Bacterial seed endophyte shapes disease resistance in rice
Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes u...
Saved in:
Published in | Nature plants Vol. 7; no. 1; pp. 60 - 72 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action.
Sphingomonas melonis
that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen
Burkholderia plantarii
, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.
In rice, one endophyte (
Sphingomonas melonis
) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen (
Burkholderia
plantarii
) in the plant. |
---|---|
AbstractList | Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases. Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii , probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases. In rice, one endophyte ( Sphingomonas melonis ) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen ( Burkholderia plantarii ) in the plant. Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of 'disease triangles', which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases. Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains elusive. Here, we have observed that rice plants of the same cultivar can be differentiated into disease-resistant and susceptible phenotypes under the same pathogen pressure. Following the identification of a seed-endophytic bacterium as the resistance-conferring agent, integration of high-throughput data, gene mutagenesis and molecular interaction assays facilitated the discovery of the underlying mode of action. Sphingomonas melonis that is accumulated and transmitted across generations in disease-resistant rice seeds confers resistance to disease-susceptible phenotypes by producing anthranilic acid. Without affecting cell growth, anthranilic acid interferes with the sigma factor RpoS of the seed-borne pathogen Burkholderia plantarii, probably leading to impairment of upstream cascades that are required for virulence factor biosynthesis. The overall findings highlight the hidden role of seed endophytes in the phytopathology paradigm of ‘disease triangles’, which encompass the plant, pathogens and environmental conditions. These insights are potentially exploitable for modern crop cultivation threatened by globally widespread bacterial diseases.In rice, one endophyte (Sphingomonas melonis) colonizes seeds and produces anthranilic acid, which confers resistance to a bacterial pathogen (Burkholderiaplantarii) in the plant. |
Author | Berg, Gabriele Zhu, Guonian Wang, Mengcen Fan, Xiaoyan Qiao, Kun Kusstatscher, Peter Wang, Yiling Duan, Jie Wang, Yue Matsumoto, Haruna Cernava, Tomislav Chen, Sunlu Hashidoko, Yasuyuki Wu, Sanling Ma, Bin |
Author_xml | – sequence: 1 givenname: Haruna surname: Matsumoto fullname: Matsumoto, Haruna organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University – sequence: 2 givenname: Xiaoyan surname: Fan fullname: Fan, Xiaoyan organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University – sequence: 3 givenname: Yue surname: Wang fullname: Wang, Yue organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University – sequence: 4 givenname: Peter orcidid: 0000-0002-1168-7675 surname: Kusstatscher fullname: Kusstatscher, Peter organization: Institute of Environmental Biotechnology, Graz University of Technology – sequence: 5 givenname: Jie surname: Duan fullname: Duan, Jie organization: Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University – sequence: 6 givenname: Sanling surname: Wu fullname: Wu, Sanling organization: Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences, Zhejiang University – sequence: 7 givenname: Sunlu orcidid: 0000-0001-7132-1045 surname: Chen fullname: Chen, Sunlu organization: State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University – sequence: 8 givenname: Kun surname: Qiao fullname: Qiao, Kun organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University – sequence: 9 givenname: Yiling surname: Wang fullname: Wang, Yiling organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University – sequence: 10 givenname: Bin orcidid: 0000-0003-4807-4992 surname: Ma fullname: Ma, Bin organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University – sequence: 11 givenname: Guonian surname: Zhu fullname: Zhu, Guonian organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University – sequence: 12 givenname: Yasuyuki surname: Hashidoko fullname: Hashidoko, Yasuyuki organization: Laboratory of Molecular and Ecological Chemistry, Research Faculty of Agriculture, Hokkaido University – sequence: 13 givenname: Gabriele orcidid: 0000-0001-9423-3101 surname: Berg fullname: Berg, Gabriele organization: Institute of Environmental Biotechnology, Graz University of Technology – sequence: 14 givenname: Tomislav orcidid: 0000-0001-7772-4080 surname: Cernava fullname: Cernava, Tomislav email: tomislav.cernava@tugraz.at organization: Institute of Environmental Biotechnology, Graz University of Technology – sequence: 15 givenname: Mengcen orcidid: 0000-0001-7169-6779 surname: Wang fullname: Wang, Mengcen email: wmctz@zju.edu.cn organization: Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Pesticide and Environmental Toxicology, Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33398157$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtOxCAUQInR-P4BF6aJGzfVS4GWulPjKzFx455QelFMh47czsK_l3F8xYUryM05cHN22HocIzJ2wOGEg9CnJLlsmhIqKAF0VZdqjW1XoFQeNXr9132L7RO9AABvlBI1bLItIUSruWq22dmFdROmYIeCEPsCYz_On98mLOjZzpGKPhBawiIhBZpsdFiEWKTgcI9teDsQ7n-eu-zx-urx8ra8f7i5uzy_L52UfCq9BFeBb_pOuc4K7xXXvmmtsjVwVfvW9sClc53snQbfgkMJXvddnunKil12vHp2nsbXBdJkZoEcDoONOC7IVLJRom1rrTN69Ad9GRcp5uWWlOa1grbK1OEntehm2Jt5CjOb3sxXlAxUK8ClkSih_0Y4mGV8s4pvcnzzEd-oLOk_kguTncIYp2TD8L8qVirlf-ITpp-1_7HeAUv5l0o |
CitedBy_id | crossref_primary_10_1016_j_tim_2023_08_012 crossref_primary_10_1371_journal_ppat_1012645 crossref_primary_10_1093_jambio_lxae073 crossref_primary_10_1016_j_scitotenv_2021_151430 crossref_primary_10_1093_jxb_erae238 crossref_primary_10_1111_1758_2229_13126 crossref_primary_10_1038_s42003_022_03726_w crossref_primary_10_1007_s10327_023_01154_0 crossref_primary_10_3389_fmicb_2024_1387870 crossref_primary_10_1093_femsec_fiaf004 crossref_primary_10_3390_agriculture15020193 crossref_primary_10_1007_s00203_022_03334_6 crossref_primary_10_1186_s40168_024_01951_5 crossref_primary_10_1016_j_apsoil_2023_105093 crossref_primary_10_3390_jof10070470 crossref_primary_10_4274_MNM_2023_23152 crossref_primary_10_1007_s00203_022_03358_y crossref_primary_10_1007_s43538_024_00328_4 crossref_primary_10_1186_s40168_022_01422_9 crossref_primary_10_3390_microorganisms9112388 crossref_primary_10_1016_j_cej_2022_135751 crossref_primary_10_1021_acsami_1c24588 crossref_primary_10_1073_pnas_2211881119 crossref_primary_10_1128_spectrum_01059_23 crossref_primary_10_1186_s40168_021_01224_5 crossref_primary_10_1016_j_jhazmat_2021_126061 crossref_primary_10_1186_s40793_024_00560_x crossref_primary_10_1038_s41564_022_01173_1 crossref_primary_10_3389_fpls_2023_1234843 crossref_primary_10_3389_fmicb_2021_667257 crossref_primary_10_3389_fpls_2022_1041504 crossref_primary_10_3390_ijms241814086 crossref_primary_10_3389_fmicb_2024_1506059 crossref_primary_10_1007_s00284_024_03742_5 crossref_primary_10_3390_jof8070731 crossref_primary_10_3390_su141710903 crossref_primary_10_1016_j_heliyon_2023_e22390 crossref_primary_10_3390_ani14111566 crossref_primary_10_1128_mbio_01648_22 crossref_primary_10_3390_ijms252312681 crossref_primary_10_1128_spectrum_01335_23 crossref_primary_10_1007_s44297_023_00013_w crossref_primary_10_3390_plants13060912 crossref_primary_10_1016_j_ese_2024_100415 crossref_primary_10_3389_fpls_2022_849658 crossref_primary_10_1094_PHYTO_04_23_0142_R crossref_primary_10_1016_j_fmre_2021_12_012 crossref_primary_10_1186_s40168_024_02014_5 crossref_primary_10_1016_j_jes_2024_05_032 crossref_primary_10_1186_s12284_023_00639_y crossref_primary_10_1080_09583157_2024_2351812 crossref_primary_10_1094_PBIOMES_6_2 crossref_primary_10_1002_ps_7729 crossref_primary_10_1016_j_celrep_2024_114030 crossref_primary_10_17352_ojeb_000046 crossref_primary_10_1016_j_scienta_2023_112608 crossref_primary_10_5423_PPJ_OA_05_2022_0064 crossref_primary_10_1093_jambio_lxad185 crossref_primary_10_1002_sae2_12019 crossref_primary_10_1111_1462_2920_15896 crossref_primary_10_1007_s13199_023_00903_1 crossref_primary_10_1016_j_apsoil_2021_104191 crossref_primary_10_3389_fmicb_2023_1066805 crossref_primary_10_1016_j_cropd_2023_100028 crossref_primary_10_1186_s42483_022_00124_2 crossref_primary_10_1111_nph_17820 crossref_primary_10_3389_fmicb_2022_1035602 crossref_primary_10_1093_treephys_tpae137 crossref_primary_10_1007_s11104_023_06433_5 crossref_primary_10_1038_s41467_024_46254_3 crossref_primary_10_3390_ijms25084437 crossref_primary_10_1002_imt2_129 crossref_primary_10_1186_s40538_023_00489_2 crossref_primary_10_1007_s10327_024_01204_1 crossref_primary_10_15258_sst_2022_50_1_s_08 crossref_primary_10_3390_agronomy13122958 crossref_primary_10_1016_j_scitotenv_2021_150310 crossref_primary_10_1007_s13205_021_02979_2 crossref_primary_10_1111_aab_12865 crossref_primary_10_3389_fmicb_2024_1468627 crossref_primary_10_3390_ijms232214223 crossref_primary_10_1186_s40793_023_00484_y crossref_primary_10_3389_fmicb_2021_664271 crossref_primary_10_1007_s42976_024_00543_1 crossref_primary_10_1016_j_micres_2022_127148 crossref_primary_10_3390_agriculture11070605 crossref_primary_10_1186_s40793_024_00584_3 crossref_primary_10_3389_fmicb_2021_629852 crossref_primary_10_1017_S0960258522000186 crossref_primary_10_1186_s13007_024_01257_5 crossref_primary_10_3389_fmicb_2024_1459354 crossref_primary_10_1016_j_jhazmat_2023_131608 crossref_primary_10_3390_ijms24021153 crossref_primary_10_3390_agronomy13122965 crossref_primary_10_1016_j_tim_2022_10_009 crossref_primary_10_1016_j_envpol_2023_122058 crossref_primary_10_1007_s10725_021_00771_z crossref_primary_10_1007_s00284_021_02737_w crossref_primary_10_1016_j_biocontrol_2021_104669 crossref_primary_10_1007_s11756_021_00895_7 crossref_primary_10_1007_s11104_022_05742_5 crossref_primary_10_3390_agronomy13030825 crossref_primary_10_3389_sjss_2024_12080 crossref_primary_10_1038_s41579_023_00900_7 crossref_primary_10_3389_fbioe_2022_903555 crossref_primary_10_3389_fpls_2022_936252 crossref_primary_10_1186_s40168_023_01725_5 crossref_primary_10_3389_fmicb_2022_806222 crossref_primary_10_1128_mra_00687_22 crossref_primary_10_24072_pcjournal_329 crossref_primary_10_1111_1751_7915_14352 crossref_primary_10_1128_spectrum_01254_24 crossref_primary_10_1016_j_micpath_2024_106707 crossref_primary_10_1186_s40793_024_00657_3 crossref_primary_10_1038_s43016_022_00636_2 crossref_primary_10_1021_acsnano_3c02790 crossref_primary_10_1186_s40168_021_01186_8 crossref_primary_10_1007_s44297_025_00042_7 crossref_primary_10_1016_j_micres_2023_127546 crossref_primary_10_1007_s11104_021_05124_3 crossref_primary_10_1016_j_mib_2023_102349 crossref_primary_10_1126_science_abe0725 crossref_primary_10_1186_s40793_021_00389_8 crossref_primary_10_1093_jxb_erad421 crossref_primary_10_1002_jobm_202000657 crossref_primary_10_1111_nph_18037 crossref_primary_10_1007_s00425_022_03900_8 crossref_primary_10_1007_s11104_024_06579_w crossref_primary_10_1016_j_scitotenv_2023_169009 crossref_primary_10_1128_mmbr_00212_22 crossref_primary_10_3390_biology14010083 crossref_primary_10_3390_ijms22136852 crossref_primary_10_1111_1751_7915_14322 crossref_primary_10_3390_biology12121519 crossref_primary_10_1016_j_jhazmat_2021_126914 crossref_primary_10_1016_j_nantod_2022_101547 crossref_primary_10_3390_microorganisms10030575 crossref_primary_10_1071_BT22109 crossref_primary_10_1371_journal_pbio_3002232 crossref_primary_10_3390_ijms22073747 crossref_primary_10_1111_pce_15004 crossref_primary_10_1016_j_chemosphere_2022_136635 crossref_primary_10_1038_s42003_021_02467_6 crossref_primary_10_1016_j_plaphy_2024_108632 crossref_primary_10_3389_fmicb_2024_1361883 crossref_primary_10_3389_fmicb_2023_1149307 crossref_primary_10_1007_s42994_023_00126_4 crossref_primary_10_1186_s40168_025_02073_2 crossref_primary_10_3389_fmicb_2024_1319886 crossref_primary_10_3390_plants11212816 crossref_primary_10_3389_fpls_2021_766128 crossref_primary_10_1186_s40168_022_01234_x crossref_primary_10_1016_j_jare_2022_04_002 crossref_primary_10_3390_microorganisms13020233 crossref_primary_10_1007_s11427_021_1953_5 crossref_primary_10_3389_fpls_2023_1326882 crossref_primary_10_1111_1440_1703_12326 crossref_primary_10_1007_s44297_023_00004_x crossref_primary_10_1007_s11104_021_04856_6 crossref_primary_10_3390_jof10020128 crossref_primary_10_3390_microorganisms12040779 crossref_primary_10_1021_acsnano_1c09724 crossref_primary_10_1093_jxb_erad448 crossref_primary_10_1093_fqsafe_fyad005 crossref_primary_10_3390_microorganisms12122399 crossref_primary_10_3390_jof7100788 crossref_primary_10_1016_j_jhazmat_2025_138004 crossref_primary_10_1016_j_scitotenv_2022_159181 crossref_primary_10_1016_j_tplants_2024_09_004 crossref_primary_10_1094_PHYTO_04_24_0141_SC crossref_primary_10_3389_fpls_2023_1147351 crossref_primary_10_33073_pjm_2023_009 crossref_primary_10_3389_fpls_2023_1054914 crossref_primary_10_1016_j_soilbio_2021_108273 crossref_primary_10_3390_microorganisms11020392 crossref_primary_10_1007_s42729_023_01279_3 crossref_primary_10_3390_agronomy14020260 crossref_primary_10_1016_j_jare_2021_10_003 crossref_primary_10_3390_f15122140 crossref_primary_10_3390_agronomy14061209 crossref_primary_10_1007_s11104_022_05649_1 crossref_primary_10_1007_s42535_024_01122_9 crossref_primary_10_1007_s11104_022_05729_2 crossref_primary_10_1111_nph_19459 crossref_primary_10_1016_j_cub_2023_12_056 crossref_primary_10_1128_spectrum_01184_24 crossref_primary_10_1186_s40793_025_00675_9 crossref_primary_10_1016_j_copbio_2021_07_003 crossref_primary_10_1016_j_micres_2023_127344 crossref_primary_10_1007_s00253_023_12782_z crossref_primary_10_1128_spectrum_01360_23 crossref_primary_10_1016_j_scitotenv_2023_167279 crossref_primary_10_3390_horticulturae10060607 crossref_primary_10_1016_j_postharvbio_2025_113478 crossref_primary_10_1016_j_fmre_2024_04_016 crossref_primary_10_1007_s11104_024_06519_8 crossref_primary_10_1007_s13593_022_00761_z crossref_primary_10_1016_j_envc_2022_100590 crossref_primary_10_1016_j_fm_2024_104615 crossref_primary_10_1007_s10725_024_01142_0 crossref_primary_10_1021_acsnano_3c03701 crossref_primary_10_1021_acs_est_3c05678 crossref_primary_10_1146_annurev_phyto_021622_100127 crossref_primary_10_1002_sae2_12046 crossref_primary_10_3389_fagro_2021_724450 crossref_primary_10_1128_spectrum_02785_21 crossref_primary_10_1111_ppl_14284 crossref_primary_10_1016_j_pbi_2023_102351 crossref_primary_10_1038_s41396_022_01290_z crossref_primary_10_1093_jambio_lxac001 crossref_primary_10_1128_aem_02537_21 crossref_primary_10_1016_j_scitotenv_2024_175334 crossref_primary_10_3389_fmicb_2022_877781 crossref_primary_10_1038_s41477_024_01644_9 crossref_primary_10_7717_peerj_17289 crossref_primary_10_1094_PDIS_07_23_1458_RE crossref_primary_10_1186_s40793_022_00415_3 crossref_primary_10_1016_j_scitotenv_2023_164147 crossref_primary_10_1093_ismejo_wrae142 crossref_primary_10_1016_j_nantod_2023_101752 crossref_primary_10_12677_amb_2024_133019 crossref_primary_10_1038_s42003_024_07208_z crossref_primary_10_3389_fmicb_2022_996854 crossref_primary_10_1080_07352689_2022_2031728 crossref_primary_10_1016_j_pbi_2023_102483 crossref_primary_10_1128_msystems_00004_24 crossref_primary_10_1016_j_micres_2021_126914 crossref_primary_10_1186_s40538_024_00627_4 crossref_primary_10_1038_s44319_023_00023_3 crossref_primary_10_1038_s41598_024_71249_x crossref_primary_10_1128_aem_02158_23 crossref_primary_10_3389_fmicb_2022_834622 crossref_primary_10_1128_mbio_00177_24 crossref_primary_10_1016_j_jia_2024_08_022 crossref_primary_10_1186_s40793_023_00534_5 crossref_primary_10_3389_fmicb_2021_650610 crossref_primary_10_1021_acs_jafc_3c09655 crossref_primary_10_1016_j_pmpp_2025_102655 crossref_primary_10_1016_j_micres_2025_128141 crossref_primary_10_1080_15592324_2023_2260640 crossref_primary_10_1038_s41467_024_50700_7 crossref_primary_10_1038_s41564_024_01781_z crossref_primary_10_1016_j_postharvbio_2023_112679 crossref_primary_10_1128_msphere_00765_24 crossref_primary_10_3390_f14061136 crossref_primary_10_1146_annurev_phyto_021621_121447 crossref_primary_10_1128_spectrum_01350_22 crossref_primary_10_1016_j_scitotenv_2023_164374 crossref_primary_10_1094_PBIOMES_10_21_0061_R crossref_primary_10_3389_fpls_2021_607874 crossref_primary_10_1016_j_ecoenv_2023_115352 crossref_primary_10_1007_s00203_024_03946_0 crossref_primary_10_3390_microorganisms11092317 crossref_primary_10_1016_j_copbio_2022_102808 crossref_primary_10_1016_j_plaphy_2023_108321 crossref_primary_10_1016_j_envres_2022_115014 crossref_primary_10_1002_jobm_202200282 crossref_primary_10_1038_s41564_023_01379_x crossref_primary_10_15377_2409_9813_2021_08_14 crossref_primary_10_4014_jmb_2303_03004 crossref_primary_10_3389_fmicb_2023_1146331 crossref_primary_10_3390_jof8020180 crossref_primary_10_3389_fmicb_2022_958917 crossref_primary_10_1631_jzus_B2300914 crossref_primary_10_1128_spectrum_00390_22 crossref_primary_10_1007_s11104_024_06571_4 crossref_primary_10_1021_acs_nanolett_2c01203 |
Cites_doi | 10.1101/gr.1239303 10.1126/science.aaa1788 10.1186/gb-2010-11-10-r106 10.1073/pnas.1414592112 10.1111/1758-2229.12181 10.1038/nbt.4232 10.3389/fmicb.2014.00148 10.1016/j.cell.2017.04.025 10.1016/j.tplants.2020.06.003 10.1016/j.plantsci.2013.03.004 10.1111/j.1364-3703.2010.00676.x 10.1038/nature11237 10.1038/s41579-018-0024-1 10.1038/nrmicro1596 10.3186/jjphytopath.63.455 10.1016/j.tig.2012.10.011 10.1016/j.cell.2018.02.024 10.1038/nclimate1990 10.1016/j.watres.2019.07.007 10.1007/s11104-017-3289-7 10.1016/j.cell.2018.10.020 10.1111/1462-2920.13189 10.1073/pnas.1616148114 10.1146/annurev-micro-090817-062524 10.1094/PBIOMES-06-18-0029-R 10.1073/pnas.1806645115 10.1016/j.mib.2017.03.010 10.1007/s13205-017-0877-4 10.1038/s41587-019-0209-9 10.7717/peerj.2584 10.1038/s41396-019-0394-z 10.1021/acs.est.7b05915 10.1128/AEM.03531-12 10.1016/j.chom.2019.07.009 10.1093/bioinformatics/btm404 10.1038/s41467-017-02430-2 10.1186/s13059-014-0550-8 10.1038/s41587-019-0104-4 10.1111/j.1574-6968.2006.00254.x 10.1038/nmeth.2634 10.1111/j.1365-2672.1998.00586.x 10.1007/s13213-012-0491-y 10.1186/s40168-019-0728-0 10.1038/nmeth.3869 10.3390/ijerph15081680 10.1093/bioinformatics/btu638 10.1016/j.chemosphere.2018.01.133 10.1094/PBIOMES-06-19-0031-R 10.1104/pp.114.252700 10.1038/ismej.2013.196 10.1016/j.ese.2020.100061 10.1186/s40168-020-00805-0 10.1038/nplants.2015.51 10.1126/science.aax0379 10.1099/ijs.0.64184-0 10.1371/journal.pone.0078024 10.1038/s41477-018-0139-4 10.1128/JB.01028-15 10.1038/srep22596 10.1038/s41396-017-0028-2 10.1038/s41559-019-0994-z 10.1186/s40168-019-0723-5 10.1038/nmeth.1923 10.1016/S1360-1385(00)01797-0 10.1186/gb-2013-14-6-209 10.1186/s40168-017-0310-6 10.14806/ej.17.1.200 10.1021/acs.est.9b04616 10.1186/s40168-020-00875-0 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN AEUYN AFKRA BENPR BHPHI BKSAR C1K CCPQU DWQXO HCIFZ PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI 7X8 |
DOI | 10.1038/s41477-020-00826-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2055-0278 |
EndPage | 72 |
ExternalDocumentID | 33398157 10_1038_s41477_020_00826_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation) grantid: LQ16C140001 funderid: https://doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31501684 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5BI 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AENEX AEUYN AFKRA AFSHS AFWHJ AGAYW AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BENPR BHPHI BKKNO BKSAR CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK5 M7R NNMJJ O9- ODYON PCBAR RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7SN C1K DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 |
ID | FETCH-LOGICAL-c441t-f40c20f7db5cba3ff518f79a5a60156f9ad014ccb4dc80f90ce40f8db4cc82a3 |
IEDL.DBID | BENPR |
ISSN | 2055-0278 |
IngestDate | Thu Jul 10 22:22:08 EDT 2025 Sat Aug 23 13:09:35 EDT 2025 Mon Jul 21 06:03:06 EDT 2025 Tue Jul 01 03:33:58 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Fri Feb 21 02:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-f40c20f7db5cba3ff518f79a5a60156f9ad014ccb4dc80f90ce40f8db4cc82a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7132-1045 0000-0001-9423-3101 0000-0003-4807-4992 0000-0001-7772-4080 0000-0001-7169-6779 0000-0002-1168-7675 |
PMID | 33398157 |
PQID | 2478165092 |
PQPubID | 2069614 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2475399688 proquest_journals_2478165092 pubmed_primary_33398157 crossref_primary_10_1038_s41477_020_00826_5 crossref_citationtrail_10_1038_s41477_020_00826_5 springer_journals_10_1038_s41477_020_00826_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature plants |
PublicationTitleAbbrev | Nat. Plants |
PublicationTitleAlternate | Nat Plants |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chaparro, Badri, Vivanco (CR14) 2014; 8 Naughton (CR5) 2016; 18 Bolyen (CR57) 2019; 37 Ham, Melanson, Rush (CR4) 2011; 12 Leach, Triplett, Argueso, Trivedi (CR12) 2017; 169 Thomas, Corre, Cebron (CR46) 2019; 13 Cordovez, Dini-Andreote, Carrion, Raaijmakers (CR44) 2019; 73 Boyd, Ridout, O’Sullivan, Leach, Leung (CR1) 2013; 29 CR35 Solis, Bertani, Degrassi, Devescovi, Venturi (CR33) 2006; 259 Sultan (CR30) 2000; 5 Maeda (CR52) 2006; 56 Wang, Hashimoto, Hashidoko (CR10) 2013; 79 Callahan (CR59) 2016; 13 Berg, Grube, Schloter, Smalla (CR19) 2014; 5 Banerjee, Schlaeppi, van der Heijden (CR45) 2018; 16 Wu (CR13) 2018; 115 Niu, Paulson, Zheng, Kolter (CR22) 2017; 114 Rochefort (CR41) 2019; 3 Kim, Nishiyama, Kunito, Oyaizu (CR39) 1998; 85 Toju (CR16) 2018; 4 Hautier (CR7) 2015; 348 Shade, Jacques, Barret (CR28) 2017; 37 Lundberg, Yourstone, Mieczkowski, Jones, Dangl (CR56) 2013; 10 CR42 Nelson (CR29) 2017; 422 Lang (CR70) 2018; 199 Barillot, Sarde, Bert, Tarnaud, Cochet (CR51) 2013; 63 Langmead, Salzberg (CR65) 2012; 9 Sun, Li, Jaisi (CR71) 2019; 163 Derksen, Rampitsch, Daayf (CR15) 2013; 207 Duran (CR20) 2018; 175 Wang, Cernava (CR17) 2020; 4 Ayyagari, Sreerama (CR63) 2017; 7 Miwa (CR32) 2016; 198 Wassermann, Cernava, Muller, Berg, Berg (CR37) 2019; 7 Berg, Raaijmakers (CR38) 2018; 12 Haney, Samuel, Bush, Ausubel (CR25) 2015; 1 Kim, Lee, Jeon, Harris, Lee (CR43) 2020; 8 Kusstatscher (CR55) 2019; 7 Miyagawa, Ozaki, Kimura (CR9) 1988; 3 CR58 Shannon (CR68) 2003; 13 Wang, Zhi, Qiu, Shi, Lu (CR47) 2017; 8 Anders, Pyl, Huber (CR66) 2015; 31 Lundberg (CR54) 2012; 488 Edwards (CR2) 2015; 112 Wang (CR31) 2016; 6 Kwak (CR23) 2018; 36 Anders, Huber (CR67) 2010; 11 Takeuchi, Sawada, Suzuki, Matsuda (CR53) 1997; 63 Wang, Hashimoto, Hashidoko (CR11) 2013; 8 Bebber, Ramotowski, Gurr (CR3) 2013; 3 Carlström (CR40) 2019; 3 Liu (CR6) 2018; 52 Liu, Brettell, Singh (CR26) 2020; 25 CR27 Bakker, Pieterse, de Jonge, Berendsen (CR49) 2018; 172 Deng, Zhou, Zheng, Bai, Zhou (CR69) 2018; 15 Truyens, Weyens, Cuypers, Vangronsveld (CR34) 2015; 7 CR21 Bergna (CR36) 2018; 2 Jung (CR8) 2018; 9 Zhang (CR24) 2019; 37 Larkin (CR62) 2007; 23 Cheng, Zhang, He (CR18) 2019; 26 Maeda (CR48) 2019; 365 Scholthof (CR50) 2007; 5 Love, Huber, Anders (CR61) 2014; 15 Rognes, Flouri, Nichols, Quince, Mahe (CR60) 2016; 4 Lu (CR64) 2015; 167 T Takeuchi (826_CR53) 1997; 63 KB Scholthof (826_CR50) 2007; 5 MI Love (826_CR61) 2014; 15 M Wang (826_CR31) 2016; 6 826_CR58 EB Nelson (826_CR29) 2017; 422 M-J Kwak (826_CR23) 2018; 36 P Kusstatscher (826_CR55) 2019; 7 B Langmead (826_CR65) 2012; 9 JM Chaparro (826_CR14) 2014; 8 H Kim (826_CR43) 2020; 8 J Zhang (826_CR24) 2019; 37 Y Maeda (826_CR52) 2006; 56 CH Haney (826_CR25) 2015; 1 H Toju (826_CR16) 2018; 4 P Shannon (826_CR68) 2003; 13 SE Sultan (826_CR30) 2000; 5 J Edwards (826_CR2) 2015; 112 Y Wu (826_CR13) 2018; 115 826_CR42 E Bolyen (826_CR57) 2019; 37 M Wang (826_CR10) 2013; 79 S Anders (826_CR67) 2010; 11 S Miwa (826_CR32) 2016; 198 V Cordovez (826_CR44) 2019; 73 X Deng (826_CR69) 2018; 15 G Berg (826_CR19) 2014; 5 B Jung (826_CR8) 2018; 9 A Rochefort (826_CR41) 2019; 3 A Shade (826_CR28) 2017; 37 S Truyens (826_CR34) 2015; 7 A Bergna (826_CR36) 2018; 2 H Liu (826_CR26) 2020; 25 J Lu (826_CR64) 2015; 167 BJ Callahan (826_CR59) 2016; 13 Y Hautier (826_CR7) 2015; 348 VS Ayyagari (826_CR63) 2017; 7 DS Lundberg (826_CR54) 2012; 488 G Berg (826_CR38) 2018; 12 JH Ham (826_CR4) 2011; 12 F Thomas (826_CR46) 2019; 13 S Anders (826_CR66) 2015; 31 JE Leach (826_CR12) 2017; 169 826_CR35 H Wang (826_CR47) 2017; 8 DS Lundberg (826_CR56) 2013; 10 P Duran (826_CR20) 2018; 175 Z Lang (826_CR70) 2018; 199 H Derksen (826_CR15) 2013; 207 P Bakker (826_CR49) 2018; 172 H Kim (826_CR39) 1998; 85 M Wang (826_CR11) 2013; 8 R Solis (826_CR33) 2006; 259 B Niu (826_CR22) 2017; 114 LM Naughton (826_CR5) 2016; 18 B Wassermann (826_CR37) 2019; 7 H Maeda (826_CR48) 2019; 365 X Liu (826_CR6) 2018; 52 DP Bebber (826_CR3) 2013; 3 826_CR21 H Miyagawa (826_CR9) 1988; 3 M Sun (826_CR71) 2019; 163 826_CR27 MA Larkin (826_CR62) 2007; 23 S Banerjee (826_CR45) 2018; 16 CDC Barillot (826_CR51) 2013; 63 YT Cheng (826_CR18) 2019; 26 T Rognes (826_CR60) 2016; 4 LA Boyd (826_CR1) 2013; 29 M Wang (826_CR17) 2020; 4 CI Carlström (826_CR40) 2019; 3 |
References_xml | – volume: 13 start-page: 2498 year: 2003 end-page: 2504 ident: CR68 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 348 start-page: 336 year: 2015 end-page: 340 ident: CR7 article-title: Anthropogenic environmental changes affect ecosystem stability via biodiversity publication-title: Science doi: 10.1126/science.aaa1788 – volume: 11 year: 2010 ident: CR67 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 8 start-page: 337 year: 2017 ident: CR47 article-title: Characterization of a novel nicotine degradation gene cluster ndp in TY and its evolutionary analysis publication-title: Front. Microbiol. – volume: 112 start-page: E911 year: 2015 end-page: E920 ident: CR2 article-title: Structure, variation, and assembly of the root-associated microbiomes of rice publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1414592112 – volume: 7 start-page: 40 year: 2015 end-page: 50 ident: CR34 article-title: Bacterial seed endophytes: genera, vertical transmission and interaction with plants publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12181 – volume: 36 start-page: 1100 year: 2018 ident: CR23 article-title: Rhizosphere microbiome structure alters to enable wilt resistance in tomato publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4232 – ident: CR35 – volume: 5 start-page: 148 year: 2014 ident: CR19 article-title: Unraveling the plant microbiome: looking back and future perspectives publication-title: Front. Microbiol doi: 10.3389/fmicb.2014.00148 – ident: CR58 – volume: 169 start-page: 587 year: 2017 end-page: 596 ident: CR12 article-title: Communication in the phytobiome publication-title: Cell doi: 10.1016/j.cell.2017.04.025 – volume: 25 start-page: 841 year: 2020 end-page: 844 ident: CR26 article-title: Linking the phyllosphere microbiome to plant health publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.06.003 – ident: CR42 – volume: 207 start-page: 79 year: 2013 end-page: 87 ident: CR15 article-title: Signaling cross-talk in plant disease resistance publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.03.004 – ident: CR21 – volume: 12 start-page: 329 year: 2011 end-page: 339 ident: CR4 article-title: : next major pathogen of rice? publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2010.00676.x – volume: 488 start-page: 86 year: 2012 end-page: 90 ident: CR54 article-title: Defining the core root microbiome publication-title: Nature doi: 10.1038/nature11237 – volume: 16 start-page: 567 year: 2018 end-page: 576 ident: CR45 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0024-1 – volume: 5 start-page: 152 year: 2007 end-page: 156 ident: CR50 article-title: The disease triangle: pathogens, the environment and society publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1596 – volume: 63 start-page: 455 year: 1997 end-page: 462 ident: CR53 article-title: Specific detection of and by PCR using primers selected from the 16S–23S rDNA spacer regions publication-title: Ann. Phytopath. Soc. Japan doi: 10.3186/jjphytopath.63.455 – volume: 29 start-page: 233 year: 2013 end-page: 240 ident: CR1 article-title: Plant–pathogen interactions: disease resistance in modern agriculture publication-title: Trends Genet. doi: 10.1016/j.tig.2012.10.011 – volume: 172 start-page: 1178 year: 2018 end-page: 1180 ident: CR49 article-title: The soil-borne legacy publication-title: Cell doi: 10.1016/j.cell.2018.02.024 – volume: 3 start-page: 985 year: 2013 end-page: 988 ident: CR3 article-title: Crop pests and pathogens move polewards in a warming world publication-title: Nat. Clim. Change doi: 10.1038/nclimate1990 – volume: 163 start-page: 114840 year: 2019 ident: CR71 article-title: Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil–water system publication-title: Water Res. doi: 10.1016/j.watres.2019.07.007 – volume: 422 start-page: 7 year: 2017 end-page: 34 ident: CR29 article-title: The seed microbiome: origins, interactions, and impacts publication-title: Plant Soil doi: 10.1007/s11104-017-3289-7 – volume: 175 start-page: 973 year: 2018 end-page: 983 ident: CR20 article-title: Microbial interkingdom interactions in roots promote survival publication-title: Cell doi: 10.1016/j.cell.2018.10.020 – volume: 18 start-page: 780 year: 2016 end-page: 790 ident: CR5 article-title: Functional and genomic insights into the pathogenesis of species to rice publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13189 – volume: 114 start-page: E2450 year: 2017 end-page: E2459 ident: CR22 article-title: Simplified and representative bacterial community of maize roots publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1616148114 – volume: 73 start-page: 69 year: 2019 end-page: 88 ident: CR44 article-title: Ecology and evolution of plant microbiomes publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090817-062524 – volume: 2 start-page: 183 year: 2018 end-page: 193 ident: CR36 article-title: Tomato seeds preferably transmit plant beneficial endophytes publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-06-18-0029-R – volume: 115 start-page: 7010 year: 2018 end-page: 7015 ident: CR13 article-title: Policy distortions, farm size, and the overuse of agricultural chemicals in China publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806645115 – volume: 37 start-page: 15 year: 2017 end-page: 22 ident: CR28 article-title: Ecological patterns of seed microbiome diversity, transmission, and assembly publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.03.010 – volume: 7 year: 2017 ident: CR63 article-title: Evaluation of haplotype diversity of (Lissachatina) [Bowdich] from Indian sub-continent by means of 16S rDNA sequence and its phylogenetic relationships with other global populations publication-title: 3 Biotech doi: 10.1007/s13205-017-0877-4 – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: CR57 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 4 start-page: e2584 year: 2016 ident: CR60 article-title: VSEARCH: a versatile open source tool for metagenomics publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 13 start-page: 1814 year: 2019 end-page: 1830 ident: CR46 article-title: Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil publication-title: ISME J. doi: 10.1038/s41396-019-0394-z – volume: 52 start-page: 5105 year: 2018 end-page: 5114 ident: CR6 article-title: Biotoxin tropolone contamination associated with nationwide occurrence of pathogen in agricultural environments in China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05915 – volume: 79 start-page: 1906 year: 2013 end-page: 1914 ident: CR10 article-title: Carot-4-en-9,10-diol, a conidiation-inducing sesquiterpene diol produced by PS1-7 upon exposure to chemical stress from highly active iron chelators publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03531-12 – volume: 26 start-page: 183 year: 2019 end-page: 192 ident: CR18 article-title: Plant–microbe interactions facing environmental challenge publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.07.009 – volume: 23 start-page: 2947 year: 2007 end-page: 2948 ident: CR62 article-title: Clustal W and Clustal X version 2.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 9 year: 2018 ident: CR8 article-title: Cooperative interactions between seed-borne bacterial and air-borne fungal pathogens on rice publication-title: Nat. Commun. doi: 10.1038/s41467-017-02430-2 – volume: 3 start-page: 31 year: 1988 end-page: 43 ident: CR9 article-title: Pathogenicity of Pseudomonas glumae and to the ears and leaves of graminaceous plants publication-title: Bull. Chugoku Natl Agric. Exp. Stn – volume: 15 year: 2014 ident: CR61 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 37 start-page: 676 year: 2019 end-page: 684 ident: CR24 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0104-4 – volume: 259 start-page: 106 year: 2006 end-page: 112 ident: CR33 article-title: Involvement of quorum sensing and RpoS in rice seedling blight caused by publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2006.00254.x – volume: 10 start-page: 999 year: 2013 end-page: 1002 ident: CR56 article-title: Practical innovations for high-throughput amplicon sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.2634 – volume: 85 start-page: 731 year: 1998 end-page: 736 ident: CR39 article-title: High population of species on plant surface publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.1998.00586.x – volume: 63 start-page: 471 year: 2013 end-page: 476 ident: CR51 article-title: A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system publication-title: Ann. Microbiol. doi: 10.1007/s13213-012-0491-y – volume: 7 year: 2019 ident: CR55 article-title: Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets publication-title: Microbiome doi: 10.1186/s40168-019-0728-0 – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: CR59 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – ident: CR27 – volume: 15 start-page: 1680 year: 2018 ident: CR69 article-title: Dissipation dynamic and final residues of oxadiargyl in paddy fields using high-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS method publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15081680 – volume: 31 start-page: 166 year: 2015 end-page: 169 ident: CR66 article-title: HTSeq–a Python framework to work with high-throughput sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 199 start-page: 210 year: 2018 end-page: 217 ident: CR70 article-title: Isolation and characterization of a quinclorac-degrading Actinobacteria sp. strain AH-B and its implication on microecology in contaminated soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.133 – volume: 3 start-page: 326 year: 2019 end-page: 336 ident: CR41 article-title: Influence of environment and host plant genotype on the structure and diversity of the seed microbiota publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-06-19-0031-R – volume: 167 start-page: 1100 year: 2015 end-page: 1116 ident: CR64 article-title: Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance publication-title: Plant Physiol. doi: 10.1104/pp.114.252700 – volume: 8 start-page: 790 year: 2014 end-page: 803 ident: CR14 article-title: Rhizosphere microbiome assemblage is affected by plant development publication-title: ISME J. doi: 10.1038/ismej.2013.196 – volume: 4 start-page: 100061 year: 2020 ident: CR17 article-title: Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity publication-title: Environ. Sci. Ecotechnol. doi: 10.1016/j.ese.2020.100061 – volume: 8 year: 2020 ident: CR43 article-title: Domestication of species eco-evolutionarily shapes bacterial and fungal communities in rice seed publication-title: Microbiome doi: 10.1186/s40168-020-00805-0 – volume: 1 start-page: 15051 year: 2015 ident: CR25 article-title: Associations with rhizosphere bacteria can confer an adaptive advantage to plants publication-title: Nat. Plants doi: 10.1038/nplants.2015.51 – volume: 365 start-page: 393 year: 2019 ident: CR48 article-title: A rice gene that confers broad-spectrum resistance to β-triketone herbicides publication-title: Science doi: 10.1126/science.aax0379 – volume: 56 start-page: 1031 year: 2006 end-page: 1038 ident: CR52 article-title: Phylogenetic study and multiplex PCR-based detection of , and using gyrB and rpoD sequences publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64184-0 – volume: 8 start-page: e78024 year: 2013 ident: CR11 article-title: Repression of tropolone production and induction of a pseudo-biofilm by carot-4-en-9,10-diol, a cell-to-cell signaling disrupter produced by publication-title: PLoS ONE doi: 10.1371/journal.pone.0078024 – volume: 4 start-page: 247 year: 2018 end-page: 257 ident: CR16 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nat. Plants doi: 10.1038/s41477-018-0139-4 – volume: 198 start-page: 1604 year: 2016 end-page: 1609 ident: CR32 article-title: Identification of the three genes involved in controlling production of a phytotoxin tropolone in publication-title: J. Bacteriol. doi: 10.1128/JB.01028-15 – volume: 6 year: 2016 ident: CR31 article-title: Indole-3-acetic acid produced by acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in publication-title: Sci. Rep. doi: 10.1038/srep22596 – volume: 12 start-page: 1167 year: 2018 end-page: 1170 ident: CR38 article-title: Saving seed microbiomes publication-title: ISME J. doi: 10.1038/s41396-017-0028-2 – volume: 3 start-page: 1445 year: 2019 end-page: 1454 ident: CR40 article-title: Synthetic microbiota reveal priority effects and keystone strains in the phyllosphere publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0994-z – volume: 7 year: 2019 ident: CR37 article-title: Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks publication-title: Microbiome doi: 10.1186/s40168-019-0723-5 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: CR65 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 5 start-page: 537 year: 2000 end-page: 542 ident: CR30 article-title: Phenotypic plasticity for plant development, function and life history publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01797-0 – volume: 9 start-page: 357 year: 2012 ident: 826_CR65 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 4 start-page: e2584 year: 2016 ident: 826_CR60 publication-title: PeerJ doi: 10.7717/peerj.2584 – volume: 9 year: 2018 ident: 826_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02430-2 – volume: 13 start-page: 2498 year: 2003 ident: 826_CR68 publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 5 start-page: 537 year: 2000 ident: 826_CR30 publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(00)01797-0 – volume: 348 start-page: 336 year: 2015 ident: 826_CR7 publication-title: Science doi: 10.1126/science.aaa1788 – volume: 15 start-page: 1680 year: 2018 ident: 826_CR69 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15081680 – volume: 3 start-page: 326 year: 2019 ident: 826_CR41 publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-06-19-0031-R – volume: 172 start-page: 1178 year: 2018 ident: 826_CR49 publication-title: Cell doi: 10.1016/j.cell.2018.02.024 – volume: 115 start-page: 7010 year: 2018 ident: 826_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1806645115 – volume: 114 start-page: E2450 year: 2017 ident: 826_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1616148114 – volume: 18 start-page: 780 year: 2016 ident: 826_CR5 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13189 – volume: 169 start-page: 587 year: 2017 ident: 826_CR12 publication-title: Cell doi: 10.1016/j.cell.2017.04.025 – volume: 365 start-page: 393 year: 2019 ident: 826_CR48 publication-title: Science doi: 10.1126/science.aax0379 – volume: 73 start-page: 69 year: 2019 ident: 826_CR44 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090817-062524 – volume: 1 start-page: 15051 year: 2015 ident: 826_CR25 publication-title: Nat. Plants doi: 10.1038/nplants.2015.51 – volume: 63 start-page: 471 year: 2013 ident: 826_CR51 publication-title: Ann. Microbiol. doi: 10.1007/s13213-012-0491-y – volume: 7 start-page: 40 year: 2015 ident: 826_CR34 publication-title: Environ. Microbiol. Rep. doi: 10.1111/1758-2229.12181 – volume: 36 start-page: 1100 year: 2018 ident: 826_CR23 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4232 – volume: 2 start-page: 183 year: 2018 ident: 826_CR36 publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-06-18-0029-R – volume: 37 start-page: 852 year: 2019 ident: 826_CR57 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 8 start-page: e78024 year: 2013 ident: 826_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0078024 – volume: 25 start-page: 841 year: 2020 ident: 826_CR26 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2020.06.003 – volume: 10 start-page: 999 year: 2013 ident: 826_CR56 publication-title: Nat. Methods doi: 10.1038/nmeth.2634 – volume: 12 start-page: 1167 year: 2018 ident: 826_CR38 publication-title: ISME J. doi: 10.1038/s41396-017-0028-2 – volume: 15 year: 2014 ident: 826_CR61 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 112 start-page: E911 year: 2015 ident: 826_CR2 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1414592112 – volume: 37 start-page: 676 year: 2019 ident: 826_CR24 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0104-4 – volume: 4 start-page: 247 year: 2018 ident: 826_CR16 publication-title: Nat. Plants doi: 10.1038/s41477-018-0139-4 – ident: 826_CR21 doi: 10.1186/gb-2013-14-6-209 – volume: 175 start-page: 973 year: 2018 ident: 826_CR20 publication-title: Cell doi: 10.1016/j.cell.2018.10.020 – volume: 52 start-page: 5105 year: 2018 ident: 826_CR6 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05915 – volume: 488 start-page: 86 year: 2012 ident: 826_CR54 publication-title: Nature doi: 10.1038/nature11237 – volume: 198 start-page: 1604 year: 2016 ident: 826_CR32 publication-title: J. Bacteriol. doi: 10.1128/JB.01028-15 – ident: 826_CR35 doi: 10.1186/s40168-017-0310-6 – volume: 8 start-page: 337 year: 2017 ident: 826_CR47 publication-title: Front. Microbiol. – volume: 7 year: 2019 ident: 826_CR37 publication-title: Microbiome doi: 10.1186/s40168-019-0723-5 – volume: 5 start-page: 152 year: 2007 ident: 826_CR50 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1596 – volume: 8 start-page: 790 year: 2014 ident: 826_CR14 publication-title: ISME J. doi: 10.1038/ismej.2013.196 – volume: 56 start-page: 1031 year: 2006 ident: 826_CR52 publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64184-0 – volume: 3 start-page: 1445 year: 2019 ident: 826_CR40 publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-019-0994-z – volume: 7 year: 2017 ident: 826_CR63 publication-title: 3 Biotech doi: 10.1007/s13205-017-0877-4 – volume: 79 start-page: 1906 year: 2013 ident: 826_CR10 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03531-12 – volume: 199 start-page: 210 year: 2018 ident: 826_CR70 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.133 – volume: 163 start-page: 114840 year: 2019 ident: 826_CR71 publication-title: Water Res. doi: 10.1016/j.watres.2019.07.007 – volume: 31 start-page: 166 year: 2015 ident: 826_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – volume: 3 start-page: 31 year: 1988 ident: 826_CR9 publication-title: Bull. Chugoku Natl Agric. Exp. Stn – volume: 167 start-page: 1100 year: 2015 ident: 826_CR64 publication-title: Plant Physiol. doi: 10.1104/pp.114.252700 – volume: 7 year: 2019 ident: 826_CR55 publication-title: Microbiome doi: 10.1186/s40168-019-0728-0 – volume: 207 start-page: 79 year: 2013 ident: 826_CR15 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2013.03.004 – ident: 826_CR58 doi: 10.14806/ej.17.1.200 – volume: 85 start-page: 731 year: 1998 ident: 826_CR39 publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.1998.00586.x – volume: 5 start-page: 148 year: 2014 ident: 826_CR19 publication-title: Front. Microbiol doi: 10.3389/fmicb.2014.00148 – volume: 63 start-page: 455 year: 1997 ident: 826_CR53 publication-title: Ann. Phytopath. Soc. Japan doi: 10.3186/jjphytopath.63.455 – volume: 6 year: 2016 ident: 826_CR31 publication-title: Sci. Rep. doi: 10.1038/srep22596 – volume: 4 start-page: 100061 year: 2020 ident: 826_CR17 publication-title: Environ. Sci. Ecotechnol. doi: 10.1016/j.ese.2020.100061 – volume: 23 start-page: 2947 year: 2007 ident: 826_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm404 – volume: 11 year: 2010 ident: 826_CR67 publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 37 start-page: 15 year: 2017 ident: 826_CR28 publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.03.010 – volume: 16 start-page: 567 year: 2018 ident: 826_CR45 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0024-1 – volume: 13 start-page: 1814 year: 2019 ident: 826_CR46 publication-title: ISME J. doi: 10.1038/s41396-019-0394-z – volume: 13 start-page: 581 year: 2016 ident: 826_CR59 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 259 start-page: 106 year: 2006 ident: 826_CR33 publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2006.00254.x – volume: 12 start-page: 329 year: 2011 ident: 826_CR4 publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2010.00676.x – volume: 26 start-page: 183 year: 2019 ident: 826_CR18 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.07.009 – ident: 826_CR27 doi: 10.1021/acs.est.9b04616 – volume: 3 start-page: 985 year: 2013 ident: 826_CR3 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1990 – volume: 29 start-page: 233 year: 2013 ident: 826_CR1 publication-title: Trends Genet. doi: 10.1016/j.tig.2012.10.011 – volume: 422 start-page: 7 year: 2017 ident: 826_CR29 publication-title: Plant Soil doi: 10.1007/s11104-017-3289-7 – ident: 826_CR42 doi: 10.1186/s40168-020-00875-0 – volume: 8 year: 2020 ident: 826_CR43 publication-title: Microbiome doi: 10.1186/s40168-020-00805-0 |
SSID | ssj0001755360 |
Score | 2.6091347 |
Snippet | Cereal crop production is severely affected by seed-borne bacterial diseases across the world. Locally occurring disease resistance in various crops remains... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | 38/91 45/23 45/77 631/158 631/449/1870 631/449/2661 82/58 82/83 Bacterial diseases Biomedical and Life Sciences Biosynthesis Burkholderia - metabolism Cereal crops Crop production Cultivars Disease Disease resistance Disease Resistance - physiology Disease transmission Endophytes Endophytes - physiology Environmental conditions Life Sciences Mode of action Oryza - immunology Oryza - microbiology Pathogens Phenotypes Plant Diseases - immunology Plant Diseases - microbiology Plant Sciences Rice Seeds Seeds - immunology Seeds - microbiology Sphingomonas - physiology |
Title | Bacterial seed endophyte shapes disease resistance in rice |
URI | https://link.springer.com/article/10.1038/s41477-020-00826-5 https://www.ncbi.nlm.nih.gov/pubmed/33398157 https://www.proquest.com/docview/2478165092 https://www.proquest.com/docview/2475399688 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qfPBF_HY6pYJvWkyb5qO-iJONIThEFHwr-URB2mnng_-9lzbbENHX9tKGuyT3u7vcHUKnieWMc6lj4hgDA0XZWOYGTBWYtTMkxVz5BOe7MRs9ZbfP9Dk43OpwrXJ2JjYHtam095FfpD4n0pd7S68m77HvGuWjq6GFxjLqwBEswPjq9Afj-4eFl4VTShgO2TKYiIs6SzLOY281efXHYvpTI_2Cmb9CpI3mGW6g9QAZo-tWxptoyZZbaLVfAaz72kaX_bbeMlDUoIkiW5oKWDe1Uf0iJ7aOQggmArvaY0UQcvRaRr6W0A56HA4eb0ZxaIgQa0At09hlWKfYcaOoVpI4RxPheC6pZD4j2uXSgMWjtcqMFtjlWNsMO2EUPBOpJLtopaxKu48iJRXHWipJqc1MDtSWK0BfKsepYhntomTGk0KHYuG-Z8Vb0QStiShaPhbAx6LhYwFjzuZjJm2pjH-pezNWF2Hb1MVCyF10Mn8NC95HMWRpq8-GxlfTZUJ00V4rovnvCCG5SCjvovOZzBYf_3suB__P5RCtpf4mS-N46aGV6cenPQIoMlXHYb19AyUb2rA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1daxQxcKhXQV-kftWrVSPoky7NbpJNVijiacvVtofICX0LSTZBQXbP7hXpj_I_OtmPO6TYt75uJtkwM8l8ZWYAXqVe5lIal7CQ52igWJ-YokRTBXcdSpZRaWOC8-ksn37jn8_E2Qb8GXJh4rPK4U5sL-qydtFHvpfFnMhY7i17v_iVxK5RMbo6tNDo2OLYX_5Gk63ZP_qE9H2dZYcH84_TpO8qkDgU_cskcOoyGmRphbOGhSBSFWRhhMljWnEoTIlmg3OWl07RUFDnOQ2qtPhNZYbhsrdgkzOEHsHm5GD25evaqSOFwIE-OYcytdfwlEuZRCMtSts8Ef8KwCta7ZWIbCvoDrfgXq-hkg8dS92HDV89gNuTGrXIy4fwbtKVd0aIBgUf8VVZI6WWnjTfzcI3pI_4EDTjo2qKPEV-VCSWLnoE85vA1GMYVXXlnwCxxkrqjDVCeF4WCO2lRWXPFjSzORdjSAecaNfXJo8tMn7qNkbOlO7wqBGPusWjxjlvVnMWXWWOa6F3B1Tr_pQ2es1TY3i5GsbzFYMmpvL1RQsTi_fmSo1huyPR6neMsUKlQo7h7UCz9eL_38vO9Xt5AXem89MTfXI0O34Kd7P4iKb1-ezCaHl-4Z-hFrS0z3veI6BvmNv_Alp7GRI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+seed+endophyte+shapes+disease+resistance+in+rice&rft.jtitle=Nature+plants&rft.au=Matsumoto+Haruna&rft.au=Fan+Xiaoyan&rft.au=Wang%2C+Yue&rft.au=Kusstatscher%2C+Peter&rft.date=2021-01-01&rft.pub=Nature+Publishing+Group&rft.eissn=2055-0278&rft.volume=7&rft.issue=1&rft.spage=60&rft.epage=72&rft_id=info:doi/10.1038%2Fs41477-020-00826-5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-0278&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-0278&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-0278&client=summon |