Nuclear Fission Dynamics: Past, Present, Needs, and Future

Significant progress in the understanding of the fission process within a microscopic framework has been recently reported. Even though the complete description of this important nuclear reaction remains a computationally demanding task, recent developments in theoretical modeling and computational...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physics Vol. 8
Main Authors Bulgac, Aurel, Jin, Shi, Stetcu, Ionel
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 18.03.2020
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2296-424X
2296-424X
DOI10.3389/fphy.2020.00063

Cover

Loading…
Abstract Significant progress in the understanding of the fission process within a microscopic framework has been recently reported. Even though the complete description of this important nuclear reaction remains a computationally demanding task, recent developments in theoretical modeling and computational power have brought current microscopic simulations to the point where they can provide guidance and constraints to phenomenological models, without making recourse to parameters. An accurate treatment compatible with our understanding of the inter-nucleon interactions should be able to describe the real-time dynamics of the fissioning system and could justify or rule out assumptions and approximations incompatible with the underlying universally accepted quantum-mechanical framework. Of particular importance are applications to observables that cannot be directly measured in experimental setups (such as the angular momentum distribution of the fission fragments, or the excitation energy sharing between the fission fragments, or fission of nuclei formed during the r-process), and their dependence of the excitation energy in the fissioning system. Even if accurate predictions are not within reach, being able to extract the trends with increasing excitation energy is important in various applications. The most advanced microscopic simulations of the fission process do not support the widely used assumption of adiabaticity of the large amplitude collective motion in fission, in particular for trajectories from the outer saddle toward the scission configuration. Hence, the collective potential energy surface and inertia tensor, which are the essential elements of many simplified microscopic theoretical approaches, become irrelevant. In reality, the dynamics of the fissioning system is slower than in the case of pure adiabatic motion by a factor of three to four times and is strongly overdamped. The fission fragment properties are defined only after the full separation, while in most of the current approaches no full separation can be achieved, which increases the uncertainties in describing fission-related observables in such methods.
AbstractList Significant progress in the understanding of the fission process within a microscopic framework has been recently reported. Even though the complete description of this important nuclear reaction remains a computationally demanding task, recent developments in theoretical modeling and computational power have brought current microscopic simulations to the point where they can provide guidance and constraints to phenomenological models, without making recourse to parameters. An accurate treatment compatible with our understanding of the inter-nucleon interactions should be able to describe the real-time dynamics of the fissioning system and could justify or rule out assumptions and approximations incompatible with the underlying universally accepted quantum-mechanical framework. Of particular importance are applications to observables that cannot be directly measured in experimental setups (such as the angular momentum distribution of the fission fragments, or the excitation energy sharing between the fission fragments, or fission of nuclei formed during the r-process), and their dependence of the excitation energy in the fissioning system. Even if accurate predictions are not within reach, being able to extract the trends with increasing excitation energy is important in various applications. The most advanced microscopic simulations of the fission process do not support the widely used assumption of adiabaticity of the large amplitude collective motion in fission, in particular for trajectories from the outer saddle toward the scission configuration. Hence, the collective potential energy surface and inertia tensor, which are the essential elements of many simplified microscopic theoretical approaches, become irrelevant. In reality, the dynamics of the fissioning system is slower than in the case of pure adiabatic motion by a factor of three to four times and is strongly overdamped. The fission fragment properties are defined only after the full separation, while in most of the current approaches no full separation can be achieved, which increases the uncertainties in describing fission-related observables in such methods.
Author Jin, Shi
Bulgac, Aurel
Stetcu, Ionel
Author_xml – sequence: 1
  givenname: Aurel
  surname: Bulgac
  fullname: Bulgac, Aurel
– sequence: 2
  givenname: Shi
  surname: Jin
  fullname: Jin, Shi
– sequence: 3
  givenname: Ionel
  surname: Stetcu
  fullname: Stetcu, Ionel
BackLink https://www.osti.gov/biblio/1605294$$D View this record in Osti.gov
BookMark eNp1kM1LAzEQxYMoWGvPXhfP_cjXfvUm1Wqh1B4UvIXZ7KxNaZOSpIf-925bBRE8zWN47zHzuyGX1lkk5I7RoRBFOWp2q8OQU06HlNJMXJAO52U2kFx-XP7S16QXwrq1MJ6WBZcdMl7s9QbBJ1MTgnE2eTxY2BodxskSQuwnS48BbSsWiHXoJ2DrZLqPe4-35KqBTcDe9-yS9-nT2-RlMH99nk0e5gMtJYsDRFpIlKzIK5FXqGVNaYoV05qVUugKeS6LUudYpyyrOTCgACxnNc-oxhJFl8zOvbWDtdp5swV_UA6MOi2c_1Tgo2nfUJnQdcE5rSrZyAZkKWXKJFKdg8BC5G3X_bnLhWhU0CaiXmlnLeqoWEZT3t7UJenZpL0LwWOjWh_Elk70YDaKUXWEro7Q1RG6OkFvc6M_uZ9j_0t8AdmXhO8
CitedBy_id crossref_primary_10_1103_PhysRevC_107_L031301
crossref_primary_10_1103_PhysRevLett_127_222502
crossref_primary_10_1103_PhysRevC_110_034302
crossref_primary_10_1103_PhysRevC_106_034603
crossref_primary_10_1088_1402_4896_ac37a3
crossref_primary_10_1103_PhysRevC_103_014615
crossref_primary_10_1140_epja_s10050_023_00927_7
crossref_primary_10_1103_PhysRevC_105_044313
crossref_primary_10_1140_epja_s10050_024_01409_0
crossref_primary_10_1103_PhysRevC_103_L061601
crossref_primary_10_1103_PhysRevC_110_064602
crossref_primary_10_1103_PhysRevC_107_044318
crossref_primary_10_1016_j_cpc_2021_108130
crossref_primary_10_1103_PhysRevLett_126_142502
crossref_primary_10_1142_S0218301321500014
crossref_primary_10_1016_j_epsl_2023_118217
crossref_primary_10_1103_PhysRevC_105_064602
crossref_primary_10_1103_PhysRevC_107_L061602
crossref_primary_10_1103_PhysRevC_105_034617
crossref_primary_10_1103_PhysRevC_107_014303
crossref_primary_10_1051_epjconf_202328404001
crossref_primary_10_1103_PhysRevLett_132_242501
crossref_primary_10_1103_PhysRevC_102_034612
crossref_primary_10_1016_j_physletb_2023_138010
crossref_primary_10_1103_PhysRevLett_128_022501
crossref_primary_10_1103_PhysRevC_105_054604
crossref_primary_10_1103_PhysRevC_106_014624
crossref_primary_10_1103_PhysRevC_108_L051303
crossref_primary_10_1080_00223131_2023_2273470
crossref_primary_10_1007_s11467_023_1381_4
crossref_primary_10_1051_epjconf_202431100002
crossref_primary_10_1103_PhysRevC_105_L021601
crossref_primary_10_1103_PhysRevLett_128_172501
crossref_primary_10_1039_D3NR05905G
crossref_primary_10_1103_PhysRevC_108_014321
crossref_primary_10_3389_fphy_2022_986488
crossref_primary_10_1103_PhysRevC_105_044603
crossref_primary_10_1103_PhysRevC_109_064617
crossref_primary_10_1088_1361_6471_abab4f
crossref_primary_10_1088_1674_1137_abd083
crossref_primary_10_1103_PhysRevC_108_L061602
crossref_primary_10_1016_j_ppnp_2022_103963
crossref_primary_10_1103_PhysRevC_105_044601
crossref_primary_10_1103_PhysRevC_102_044609
Cites_doi 10.1103/PhysRevLett.104.212501
10.1038/s41586-018-0780-0
10.1103/PhysRevC.100.044610
10.1016/j.nds.2019.12.007
10.1103/PhysRevC.92.054610
10.1103/PhysRevLett.116.122504
10.1051/epjconf/201716300007
10.1103/PhysRev.164.1520
10.1002/andp.19273892002
10.1103/PhysRevC.87.024601
10.1103/PhysRevC.87.034620
10.1103/PhysRevC.80.024601
10.1016/j.phpro.2013.06.013
10.1103/PhysRev.136.B864
10.1146/annurev-nucl-102212-170631
10.1016/0375-9474(77)90253-6
10.1103/PhysRevC.100.034612
10.1016/j.physletb.2020.135276
10.1016/0003-4916(78)90265-8
10.1016/S0375-9474(99)00413-3
10.1103/PhysRev.56.426
10.1103/PhysRevC.87.014617
10.1103/PhysRevC.90.024617
10.1007/978-3-642-23518-4
10.1063/1.467455
10.1103/PhysRevC.83.061601
10.1103/PhysRevC.96.061301
10.1103/PhysRevC.88.064606
10.1103/PhysRevC.99.034613
10.1103/PhysRevC.82.014617
10.1007/978-3-642-86105-5
10.1016/S0375-9474(98)00008-6
10.1103/PhysRevC.100.064609
10.1016/0375-9474(67)90510-6
10.1016/j.nuclphysa.2008.12.001
10.1103/PhysRevC.99.034603
10.1103/PhysRevC.87.044607
10.1103/PhysRevC.90.014602
10.1103/PhysRevC.92.064318
10.1103/PhysRevC.97.064619
10.1103/PhysRevC.99.024611
10.1007/978-3-642-23515-3
10.1103/PhysRev.87.366
10.1103/PhysRevC.99.034612
10.1103/PhysRevC.89.031601
10.1016/j.nds.2015.12.009
10.1103/PhysRevC.3.373
10.1016/0375-9474(87)90381-2
10.1140/epja/i2018-12455-0
10.1103/PhysRevC.14.1832
10.1103/PhysRevC.84.034613
10.1103/PhysRevC.92.034601
10.1063/1.1945175
10.1103/PhysRev.89.1102
10.1088/2053-2563/aae0ed
10.1103/PhysRevC.93.024609
10.1103/PhysRevC.95.024618
10.1063/1.459170
10.1007/BF01488241
10.1103/PhysRev.50.332
10.1103/PhysRevC.93.011304
10.1051/epjconf/201819303003
10.1103/PhysRevC.96.034603
10.1002/pssb.201800592
10.1103/PhysRevC.98.044615
10.1103/PhysRevC.96.064616
10.1103/PhysRevC.85.044601
10.1038/143239a0
10.1016/0375-9474(73)90161-9
10.1016/0375-9474(89)90682-9
10.1103/PhysRevC.7.1173
10.1103/PhysRevC.88.044603
10.1103/PhysRevLett.99.032502
10.1139/p65-139
10.1103/PhysRev.140.A1133
10.1016/0370-2693(72)90046-9
10.1016/j.nds.2014.12.023
10.1103/PhysRevC.6.1023
10.1103/PhysRevC.81.014303
10.1103/PhysRevC.27.2063
10.1016/0370-2693(80)90458-X
10.1103/PhysRevC.100.034615
10.1103/PhysRevC.71.024316
10.1007/978-94-009-7099-1_17
10.1103/RevModPhys.44.320
10.1103/PhysRev.52.295
10.1063/1.1675788
10.1103/PhysRevC.100.014615
10.1016/j.phpro.2014.10.016
10.1080/18811248.2000.9714976
10.1103/PhysRevC.87.051602
10.1016/j.nuclphysa.2013.04.014
10.1103/RevModPhys.71.1253
10.1103/PhysRevC.95.054608
10.1103/PhysRevC.95.064609
10.1016/0003-4916(80)90210-9
10.1038/137344a0
10.1038/143471a0
10.1088/0034-4885/79/11/116301
10.1103/PhysRevLett.106.132503
10.1016/0029-5582(62)91025-8
10.1103/PhysRevC.95.054603
10.1103/PhysRevC.99.054601
10.1140/epja/i2015-15177-9
10.1088/1361-6633/aacfa7
10.1103/PhysRevC.93.014620
10.1103/PhysRevC.95.044302
10.1103/PhysRev.108.311
10.1103/PhysRevC.93.054611
10.1016/S0370-1573(99)00119-2
10.1103/PhysRevC.94.034611
10.1016/j.physletb.2015.05.050
10.1063/PT.3.2817
10.1016/0370-1573(95)00028-3
10.1103/PhysRevLett.79.3539
10.1103/PhysRevC.90.064611
10.1103/PhysRevC.94.054604
10.1103/PhysRevC.92.034618
10.1088/1361-6633/aa82eb
10.1103/PhysRevC.29.885
10.1016/j.nds.2015.12.006
10.1007/b11767107
10.1103/PhysRevC.29.879
10.1016/S0370-1573(97)00042-2
10.1016/0375-9474(71)90180-1
10.1016/S0375-9474(05)80004-1
10.1103/PhysRevC.99.054619
10.1103/PhysRevC.92.034617
ContentType Journal Article
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Texas A & M Univ., College Station, TX (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
– name: Texas A & M Univ., College Station, TX (United States)
DBID AAYXX
CITATION
OTOTI
DOA
DOI 10.3389/fphy.2020.00063
DatabaseName CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2296-424X
ExternalDocumentID oai_doaj_org_article_63cd8220bb4f4fa4944514e0c7a3e837
1605294
10_3389_fphy_2020_00063
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
IAO
IEA
IGS
ISR
ITC
OTOTI
ID FETCH-LOGICAL-c441t-ee084e4187b37bec4d005eb1cc1943cbe27489c7ed516d2a1a0aa171d260ce9e3
IEDL.DBID DOA
ISSN 2296-424X
IngestDate Wed Aug 27 01:29:41 EDT 2025
Mon Apr 01 04:54:44 EDT 2024
Tue Jul 01 03:39:12 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ee084e4187b37bec4d005eb1cc1943cbe27489c7ed516d2a1a0aa171d260ce9e3
Notes NA0003841; AC05-00OR22725; AC02-05CH11231; 89233218CNA000001
USDOE Office of Science (SC)
LA-UR-19-32211
USDOE National Nuclear Security Administration (NNSA)
OpenAccessLink https://doaj.org/article/63cd8220bb4f4fa4944514e0c7a3e837
ParticipantIDs doaj_primary_oai_doaj_org_article_63cd8220bb4f4fa4944514e0c7a3e837
osti_scitechconnect_1605294
crossref_citationtrail_10_3389_fphy_2020_00063
crossref_primary_10_3389_fphy_2020_00063
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-18
PublicationDateYYYYMMDD 2020-03-18
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-18
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physics
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Talou (B130) 2018; 54
Kelly (B85) 2018; 193
Lebois (B100) 2015; 92
Peierls (B31) 1962; 38
Born (B15) 1927; 389
Kohn (B34) 1965; 140
Gatera (B101) 2017; 95
Bulgac (B42) 2016; 116
Randrup (B72) 2009; 80
Bulgac (B40) 2019; 2019
Bethe (B57) 1936; 50
Bohr (B58) 1969
Wang (B93) 2019; 100
Weidenmüller (B44) 1984; 29
Baranger (B19) 1972; 33
Rizea (B122) 2013; 909
Moretto (B82) 1989; 502
Müller (B71) 1984; 29
Randrup (B73) 2019; 99
Schunck (B24) 2016; 79
Jandel (B97) 2014; 59
Marques (B37) 2006
Maslin (B86) 1967; 164
Meitner (B2) 1939; 143
Stetcu (B132) 2013; 88
Barranco (B16) 1990; 512
Savard (B117) 2019
B3
Bertsch (B10) 1980; 95
Bulgac (B59) 1996; 264
Chyzh (B95) 2013; 87
Andreyev (B139) 2018; 81
Kohn (B35) 1999; 71
Bulgac (B17) 2019; 100
Regnier (B26) 2016; 93
Batenkov (B89) 2005; 769
Dang (B32) 2000; 335
Ward (B48) 2017; 95
Ryssens (B80) 2015; 92
Straede (B108) 1987; 462
Younes (B29) 2019
Verbinski (B103) 1973; 7
Hauser (B13) 1952; 87
Stetcu (B131) 2014; 90
Griffin (B18) 1957; 108
Mustafa (B68) 1971; 178
Delaroche (B79) 2010; 81
Krappe (B23) 2012
Hohenberg (B33) 1964; 136
Tanimura (B136) 2015; 92
Tsuchiya (B88) 2000; 37
Randrup (B46) 2011; 84
Bulgac (B137) 2017; 163
Bulgac (B140) 2019; 1912
Sierk (B62) 2017; 96
Simenel (B69) 2014; 89
Brack (B9) 1972; 44
Nishio (B87) 1998; 632
Göök (B90) 2014; 90
Bertsch (B11) 1997; 79
Pleasonton (B105) 1972; 6
Birgersson (B110) 2009; 817
Grangé (B60) 1983; 27
Gilbert (B77) 1965; 43
Vivès (B109) 2000; 662
Bohr (B7) 1939; 56
Stetcu (B107) 2020; 163
Lemaître (B53) 2019; 99
Göök (B91) 2018; 98
Peelle (B104) 1971; 3
Bertsch (B43) 2018; 97
Sadhukhan (B64) 2016; 93
Lemaître (B52) 2015; 92
Schmidt (B129) 2018; 81
Strutinsky (B8) 1967; 95
Pleasonton (B106) 1973; 213
Pellereau (B114) 2017; 95
B118
Ullmann (B94) 2013; 87
B119
Fermi (B5) 1934; 146
Tully (B54) 1971; 55
Akindele (B92) 2019; 99
Dreizler (B36) 1990
Wilkins (B51) 1976; 14
Oberstedt (B99) 2013; 87
Schmidt (B76) 2011; 83
Carjan (B121) 2012; 85
Capote (B124) 2016; 93
Randrup (B45) 2011; 106
Vogt (B126) 2013; 47
Hahn (B1) 1939; 27
Haight (B84) 2015; 123
Sadhukhan (B65) 2017; 96
Weisskopf (B12) 1937; 52
Gooden (B115) 2016; 131
Silano (B116) 2019
Hill (B14) 1953; 89
Randrup (B47) 2013; 88
Zdeb (B27) 2017; 95
Duke (B111) 2016; 94
Regnier (B66) 2019; 99
Jin (B41) 2017; 95
Schunck (B28) 2019
Schmidt (B128) 2016; 131
Meitner (B138) 1939; 143
Goddard (B135) 2016; 93
Makii (B102) 2019; 100
Scamps (B67) 2018; 564
Carjan (B123) 2015; 747
Ishizuka (B63) 2017; 96
Carjan (B125) 2019; 99
Hammes-Schiffer (B56) 1994; 101
Pearson (B4) 2015; 68
Bertsch (B78) 2007; 99
Carjan (B120) 2010; 82
Villars (B21) 1978; 285
Becker (B70) 2013; 87
Albertsson (B49) 2020; 803
Fröbrich (B61) 1998; 292
Schmidt (B75) 2010; 104
Billnert (B98) 2013; 87
Chyzh (B96) 2014; 90
Tully (B55) 1990; 93
Wilkins (B50) 1972; 42
Bulgac (B83) 2019; 100
Bulgac (B39) 2013; 63
Marques (B38) 2012
Bertsch (B74) 2019; 99
Meierbachtol (B113) 2016; 94
Fréhaut (B133) 1983
Bohr (B6) 1936; 137
Goddard (B134) 2015; 92
Litaize (B127) 2015; 51
Baranger (B20) 1978; 114
Ring (B22) 2004
Goutte (B25) 2005; 71
Goeke (B30) 1980; 124
Bulgac (B81) 2019; 100
Tovesson (B112) 2013
References_xml – volume: 104
  start-page: 212501
  year: 2010
  ident: B75
  article-title: Entropy driven excitation energy sorting in superfluid fission dynamics
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.104.212501
– volume: 564
  start-page: 382
  year: 2018
  ident: B67
  article-title: Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides
  publication-title: Nature.
  doi: 10.1038/s41586-018-0780-0
– volume: 100
  start-page: 044610
  year: 2019
  ident: B102
  article-title: Effects of the nuclear structure of fission fragments on the high-energy prompt fission γ-ray spectrum in 235U(nth, f)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.100.044610
– volume: 163
  start-page: 261
  year: 2020
  ident: B107
  article-title: Evaluation of the prompt fission gamma properties for neutron induced fission of 235;238U and 239Pu
  publication-title: Nucl Data Sheets.
  doi: 10.1016/j.nds.2019.12.007
– volume: 92
  start-page: 054610
  year: 2015
  ident: B134
  article-title: Fission dynamics within time-dependent Hartree-Fock: deformation-induced fission
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.92.054610
– volume-title: The Nuclear Many-Body Problem
  year: 2004
  ident: B22
– volume: 116
  start-page: 122504
  year: 2016
  ident: B42
  article-title: Induced fission of 240Pu within a real-time microscopic framework
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.116.122504
– volume-title: Nuclear Structure, Vols. I and II
  year: 1969
  ident: B58
– volume: 163
  start-page: 00007
  year: 2017
  ident: B137
  article-title: Nuclear fission: from more phenomenology and adjusted parameters to more fundamental theory and increased predictive power
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201716300007
– volume: 164
  start-page: 1520
  year: 1967
  ident: B86
  article-title: Prompt neutron emission from U235 fission fragments
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.164.1520
– volume: 389
  start-page: 457
  year: 1927
  ident: B15
  article-title: Zur Quantentheorie der Molekeln
  publication-title: Ann Phys.
  doi: 10.1002/andp.19273892002
– volume: 146
  start-page: 249
  year: 1934
  ident: B5
  article-title: Artificial radioactivity produced by neutron bombardment
  publication-title: Proc R Soc A.
– volume: 87
  start-page: 024601
  year: 2013
  ident: B98
  article-title: New prompt spectral γ-ray data from the reaction 252Cf(sf) and its implication on present evaluated nuclear data files
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.87.024601
– volume: 87
  start-page: 034620
  year: 2013
  ident: B95
  article-title: Systematics of prompt γ-ray emission in fission
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.87.034620
– volume: 80
  start-page: 024601
  year: 2009
  ident: B72
  article-title: Calculation of fission observables through event-by-event simulation
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.80.024601
– volume: 47
  start-page: 82
  year: 2013
  ident: B126
  article-title: Event-by-event modeling of prompt neutrons and photons from neutron-induced and spontaneous fission with FREYA
  publication-title: Phys Proc.
  doi: 10.1016/j.phpro.2013.06.013
– volume: 136
  start-page: B864
  year: 1964
  ident: B33
  article-title: Inhomogeneous electron gas
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 63
  start-page: 97
  year: 2013
  ident: B39
  article-title: Time-dependent density functional theory and the real-time dynamics of Fermi superfluids
  publication-title: Ann Rev Nucl Part Sci.
  doi: 10.1146/annurev-nucl-102212-170631
– volume: 285
  start-page: 269
  year: 1978
  ident: B21
  article-title: Adiabatic time-dependent Hartree-Fock theory in nuclear physics
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(77)90253-6
– volume: 100
  start-page: 034612
  year: 2019
  ident: B83
  article-title: Projection of good quantum numbers for reaction fragments
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.100.034612
– volume: 803
  start-page: 135276
  year: 2020
  ident: B49
  article-title: Excitation energy partition in fission
  publication-title: Phys Lett B.
  doi: 10.1016/j.physletb.2020.135276
– volume: 114
  start-page: 123
  year: 1978
  ident: B20
  article-title: An adiabatic time-dependent Hartree-Fock theory of collective motion in finite systems
  publication-title: Ann Phys.
  doi: 10.1016/0003-4916(78)90265-8
– volume: 662
  start-page: 63
  year: 2000
  ident: B109
  article-title: Investigation of the fission fragment properties of the reaction 238U(n,f) at incident neutron energies up to 5.8 MeV
  publication-title: Nucl Phys A.
  doi: 10.1016/S0375-9474(99)00413-3
– volume: 56
  start-page: 426
  year: 1939
  ident: B7
  article-title: The mechanism of nuclear fission
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.56.426
– volume: 87
  start-page: 014617
  year: 2013
  ident: B70
  article-title: Monte Carlo Hauser-Feshbach predictions of prompt fission gamma rays: application to n+235U, n+239Pu, and 252Cf (sf)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.87.014617
– volume: 90
  start-page: 024617
  year: 2014
  ident: B131
  article-title: Properties of prompt-fission γ rays
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.90.024617
– volume-title: Fundamentals of Time-Dependent Density Functional Theory. Vol. 837 of Lecture Notes in Physics
  year: 2012
  ident: B38
  doi: 10.1007/978-3-642-23518-4
– volume: 101
  start-page: 4657
  year: 1994
  ident: B56
  article-title: Proton transfer in solution: molecular dynamics with quantum transitions
  publication-title: J Chem Phys.
  doi: 10.1063/1.467455
– volume: 83
  start-page: 061601
  year: 2011
  ident: B76
  article-title: Final excitation energy of fission fragments
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.83.061601
– volume: 96
  start-page: 061301
  year: 2017
  ident: B65
  article-title: Formation and distribution of fragments in the spontaneous fission of 240Pu
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.96.061301
– volume: 88
  start-page: 064606
  year: 2013
  ident: B47
  article-title: Energy dependence of fission-fragment mass distributions from strongly damped shape evolution
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.88.064606
– volume: 99
  start-page: 034613
  year: 2019
  ident: B125
  article-title: Structures in the energy distribution of the scission neutrons: finite neutron-number effect
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.034613
– volume: 82
  start-page: 014617
  year: 2010
  ident: B120
  article-title: Scission neutrons and other scission properties as function of mass asymmetry in 235U(nth,f)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.82.014617
– volume-title: Density Functional Theory: An Approach to the Quantum Many–Body Problem
  year: 1990
  ident: B36
  doi: 10.1007/978-3-642-86105-5
– volume: 632
  start-page: 540
  year: 1998
  ident: B87
  article-title: Multiplicity and energy of neutrons from 235U(nth,f) fission fragments
  publication-title: Nucl Phys A.
  doi: 10.1016/S0375-9474(98)00008-6
– volume: 100
  start-page: 064609
  year: 2019
  ident: B93
  article-title: Determining the average prompt-fission-neutron multiplicity for 239Pu(n, f) via a 240Pu(α, α′f) surrogate reaction
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.100.064609
– volume: 95
  start-page: 420
  year: 1967
  ident: B8
  article-title: Shell effects in nuclear masses and deformation energies
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(67)90510-6
– volume: 817
  start-page: 1
  year: 2009
  ident: B110
  article-title: Properties of the reaction 238U at the vibrational resonances
  publication-title: Nucl Phys A.
  doi: 10.1016/j.nuclphysa.2008.12.001
– volume: 99
  start-page: 034603
  year: 2019
  ident: B74
  article-title: Angular momentum of fission fragments
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.034603
– volume: 87
  start-page: 044607
  year: 2013
  ident: B94
  article-title: Prompt γ-ray production in neutron-induced fission of 239Pu
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.87.044607
– volume: 90
  start-page: 014602
  year: 2014
  ident: B96
  article-title: Total prompt γ-ray emission in fission of 235U, 239, 241Pu, and 252Cf
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.90.014602
– volume: 92
  start-page: 064318
  year: 2015
  ident: B80
  article-title: Numerical accuracy of mean-field calculations in coordinate space
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.92.064318
– volume: 97
  start-page: 064619
  year: 2018
  ident: B43
  article-title: Scission dynamics with K partitions
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.97.064619
– volume: 99
  start-page: 024611
  year: 2019
  ident: B66
  article-title: From asymmetric to symmetric fission in the fermium isotopes within the time-dependent generator-coordinate-method formalism
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.024611
– volume-title: Theory of Nuclear Fission
  year: 2012
  ident: B23
  doi: 10.1007/978-3-642-23515-3
– volume: 87
  start-page: 366
  year: 1952
  ident: B13
  article-title: The inelastic scattering of neutrons
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.87.366
– volume: 99
  start-page: 034612
  year: 2019
  ident: B53
  article-title: Fully microscopic scission-point model to predict fission fragment observables
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.034612
– volume: 89
  start-page: 031601
  year: 2014
  ident: B69
  article-title: Formation and dynamics of fission fragments
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.89.031601
– volume: 131
  start-page: 107
  year: 2016
  ident: B128
  article-title: General description of fission observables: GEF model code
  publication-title: Nucl Data Sheets.
  doi: 10.1016/j.nds.2015.12.009
– volume: 3
  start-page: 373
  year: 1971
  ident: B104
  article-title: Spectrum of photons emitted in coincidence with fission of 235U by thermal neutrons
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.3.373
– volume: 462
  start-page: 85
  year: 1987
  ident: B108
  article-title: 235U(n, f) Fragment mass-, kinetic energy- and angular distributions for incident neutron energies between thermal and 6 MeV
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(87)90381-2
– volume: 54
  start-page: 9
  year: 2018
  ident: B130
  article-title: Correlated prompt fission data in transport simulations
  publication-title: Eur Phys J A.
  doi: 10.1140/epja/i2018-12455-0
– volume-title: A Microscopic Theory of Fission Based on the Generator Coordinate Method. Vol. 950 of Lectures Notes in Physics
  year: 2019
  ident: B29
– volume: 14
  start-page: 1832
  year: 1976
  ident: B51
  article-title: Scission-point model of nuclear fission based on deformed-shell effects
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.14.1832
– volume: 84
  start-page: 034613
  year: 2011
  ident: B46
  article-title: Fission-fragment mass distributions from strongly damped shape evolution
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.84.034613
– volume: 92
  start-page: 034601
  year: 2015
  ident: B136
  article-title: Collective aspects deduced from time-dependent microscopic mean-field with pairing: application to the fission process
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.92.034601
– volume: 769
  start-page: 1003
  year: 2005
  ident: B89
  article-title: Prompt neutron emmision in the neutron-induced fission of 239Pu and 235U
  publication-title: AIP Conf Proc.
  doi: 10.1063/1.1945175
– volume: 89
  start-page: 1102
  year: 1953
  ident: B14
  article-title: Nuclear constitution and the interpretation of fission phenomena
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.89.1102
– volume-title: Energy Density Functional Methods for Atomic Nuclei
  year: 2019
  ident: B28
  doi: 10.1088/2053-2563/aae0ed
– volume: 93
  start-page: 024609
  year: 2016
  ident: B124
  article-title: Scission neutrons for U, Pu, Cm, and Cf isotopes: relative multiplicities calculated in the sudden limit
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.93.024609
– volume: 95
  start-page: 024618
  year: 2017
  ident: B48
  article-title: Nuclear shape evolution based on microscopic level densities
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.95.024618
– volume: 93
  start-page: 1061
  year: 1990
  ident: B55
  article-title: Molecular dynamics with electronic transitions
  publication-title: J Chem Phys.
  doi: 10.1063/1.459170
– volume: 27
  start-page: 11
  year: 1939
  ident: B1
  article-title: Über den Nachweis und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle
  publication-title: Naturwissenschaften.
  doi: 10.1007/BF01488241
– volume: 50
  start-page: 332
  year: 1936
  ident: B57
  article-title: An attempt to calculate the number of energy levels of a heavy nucleus
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.50.332
– volume: 93
  start-page: 011304
  year: 2016
  ident: B64
  article-title: Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.93.011304
– volume: 193
  start-page: 03003
  year: 2018
  ident: B85
  article-title: Measurements of the prompt fission neutron spectrum at LANSCE: the Chi-Nu experiment
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201819303003
– volume: 96
  start-page: 034603
  year: 2017
  ident: B62
  article-title: Langevin model of low-energy fission
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.96.034603
– volume: 2019
  start-page: 1800592
  year: 2019
  ident: B40
  article-title: Time-dependent density functional theory for fermionic superfluids: from cold atomic gases, to nuclei and neutron star crust
  publication-title: Phys Status Solidi B.
  doi: 10.1002/pssb.201800592
– volume: 98
  start-page: 044615
  year: 2018
  ident: B91
  article-title: Prompt neutrons in correlation with fission fragments from 235U(n, f)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.98.044615
– volume: 96
  start-page: 064616
  year: 2017
  ident: B63
  article-title: Four-dimensional Langevin approach to low-energy nuclear fission of 236U
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.96.064616
– volume: 85
  start-page: 044601
  year: 2012
  ident: B121
  article-title: Partition between the fission fragments of the excitation energy and of the neutron multiplicity at scission in low-energy fission
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.85.044601
– volume: 143
  start-page: 239
  year: 1939
  ident: B2
  article-title: Disintegration of uranium by neutrons: a new type of nuclear reaction
  publication-title: Nature.
  doi: 10.1038/143239a0
– volume: 213
  start-page: 413
  year: 1973
  ident: B106
  article-title: Prompt γ-rays emitted in the thermal-neutron induced fission of 233U and 239Pu
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(73)90161-9
– volume: 502
  start-page: 453c
  year: 1989
  ident: B82
  article-title: Angular-momentum-bearing modes in fission
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(89)90682-9
– volume: 7
  start-page: 1173
  year: 1973
  ident: B103
  article-title: Prompt gamma rays from 235U(n, f), 239Pu(n, f), and spontaneous fission of 252Cf
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.7.1173
– volume: 88
  start-page: 044603
  year: 2013
  ident: B132
  article-title: Isomer production ratios and the angular momentum distribution of fission fragments
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.88.044603
– volume: 99
  start-page: 032502
  year: 2007
  ident: B78
  article-title: Systematics of the first 2+ excitation with the Gogny interaction
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.99.032502
– volume: 43
  start-page: 1446
  year: 1965
  ident: B77
  article-title: A composite nuclear-level density formula with shell correction
  publication-title: Can J Phys.
  doi: 10.1139/p65-139
– volume: 140
  start-page: A1133
  year: 1965
  ident: B34
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.140.A1133
– ident: B3
– volume: 42
  start-page: 141
  year: 1972
  ident: B50
  article-title: Semi-empirical interpretation of nuclear fission based on deformed-shell effects
  publication-title: Phys Lett B.
  doi: 10.1016/0370-2693(72)90046-9
– volume: 123
  start-page: 130
  year: 2015
  ident: B84
  article-title: The LANL/LLNL prompt fission neutron spectrum program at LANSCE and approach to uncertainties
  publication-title: Nucl Data Sheets.
  doi: 10.1016/j.nds.2014.12.023
– volume: 6
  start-page: 1023
  year: 1972
  ident: B105
  article-title: Prompt gamma rays emitted in the thermal-neutron-induced fission of 235U
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.6.1023
– ident: B118
  publication-title: A High Rigidity Spectrometer fro FRIB
– volume: 81
  start-page: 014303
  year: 2010
  ident: B79
  article-title: Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.81.014303
– volume: 27
  start-page: 2063
  year: 1983
  ident: B60
  article-title: Induced nuclear fission viewed as a diffusion process: transients
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.27.2063
– volume: 95
  start-page: 157
  year: 1980
  ident: B10
  article-title: The nuclear density of states in the space of nuclear shapes
  publication-title: Phys Lett B.
  doi: 10.1016/0370-2693(80)90458-X
– volume: 100
  start-page: 034615
  year: 2019
  ident: B17
  article-title: Fission dynamics of 240Pu from saddle to scission and beyond
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.100.034615
– volume: 71
  start-page: 024316
  year: 2005
  ident: B25
  article-title: Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.71.024316
– year: 2019
  ident: B117
  article-title: Fission product yield measurements using 252Cf spontaneous fission and neutron-induced fission on actinide targets at CARIBU
  publication-title: Talk at the International Workshop on Fission Product Yields
– start-page: 78
  volume-title: International Conference on Nuclear Data for Science and Technology
  year: 1983
  ident: B133
  article-title: Mesure de ν̄p pour la fission de 232Th, 235U et 237Np induite par des neutrons d'energie comprise entre 1 et 15 MeV
  doi: 10.1007/978-94-009-7099-1_17
– volume: 44
  start-page: 320
  year: 1972
  ident: B9
  article-title: Funny Hills: the shell-correction approach to nuclear shell effects and its applications to the fission process
  publication-title: Rev Mod Phys.
  doi: 10.1103/RevModPhys.44.320
– ident: B119
  publication-title: Facility for Rare Isotopes Beams
– volume: 52
  start-page: 295
  year: 1937
  ident: B12
  article-title: Statistics and nuclear reactions
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.52.295
– volume: 55
  start-page: 562
  year: 1971
  ident: B54
  article-title: Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H+ with D2
  publication-title: J Chem Phys.
  doi: 10.1063/1.1675788
– volume: 100
  start-page: 014615
  year: 2019
  ident: B81
  article-title: Unitary evolution with fluctuations and dissipation
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.100.014615
– volume: 59
  start-page: 101
  year: 2014
  ident: B97
  article-title: Prompt fission gamma-ray studies at DANCE
  publication-title: Phys Proc.
  doi: 10.1016/j.phpro.2014.10.016
– volume: 37
  start-page: 941
  year: 2000
  ident: B88
  article-title: Simultaneous measurement of prompt neutrons and fission fragments for 239Pu(nth,f)
  publication-title: J Nucl Sci Tech.
  doi: 10.1080/18811248.2000.9714976
– volume: 87
  start-page: 051602
  year: 2013
  ident: B99
  article-title: Improved values for the characteristics of prompt-fission γ-ray spectra from the reaction 235U(nth,f)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.87.051602
– volume: 909
  start-page: 50
  year: 2013
  ident: B122
  article-title: Dynamical scission model
  publication-title: Nucl Phys A.
  doi: 10.1016/j.nuclphysa.2013.04.014
– year: 2019
  ident: B116
  article-title: Comparing fission-product yields from photon-induced fission of 240Pu and neutron-induced fission of 239Pu as a test of the Bohr hypothesis in nuclear fission
  publication-title: Proceedings of the Santa Fe Workshop on Fission Product Yields
– volume: 71
  start-page: 1253
  year: 1999
  ident: B35
  article-title: Nobel lecture: electronic structure of matter—wave functions and density functionals
  publication-title: Rev Mod Phys.
  doi: 10.1103/RevModPhys.71.1253
– volume: 95
  start-page: 054608
  year: 2017
  ident: B27
  article-title: Fission dynamics of 252Cf
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.95.054608
– volume: 95
  start-page: 064609
  year: 2017
  ident: B101
  article-title: Prompt-fission γ-ray spectral characteristics from 239Pu(nth, f)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.95.064609
– volume: 124
  start-page: 249
  year: 1980
  ident: B30
  article-title: The generator-coordinate-method with conjugate parameters and the unification of microscopic theories for large amplitude collective motion
  publication-title: Ann Phys.
  doi: 10.1016/0003-4916(80)90210-9
– volume: 137
  start-page: 344
  year: 1936
  ident: B6
  article-title: Neutron capture and nuclear constitution
  publication-title: Nature.
  doi: 10.1038/137344a0
– volume: 143
  start-page: 471
  year: 1939
  ident: B138
  article-title: Products of the fission of the uranium nucleus
  publication-title: Nature.
  doi: 10.1038/143471a0
– volume: 79
  start-page: 116301
  year: 2016
  ident: B24
  article-title: Microscopic theory of nuclear fission: a review
  publication-title: Rep Prog Phys.
  doi: 10.1088/0034-4885/79/11/116301
– volume: 106
  start-page: 132503
  year: 2011
  ident: B45
  article-title: Brownian shape motion on five-dimensional potential-energy surfaces: nuclear fission-fragment mass distributions
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.106.132503
– volume: 38
  start-page: 154
  year: 1962
  ident: B31
  article-title: Variational approach to collective motion
  publication-title: Nucl Phys.
  doi: 10.1016/0029-5582(62)91025-8
– volume: 95
  start-page: 054603
  year: 2017
  ident: B114
  article-title: Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.95.054603
– volume: 33
  start-page: C5
  year: 1972
  ident: B19
  article-title: Microscopic view of nuclear collective properties
  publication-title: J Phys.
– volume: 99
  start-page: 054601
  year: 2019
  ident: B92
  article-title: Expansion of the surrogate method to measure the prompt fission neutron multiplicity for 241Pu
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.054601
– volume: 51
  start-page: 177
  year: 2015
  ident: B127
  article-title: Fission modelling with FIFRELIN
  publication-title: Eur Phys Jour A.
  doi: 10.1140/epja/i2015-15177-9
– volume: 81
  start-page: 106301
  year: 2018
  ident: B129
  article-title: Review on the progress in nuclear fission–experimental methods and theoretical descriptions
  publication-title: Rep Prog Phys.
  doi: 10.1088/1361-6633/aacfa7
– volume: 93
  start-page: 014620
  year: 2016
  ident: B135
  article-title: Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.93.014620
– volume: 95
  start-page: 044302
  year: 2017
  ident: B41
  article-title: Coordinate-space solver for superfluid many-fermion systems with the shifted conjugate-orthogonal conjugate-gradient method
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.95.044302
– volume: 108
  start-page: 311
  year: 1957
  ident: B18
  article-title: Collective motions in nuclei by the method of generator coordinates
  publication-title: Phys Rev.
  doi: 10.1103/PhysRev.108.311
– volume: 93
  start-page: 054611
  year: 2016
  ident: B26
  article-title: Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.93.054611
– volume: 335
  start-page: 93
  year: 2000
  ident: B32
  article-title: Self-consistent theory of large-amplitude collective motion: applications to approximate quantization of nonseparable systems and to nuclear physics
  publication-title: Phys Rep.
  doi: 10.1016/S0370-1573(99)00119-2
– volume: 94
  start-page: 034611
  year: 2016
  ident: B113
  article-title: Total kinetic energy release in 239Pu(n, f) post-neutron emission from 0.5 to 50 MeV incident neutron energy
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.94.034611
– volume: 1912
  start-page: 00287v1
  year: 2019
  ident: B140
  article-title: Nuclear fission dynamics: past, present, needs, and future
  publication-title: arXiv.
– volume: 747
  start-page: 178
  year: 2015
  ident: B123
  article-title: Similarities between calculated scission-neutron properties and experimental data on prompt fission neutrons
  publication-title: Phys Lett B.
  doi: 10.1016/j.physletb.2015.05.050
– volume: 68
  start-page: 40
  year: 2015
  ident: B4
  article-title: On the belated discovery of fission
  publication-title: Phys Today.
  doi: 10.1063/PT.3.2817
– volume: 264
  start-page: 67
  year: 1996
  ident: B59
  article-title: Stochastic aspects of large amplitude collective motion
  publication-title: Phys Rep.
  doi: 10.1016/0370-1573(95)00028-3
– volume: 79
  start-page: 3539
  year: 1997
  ident: B11
  article-title: Comment on spontaneous fission: a kinetic approach
  publication-title: Phys Rev Lett.
  doi: 10.1103/PhysRevLett.79.3539
– volume: 90
  start-page: 064611
  year: 2014
  ident: B90
  article-title: Prompt neutron multiplicity in correlation with fragments from spontaneous fission of 252Cf
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.90.064611
– volume: 94
  start-page: 054604
  year: 2016
  ident: B111
  article-title: Fission-fragment properties in 238U(n, f) between 1 and 30 MeV
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.94.054604
– start-page: 361
  volume-title: Proceedings of the Fifth International Conference on ICFN5
  year: 2013
  ident: B112
  article-title: SPIDER: a new instrument for fission yield measurement
– volume: 92
  start-page: 034618
  year: 2015
  ident: B100
  article-title: Comparative measurement of prompt fission γ-ray emission from fast-neutron-induced fission of 235U and 238U
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.92.034618
– volume: 81
  start-page: 016301
  year: 2018
  ident: B139
  article-title: Nuclear fission: a review of experimental advances and phenomenology
  publication-title: Rep Prog Phys.
  doi: 10.1088/1361-6633/aa82eb
– volume: 29
  start-page: 885
  year: 1984
  ident: B71
  article-title: Fragment velocities, energies, and masses from fast neutron induced fission of 235U
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.29.885
– volume: 131
  start-page: 319
  year: 2016
  ident: B115
  article-title: Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV
  publication-title: Nucl Data Sheets.
  doi: 10.1016/j.nds.2015.12.006
– volume-title: Time-Dependent Density Functional Theory. Vol. 706 of Lecture Notes in Physics
  year: 2006
  ident: B37
  doi: 10.1007/b11767107
– volume: 29
  start-page: 879
  year: 1984
  ident: B44
  article-title: Nuclear fission viewed as a diffusion process: case of very large friction
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.29.879
– volume: 292
  start-page: 131
  year: 1998
  ident: B61
  article-title: Langevin description of fusion, deep-inelastic collisions and heavy-ion-induced fission
  publication-title: Phys Rep.
  doi: 10.1016/S0370-1573(97)00042-2
– volume: 178
  start-page: 9
  year: 1971
  ident: B68
  article-title: Dipole excitations in fission fragments
  publication-title: Nucl Phys A.
  doi: 10.1016/0375-9474(71)90180-1
– volume: 512
  start-page: 253
  year: 1990
  ident: B16
  article-title: Large-amplitude motion in superfluid Fermi droplets
  publication-title: Nucl Data Sheets Phys A.
  doi: 10.1016/S0375-9474(05)80004-1
– volume: 99
  start-page: 054619
  year: 2019
  ident: B73
  article-title: Sensitivity of neutron observables to the model input in simulations of 252Cf(sf)
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.99.054619
– volume: 92
  start-page: 034617
  year: 2015
  ident: B52
  article-title: New statistical scission-point model to predict fission fragment observables
  publication-title: Phys Rev C.
  doi: 10.1103/PhysRevC.92.034617
SSID ssj0001259824
Score 2.3913302
Snippet Significant progress in the understanding of the fission process within a microscopic framework has been recently reported. Even though the complete...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms adiabatic collective motion
average neutron multiplicity
Fission dynamics
nuclear fission
NUCLEAR PHYSICS AND RADIATION PHYSICS
overdamped collective motion
total excitation energy
total kinetic energy
Title Nuclear Fission Dynamics: Past, Present, Needs, and Future
URI https://www.osti.gov/biblio/1605294
https://doaj.org/article/63cd8220bb4f4fa4944514e0c7a3e837
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1y_yMGDh602mzRtvPlVRHDxoLC3kExSEKTKtv5_Z9q6rAfx4qlQUhreNJl57esbxk4Bc4RXyiey8AUSlNwlJstlUoGDTOcqDZ3k_3Gq71_UwyybLbX6Ik1Ybw_cA3ehJQRMYqn3qlKVU4YctVRMIXcyIrui3Rdz3hKZ6t-ukDGd6r18kIWZiwpnjXRwQkquVMsfaahz68fDO66qpexSbrKNoSzkV_10tthKrLfZWifPhGaHXU7JdtjNeflKqtWa3_aN5JtL_uSadsyf-r-IxnyK2agZc1cHXnZ2Ibvspbx7vrlPhq4HCWBp0iYxpoWKShS5lzkirAIuFNxRAYRREnyckGEM5DFkQoeJEy51TuQiIDOBaKLcY6v1ex33Gdc-YHkVZGWiUAC-iEHqONEhOGOyYEbs_BsEC4MlOHWmeLNIDQg1S6hZQs12qI3Y2eKCj94N4_eh14TqYhjZWHcnMLh2CK79K7gjdkgxsVgNkKUtkPYHWis0fZ9UB_9xi0O2TpMmWZkojthqO_-Mx1hntP6ke6S-AMadzcA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+Fission+Dynamics%3A+Past%2C+Present%2C+Needs%2C+and+Future&rft.jtitle=Frontiers+in+physics&rft.au=Bulgac%2C+Aurel&rft.au=Jin%2C+Shi&rft.au=Stetcu%2C+Ionel&rft.date=2020-03-18&rft.pub=Frontiers+Research+Foundation&rft.issn=2296-424X&rft.eissn=2296-424X&rft.volume=8&rft_id=info:doi/10.3389%2Ffphy.2020.00063&rft.externalDocID=1605294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-424X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-424X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-424X&client=summon