Deep learning-based attenuation map generation for myocardial perfusion SPECT

Purpose Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are sus...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of nuclear medicine and molecular imaging Vol. 47; no. 10; pp. 2383 - 2395
Main Authors Shi, Luyao, Onofrey, John A., Liu, Hui, Liu, Yi-Hwa, Liu, Chi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods. Methods Both photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy. Results The synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool. Conclusion We developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
AbstractList PurposeAttenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods.MethodsBoth photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy.ResultsThe synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool.ConclusionWe developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods. Both photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy. The synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool. We developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods.PURPOSEAttenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods.Both photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy.METHODSBoth photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy.The synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool.RESULTSThe synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool.We developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.CONCLUSIONWe developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
Purpose Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative analysis. Current existing SPECT-only systems normally do not support transmission scanning and therefore scans on these systems are susceptible to attenuation artifacts. Moreover, the use of CT scans also increases radiation dose to patients and significant artifacts can occur due to the misregistration between the SPECT and CT scans as a result of patient motion. The purpose of this study is to develop an approach to estimate attenuation maps directly from SPECT emission data using deep learning methods. Methods Both photopeak window and scatter window SPECT images were used as inputs to better utilize the underlying attenuation information embedded in the emission data. The CT-based attenuation maps were used as labels with which cardiac SPECT/CT images of 65 patients were included for training and testing. We implemented and evaluated deep fully convolutional neural networks using both standard training and training using an adversarial strategy. Results The synthetic attenuation maps were qualitatively and quantitatively consistent with the CT-based attenuation map. The globally normalized mean absolute error (NMAE) between the synthetic and CT-based attenuation maps were 3.60% ± 0.85% among the 25 testing subjects. The SPECT reconstructed images corrected using the CT-based attenuation map and synthetic attenuation map are highly consistent. The NMAE between the reconstructed SPECT images that were corrected using the synthetic and CT-based attenuation maps was 0.26% ± 0.15%, whereas the localized absolute percentage error was 1.33% ± 3.80% in the left ventricle (LV) myocardium and 1.07% ± 2.58% in the LV blood pool. Conclusion We developed a deep convolutional neural network to estimate attenuation maps for SPECT directly from the emission data. The proposed method is capable of generating highly reliable attenuation maps to facilitate attenuation correction for SPECT-only scanners for myocardial perfusion imaging.
Author Liu, Chi
Liu, Hui
Liu, Yi-Hwa
Onofrey, John A.
Shi, Luyao
Author_xml – sequence: 1
  givenname: Luyao
  surname: Shi
  fullname: Shi, Luyao
  organization: Department of Biomedical Engineering, Yale University
– sequence: 2
  givenname: John A.
  surname: Onofrey
  fullname: Onofrey, John A.
  organization: Department of Radiology and Biomedical Imaging, Yale University, Department of Urology, Yale University
– sequence: 3
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: Department of Radiology and Biomedical Imaging, Yale University, Department of Internal Medicine (Cardiology), Yale University
– sequence: 4
  givenname: Yi-Hwa
  surname: Liu
  fullname: Liu, Yi-Hwa
  organization: Department of Internal Medicine (Cardiology), Yale University, Department of Biomedical Engineering, Chung Yuan Christian University
– sequence: 5
  givenname: Chi
  surname: Liu
  fullname: Liu, Chi
  email: chi.liu@yale.edu
  organization: Department of Biomedical Engineering, Yale University, Department of Radiology and Biomedical Imaging, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32219492$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LxDAQhoMorqv-AQ9S8OKlOvnoR46yfoKioJ5D2kyXLm1ak_bgvze7XRU8eEpCnmeYmXdOdm1nkZATChcUILv0ACyRMTCIQWQijdMdckBTKuMMcrn7c89gRuberwBoznK5T2acMSqFZAfk6RqxjxrUztZ2GRfao4n0MKAd9VB3Nmp1Hy3RopueVeei9rMrtTO1bqIeXTX69cfry83i7YjsVbrxeLw9D8n77c3b4j5-fL57WFw9xqUQdIixzCk3SCVNC5pzriFMwkqj08QYMGEUzA0khcw0TyohdJKhLLSsJAKtUs4PyflUt3fdx4h-UG3tS2wabbEbvWI8F4wKyGRAz_6gq250NnSnmGAykRI4C9TplhqLFo3qXd1q96m-FxWAfAJK13nvsFJlPWxWMjhdN4qCWmeipkxUyERtMlFpUNkf9bv6vxKfJB9gu0T32_Y_1hfpnJyy
CitedBy_id crossref_primary_10_1109_TMI_2024_3385650
crossref_primary_10_32604_cmes_2024_055599
crossref_primary_10_1097_RLU_0000000000005129
crossref_primary_10_1109_TMI_2024_3496870
crossref_primary_10_1007_s12350_022_02978_7
crossref_primary_10_1016_j_ejmp_2021_03_008
crossref_primary_10_1016_j_crad_2020_11_114
crossref_primary_10_1016_j_media_2024_103190
crossref_primary_10_6009_jjrt_2021_JSRT_77_2_193
crossref_primary_10_1007_s00259_022_05731_x
crossref_primary_10_1016_j_radmeas_2025_107379
crossref_primary_10_1053_j_semnuclmed_2022_01_004
crossref_primary_10_1007_s12350_021_02724_5
crossref_primary_10_1007_s12149_025_02031_w
crossref_primary_10_1007_s12350_021_02875_5
crossref_primary_10_1016_j_ccl_2023_01_004
crossref_primary_10_1007_s12350_022_03007_3
crossref_primary_10_1109_TMI_2021_3082578
crossref_primary_10_1016_j_cpet_2021_06_011
crossref_primary_10_1080_14779072_2024_2380764
crossref_primary_10_1088_1361_6560_abe557
crossref_primary_10_1016_j_cpet_2021_06_010
crossref_primary_10_1109_TRPMS_2023_3243576
crossref_primary_10_1007_s00259_023_06422_x
crossref_primary_10_1016_j_isci_2024_111374
crossref_primary_10_1186_s12880_025_01570_y
crossref_primary_10_1007_s12350_022_03092_4
crossref_primary_10_1007_s12350_021_02672_0
crossref_primary_10_2967_jnumed_120_256396
crossref_primary_10_1002_mp_15016
crossref_primary_10_3390_diagnostics13132214
crossref_primary_10_1186_s40658_024_00686_4
crossref_primary_10_1109_TMI_2021_3066318
crossref_primary_10_6009_jjrt_2022_2096
crossref_primary_10_3390_diagnostics12081945
crossref_primary_10_1186_s40658_023_00568_1
crossref_primary_10_1053_j_semnuclmed_2024_02_005
crossref_primary_10_1053_j_semnuclmed_2021_11_004
crossref_primary_10_1007_s12350_022_03010_8
crossref_primary_10_4274_mirt_galenos_2022_55476
crossref_primary_10_1007_s00259_022_05718_8
crossref_primary_10_1007_s13139_021_00733_3
crossref_primary_10_1109_TRPMS_2021_3137990
crossref_primary_10_1007_s00259_022_05735_7
crossref_primary_10_1088_1361_6560_ad8b09
crossref_primary_10_1186_s40658_023_00536_9
crossref_primary_10_1016_j_acra_2024_06_047
crossref_primary_10_1007_s00259_021_05341_z
crossref_primary_10_1007_s12350_022_03123_0
crossref_primary_10_62347_MLFB9278
crossref_primary_10_1007_s12350_021_02817_1
crossref_primary_10_2967_jnumed_121_263703
crossref_primary_10_1088_1361_6560_ac2470
crossref_primary_10_3389_fmed_2023_1171118
crossref_primary_10_1002_mp_15073
crossref_primary_10_1007_s00259_020_04840_9
crossref_primary_10_1007_s12350_021_02671_1
crossref_primary_10_1007_s12149_023_01889_y
crossref_primary_10_1007_s12350_022_03115_0
crossref_primary_10_1136_bmjopen_2024_089552
crossref_primary_10_1016_j_bspc_2024_107058
crossref_primary_10_1007_s43657_023_00137_7
crossref_primary_10_1186_s41824_020_00086_8
crossref_primary_10_1016_j_imu_2022_101055
crossref_primary_10_1088_1361_6560_acaf49
crossref_primary_10_1093_jcde_qwac008
crossref_primary_10_1186_s40658_022_00522_7
crossref_primary_10_2967_jnumed_121_263239
crossref_primary_10_3389_fnume_2024_1355912
crossref_primary_10_1007_s12149_021_01600_z
crossref_primary_10_1186_s40658_024_00713_4
Cites_doi 10.1109/TNS.2002.803862
10.1118/1.4812686
10.1016/j.ejrad.2016.10.021
10.1109/42.774167
10.1002/ima.20200
10.1109/42.363108
10.1109/42.918472
10.1016/S1071-3581(97)90048-9
10.1002/mp.12155
10.1109/TBME.2018.2814538
10.1007/s12350-015-0374-2
10.1007/s12350-014-0058-3
10.1007/s00259-009-1090-4
10.1109/42.481437
10.23937/2572-3235.1510023
10.1007/978-3-319-24574-4_28
10.1109/3DV.2016.79
10.1109/ICCV.2017.304
10.2967/jnumed.118.219493
10.1007/978-3-030-32251-9_79
10.1109/ISBI.2019.8759295
10.1109/CVPR.2017.632
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
DOI 10.1007/s00259-020-04746-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-7089
EndPage 2395
ExternalDocumentID 32219492
10_1007_s00259_020_04746_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association
  grantid: 18PRE33990138
  funderid: http://dx.doi.org/10.13039/100000968
– fundername: National Institutes of Health
  grantid: R01HL123949
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: American Heart Association
  grantid: 18PRE33990138
– fundername: NHLBI NIH HHS
  grantid: R01 HL123949
GroupedDBID ---
-5E
-5G
-BR
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
40D
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABECU
ABFTV
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACUHS
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBB
EBC
EBD
EBLON
EBO
EBS
EBX
EHN
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPL
EPT
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
Q~Q
R89
R9I
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TH9
TSG
TSK
TT1
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
ID FETCH-LOGICAL-c441t-ec813de1916b1833a00022cda65dd0d746e8d05b97a35f44a57e9ba9f9e01f633
IEDL.DBID 7X7
ISSN 1619-7070
1619-7089
IngestDate Fri Jul 11 01:23:04 EDT 2025
Sat Aug 16 15:50:54 EDT 2025
Wed Feb 19 02:29:37 EST 2025
Thu Apr 24 23:10:09 EDT 2025
Tue Jul 01 04:04:34 EDT 2025
Fri Feb 21 02:43:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Deep learning
Myocardial perfusion imaging
SPECT
Synthetic attenuation map
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ec813de1916b1833a00022cda65dd0d746e8d05b97a35f44a57e9ba9f9e01f633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32219492
PQID 2429599032
PQPubID 42802
PageCount 13
ParticipantIDs proquest_miscellaneous_2384214079
proquest_journals_2429599032
pubmed_primary_32219492
crossref_citationtrail_10_1007_s00259_020_04746_6
crossref_primary_10_1007_s00259_020_04746_6
springer_journals_10_1007_s00259_020_04746_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European journal of nuclear medicine and molecular imaging
PublicationTitleAbbrev Eur J Nucl Med Mol Imaging
PublicationTitleAlternate Eur J Nucl Med Mol Imaging
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Nuyts, Dupont, Stroobants, Benninck, Mortelmans, Suetens (CR15) 1999; 18
Krol, Bowsher, Manglos, Feiglin, Tornai, Thomas (CR16) 2001; 20
Zaidi, Hasegawa (CR9) 2003; 44
CR18
Hudson, Larkin (CR24) 1994; 13
Pan, King, de Vries, Ljungberg (CR11) 1996; 15
Núñez, Prakash, Vila, Mut, Alonso, Hutton (CR10) 2009; 36
Han (CR19) 2017; 44
Shimizu, Fujii, Yamawake, Nishizaki (CR7) 2015; 22
Pan, King, Luo, Dahlberg, Villegas (CR8) 1997; 4
CR2
CR4
Shi, Onofrey, Liu, Liu, Liu (CR23) 2019; 60
CR5
van Dijk, Mouden, Ottervanger, van Dalen, Knollema, Slump (CR1) 2017; 24
CR29
CR28
CR27
Cade, Arridge, Evans, Hutton (CR12) 2013; 40
CR26
Wu, Liu (CR6) 2019; 64
CR25
Yan, Zeng (CR14) 2009; 19
Nie, Trullo, Lian, Wang, Petitjean, Ruan (CR17) 2018; 65
CR22
CR21
CR20
Abdollahi, Shiri, Salimi, Sarebani, Mehdinia, Deevband (CR3) 2016; 85
Gourion, Noll, Gantet, Celler, Esquerré (CR13) 2002; 49
M Shimizu (4746_CR7) 2015; 22
M Núñez (4746_CR10) 2009; 36
HM Hudson (4746_CR24) 1994; 13
SC Cade (4746_CR12) 2013; 40
T-S Pan (4746_CR8) 1997; 4
X Han (4746_CR19) 2017; 44
J van Dijk (4746_CR1) 2017; 24
D Gourion (4746_CR13) 2002; 49
4746_CR18
T-S Pan (4746_CR11) 1996; 15
A Krol (4746_CR16) 2001; 20
4746_CR22
4746_CR21
4746_CR28
4746_CR27
4746_CR26
4746_CR25
J Nuyts (4746_CR15) 1999; 18
D Nie (4746_CR17) 2018; 65
L Shi (4746_CR23) 2019; 60
4746_CR20
H Abdollahi (4746_CR3) 2016; 85
H Zaidi (4746_CR9) 2003; 44
Y Yan (4746_CR14) 2009; 19
4746_CR5
4746_CR29
4746_CR2
J Wu (4746_CR6) 2019; 64
4746_CR4
References_xml – volume: 49
  start-page: 2172
  year: 2002
  end-page: 2179
  ident: CR13
  article-title: Attenuation correction using SPECT emission data only
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2002.803862
– ident: CR22
– volume: 40
  start-page: 082506
  year: 2013
  ident: CR12
  article-title: Use of measured scatter data for the attenuation correction of single photon emission tomography without transmission scanning
  publication-title: Med Phys
  doi: 10.1118/1.4812686
– ident: CR18
– volume: 64
  start-page: 06TR1
  year: 2019
  ident: CR6
  article-title: Recent advances in cardiac SPECT instrumentation and imaging methods
  publication-title: Phys Med Biol
– ident: CR4
– ident: CR2
– volume: 85
  start-page: 2257
  year: 2016
  end-page: 2261
  ident: CR3
  article-title: Radiation dose in cardiac SPECT/CT: an estimation of SSDE and effective dose
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2016.10.021
– volume: 18
  start-page: 393
  year: 1999
  end-page: 403
  ident: CR15
  article-title: Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.774167
– volume: 19
  start-page: 271
  year: 2009
  end-page: 276
  ident: CR14
  article-title: Attenuation map estimation with SPECT emission data only
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20200
– volume: 60
  start-page: 572
  year: 2019
  ident: CR23
  article-title: Generating attenuation map for SPECT-only systems using generative adversarial networks
  publication-title: J Nucl Med
– ident: CR29
– volume: 13
  start-page: 601
  year: 1994
  end-page: 609
  ident: CR24
  article-title: Accelerated image reconstruction using ordered subsets of projection data
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.363108
– ident: CR25
– ident: CR27
– volume: 20
  start-page: 218
  year: 2001
  end-page: 232
  ident: CR16
  article-title: An EM algorithm for estimating SPECT emission and transmission parameters from emission data only
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.918472
– volume: 4
  start-page: 42
  year: 1997
  end-page: 51
  ident: CR8
  article-title: Estimation of attenuation maps from scatter and photopeak window single photon-emission computed tomographic images of technetium 99m-labeled sestamibi
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(97)90048-9
– volume: 44
  start-page: 1408
  year: 2017
  end-page: 1419
  ident: CR19
  article-title: MR-based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– ident: CR21
– volume: 44
  start-page: 291
  year: 2003
  end-page: 315
  ident: CR9
  article-title: Determination of the attenuation map in emission tomography
  publication-title: J Nucl Med
– volume: 65
  start-page: 2720
  year: 2018
  end-page: 2730
  ident: CR17
  article-title: Medical image synthesis with deep convolutional adversarial networks
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2814538
– volume: 24
  start-page: 395
  year: 2017
  end-page: 401
  ident: CR1
  article-title: Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-015-0374-2
– ident: CR5
– volume: 22
  start-page: 301
  year: 2015
  end-page: 307
  ident: CR7
  article-title: Cardiac function changes with switching from the supine to prone position: analysis by quantitative semiconductor gated single-photon emission computed tomography
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-014-0058-3
– ident: CR28
– ident: CR26
– volume: 36
  start-page: 1076
  year: 2009
  end-page: 1089
  ident: CR10
  article-title: Attenuation correction for lung SPECT: evidence of need and validation of an attenuation map derived from the emission data
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-009-1090-4
– volume: 15
  start-page: 13
  year: 1996
  end-page: 24
  ident: CR11
  article-title: Segmentation of the body and lungs from Compton scatter and photopeak window data in SPECT: a Monte-Carlo investigation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.481437
– ident: CR20
– volume: 49
  start-page: 2172
  year: 2002
  ident: 4746_CR13
  publication-title: IEEE Trans Nucl Sci
  doi: 10.1109/TNS.2002.803862
– volume: 19
  start-page: 271
  year: 2009
  ident: 4746_CR14
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20200
– ident: 4746_CR2
  doi: 10.23937/2572-3235.1510023
– volume: 85
  start-page: 2257
  year: 2016
  ident: 4746_CR3
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2016.10.021
– ident: 4746_CR26
  doi: 10.1007/978-3-319-24574-4_28
– volume: 60
  start-page: 572
  year: 2019
  ident: 4746_CR23
  publication-title: J Nucl Med
– volume: 4
  start-page: 42
  year: 1997
  ident: 4746_CR8
  publication-title: J Nucl Cardiol
  doi: 10.1016/S1071-3581(97)90048-9
– ident: 4746_CR27
  doi: 10.1109/3DV.2016.79
– ident: 4746_CR5
– volume: 18
  start-page: 393
  year: 1999
  ident: 4746_CR15
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.774167
– ident: 4746_CR22
  doi: 10.1109/ICCV.2017.304
– ident: 4746_CR18
  doi: 10.2967/jnumed.118.219493
– volume: 64
  start-page: 06TR1
  year: 2019
  ident: 4746_CR6
  publication-title: Phys Med Biol
– volume: 40
  start-page: 082506
  year: 2013
  ident: 4746_CR12
  publication-title: Med Phys
  doi: 10.1118/1.4812686
– volume: 22
  start-page: 301
  year: 2015
  ident: 4746_CR7
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-014-0058-3
– ident: 4746_CR21
– volume: 44
  start-page: 1408
  year: 2017
  ident: 4746_CR19
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– ident: 4746_CR20
  doi: 10.1007/978-3-030-32251-9_79
– volume: 65
  start-page: 2720
  year: 2018
  ident: 4746_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2814538
– volume: 13
  start-page: 601
  year: 1994
  ident: 4746_CR24
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.363108
– ident: 4746_CR4
– volume: 36
  start-page: 1076
  year: 2009
  ident: 4746_CR10
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-009-1090-4
– volume: 24
  start-page: 395
  year: 2017
  ident: 4746_CR1
  publication-title: J Nucl Cardiol
  doi: 10.1007/s12350-015-0374-2
– ident: 4746_CR29
– ident: 4746_CR28
  doi: 10.1109/ISBI.2019.8759295
– ident: 4746_CR25
  doi: 10.1109/CVPR.2017.632
– volume: 20
  start-page: 218
  year: 2001
  ident: 4746_CR16
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.918472
– volume: 44
  start-page: 291
  year: 2003
  ident: 4746_CR9
  publication-title: J Nucl Med
– volume: 15
  start-page: 13
  year: 1996
  ident: 4746_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.481437
SSID ssj0018289
Score 2.5647402
Snippet Purpose Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables...
Attenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables quantitative...
PurposeAttenuation correction using CT transmission scanning increases the accuracy of single-photon emission computed tomography (SPECT) and enables...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2383
SubjectTerms Artificial neural networks
Attenuation
Cardiology
Computed tomography
Deep Learning
Emission analysis
Humans
Image Processing, Computer-Assisted
Image reconstruction
Imaging
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Myocardium
Neural networks
Nuclear Medicine
Oncology
Original Article
Orthopedics
Perfusion
Photon emission
Photopeak
Radiation dosage
Radiology
Scanners
Scanning
Single photon emission computed tomography
Tomography
Tomography, Emission-Computed, Single-Photon
Tomography, X-Ray Computed
Training
Ventricle
Title Deep learning-based attenuation map generation for myocardial perfusion SPECT
URI https://link.springer.com/article/10.1007/s00259-020-04746-6
https://www.ncbi.nlm.nih.gov/pubmed/32219492
https://www.proquest.com/docview/2429599032
https://www.proquest.com/docview/2384214079
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB7xkBAXtLu8CiwyEjewSBonjk8rCu0ipCLEQ-otcmynF0gDtAf-PTOuG7RCyyVRFCdxZsbz8NjfAByncVlW0gjuYiW50EJzjYaPo2lSGFCYPOrS3uHhTXb1KK5H6ShMuL2FZZULnegVtZ0YmiM_Q1OiUlSdSfdP88KpahRlV0MJjWVYJegyWtIlR23AFVM0QQEXBglcomyHTTN-6xwZe8UpeIqEFBnP_jVMX7zNL5lSb4AGP2AjeI7sfM7qn7Dk6l-wNgy58U0YXjrXsFAFYszJPFlG6Jn1HM2bPeuGjT3KtL9Eb5U9v6MpIxF5Yo17rWY0dcbub_sXD1vwOOg_XFzxUCyBG_RoptyZPE4sUjzOShymifbQNsbqLLU2sviLLrdRWiqpk7QSQqfSqVKrSrkorrIk2YaVelK7XWDoQ6jcCJuZUgknCeROp-g3VUbmrtJlB-IFpQoTkMSpoMVT0WIge-oWSN3CU7fIOnDSPtPMcTS-bX2wYEARxtRb8SkBHThqb-NooBSHrt1khm2SXHQxZpSqAztzxrWfQ9UVK6Hw6dMFJz9f_v--7H3fl31Y73opomVnB7AyfZ253-inTMtDL4x4zAd_D2H1vHfZG-C517-5vfsAImDkBQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hkGgvFbS0XR6tK5VTazUPJ44PVVUBy1JYVKmLxC11bIcLZAPsCvGn-I3MOA9UoXLjGCWOrfE8PZ5vAD4nYVGU0gjuQiW50EJzjYaPo2lSGFCYLIiodnh8nI5OxK_T5HQB7rpaGLpW2elEr6jt1NAZ-Tc0JSpB1RlHP-pLTl2jKLvatdBo2OLQ3d5gyHb9_WAX93c7ioZ7k50Rb7sKcIOmf8adycLY4tLCtEB-jrXHgDFWp4m1gZUidZkNkkJJHSelEDqRThValcoFYZnSASiq_CURx4okKhvu91kLil4owMOghEuUpbZIx5fqkXOhOAVrgcA5ePqvIXzk3T7KzHqDN1yBV62nyn42rLUKC656DcvjNhf_Bsa7ztWs7TpxxskcWkZonVWDHs4udM3OPKq1f0TvmF3coukkljxntbsq53RUx_783tuZrMHJs5DxLSxW08q9B4Y-i8qMsKkplHCSQPV0gn5aaWTmSl0MIOwolZsWuZwaaJznPeayp26O1M09dfN0AF_6MXWD2_Hk15vdBuStDF_nDxw3gE_9a5Q-Sqnoyk3n-E2ciQhjVKkG8K7ZuH46VJWhEgpHf-128uHn_1_L-tNr-QgvRpPxUX50cHy4AS8jz1F05W0TFmdXc7eFPtKs-OAZk8Hf55aEe7oNHLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hKqFeqtLnFkpdqT21FnHixPGhqhDLCkoXIRWkvaWO7XCBbIBdIf5af11nnAeqULlxjBLH1nge33g8MwCfUlGWlbKSe6EVl0YabtDwcTRNGh0Km0cx5Q5Pj7L9U_ljls5W4E-fC0PXKnudGBS1m1s6I99GU6JTVJ1JvF111yKOx5PvzSWnDlIUae3babQscuhvb9B9u_52MMa9_hzHk72T3X3edRjgFmHAgnubi8ThMkVWIm8nJtSDsc5kqXORUzLzuYvSUiuTpJWUJlVel0ZX2keiyugwFNX_E5WkgmRMzQZnT5AnQ84eOihcoVx1CTshbY-AhubkuEUS5-DZv0bxHtK9F6UNxm_yHJ51qJXttGy2Diu-fgFr0y4u_xKmY-8b1nWgOONkGh2jyp11W0mcXZiGnYUK1-ERkTK7uEUzSux5zhp_VS3p2I79Ot7bPXkFp49CxtewWs9r_xYY4hedW-kyW2rpFRXYMylitsqq3FemHIHoKVXYroo5NdM4L4b6y4G6BVK3CNQtshF8GcY0bQ2PB7_e7Deg6OT5urjjvhF8HF6jJFJ4xdR-vsRvklzG6K8qPYI37cYN06HaFFpqHP2138m7n_9_Le8eXssHWEMZKH4eHB1uwNM4MBTdftuE1cXV0r9HuLQotwJfMvj92ILwFw3qIOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+attenuation+map+generation+for+myocardial+perfusion+SPECT&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Shi%2C+Luyao&rft.au=Onofrey%2C+John+A.&rft.au=Liu%2C+Hui&rft.au=Liu%2C+Yi-Hwa&rft.date=2020-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=47&rft.issue=10&rft.spage=2383&rft.epage=2395&rft_id=info:doi/10.1007%2Fs00259-020-04746-6&rft.externalDocID=10_1007_s00259_020_04746_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon