Bacterial seed endophyte shapes disease resistance in rice

Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes u...

Full description

Saved in:
Bibliographic Details
Published inNature plants Vol. 7; no. 1; pp. 60 - 72
Main Authors Matsumoto, Haruna, Fan, Xiaoyan, Wang, Yue, Kusstatscher, Peter, Duan, Jie, Wu, Sanling, Chen, Sunlu, Qiao, Kun, Wang, Yiling, Ma, Bin, Zhu, Guonian, Hashidoko, Yasuyuki, Berg, Gabriele, Cernava, Tomislav, Wang, Mengcen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii , probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases. In rice, one endophyte ( Sphingomonas melonis ) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen ( Burkholderia plantarii ) in the plant.
AbstractList Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii , probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases. In rice, one endophyte ( Sphingomonas melonis ) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen ( Burkholderia plantarii ) in the plant.
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.In rice, one endophyte (Sphingomonas melonis) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen (Burkholderiaplantarii) in the plant.
Author Berg, Gabriele
Zhu, Guonian
Wang, Mengcen
Fan, Xiaoyan
Qiao, Kun
Kusstatscher, Peter
Wang, Yiling
Duan, Jie
Wang, Yue
Matsumoto, Haruna
Cernava, Tomislav
Chen, Sunlu
Hashidoko, Yasuyuki
Wu, Sanling
Ma, Bin
Author_xml – sequence: 1
  givenname: Haruna
  surname: Matsumoto
  fullname: Matsumoto, Haruna
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
– sequence: 2
  givenname: Xiaoyan
  surname: Fan
  fullname: Fan, Xiaoyan
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
– sequence: 3
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
– sequence: 4
  givenname: Peter
  orcidid: 0000-0002-1168-7675
  surname: Kusstatscher
  fullname: Kusstatscher, Peter
  organization: Institute of Environmental Biotechnology, Graz University of Technology
– sequence: 5
  givenname: Jie
  surname: Duan
  fullname: Duan, Jie
  organization: Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University
– sequence: 6
  givenname: Sanling
  surname: Wu
  fullname: Wu, Sanling
  organization: Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences, Zhejiang University
– sequence: 7
  givenname: Sunlu
  orcidid: 0000-0001-7132-1045
  surname: Chen
  fullname: Chen, Sunlu
  organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University
– sequence: 8
  givenname: Kun
  surname: Qiao
  fullname: Qiao, Kun
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
– sequence: 9
  givenname: Yiling
  surname: Wang
  fullname: Wang, Yiling
  organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University
– sequence: 10
  givenname: Bin
  orcidid: 0000-0003-4807-4992
  surname: Ma
  fullname: Ma, Bin
  organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University
– sequence: 11
  givenname: Guonian
  surname: Zhu
  fullname: Zhu, Guonian
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
– sequence: 12
  givenname: Yasuyuki
  surname: Hashidoko
  fullname: Hashidoko, Yasuyuki
  organization: Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University
– sequence: 13
  givenname: Gabriele
  orcidid: 0000-0001-9423-3101
  surname: Berg
  fullname: Berg, Gabriele
  organization: Institute of Environmental Biotechnology, Graz University of Technology
– sequence: 14
  givenname: Tomislav
  orcidid: 0000-0001-7772-4080
  surname: Cernava
  fullname: Cernava, Tomislav
  email: tomislav.cernava@tugraz.at
  organization: Institute of Environmental Biotechnology, Graz University of Technology
– sequence: 15
  givenname: Mengcen
  orcidid: 0000-0001-7169-6779
  surname: Wang
  fullname: Wang, Mengcen
  email: wmctz@zju.edu.cn
  organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33398157$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtOxCAUQInR-P4BF6aJGzfVS4GWulPjKzFx455QelFMh47czsK_l3F8xYUryM05cHN22HocIzJ2wOGEg9CnJLlsmhIqKAF0VZdqjW1XoFQeNXr9132L7RO9AABvlBI1bLItIUSruWq22dmFdROmYIeCEPsCYz_On98mLOjZzpGKPhBawiIhBZpsdFiEWKTgcI9teDsQ7n-eu-zx-urx8ra8f7i5uzy_L52UfCq9BFeBb_pOuc4K7xXXvmmtsjVwVfvW9sClc53snQbfgkMJXvddnunKil12vHp2nsbXBdJkZoEcDoONOC7IVLJRom1rrTN69Ad9GRcp5uWWlOa1grbK1OEntehm2Jt5CjOb3sxXlAxUK8ClkSih_0Y4mGV8s4pvcnzzEd-oLOk_kguTncIYp2TD8L8qVirlf-ITpp-1_7HeAUv5l0o
CitedBy_id crossref_primary_10_1016_j_tim_2023_08_012
crossref_primary_10_1371_journal_ppat_1012645
crossref_primary_10_1093_jambio_lxae073
crossref_primary_10_1016_j_scitotenv_2021_151430
crossref_primary_10_1093_jxb_erae238
crossref_primary_10_1111_1758_2229_13126
crossref_primary_10_1038_s42003_022_03726_w
crossref_primary_10_1007_s10327_023_01154_0
crossref_primary_10_3389_fmicb_2024_1387870
crossref_primary_10_1093_femsec_fiaf004
crossref_primary_10_3390_agriculture15020193
crossref_primary_10_1007_s00203_022_03334_6
crossref_primary_10_1186_s40168_024_01951_5
crossref_primary_10_1016_j_apsoil_2023_105093
crossref_primary_10_3390_jof10070470
crossref_primary_10_4274_MNM_2023_23152
crossref_primary_10_1007_s00203_022_03358_y
crossref_primary_10_1007_s43538_024_00328_4
crossref_primary_10_1186_s40168_022_01422_9
crossref_primary_10_3390_microorganisms9112388
crossref_primary_10_1016_j_cej_2022_135751
crossref_primary_10_1021_acsami_1c24588
crossref_primary_10_1073_pnas_2211881119
crossref_primary_10_1128_spectrum_01059_23
crossref_primary_10_1186_s40168_021_01224_5
crossref_primary_10_1016_j_jhazmat_2021_126061
crossref_primary_10_1186_s40793_024_00560_x
crossref_primary_10_1038_s41564_022_01173_1
crossref_primary_10_3389_fpls_2023_1234843
crossref_primary_10_3389_fmicb_2021_667257
crossref_primary_10_3389_fpls_2022_1041504
crossref_primary_10_3390_ijms241814086
crossref_primary_10_3389_fmicb_2024_1506059
crossref_primary_10_1007_s00284_024_03742_5
crossref_primary_10_3390_jof8070731
crossref_primary_10_3390_su141710903
crossref_primary_10_1016_j_heliyon_2023_e22390
crossref_primary_10_3390_ani14111566
crossref_primary_10_1128_mbio_01648_22
crossref_primary_10_3390_ijms252312681
crossref_primary_10_1128_spectrum_01335_23
crossref_primary_10_1007_s44297_023_00013_w
crossref_primary_10_3390_plants13060912
crossref_primary_10_1016_j_ese_2024_100415
crossref_primary_10_3389_fpls_2022_849658
crossref_primary_10_1094_PHYTO_04_23_0142_R
crossref_primary_10_1016_j_fmre_2021_12_012
crossref_primary_10_1186_s40168_024_02014_5
crossref_primary_10_1016_j_jes_2024_05_032
crossref_primary_10_1186_s12284_023_00639_y
crossref_primary_10_1080_09583157_2024_2351812
crossref_primary_10_1094_PBIOMES_6_2
crossref_primary_10_1002_ps_7729
crossref_primary_10_1016_j_celrep_2024_114030
crossref_primary_10_17352_ojeb_000046
crossref_primary_10_1016_j_scienta_2023_112608
crossref_primary_10_5423_PPJ_OA_05_2022_0064
crossref_primary_10_1093_jambio_lxad185
crossref_primary_10_1002_sae2_12019
crossref_primary_10_1111_1462_2920_15896
crossref_primary_10_1007_s13199_023_00903_1
crossref_primary_10_1016_j_apsoil_2021_104191
crossref_primary_10_3389_fmicb_2023_1066805
crossref_primary_10_1016_j_cropd_2023_100028
crossref_primary_10_1186_s42483_022_00124_2
crossref_primary_10_1111_nph_17820
crossref_primary_10_3389_fmicb_2022_1035602
crossref_primary_10_1093_treephys_tpae137
crossref_primary_10_1007_s11104_023_06433_5
crossref_primary_10_1038_s41467_024_46254_3
crossref_primary_10_3390_ijms25084437
crossref_primary_10_1002_imt2_129
crossref_primary_10_1186_s40538_023_00489_2
crossref_primary_10_1007_s10327_024_01204_1
crossref_primary_10_15258_sst_2022_50_1_s_08
crossref_primary_10_3390_agronomy13122958
crossref_primary_10_1016_j_scitotenv_2021_150310
crossref_primary_10_1007_s13205_021_02979_2
crossref_primary_10_1111_aab_12865
crossref_primary_10_3389_fmicb_2024_1468627
crossref_primary_10_3390_ijms232214223
crossref_primary_10_1186_s40793_023_00484_y
crossref_primary_10_3389_fmicb_2021_664271
crossref_primary_10_1007_s42976_024_00543_1
crossref_primary_10_1016_j_micres_2022_127148
crossref_primary_10_3390_agriculture11070605
crossref_primary_10_1186_s40793_024_00584_3
crossref_primary_10_3389_fmicb_2021_629852
crossref_primary_10_1017_S0960258522000186
crossref_primary_10_1186_s13007_024_01257_5
crossref_primary_10_3389_fmicb_2024_1459354
crossref_primary_10_1016_j_jhazmat_2023_131608
crossref_primary_10_3390_ijms24021153
crossref_primary_10_3390_agronomy13122965
crossref_primary_10_1016_j_tim_2022_10_009
crossref_primary_10_1016_j_envpol_2023_122058
crossref_primary_10_1007_s10725_021_00771_z
crossref_primary_10_1007_s00284_021_02737_w
crossref_primary_10_1016_j_biocontrol_2021_104669
crossref_primary_10_1007_s11756_021_00895_7
crossref_primary_10_1007_s11104_022_05742_5
crossref_primary_10_3390_agronomy13030825
crossref_primary_10_3389_sjss_2024_12080
crossref_primary_10_1038_s41579_023_00900_7
crossref_primary_10_3389_fbioe_2022_903555
crossref_primary_10_3389_fpls_2022_936252
crossref_primary_10_1186_s40168_023_01725_5
crossref_primary_10_3389_fmicb_2022_806222
crossref_primary_10_1128_mra_00687_22
crossref_primary_10_24072_pcjournal_329
crossref_primary_10_1111_1751_7915_14352
crossref_primary_10_1128_spectrum_01254_24
crossref_primary_10_1016_j_micpath_2024_106707
crossref_primary_10_1186_s40793_024_00657_3
crossref_primary_10_1038_s43016_022_00636_2
crossref_primary_10_1021_acsnano_3c02790
crossref_primary_10_1186_s40168_021_01186_8
crossref_primary_10_1007_s44297_025_00042_7
crossref_primary_10_1016_j_micres_2023_127546
crossref_primary_10_1007_s11104_021_05124_3
crossref_primary_10_1016_j_mib_2023_102349
crossref_primary_10_1126_science_abe0725
crossref_primary_10_1186_s40793_021_00389_8
crossref_primary_10_1093_jxb_erad421
crossref_primary_10_1002_jobm_202000657
crossref_primary_10_1111_nph_18037
crossref_primary_10_1007_s00425_022_03900_8
crossref_primary_10_1007_s11104_024_06579_w
crossref_primary_10_1016_j_scitotenv_2023_169009
crossref_primary_10_1128_mmbr_00212_22
crossref_primary_10_3390_biology14010083
crossref_primary_10_3390_ijms22136852
crossref_primary_10_1111_1751_7915_14322
crossref_primary_10_3390_biology12121519
crossref_primary_10_1016_j_jhazmat_2021_126914
crossref_primary_10_1016_j_nantod_2022_101547
crossref_primary_10_3390_microorganisms10030575
crossref_primary_10_1071_BT22109
crossref_primary_10_1371_journal_pbio_3002232
crossref_primary_10_3390_ijms22073747
crossref_primary_10_1111_pce_15004
crossref_primary_10_1016_j_chemosphere_2022_136635
crossref_primary_10_1038_s42003_021_02467_6
crossref_primary_10_1016_j_plaphy_2024_108632
crossref_primary_10_3389_fmicb_2024_1361883
crossref_primary_10_3389_fmicb_2023_1149307
crossref_primary_10_1007_s42994_023_00126_4
crossref_primary_10_1186_s40168_025_02073_2
crossref_primary_10_3389_fmicb_2024_1319886
crossref_primary_10_3390_plants11212816
crossref_primary_10_3389_fpls_2021_766128
crossref_primary_10_1186_s40168_022_01234_x
crossref_primary_10_1016_j_jare_2022_04_002
crossref_primary_10_3390_microorganisms13020233
crossref_primary_10_1007_s11427_021_1953_5
crossref_primary_10_3389_fpls_2023_1326882
crossref_primary_10_1111_1440_1703_12326
crossref_primary_10_1007_s44297_023_00004_x
crossref_primary_10_1007_s11104_021_04856_6
crossref_primary_10_3390_jof10020128
crossref_primary_10_3390_microorganisms12040779
crossref_primary_10_1021_acsnano_1c09724
crossref_primary_10_1093_jxb_erad448
crossref_primary_10_1093_fqsafe_fyad005
crossref_primary_10_3390_microorganisms12122399
crossref_primary_10_3390_jof7100788
crossref_primary_10_1016_j_jhazmat_2025_138004
crossref_primary_10_1016_j_scitotenv_2022_159181
crossref_primary_10_1016_j_tplants_2024_09_004
crossref_primary_10_1094_PHYTO_04_24_0141_SC
crossref_primary_10_3389_fpls_2023_1147351
crossref_primary_10_33073_pjm_2023_009
crossref_primary_10_3389_fpls_2023_1054914
crossref_primary_10_1016_j_soilbio_2021_108273
crossref_primary_10_3390_microorganisms11020392
crossref_primary_10_1007_s42729_023_01279_3
crossref_primary_10_3390_agronomy14020260
crossref_primary_10_1016_j_jare_2021_10_003
crossref_primary_10_3390_f15122140
crossref_primary_10_3390_agronomy14061209
crossref_primary_10_1007_s11104_022_05649_1
crossref_primary_10_1007_s42535_024_01122_9
crossref_primary_10_1007_s11104_022_05729_2
crossref_primary_10_1111_nph_19459
crossref_primary_10_1016_j_cub_2023_12_056
crossref_primary_10_1128_spectrum_01184_24
crossref_primary_10_1186_s40793_025_00675_9
crossref_primary_10_1016_j_copbio_2021_07_003
crossref_primary_10_1016_j_micres_2023_127344
crossref_primary_10_1007_s00253_023_12782_z
crossref_primary_10_1128_spectrum_01360_23
crossref_primary_10_1016_j_scitotenv_2023_167279
crossref_primary_10_3390_horticulturae10060607
crossref_primary_10_1016_j_postharvbio_2025_113478
crossref_primary_10_1016_j_fmre_2024_04_016
crossref_primary_10_1007_s11104_024_06519_8
crossref_primary_10_1007_s13593_022_00761_z
crossref_primary_10_1016_j_envc_2022_100590
crossref_primary_10_1016_j_fm_2024_104615
crossref_primary_10_1007_s10725_024_01142_0
crossref_primary_10_1021_acsnano_3c03701
crossref_primary_10_1021_acs_est_3c05678
crossref_primary_10_1146_annurev_phyto_021622_100127
crossref_primary_10_1002_sae2_12046
crossref_primary_10_3389_fagro_2021_724450
crossref_primary_10_1128_spectrum_02785_21
crossref_primary_10_1111_ppl_14284
crossref_primary_10_1016_j_pbi_2023_102351
crossref_primary_10_1038_s41396_022_01290_z
crossref_primary_10_1093_jambio_lxac001
crossref_primary_10_1128_aem_02537_21
crossref_primary_10_1016_j_scitotenv_2024_175334
crossref_primary_10_3389_fmicb_2022_877781
crossref_primary_10_1038_s41477_024_01644_9
crossref_primary_10_7717_peerj_17289
crossref_primary_10_1094_PDIS_07_23_1458_RE
crossref_primary_10_1186_s40793_022_00415_3
crossref_primary_10_1016_j_scitotenv_2023_164147
crossref_primary_10_1093_ismejo_wrae142
crossref_primary_10_1016_j_nantod_2023_101752
crossref_primary_10_12677_amb_2024_133019
crossref_primary_10_1038_s42003_024_07208_z
crossref_primary_10_3389_fmicb_2022_996854
crossref_primary_10_1080_07352689_2022_2031728
crossref_primary_10_1016_j_pbi_2023_102483
crossref_primary_10_1128_msystems_00004_24
crossref_primary_10_1016_j_micres_2021_126914
crossref_primary_10_1186_s40538_024_00627_4
crossref_primary_10_1038_s44319_023_00023_3
crossref_primary_10_1038_s41598_024_71249_x
crossref_primary_10_1128_aem_02158_23
crossref_primary_10_3389_fmicb_2022_834622
crossref_primary_10_1128_mbio_00177_24
crossref_primary_10_1016_j_jia_2024_08_022
crossref_primary_10_1186_s40793_023_00534_5
crossref_primary_10_3389_fmicb_2021_650610
crossref_primary_10_1021_acs_jafc_3c09655
crossref_primary_10_1016_j_pmpp_2025_102655
crossref_primary_10_1016_j_micres_2025_128141
crossref_primary_10_1080_15592324_2023_2260640
crossref_primary_10_1038_s41467_024_50700_7
crossref_primary_10_1038_s41564_024_01781_z
crossref_primary_10_1016_j_postharvbio_2023_112679
crossref_primary_10_1128_msphere_00765_24
crossref_primary_10_3390_f14061136
crossref_primary_10_1146_annurev_phyto_021621_121447
crossref_primary_10_1128_spectrum_01350_22
crossref_primary_10_1016_j_scitotenv_2023_164374
crossref_primary_10_1094_PBIOMES_10_21_0061_R
crossref_primary_10_3389_fpls_2021_607874
crossref_primary_10_1016_j_ecoenv_2023_115352
crossref_primary_10_1007_s00203_024_03946_0
crossref_primary_10_3390_microorganisms11092317
crossref_primary_10_1016_j_copbio_2022_102808
crossref_primary_10_1016_j_plaphy_2023_108321
crossref_primary_10_1016_j_envres_2022_115014
crossref_primary_10_1002_jobm_202200282
crossref_primary_10_1038_s41564_023_01379_x
crossref_primary_10_15377_2409_9813_2021_08_14
crossref_primary_10_4014_jmb_2303_03004
crossref_primary_10_3389_fmicb_2023_1146331
crossref_primary_10_3390_jof8020180
crossref_primary_10_3389_fmicb_2022_958917
crossref_primary_10_1631_jzus_B2300914
crossref_primary_10_1128_spectrum_00390_22
crossref_primary_10_1007_s11104_024_06571_4
crossref_primary_10_1021_acs_nanolett_2c01203
Cites_doi 10.1101/gr.1239303
10.1126/science.aaa1788
10.1186/gb-2010-11-10-r106
10.1073/pnas.1414592112
10.1111/1758-2229.12181
10.1038/nbt.4232
10.3389/fmicb.2014.00148
10.1016/j.cell.2017.04.025
10.1016/j.tplants.2020.06.003
10.1016/j.plantsci.2013.03.004
10.1111/j.1364-3703.2010.00676.x
10.1038/nature11237
10.1038/s41579-018-0024-1
10.1038/nrmicro1596
10.3186/jjphytopath.63.455
10.1016/j.tig.2012.10.011
10.1016/j.cell.2018.02.024
10.1038/nclimate1990
10.1016/j.watres.2019.07.007
10.1007/s11104-017-3289-7
10.1016/j.cell.2018.10.020
10.1111/1462-2920.13189
10.1073/pnas.1616148114
10.1146/annurev-micro-090817-062524
10.1094/PBIOMES-06-18-0029-R
10.1073/pnas.1806645115
10.1016/j.mib.2017.03.010
10.1007/s13205-017-0877-4
10.1038/s41587-019-0209-9
10.7717/peerj.2584
10.1038/s41396-019-0394-z
10.1021/acs.est.7b05915
10.1128/AEM.03531-12
10.1016/j.chom.2019.07.009
10.1093/bioinformatics/btm404
10.1038/s41467-017-02430-2
10.1186/s13059-014-0550-8
10.1038/s41587-019-0104-4
10.1111/j.1574-6968.2006.00254.x
10.1038/nmeth.2634
10.1111/j.1365-2672.1998.00586.x
10.1007/s13213-012-0491-y
10.1186/s40168-019-0728-0
10.1038/nmeth.3869
10.3390/ijerph15081680
10.1093/bioinformatics/btu638
10.1016/j.chemosphere.2018.01.133
10.1094/PBIOMES-06-19-0031-R
10.1104/pp.114.252700
10.1038/ismej.2013.196
10.1016/j.ese.2020.100061
10.1186/s40168-020-00805-0
10.1038/nplants.2015.51
10.1126/science.aax0379
10.1099/ijs.0.64184-0
10.1371/journal.pone.0078024
10.1038/s41477-018-0139-4
10.1128/JB.01028-15
10.1038/srep22596
10.1038/s41396-017-0028-2
10.1038/s41559-019-0994-z
10.1186/s40168-019-0723-5
10.1038/nmeth.1923
10.1016/S1360-1385(00)01797-0
10.1186/gb-2013-14-6-209
10.1186/s40168-017-0310-6
10.14806/ej.17.1.200
10.1021/acs.est.9b04616
10.1186/s40168-020-00875-0
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1038/s41477-020-00826-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2055-0278
EndPage 72
ExternalDocumentID 33398157
10_1038_s41477_020_00826_5
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)
  grantid: LQ16C140001
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31501684
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R~
4.4
5BI
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AENEX
AEUYN
AFKRA
AFSHS
AFWHJ
AGAYW
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BKKNO
BKSAR
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK5
M7R
NNMJJ
O9-
ODYON
PCBAR
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7SN
C1K
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
ID FETCH-LOGICAL-c441t-f40c20f7db5cba3ff518f79a5a60156f9ad014ccb4dc80f90ce40f8db4cc82a3
IEDL.DBID BENPR
ISSN 2055-0278
IngestDate Thu Jul 10 22:22:08 EDT 2025
Sat Aug 23 13:09:35 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Tue Jul 01 03:33:58 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Fri Feb 21 02:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-f40c20f7db5cba3ff518f79a5a60156f9ad014ccb4dc80f90ce40f8db4cc82a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7132-1045
0000-0001-9423-3101
0000-0003-4807-4992
0000-0001-7772-4080
0000-0001-7169-6779
0000-0002-1168-7675
PMID 33398157
PQID 2478165092
PQPubID 2069614
PageCount 13
ParticipantIDs proquest_miscellaneous_2475399688
proquest_journals_2478165092
pubmed_primary_33398157
crossref_primary_10_1038_s41477_020_00826_5
crossref_citationtrail_10_1038_s41477_020_00826_5
springer_journals_10_1038_s41477_020_00826_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature plants
PublicationTitleAbbrev Nat. Plants
PublicationTitleAlternate Nat Plants
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chaparro, Badri, Vivanco (CR14) 2014; 8
Naughton (CR5) 2016; 18
Bolyen (CR57) 2019; 37
Ham, Melanson, Rush (CR4) 2011; 12
Leach, Triplett, Argueso, Trivedi (CR12) 2017; 169
Thomas, Corre, Cebron (CR46) 2019; 13
Cordovez, Dini-Andreote, Carrion, Raaijmakers (CR44) 2019; 73
Boyd, Ridout, O’Sullivan, Leach, Leung (CR1) 2013; 29
CR35
Solis, Bertani, Degrassi, Devescovi, Venturi (CR33) 2006; 259
Sultan (CR30) 2000; 5
Maeda (CR52) 2006; 56
Wang, Hashimoto, Hashidoko (CR10) 2013; 79
Callahan (CR59) 2016; 13
Berg, Grube, Schloter, Smalla (CR19) 2014; 5
Banerjee, Schlaeppi, van der Heijden (CR45) 2018; 16
Wu (CR13) 2018; 115
Niu, Paulson, Zheng, Kolter (CR22) 2017; 114
Rochefort (CR41) 2019; 3
Kim, Nishiyama, Kunito, Oyaizu (CR39) 1998; 85
Toju (CR16) 2018; 4
Hautier (CR7) 2015; 348
Shade, Jacques, Barret (CR28) 2017; 37
Lundberg, Yourstone, Mieczkowski, Jones, Dangl (CR56) 2013; 10
CR42
Nelson (CR29) 2017; 422
Lang (CR70) 2018; 199
Barillot, Sarde, Bert, Tarnaud, Cochet (CR51) 2013; 63
Langmead, Salzberg (CR65) 2012; 9
Sun, Li, Jaisi (CR71) 2019; 163
Derksen, Rampitsch, Daayf (CR15) 2013; 207
Duran (CR20) 2018; 175
Wang, Cernava (CR17) 2020; 4
Ayyagari, Sreerama (CR63) 2017; 7
Miwa (CR32) 2016; 198
Wassermann, Cernava, Muller, Berg, Berg (CR37) 2019; 7
Berg, Raaijmakers (CR38) 2018; 12
Haney, Samuel, Bush, Ausubel (CR25) 2015; 1
Kim, Lee, Jeon, Harris, Lee (CR43) 2020; 8
Kusstatscher (CR55) 2019; 7
Miyagawa, Ozaki, Kimura (CR9) 1988; 3
CR58
Shannon (CR68) 2003; 13
Wang, Zhi, Qiu, Shi, Lu (CR47) 2017; 8
Anders, Pyl, Huber (CR66) 2015; 31
Lundberg (CR54) 2012; 488
Edwards (CR2) 2015; 112
Wang (CR31) 2016; 6
Kwak (CR23) 2018; 36
Anders, Huber (CR67) 2010; 11
Takeuchi, Sawada, Suzuki, Matsuda (CR53) 1997; 63
Wang, Hashimoto, Hashidoko (CR11) 2013; 8
Bebber, Ramotowski, Gurr (CR3) 2013; 3
Carlström (CR40) 2019; 3
Liu (CR6) 2018; 52
Liu, Brettell, Singh (CR26) 2020; 25
CR27
Bakker, Pieterse, de Jonge, Berendsen (CR49) 2018; 172
Deng, Zhou, Zheng, Bai, Zhou (CR69) 2018; 15
Truyens, Weyens, Cuypers, Vangronsveld (CR34) 2015; 7
CR21
Bergna (CR36) 2018; 2
Jung (CR8) 2018; 9
Zhang (CR24) 2019; 37
Larkin (CR62) 2007; 23
Cheng, Zhang, He (CR18) 2019; 26
Maeda (CR48) 2019; 365
Scholthof (CR50) 2007; 5
Love, Huber, Anders (CR61) 2014; 15
Rognes, Flouri, Nichols, Quince, Mahe (CR60) 2016; 4
Lu (CR64) 2015; 167
T Takeuchi (826_CR53) 1997; 63
KB Scholthof (826_CR50) 2007; 5
MI Love (826_CR61) 2014; 15
M Wang (826_CR31) 2016; 6
826_CR58
EB Nelson (826_CR29) 2017; 422
M-J Kwak (826_CR23) 2018; 36
P Kusstatscher (826_CR55) 2019; 7
B Langmead (826_CR65) 2012; 9
JM Chaparro (826_CR14) 2014; 8
H Kim (826_CR43) 2020; 8
J Zhang (826_CR24) 2019; 37
Y Maeda (826_CR52) 2006; 56
CH Haney (826_CR25) 2015; 1
H Toju (826_CR16) 2018; 4
P Shannon (826_CR68) 2003; 13
SE Sultan (826_CR30) 2000; 5
J Edwards (826_CR2) 2015; 112
Y Wu (826_CR13) 2018; 115
826_CR42
E Bolyen (826_CR57) 2019; 37
M Wang (826_CR10) 2013; 79
S Anders (826_CR67) 2010; 11
S Miwa (826_CR32) 2016; 198
V Cordovez (826_CR44) 2019; 73
X Deng (826_CR69) 2018; 15
G Berg (826_CR19) 2014; 5
B Jung (826_CR8) 2018; 9
A Rochefort (826_CR41) 2019; 3
A Shade (826_CR28) 2017; 37
S Truyens (826_CR34) 2015; 7
A Bergna (826_CR36) 2018; 2
H Liu (826_CR26) 2020; 25
J Lu (826_CR64) 2015; 167
BJ Callahan (826_CR59) 2016; 13
Y Hautier (826_CR7) 2015; 348
VS Ayyagari (826_CR63) 2017; 7
DS Lundberg (826_CR54) 2012; 488
G Berg (826_CR38) 2018; 12
JH Ham (826_CR4) 2011; 12
F Thomas (826_CR46) 2019; 13
S Anders (826_CR66) 2015; 31
JE Leach (826_CR12) 2017; 169
826_CR35
H Wang (826_CR47) 2017; 8
DS Lundberg (826_CR56) 2013; 10
P Duran (826_CR20) 2018; 175
Z Lang (826_CR70) 2018; 199
H Derksen (826_CR15) 2013; 207
P Bakker (826_CR49) 2018; 172
H Kim (826_CR39) 1998; 85
M Wang (826_CR11) 2013; 8
R Solis (826_CR33) 2006; 259
B Niu (826_CR22) 2017; 114
LM Naughton (826_CR5) 2016; 18
B Wassermann (826_CR37) 2019; 7
H Maeda (826_CR48) 2019; 365
X Liu (826_CR6) 2018; 52
DP Bebber (826_CR3) 2013; 3
826_CR21
H Miyagawa (826_CR9) 1988; 3
M Sun (826_CR71) 2019; 163
826_CR27
MA Larkin (826_CR62) 2007; 23
S Banerjee (826_CR45) 2018; 16
CDC Barillot (826_CR51) 2013; 63
YT Cheng (826_CR18) 2019; 26
T Rognes (826_CR60) 2016; 4
LA Boyd (826_CR1) 2013; 29
M Wang (826_CR17) 2020; 4
CI Carlström (826_CR40) 2019; 3
References_xml – volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  ident: CR68
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 348
  start-page: 336
  year: 2015
  end-page: 340
  ident: CR7
  article-title: Anthropogenic environmental changes affect ecosystem stability via biodiversity
  publication-title: Science
  doi: 10.1126/science.aaa1788
– volume: 11
  year: 2010
  ident: CR67
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 8
  start-page: 337
  year: 2017
  ident: CR47
  article-title: Characterization of a novel nicotine degradation gene cluster ndp in TY and its evolutionary analysis
  publication-title: Front. Microbiol.
– volume: 112
  start-page: E911
  year: 2015
  end-page: E920
  ident: CR2
  article-title: Structure, variation, and assembly of the root-associated microbiomes of rice
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1414592112
– volume: 7
  start-page: 40
  year: 2015
  end-page: 50
  ident: CR34
  article-title: Bacterial seed endophytes: genera, vertical transmission and interaction with plants
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12181
– volume: 36
  start-page: 1100
  year: 2018
  ident: CR23
  article-title: Rhizosphere microbiome structure alters to enable wilt resistance in tomato
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4232
– ident: CR35
– volume: 5
  start-page: 148
  year: 2014
  ident: CR19
  article-title: Unraveling the plant microbiome: looking back and future perspectives
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2014.00148
– ident: CR58
– volume: 169
  start-page: 587
  year: 2017
  end-page: 596
  ident: CR12
  article-title: Communication in the phytobiome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.025
– volume: 25
  start-page: 841
  year: 2020
  end-page: 844
  ident: CR26
  article-title: Linking the phyllosphere microbiome to plant health
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.06.003
– ident: CR42
– volume: 207
  start-page: 79
  year: 2013
  end-page: 87
  ident: CR15
  article-title: Signaling cross-talk in plant disease resistance
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.03.004
– ident: CR21
– volume: 12
  start-page: 329
  year: 2011
  end-page: 339
  ident: CR4
  article-title: : next major pathogen of rice?
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2010.00676.x
– volume: 488
  start-page: 86
  year: 2012
  end-page: 90
  ident: CR54
  article-title: Defining the core root microbiome
  publication-title: Nature
  doi: 10.1038/nature11237
– volume: 16
  start-page: 567
  year: 2018
  end-page: 576
  ident: CR45
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0024-1
– volume: 5
  start-page: 152
  year: 2007
  end-page: 156
  ident: CR50
  article-title: The disease triangle: pathogens, the environment and society
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1596
– volume: 63
  start-page: 455
  year: 1997
  end-page: 462
  ident: CR53
  article-title: Specific detection of and by PCR using primers selected from the 16S–23S rDNA spacer regions
  publication-title: Ann. Phytopath. Soc. Japan
  doi: 10.3186/jjphytopath.63.455
– volume: 29
  start-page: 233
  year: 2013
  end-page: 240
  ident: CR1
  article-title: Plant–pathogen interactions: disease resistance in modern agriculture
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2012.10.011
– volume: 172
  start-page: 1178
  year: 2018
  end-page: 1180
  ident: CR49
  article-title: The soil-borne legacy
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.024
– volume: 3
  start-page: 985
  year: 2013
  end-page: 988
  ident: CR3
  article-title: Crop pests and pathogens move polewards in a warming world
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1990
– volume: 163
  start-page: 114840
  year: 2019
  ident: CR71
  article-title: Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.07.007
– volume: 422
  start-page: 7
  year: 2017
  end-page: 34
  ident: CR29
  article-title: The seed microbiome: origins, interactions, and impacts
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3289-7
– volume: 175
  start-page: 973
  year: 2018
  end-page: 983
  ident: CR20
  article-title: Microbial interkingdom interactions in roots promote survival
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.020
– volume: 18
  start-page: 780
  year: 2016
  end-page: 790
  ident: CR5
  article-title: Functional and genomic insights into the pathogenesis of species to rice
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13189
– volume: 114
  start-page: E2450
  year: 2017
  end-page: E2459
  ident: CR22
  article-title: Simplified and representative bacterial community of maize roots
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1616148114
– volume: 73
  start-page: 69
  year: 2019
  end-page: 88
  ident: CR44
  article-title: Ecology and evolution of plant microbiomes
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090817-062524
– volume: 2
  start-page: 183
  year: 2018
  end-page: 193
  ident: CR36
  article-title: Tomato seeds preferably transmit plant beneficial endophytes
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-06-18-0029-R
– volume: 115
  start-page: 7010
  year: 2018
  end-page: 7015
  ident: CR13
  article-title: Policy distortions, farm size, and the overuse of agricultural chemicals in China
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806645115
– volume: 37
  start-page: 15
  year: 2017
  end-page: 22
  ident: CR28
  article-title: Ecological patterns of seed microbiome diversity, transmission, and assembly
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.03.010
– volume: 7
  year: 2017
  ident: CR63
  article-title: Evaluation of haplotype diversity of (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations
  publication-title: 3 Biotech
  doi: 10.1007/s13205-017-0877-4
– volume: 37
  start-page: 852
  year: 2019
  end-page: 857
  ident: CR57
  article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0209-9
– volume: 4
  start-page: e2584
  year: 2016
  ident: CR60
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 13
  start-page: 1814
  year: 2019
  end-page: 1830
  ident: CR46
  article-title: Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0394-z
– volume: 52
  start-page: 5105
  year: 2018
  end-page: 5114
  ident: CR6
  article-title: Biotoxin tropolone contamination associated with nationwide occurrence of pathogen in agricultural environments in China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05915
– volume: 79
  start-page: 1906
  year: 2013
  end-page: 1914
  ident: CR10
  article-title: Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by PS1-7 upon exposure to chemical stress from highly active iron chelators
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03531-12
– volume: 26
  start-page: 183
  year: 2019
  end-page: 192
  ident: CR18
  article-title: Plant–microbe interactions facing environmental challenge
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.07.009
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  ident: CR62
  article-title: Clustal W and Clustal X version 2.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 9
  year: 2018
  ident: CR8
  article-title: Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02430-2
– volume: 3
  start-page: 31
  year: 1988
  end-page: 43
  ident: CR9
  article-title: Pathogenicity of Pseudomonas glumae and to the ears and leaves of graminaceous plants
  publication-title: Bull. Chugoku Natl Agric. Exp. Stn
– volume: 15
  year: 2014
  ident: CR61
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 37
  start-page: 676
  year: 2019
  end-page: 684
  ident: CR24
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0104-4
– volume: 259
  start-page: 106
  year: 2006
  end-page: 112
  ident: CR33
  article-title: Involvement of quorum sensing and RpoS in rice seedling blight caused by
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2006.00254.x
– volume: 10
  start-page: 999
  year: 2013
  end-page: 1002
  ident: CR56
  article-title: Practical innovations for high-throughput amplicon sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2634
– volume: 85
  start-page: 731
  year: 1998
  end-page: 736
  ident: CR39
  article-title: High population of species on plant surface
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.1998.00586.x
– volume: 63
  start-page: 471
  year: 2013
  end-page: 476
  ident: CR51
  article-title: A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-012-0491-y
– volume: 7
  year: 2019
  ident: CR55
  article-title: Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0728-0
– volume: 13
  start-page: 581
  year: 2016
  end-page: 583
  ident: CR59
  article-title: DADA2: High-resolution sample inference from Illumina amplicon data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– ident: CR27
– volume: 15
  start-page: 1680
  year: 2018
  ident: CR69
  article-title: Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15081680
– volume: 31
  start-page: 166
  year: 2015
  end-page: 169
  ident: CR66
  article-title: HTSeq–a Python framework to work with high-throughput sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 199
  start-page: 210
  year: 2018
  end-page: 217
  ident: CR70
  article-title: Isolation and characterization of a quinclorac-degrading Actinobacteria sp. strain AH-B and its implication on microecology in contaminated soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.133
– volume: 3
  start-page: 326
  year: 2019
  end-page: 336
  ident: CR41
  article-title: Influence of environment and host plant genotype on the structure and diversity of the seed microbiota
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-06-19-0031-R
– volume: 167
  start-page: 1100
  year: 2015
  end-page: 1116
  ident: CR64
  article-title: Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.252700
– volume: 8
  start-page: 790
  year: 2014
  end-page: 803
  ident: CR14
  article-title: Rhizosphere microbiome assemblage is affected by plant development
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.196
– volume: 4
  start-page: 100061
  year: 2020
  ident: CR17
  article-title: Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity
  publication-title: Environ. Sci. Ecotechnol.
  doi: 10.1016/j.ese.2020.100061
– volume: 8
  year: 2020
  ident: CR43
  article-title: Domestication of species eco-evolutionarily shapes bacterial and fungal communities in rice seed
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00805-0
– volume: 1
  start-page: 15051
  year: 2015
  ident: CR25
  article-title: Associations with rhizosphere bacteria can confer an adaptive advantage to plants
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.51
– volume: 365
  start-page: 393
  year: 2019
  ident: CR48
  article-title: A rice gene that confers broad-spectrum resistance to β-triketone herbicides
  publication-title: Science
  doi: 10.1126/science.aax0379
– volume: 56
  start-page: 1031
  year: 2006
  end-page: 1038
  ident: CR52
  article-title: Phylogenetic study and multiplex PCR-based detection of , and using gyrB and rpoD sequences
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64184-0
– volume: 8
  start-page: e78024
  year: 2013
  ident: CR11
  article-title: Repression of tropolone production and induction of a pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078024
– volume: 4
  start-page: 247
  year: 2018
  end-page: 257
  ident: CR16
  article-title: Core microbiomes for sustainable agroecosystems
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0139-4
– volume: 198
  start-page: 1604
  year: 2016
  end-page: 1609
  ident: CR32
  article-title: Identification of the three genes involved in controlling production of a phytotoxin tropolone in
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01028-15
– volume: 6
  year: 2016
  ident: CR31
  article-title: Indole-3-acetic acid produced by acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in
  publication-title: Sci. Rep.
  doi: 10.1038/srep22596
– volume: 12
  start-page: 1167
  year: 2018
  end-page: 1170
  ident: CR38
  article-title: Saving seed microbiomes
  publication-title: ISME J.
  doi: 10.1038/s41396-017-0028-2
– volume: 3
  start-page: 1445
  year: 2019
  end-page: 1454
  ident: CR40
  article-title: Synthetic microbiota reveal priority effects and keystone strains in the phyllosphere
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-0994-z
– volume: 7
  year: 2019
  ident: CR37
  article-title: Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0723-5
– volume: 9
  start-page: 357
  year: 2012
  end-page: 359
  ident: CR65
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 5
  start-page: 537
  year: 2000
  end-page: 542
  ident: CR30
  article-title: Phenotypic plasticity for plant development, function and life history
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01797-0
– volume: 9
  start-page: 357
  year: 2012
  ident: 826_CR65
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1923
– volume: 4
  start-page: e2584
  year: 2016
  ident: 826_CR60
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 9
  year: 2018
  ident: 826_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02430-2
– volume: 13
  start-page: 2498
  year: 2003
  ident: 826_CR68
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 5
  start-page: 537
  year: 2000
  ident: 826_CR30
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(00)01797-0
– volume: 348
  start-page: 336
  year: 2015
  ident: 826_CR7
  publication-title: Science
  doi: 10.1126/science.aaa1788
– volume: 15
  start-page: 1680
  year: 2018
  ident: 826_CR69
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15081680
– volume: 3
  start-page: 326
  year: 2019
  ident: 826_CR41
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-06-19-0031-R
– volume: 172
  start-page: 1178
  year: 2018
  ident: 826_CR49
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.024
– volume: 115
  start-page: 7010
  year: 2018
  ident: 826_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806645115
– volume: 114
  start-page: E2450
  year: 2017
  ident: 826_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1616148114
– volume: 18
  start-page: 780
  year: 2016
  ident: 826_CR5
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13189
– volume: 169
  start-page: 587
  year: 2017
  ident: 826_CR12
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.025
– volume: 365
  start-page: 393
  year: 2019
  ident: 826_CR48
  publication-title: Science
  doi: 10.1126/science.aax0379
– volume: 73
  start-page: 69
  year: 2019
  ident: 826_CR44
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090817-062524
– volume: 1
  start-page: 15051
  year: 2015
  ident: 826_CR25
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.51
– volume: 63
  start-page: 471
  year: 2013
  ident: 826_CR51
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-012-0491-y
– volume: 7
  start-page: 40
  year: 2015
  ident: 826_CR34
  publication-title: Environ. Microbiol. Rep.
  doi: 10.1111/1758-2229.12181
– volume: 36
  start-page: 1100
  year: 2018
  ident: 826_CR23
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4232
– volume: 2
  start-page: 183
  year: 2018
  ident: 826_CR36
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-06-18-0029-R
– volume: 37
  start-page: 852
  year: 2019
  ident: 826_CR57
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0209-9
– volume: 8
  start-page: e78024
  year: 2013
  ident: 826_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0078024
– volume: 25
  start-page: 841
  year: 2020
  ident: 826_CR26
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2020.06.003
– volume: 10
  start-page: 999
  year: 2013
  ident: 826_CR56
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2634
– volume: 12
  start-page: 1167
  year: 2018
  ident: 826_CR38
  publication-title: ISME J.
  doi: 10.1038/s41396-017-0028-2
– volume: 15
  year: 2014
  ident: 826_CR61
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 112
  start-page: E911
  year: 2015
  ident: 826_CR2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1414592112
– volume: 37
  start-page: 676
  year: 2019
  ident: 826_CR24
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0104-4
– volume: 4
  start-page: 247
  year: 2018
  ident: 826_CR16
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0139-4
– ident: 826_CR21
  doi: 10.1186/gb-2013-14-6-209
– volume: 175
  start-page: 973
  year: 2018
  ident: 826_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.020
– volume: 52
  start-page: 5105
  year: 2018
  ident: 826_CR6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05915
– volume: 488
  start-page: 86
  year: 2012
  ident: 826_CR54
  publication-title: Nature
  doi: 10.1038/nature11237
– volume: 198
  start-page: 1604
  year: 2016
  ident: 826_CR32
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01028-15
– ident: 826_CR35
  doi: 10.1186/s40168-017-0310-6
– volume: 8
  start-page: 337
  year: 2017
  ident: 826_CR47
  publication-title: Front. Microbiol.
– volume: 7
  year: 2019
  ident: 826_CR37
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0723-5
– volume: 5
  start-page: 152
  year: 2007
  ident: 826_CR50
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1596
– volume: 8
  start-page: 790
  year: 2014
  ident: 826_CR14
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.196
– volume: 56
  start-page: 1031
  year: 2006
  ident: 826_CR52
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64184-0
– volume: 3
  start-page: 1445
  year: 2019
  ident: 826_CR40
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-019-0994-z
– volume: 7
  year: 2017
  ident: 826_CR63
  publication-title: 3 Biotech
  doi: 10.1007/s13205-017-0877-4
– volume: 79
  start-page: 1906
  year: 2013
  ident: 826_CR10
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03531-12
– volume: 199
  start-page: 210
  year: 2018
  ident: 826_CR70
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.133
– volume: 163
  start-page: 114840
  year: 2019
  ident: 826_CR71
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.07.007
– volume: 31
  start-page: 166
  year: 2015
  ident: 826_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– volume: 3
  start-page: 31
  year: 1988
  ident: 826_CR9
  publication-title: Bull. Chugoku Natl Agric. Exp. Stn
– volume: 167
  start-page: 1100
  year: 2015
  ident: 826_CR64
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.252700
– volume: 7
  year: 2019
  ident: 826_CR55
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0728-0
– volume: 207
  start-page: 79
  year: 2013
  ident: 826_CR15
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2013.03.004
– ident: 826_CR58
  doi: 10.14806/ej.17.1.200
– volume: 85
  start-page: 731
  year: 1998
  ident: 826_CR39
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.1998.00586.x
– volume: 5
  start-page: 148
  year: 2014
  ident: 826_CR19
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2014.00148
– volume: 63
  start-page: 455
  year: 1997
  ident: 826_CR53
  publication-title: Ann. Phytopath. Soc. Japan
  doi: 10.3186/jjphytopath.63.455
– volume: 6
  year: 2016
  ident: 826_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep22596
– volume: 4
  start-page: 100061
  year: 2020
  ident: 826_CR17
  publication-title: Environ. Sci. Ecotechnol.
  doi: 10.1016/j.ese.2020.100061
– volume: 23
  start-page: 2947
  year: 2007
  ident: 826_CR62
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm404
– volume: 11
  year: 2010
  ident: 826_CR67
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 37
  start-page: 15
  year: 2017
  ident: 826_CR28
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.03.010
– volume: 16
  start-page: 567
  year: 2018
  ident: 826_CR45
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0024-1
– volume: 13
  start-page: 1814
  year: 2019
  ident: 826_CR46
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0394-z
– volume: 13
  start-page: 581
  year: 2016
  ident: 826_CR59
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 259
  start-page: 106
  year: 2006
  ident: 826_CR33
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2006.00254.x
– volume: 12
  start-page: 329
  year: 2011
  ident: 826_CR4
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2010.00676.x
– volume: 26
  start-page: 183
  year: 2019
  ident: 826_CR18
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2019.07.009
– ident: 826_CR27
  doi: 10.1021/acs.est.9b04616
– volume: 3
  start-page: 985
  year: 2013
  ident: 826_CR3
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1990
– volume: 29
  start-page: 233
  year: 2013
  ident: 826_CR1
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2012.10.011
– volume: 422
  start-page: 7
  year: 2017
  ident: 826_CR29
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3289-7
– ident: 826_CR42
  doi: 10.1186/s40168-020-00875-0
– volume: 8
  year: 2020
  ident: 826_CR43
  publication-title: Microbiome
  doi: 10.1186/s40168-020-00805-0
SSID ssj0001755360
Score 2.6091347
Snippet Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms 38/91
45/23
45/77
631/158
631/449/1870
631/449/2661
82/58
82/83
Bacterial diseases
Biomedical and Life Sciences
Biosynthesis
Burkholderia - metabolism
Cereal crops
Crop production
Cultivars
Disease
Disease resistance
Disease Resistance - physiology
Disease transmission
Endophytes
Endophytes - physiology
Environmental conditions
Life Sciences
Mode of action
Oryza - immunology
Oryza - microbiology
Pathogens
Phenotypes
Plant Diseases - immunology
Plant Diseases - microbiology
Plant Sciences
Rice
Seeds
Seeds - immunology
Seeds - microbiology
Sphingomonas - physiology
Title Bacterial seed endophyte shapes disease resistance in rice
URI https://link.springer.com/article/10.1038/s41477-020-00826-5
https://www.ncbi.nlm.nih.gov/pubmed/33398157
https://www.proquest.com/docview/2478165092
https://www.proquest.com/docview/2475399688
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qfPBF_HY6pYJvWkyb5qO-iJONIThEFHwr-URB2mnng_-9lzbbENHX9tKGuyT3u7vcHUKnieWMc6lj4hgDA0XZWOYGTBWYtTMkxVz5BOe7MRs9ZbfP9Dk43OpwrXJ2JjYHtam095FfpD4n0pd7S68m77HvGuWjq6GFxjLqwBEswPjq9Afj-4eFl4VTShgO2TKYiIs6SzLOY281efXHYvpTI_2Cmb9CpI3mGW6g9QAZo-tWxptoyZZbaLVfAaz72kaX_bbeMlDUoIkiW5oKWDe1Uf0iJ7aOQggmArvaY0UQcvRaRr6W0A56HA4eb0ZxaIgQa0At09hlWKfYcaOoVpI4RxPheC6pZD4j2uXSgMWjtcqMFtjlWNsMO2EUPBOpJLtopaxKu48iJRXHWipJqc1MDtSWK0BfKsepYhntomTGk0KHYuG-Z8Vb0QStiShaPhbAx6LhYwFjzuZjJm2pjH-pezNWF2Hb1MVCyF10Mn8NC95HMWRpq8-GxlfTZUJ00V4rovnvCCG5SCjvovOZzBYf_3suB__P5RCtpf4mS-N46aGV6cenPQIoMlXHYb19AyUb2rA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxQxcKhXQV-kftWrVSPoky7NbpJNVijiacvVtofICX0LSTZBQXbP7hXpj_I_OtmPO6TYt75uJtkwM8l8ZWYAXqVe5lIal7CQ52igWJ-YokRTBXcdSpZRaWOC8-ksn37jn8_E2Qb8GXJh4rPK4U5sL-qydtFHvpfFnMhY7i17v_iVxK5RMbo6tNDo2OLYX_5Gk63ZP_qE9H2dZYcH84_TpO8qkDgU_cskcOoyGmRphbOGhSBSFWRhhMljWnEoTIlmg3OWl07RUFDnOQ2qtPhNZYbhsrdgkzOEHsHm5GD25evaqSOFwIE-OYcytdfwlEuZRCMtSts8Ef8KwCta7ZWIbCvoDrfgXq-hkg8dS92HDV89gNuTGrXIy4fwbtKVd0aIBgUf8VVZI6WWnjTfzcI3pI_4EDTjo2qKPEV-VCSWLnoE85vA1GMYVXXlnwCxxkrqjDVCeF4WCO2lRWXPFjSzORdjSAecaNfXJo8tMn7qNkbOlO7wqBGPusWjxjlvVnMWXWWOa6F3B1Tr_pQ2es1TY3i5GsbzFYMmpvL1RQsTi_fmSo1huyPR6neMsUKlQo7h7UCz9eL_38vO9Xt5AXem89MTfXI0O34Kd7P4iKb1-ezCaHl-4Z-hFrS0z3veI6BvmNv_Alp7GRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+seed+endophyte+shapes+disease+resistance+in+rice&rft.jtitle=Nature+plants&rft.au=Matsumoto+Haruna&rft.au=Fan+Xiaoyan&rft.au=Wang%2C+Yue&rft.au=Kusstatscher%2C+Peter&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.eissn=2055-0278&rft.volume=7&rft.issue=1&rft.spage=60&rft.epage=72&rft_id=info:doi/10.1038%2Fs41477-020-00826-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon