Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables

Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart anno...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 8; p. 1820
Main Authors Martindale, Christine F., Sprager, Sebastijan, Eskofier, Bjoern M.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 16.04.2019
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19081820

Cover

Abstract Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.
AbstractList Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.
Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a lack of realistic and labeled datasets. The effort required to obtain and annotate such datasets is massive, therefore we propose a smart annotation pipeline which reduces the number of events needing manual adjustment to 14%. For scenarios dominated by walking, this annotation effort is as low as 8%. The pipeline consists of three smart annotation approaches, namely edge detection of the pressure data, local cyclicity estimation, and iteratively trained hierarchical hidden Markov models. Using this pipeline, we have collected and labeled a dataset with over 150,000 labeled cycles, each with 2 phases, from 80 subjects, which we have made publicly available. The dataset consists of 12 different task-driven activities, 10 of which are cyclic. These activities include not only straight and steady-state motions, but also transitions, different ranges of bouts, and changing directions. Each participant wore 5 synchronized inertial measurement units (IMUs) on the wrists, shoes, and in a pocket, as well as pressure insoles and video. We believe that this dataset and smart annotation pipeline are a good basis for creating a benchmark dataset for validation of other semi- and unsupervised algorithms.
Author Eskofier, Bjoern M.
Sprager, Sebastijan
Martindale, Christine F.
AuthorAffiliation 1 Machine Learning and Data Analytics Lab, Computer Science Department, 91052 Erlangen, Germany; bjoern.eskofier@fau.de
2 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; sebastijan.sprager@fri.uni-lj.si
AuthorAffiliation_xml – name: 1 Machine Learning and Data Analytics Lab, Computer Science Department, 91052 Erlangen, Germany; bjoern.eskofier@fau.de
– name: 2 Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia; sebastijan.sprager@fri.uni-lj.si
Author_xml – sequence: 1
  givenname: Christine F.
  orcidid: 0000-0002-9397-5944
  surname: Martindale
  fullname: Martindale, Christine F.
– sequence: 2
  givenname: Sebastijan
  orcidid: 0000-0003-3711-1110
  surname: Sprager
  fullname: Sprager, Sebastijan
– sequence: 3
  givenname: Bjoern M.
  orcidid: 0000-0002-0417-0336
  surname: Eskofier
  fullname: Eskofier, Bjoern M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30995789$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEQgC1URB9w4A8gH-Gw1I91dveClKZPqRUSFHG0xvZs6nZjF3sTKf--blOiFnGy5fn8zYxm9slOiAEJ-cjZVyk7dph5x1reCvaG7PFa1FUrBNt5cd8l-znfMiaklO07sitZ16mm7fbI4tw7h4FeQbqLK3oVHQ7VEWR09OcC0kinIcQRRh8D7WOiRxjsTQnc0dnaDt7SqR39yo9r-gNtnAf_RB7DCKZI6K_sw5z-RkhgBszvydsehowfns8Dcn16cj07ry6_n13MppeVrWs-Vn2NSkAvLEOoAScouevrrrUtQ-tapyRzjIOQrmkdMokOOsHAOd43HTh5QC42WhfhVt8nXwpe6whePz3ENNelNW8H1NagbfqGTZrG1Moow6UxEkpSxqVq-uL6tnHdL80CncUwJhheSV9Hgr_R87jSE8UVZ5Mi-PwsSPHPEvOoFz5bHAYIGJdZC8G5FA0XqqCfXubaJvk7rgJ82QA2xZwT9luEM_24Cnq7CoU9_Ie1fjPIUqYf_vPjAaC4t3I
CitedBy_id crossref_primary_10_1016_j_neucom_2020_08_079
crossref_primary_10_1177_09544119211040588
crossref_primary_10_3390_s23031390
crossref_primary_10_1109_JSEN_2024_3487018
crossref_primary_10_3390_s19194242
crossref_primary_10_3390_s23229241
crossref_primary_10_3390_s22041678
crossref_primary_10_3390_s20030651
crossref_primary_10_1109_JBHI_2019_2937574
crossref_primary_10_1136_bmjmilitary_2020_001585
crossref_primary_10_3389_fbioe_2023_1143248
crossref_primary_10_1186_s12984_021_00883_7
crossref_primary_10_3390_s20113090
crossref_primary_10_1007_s10489_020_02005_7
crossref_primary_10_1109_ACCESS_2020_3030776
crossref_primary_10_1109_ACCESS_2024_3361754
Cites_doi 10.1109/TKDE.2009.191
10.1007/s40279-016-0663-1
10.1109/ICMLC.2010.5581050
10.1016/j.pmcj.2017.01.003
10.1249/MSS.0000000000001569
10.1109/TCYB.2014.2361287
10.1109/WACV.2013.6474999
10.1109/CIT/IUCC/DASC/PICOM.2015.170
10.1016/j.gaitpost.2016.09.023
10.1089/tmj.2017.0264
10.3390/s17071513
10.1371/journal.pone.0075196
10.1109/PERCOMW.2018.8480380
10.1145/2971648.2971721
10.1109/BSN.2014.37
10.1049/ic.2016.0050
10.3390/s16010066
10.1007/978-3-642-25167-2_12
10.3390/s18041091
10.3390/s18072134
10.1145/2493432.2493449
10.3390/s150306419
10.1109/BSN.2016.7516238
10.1109/PERCOMW.2018.8480193
10.1109/PERCOM.2016.7456521
10.1109/PERCOM.2018.8444594
10.3390/s17102328
10.3390/s18082639
10.1109/ICB.2012.6199833
10.1109/THMS.2015.2489688
10.1109/PERCOMW.2017.7917542
10.3390/s17071522
10.1016/j.pmcj.2016.08.017
10.1109/EMBC.2018.8513508
10.21437/Interspeech.2011-821
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s19081820
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_cbec7f70677b45b5b13bb3aae601357f
PMC6515106
30995789
10_3390_s19081820
Genre Journal Article
GrantInformation_xml – fundername: EIT health
  grantid: HOOP 2.0
– fundername: Deutsche Forschungsgemeinschaft
  grantid: ES 434/8-1
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
7X8
PJZUB
PPXIY
PUEGO
5PM
ID FETCH-LOGICAL-c441t-f4e52af2c0ea4ae6e31df498c80ecd8d530d01a23d78de03eda920add1f79ad3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:13 EDT 2025
Thu Aug 21 18:19:50 EDT 2025
Thu Sep 04 20:39:20 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Tue Jul 01 00:41:55 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords inertial measurement unit
home monitoring
cyclic activities
benchmark database
semi-supervised learning
gait phases
smart annotation
gait analysis
activity recognition
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-f4e52af2c0ea4ae6e31df498c80ecd8d530d01a23d78de03eda920add1f79ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This paper is an extended version of our paper published in Martindale, C., Roth, N.; Hannink, J.; Sprager, S.; Eskofier, B. Smart Annotation Tool for Multi-sensor gait-based daily activity data. In Proceedings of the 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Athens, Greece, 19–23 March 2018.
ORCID 0000-0002-9397-5944
0000-0003-3711-1110
0000-0002-0417-0336
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19081820
PMID 30995789
PQID 2211327125
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_cbec7f70677b45b5b13bb3aae601357f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515106
proquest_miscellaneous_2211327125
pubmed_primary_30995789
crossref_primary_10_3390_s19081820
crossref_citationtrail_10_3390_s19081820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190416
PublicationDateYYYYMMDD 2019-04-16
PublicationDate_xml – month: 4
  year: 2019
  text: 20190416
  day: 16
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Bassett (ref_1) 2017; 47
Toth (ref_4) 2018; 50
ref_14
ref_36
ref_13
ref_35
ref_12
ref_34
ref_11
ref_10
ref_32
Pan (ref_19) 2010; 22
ref_31
ref_18
ref_17
Hossain (ref_23) 2017; 38
ref_16
ref_38
ref_15
ref_37
Hong (ref_25) 2016; 46
Khandelwal (ref_9) 2017; 51
Zhang (ref_30) 2015; 45
Sadri (ref_21) 2017; 38
ref_24
Barth (ref_33) 2015; 15
ref_22
ref_20
Bunn (ref_3) 2018; 11
ref_2
ref_29
ref_28
ref_27
ref_26
ref_8
ref_5
ref_7
ref_6
References_xml – volume: 22
  start-page: 1345
  year: 2010
  ident: ref_19
  article-title: A Survey on Transfer Learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 47
  start-page: 1303
  year: 2017
  ident: ref_1
  article-title: Step Counting: A Review of Measurement Considerations and Health-Related Applications
  publication-title: Sports Med.
  doi: 10.1007/s40279-016-0663-1
– ident: ref_5
– ident: ref_22
  doi: 10.1109/ICMLC.2010.5581050
– volume: 38
  start-page: 92
  year: 2017
  ident: ref_21
  article-title: Information gain-based metric for recognizing transitions in human activities
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2017.01.003
– volume: 50
  start-page: 1315
  year: 2018
  ident: ref_4
  article-title: Video-Recorded Validation of Wearable Step Counters under Free-living Conditions
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001569
– volume: 45
  start-page: 1864
  year: 2015
  ident: ref_30
  article-title: Accelerometer-Based Gait Recognition by Sparse Representation of Signature Points With Clusters
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2361287
– ident: ref_7
  doi: 10.1109/WACV.2013.6474999
– ident: ref_15
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.170
– volume: 51
  start-page: 84
  year: 2017
  ident: ref_9
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.023
– ident: ref_2
  doi: 10.1089/tmj.2017.0264
– ident: ref_11
  doi: 10.3390/s17071513
– ident: ref_35
– ident: ref_6
  doi: 10.1371/journal.pone.0075196
– ident: ref_13
  doi: 10.1109/PERCOMW.2018.8480380
– ident: ref_24
  doi: 10.1145/2971648.2971721
– ident: ref_32
  doi: 10.1109/BSN.2014.37
– ident: ref_12
  doi: 10.1049/ic.2016.0050
– ident: ref_37
  doi: 10.3390/s16010066
– ident: ref_27
  doi: 10.1007/978-3-642-25167-2_12
– ident: ref_17
  doi: 10.3390/s18041091
– ident: ref_20
  doi: 10.3390/s18072134
– ident: ref_29
  doi: 10.1145/2493432.2493449
– volume: 15
  start-page: 6419
  year: 2015
  ident: ref_33
  article-title: Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data
  publication-title: Sensors
  doi: 10.3390/s150306419
– ident: ref_34
  doi: 10.1109/BSN.2016.7516238
– ident: ref_16
  doi: 10.1109/PERCOMW.2018.8480193
– ident: ref_28
  doi: 10.1109/PERCOM.2016.7456521
– ident: ref_18
  doi: 10.1109/PERCOM.2018.8444594
– volume: 11
  start-page: 503
  year: 2018
  ident: ref_3
  article-title: Current State of Commercial Wearable Technology in Physical Activity Monitoring 2015-2017
  publication-title: Int. J. Exerc. Sci.
– ident: ref_31
  doi: 10.3390/s17102328
– ident: ref_14
  doi: 10.3390/s18082639
– ident: ref_10
  doi: 10.1109/ICB.2012.6199833
– volume: 46
  start-page: 101
  year: 2016
  ident: ref_25
  article-title: Toward Personalized Activity Recognition Systems With a Semipopulation Approach
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2015.2489688
– ident: ref_26
  doi: 10.1109/PERCOMW.2017.7917542
– ident: ref_8
  doi: 10.3390/s17071522
– volume: 38
  start-page: 312
  year: 2017
  ident: ref_23
  article-title: Active learning enabled activity recognition
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2016.08.017
– ident: ref_36
  doi: 10.1109/EMBC.2018.8513508
– ident: ref_38
  doi: 10.21437/Interspeech.2011-821
SSID ssj0023338
Score 2.3499386
Snippet Activity monitoring using wearables is becoming ubiquitous, although accurate cycle level analysis, such as step-counting and gait analysis, are limited by a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1820
SubjectTerms activity recognition
benchmark database
cyclic activities
gait analysis
gait phases
home monitoring
inertial measurement unit
semi-supervised learning
smart annotation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_i2_VFFA9eFvPaZnNsfVA8eNCK3pY8UWy3Yqvgv3eyuy2tFLx43QSSzUwy30cm3yB0ppVWgTGbWulEKijwFCOVT5XTLaW9VZmvsnzvWt1HcfucPc-U-oo5YbU8cL1wFxYGkUFGoTMjMpMZyo3hWntgEjyTIZ6-RJEJmWqoFgfmVesIcSD1FyMIe3mUKp-LPpVI_yJk-TtBcibi3KyjtQYq4nY9xQ205MtNtDojILiFBt2oAFLi-OJm-IVjYbN-2oHA5PDDAP4Nt8tyWF-2Y0CnuAM--QINb_jy2_ZfLW7bunoEvp8kEkHPKz3WMbrhKp8AP8FmiA-sRtuod3Pdu-ymTQGF1ALKGadB-IzpwCzxWsCKeU5dECq3OfHW5S7jxBGqGXcyd55w77RiBE48GqTSju-g5XJY-j2EBc0DEVRLOCBEsNQwYiC2eWIAgmljE3Q-WdfCNuLiscZFvwCSEU1QTE2QoNNp1_daUWNRp040zrRDFMGuPoBrFI1rFH-5RoJOJqYtYNPEmxBd-uHnqGBAezmTAO4StFubejoUB8wMx5hKkJxzgrm5zLeUry-VMHcsKw8Ue_8_Jn-AVgCbVRdXtHWIlscfn_4I8M_YHFeu_gM9ngfE
  priority: 102
  providerName: Directory of Open Access Journals
Title Hidden Markov Model-Based Smart Annotation for Benchmark Cyclic Activity Recognition Database Using Wearables
URI https://www.ncbi.nlm.nih.gov/pubmed/30995789
https://www.proquest.com/docview/2211327125
https://pubmed.ncbi.nlm.nih.gov/PMC6515106
https://doaj.org/article/cbec7f70677b45b5b13bb3aae601357f
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t3wWBnEgUvAsZ04PiC0W7qskKhQacXeIr9CK7YJ7G4R_feMk2zUoD1wySGeyIln7PkmHn8D8EorrUrGbGylE7FIME4xUvlYOZ0p7a1KfZPle5zNzsSneTrfgU2NzW4AV1tDu1BP6my5ePPn1_V7nPDvQsSJIfvbFTq1PBCR78I-OqQsxGCfRb-ZwDhvClqHM10x-kPaEgwNHx24pYa9fxvk_Ddz8oYrmt6FOx2GJONW6fdgx1f34fYNZsEHcDkL1CAVCUdx6t8kVDxbxBP0WI58vURrIeOqqttdeIKwlUzQWM-x4Qc5vLaLC0vGti0rQU42GUYo-UGvdXB7pEk0IN9wloSTV6uHcDo9Oj2cxV1lhdgi_FnHpfAp0yWz1GuhfeZ54kqhcptTb13uUk4dTTTjTubOU-6dVoziUpiUUmnHH8FeVVf-AIhI8pKKREtcOURpE8OoQafnqUFspo2N4PVmXAvbsY6H4heLAqOPoIKiV0EEL3vRny3VxjahSVBOLxDYsZsb9fJ70U22wqJhylIGcjwjUpOahBvDNX4oAt5UlhG82Ki2wNkUtkh05eurVcEwHuZMIuqL4HGr6r4rjmAa1zcVgRwYweBdhi3VxXnD2B3qzWPs_eQ_-n0KtxCTNRtWSfYM9tbLK_8ccc_ajGBXziVe8-nHEexPjo6_nIyafwijxt7_AvO-CBs
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+Model-Based+Smart+Annotation+for+Benchmark+Cyclic+Activity+Recognition+Database+Using+Wearables&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Martindale%2C+Christine+F&rft.au=Sprager%2C+Sebastijan&rft.au=Eskofier%2C+Bjoern+M&rft.date=2019-04-16&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=19&rft.issue=8&rft_id=info:doi/10.3390%2Fs19081820&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon