Joint Source-Relay Optimization for MIMO Full-Duplex Bidirectional Wireless Sensor Networks with SWIPT
The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor n...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 19; no. 8; p. 1827 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
17.04.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The simultaneous wireless information and power transfer (SWIPT) technique has been considered as a promising approach to prolong the lifetime of energy-constraint wireless sensor networks (WSNs). In this paper, a multiple-input multiple-output (MIMO) full-duplex (FD) bidirectional wireless sensor network (BWSN) with SWIPT is investigated. Based on minimum total mean-square-error (total-MSE) criterion, a joint optimization problem for source and relay beamforming and source receiving subject to transmitting power and harvesting energy constraints is established. Since this problem is non-convex, an iterative algorithm based on feasible point pursuit-successive convex approximation (FPP-SCA) is derived to obtain a local optimum. Moreover, considering the scenarios in which source and relay nodes equipped with the same and different numbers of antennas, a low-complexity diagonalizing design-based scheme is employed to simplify each non-convex subproblem into convex problems and to reduce the computational complexity. Numerical results of the total-MSE and bit error rate (BER) are implemented to demonstrate the performance of the two different schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s19081827 |