015-2017 publication-title: Int. J. Exerc. Sci. – ident: ref_31 doi: 10.3390/s17102328 – ident: ref_14 doi: 10.3390/s18082639 – ident: ref_10 doi: 10.1109/ICB.2012.6199833 – volume: 46 start-page: 101 year: 2016 ident: ref_25 article-title: Toward Personalized Activity Recognition Systems With a Semipopulation Approach publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2015.2489688 – ident: ref_26 doi: 10.1109/PERCOMW.2017.7917542 – ident: ref_8 doi: 10.3390/s17071522 – volume: 38 start-page: 312 year: 2017 ident: ref_23 article-title: Active learning enabled activity recognition publication-title: Pervasive Mobile Comput. doi: 10.1016/j.pmcj.2016.08.017 – ident: ref_36 doi: 10.1109/EMBC.2018.8513508 – ident: ref_38 doi: 10.21437/Interspeech.2011-821 |
SSID | ssj0023338 |
Score | 2.3499386 |
Snippet | Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1820 |
SubjectTerms | activity recognition benchmark database cyclic activities gait analysis gait phases home monitoring inertial measurement unit semi-supervised learning smart annotation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_i2_VFFA9eFvPaZnNsfVA8eNCK3pY8UWy3Yqvgv3eyuy2tFLx43QSSzUwy30cm3yB0ppVWgTGbWulEKijwFCOVT5XTLaW9VZmvsnzvWt1HcfucPc-U-oo5YbU8cL1wFxYGkUFGoTMjMpMZyo3hWntgEjyTIZ6-RJEJmWqoFgfmVesIcSD1FyMIe3mUKp-LPpVI_yJk-TtBcibi3KyjtQYq4nY9xQ205MtNtDojILiFBt2oAFLi-OJm-IVjYbN-2oHA5PDDAP4Nt8tyWF-2Y0CnuAM--QINb_jy2_ZfLW7bunoEvp8kEkHPKz3WMbrhKp8AP8FmiA-sRtuod3Pdu-ymTQGF1ALKGadB-IzpwCzxWsCKeU5dECq3OfHW5S7jxBGqGXcyd55w77RiBE48GqTSju-g5XJY-j2EBc0DEVRLOCBEsNQwYiC2eWIAgmljE3Q-WdfCNuLiscZFvwCSEU1QTE2QoNNp1_daUWNRp040zrRDFMGuPoBrFI1rFH-5RoJOJqYtYNPEmxBd-uHnqGBAezmTAO4StFubejoUB8wMx5hKkJxzgrm5zLeUry-VMHcsKw8Ue_8_Jn-AVgCbVRdXtHWIlscfn_4I8M_YHFeu_gM9ngfE priority: 102 providerName: Directory of Open Access Journals |
Title | Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30995789 https://www.proquest.com/docview/2211327125 https://pubmed.ncbi.nlm.nih.gov/PMC6515106 https://doaj.org/article/cbec7f70677b45b5b13bb3aae601357f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t3wWBnEgUvAsZ04PiC0W7qskKhQacXeIr9CK7YJ7G4R_feMk2zUoD1wySGeyIln7PkmHn8D8EorrUrGbGylE7FIME4xUvlYOZ0p7a1KfZPle5zNzsSneTrfgU2NzW4AV1tDu1BP6my5ePPn1_V7nPDvQsSJIfvbFTq1PBCR78I-OqQsxGCfRb-ZwDhvClqHM10x-kPaEgwNHx24pYa9fxvk_Ddz8oYrmt6FOx2GJONW6fdgx1f34fYNZsEHcDkL1CAVCUdx6t8kVDxbxBP0WI58vURrIeOqqttdeIKwlUzQWM-x4Qc5vLaLC0vGti0rQU42GUYo-UGvdXB7pEk0IN9wloSTV6uHcDo9Oj2cxV1lhdgi_FnHpfAp0yWz1GuhfeZ54kqhcptTb13uUk4dTTTjTubOU-6dVoziUpiUUmnHH8FeVVf-AIhI8pKKREtcOURpE8OoQafnqUFspo2N4PVmXAvbsY6H4heLAqOPoIKiV0EEL3vRny3VxjahSVBOLxDYsZsb9fJ70U22wqJhylIGcjwjUpOahBvDNX4oAt5UlhG82Ki2wNkUtkh05eurVcEwHuZMIuqL4HGr6r4rjmAa1zcVgRwYweBdhi3VxXnD2B3qzWPs_eQ_-n0KtxCTNRtWSfYM9tbLK_8ccc_ajGBXziVe8-nHEexPjo6_nIyafwijxt7_AvO-CBs |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+Model-Based+Smart+Annotation+for+Benchmark+Cyclic+Activity+Recognition+Database+Using+Wearables&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Martindale%2C+Christine+F&rft.au=Sprager%2C+Sebastijan&rft.au=Eskofier%2C+Bjoern+M&rft.date=2019-04-16&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=8&rft_id=info:doi/10.3390%2Fs19081820&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |