Joint Source-Relay Optimization for MIMO Full-Duplex Bidirectional Wireless Sensor Networks with SWIPT

The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor n...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 19; no. 8; p. 1827
Main Authors Liu, Dan, Wen, Zhigang, Liu, Xiaoqing, Li, Shan, Zou, Junwei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 17.04.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor network (BWSN) with SWIPT is investigated. Based on minimum total mean-square-error (total-MSE) criterion, a joint optimization problem for source and relay beamforming and source receiving subject to transmitting power and harvesting energy constraints is established. Since this problem is non-convex, an iterative algorithm based on feasible point pursuit-successive convex approximation (FPP-SCA) is derived to obtain a local optimum. Moreover, considering the scenarios in which source and relay nodes equipped with the same and different numbers of antennas, a low-complexity diagonalizing design-based scheme is employed to simplify each non-convex subproblem into convex problems and to reduce the computational complexity. Numerical results of the total-MSE and bit error rate (BER) are implemented to demonstrate the performance of the two different schemes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s19081827