High entropy alloys: Substituting for cobalt in cutting edge technology

•Metal cutting tools made of cemented carbide are a strong pillar to today's industry.•A key ingredient in cemented carbide is cobalt, but it needs to be replaced.•Finding a substitution for cobalt is a long-standing problem.•We design, produce and test a new cemented carbide with a replacement...

Full description

Saved in:
Bibliographic Details
Published inApplied materials today Vol. 12; pp. 322 - 329
Main Authors Holmström, Erik, Lizárraga, Raquel, Linder, David, Salmasi, Armin, Wang, Wei, Kaplan, Bartek, Mao, Huahai, Larsson, Henrik, Vitos, Levente
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Metal cutting tools made of cemented carbide are a strong pillar to today's industry.•A key ingredient in cemented carbide is cobalt, but it needs to be replaced.•Finding a substitution for cobalt is a long-standing problem.•We design, produce and test a new cemented carbide with a replacement for Co.•The new cemented carbide tool has higher resistance to plastic deformation. Cemented carbide, also known as hard metal, is one of the most outstanding composite engineering materials since its commercial introduction in the 1920s. The unique combination of strength, hardness and toughness makes cemented carbides highly versatile materials for the most demanding engineering applications. In their simplest form, these materials are composites of tungsten carbide (WC) grains that are cemented with a ductile metallic binder phase, typically cobalt. However, despite the superiority of Co as binder material, there is a long-standing need to find alternative binders due to serious health concerns that have haunted the industry for nearly 80 years. In the present study, we develop a new cemented carbide with a high entropy alloy binder phase (CoCrFeNi) from raw materials to a fully functional, coated and gradient-sintered cutting tool insert. The new hard metal with reduced Co content is designed by using first principles theory and the CALPHAD method. The cutting tool was made by pressing the new hard metal in a standard geometry, sintered to have a thin binder phase enriched surface zone, free from cubic carbides and coated with protective layers of Ti(C,N) and Al2O3. The resulting cutting insert was tested in a real machining operation and compared to a state-of-the-art reference that had Co as binder phase. The cutting tool made of the newly developed cemented carbide has an exceptionally high resistance against plastic deformation at all tested cutting speeds in the machining test, outperforming the reference insert, which shows a linear increase in edge depression when the cutting speed is increased. This result opens up the possibility to utilize the unique properties of high entropy alloys for industrial applications, in particular, as binder phase in new cemented carbides.
AbstractList Cemented carbide, also known as hard metal, is one of the most outstanding composite engineering materials since its commercial introduction in the 1920s. The unique combination of strength, hardness and toughness makes cemented carbides highly versatile materials for the most demanding engineering applications. In their simplest form, these materials are composites of tungsten carbide (WC) grains that are cemented with a ductile metallic binder phase, typically cobalt. However, despite the superiority of Co as binder material, there is a long-standing need to find alternative binders due to serious health concerns that have haunted the industry for nearly 80 years. In the present study, we develop a new cemented carbide with a high entropy alloy binder phase (CoCrFeNi) from raw materials to a fully functional, coated and gradient-sintered cutting tool insert. The new hard metal with reduced Co content is designed by using first principles theory and the CALPHAD method. The cutting tool was made by pressing the new hard metal in a standard geometry, sintered to have a thin binder phase enriched surface zone, free from cubic carbides and coated with protective layers of Ti(C,N) and Al2O3. The resulting cutting insert was tested in a real machining operation and compared to a state-of-the-art reference that had Co as binder phase. The cutting tool made of the newly developed cemented carbide has an exceptionally high resistance against plastic deformation at all tested cutting speeds in the machining test, outperforming the reference insert, which shows a linear increase in edge depression when the cutting speed is increased. This result opens up the possibility to utilize the unique properties of high entropy alloys for industrial applications, in particular, as binder phase in new cemented carbides.
•Metal cutting tools made of cemented carbide are a strong pillar to today's industry.•A key ingredient in cemented carbide is cobalt, but it needs to be replaced.•Finding a substitution for cobalt is a long-standing problem.•We design, produce and test a new cemented carbide with a replacement for Co.•The new cemented carbide tool has higher resistance to plastic deformation. Cemented carbide, also known as hard metal, is one of the most outstanding composite engineering materials since its commercial introduction in the 1920s. The unique combination of strength, hardness and toughness makes cemented carbides highly versatile materials for the most demanding engineering applications. In their simplest form, these materials are composites of tungsten carbide (WC) grains that are cemented with a ductile metallic binder phase, typically cobalt. However, despite the superiority of Co as binder material, there is a long-standing need to find alternative binders due to serious health concerns that have haunted the industry for nearly 80 years. In the present study, we develop a new cemented carbide with a high entropy alloy binder phase (CoCrFeNi) from raw materials to a fully functional, coated and gradient-sintered cutting tool insert. The new hard metal with reduced Co content is designed by using first principles theory and the CALPHAD method. The cutting tool was made by pressing the new hard metal in a standard geometry, sintered to have a thin binder phase enriched surface zone, free from cubic carbides and coated with protective layers of Ti(C,N) and Al2O3. The resulting cutting insert was tested in a real machining operation and compared to a state-of-the-art reference that had Co as binder phase. The cutting tool made of the newly developed cemented carbide has an exceptionally high resistance against plastic deformation at all tested cutting speeds in the machining test, outperforming the reference insert, which shows a linear increase in edge depression when the cutting speed is increased. This result opens up the possibility to utilize the unique properties of high entropy alloys for industrial applications, in particular, as binder phase in new cemented carbides.
Author Vitos, Levente
Wang, Wei
Linder, David
Salmasi, Armin
Lizárraga, Raquel
Larsson, Henrik
Holmström, Erik
Mao, Huahai
Kaplan, Bartek
Author_xml – sequence: 1
  givenname: Erik
  surname: Holmström
  fullname: Holmström, Erik
  organization: Sandvik Coromant R & D, SE-126 80 Stockholm, Sweden
– sequence: 2
  givenname: Raquel
  surname: Lizárraga
  fullname: Lizárraga, Raquel
  email: raqli@kth.se
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 3
  givenname: David
  surname: Linder
  fullname: Linder, David
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 4
  givenname: Armin
  surname: Salmasi
  fullname: Salmasi, Armin
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 5
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 6
  givenname: Bartek
  surname: Kaplan
  fullname: Kaplan, Bartek
  organization: Sandvik Coromant R & D, SE-126 80 Stockholm, Sweden
– sequence: 7
  givenname: Huahai
  surname: Mao
  fullname: Mao, Huahai
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 8
  givenname: Henrik
  surname: Larsson
  fullname: Larsson, Henrik
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
– sequence: 9
  givenname: Levente
  surname: Vitos
  fullname: Vitos, Levente
  organization: Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm SE-100 44, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235109$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-366157$$DView record from Swedish Publication Index
BookMark eNqFkMtO4zAUQK0RI1EYfoBVPoAE3ziJE8QG8ZaQWMxje-XcuKk7Ia5sB9S_x6XAgkVZ-aFz7pXOAdsb7agZOwaeAYfqdJmp1VPIcg51xmXGOfxgs1yUedoUUO593rncZ0feL3kkqhKggRm7vTP9ItFjcHa1TtQw2LU_S35PrQ8mTMGMfTK3LiHbqiEkZkxoCm-_uut1EjQtRjvYfv2L_Zyrweuj9_OQ_b25_nN5lz483t5fXjykVBQQUq1a2TV1U0shSdeqoJLyqm1AiAo4p6ps41MIakhCBRK6gnfUCVnnsiZeikN2sp3rX_RqanHlzJNya7TK4JX5d4HW9ThNKKoKShnx9Hv8f1hgTAS8iXy95clZ752eI5mggrExkDIDAsdNclziJjlukiOXGINGNf-ifizbKZ1vJR2bPRvt0JPRI-nOOE0BO2t26a9COZzQ
CitedBy_id crossref_primary_10_1016_j_jmrt_2020_12_016
crossref_primary_10_1016_j_surfcoat_2020_125778
crossref_primary_10_3390_ma17030675
crossref_primary_10_1007_s00170_023_12770_7
crossref_primary_10_1016_j_rineng_2025_104604
crossref_primary_10_1016_j_ijrmhm_2020_105317
crossref_primary_10_1016_j_ijrmhm_2022_105914
crossref_primary_10_1021_acsami_0c02156
crossref_primary_10_2139_ssrn_4074385
crossref_primary_10_1007_s11661_023_07049_1
crossref_primary_10_1016_j_mtla_2020_100928
crossref_primary_10_1007_s12613_022_2479_3
crossref_primary_10_1016_j_ijrmhm_2019_105063
crossref_primary_10_1080_21870764_2024_2361992
crossref_primary_10_1557_s43578_024_01302_y
crossref_primary_10_1016_j_matchar_2023_113374
crossref_primary_10_1016_j_matchemphys_2024_129723
crossref_primary_10_1016_j_jmapro_2023_07_042
crossref_primary_10_1016_j_ijrmhm_2022_105994
crossref_primary_10_1016_j_ijrmhm_2021_105731
crossref_primary_10_3365_KJMM_2022_60_1_14
crossref_primary_10_2139_ssrn_4074390
crossref_primary_10_1007_s11665_021_05829_7
crossref_primary_10_1016_j_ijrmhm_2019_105032
crossref_primary_10_3390_ceramics7010011
crossref_primary_10_1080_2374068X_2022_2142397
crossref_primary_10_1016_j_matdes_2021_110097
crossref_primary_10_1016_j_surfcoat_2023_130327
crossref_primary_10_1111_ijac_15002
crossref_primary_10_1016_j_jmrt_2023_09_073
crossref_primary_10_1016_j_corsci_2023_111383
crossref_primary_10_1016_j_jallcom_2021_163412
crossref_primary_10_3390_ma17030659
crossref_primary_10_1016_j_ijrmhm_2023_106113
crossref_primary_10_3390_ma15165780
crossref_primary_10_1016_j_jmrt_2022_01_141
crossref_primary_10_1016_j_ijrmhm_2021_105665
crossref_primary_10_1016_j_ijrmhm_2023_106118
crossref_primary_10_2139_ssrn_4135088
crossref_primary_10_3390_met13010171
crossref_primary_10_1016_j_ceramint_2025_01_030
crossref_primary_10_1080_00325899_2019_1584454
crossref_primary_10_1016_j_actamat_2019_06_041
crossref_primary_10_1016_j_ijrmhm_2022_105936
crossref_primary_10_3390_met11020271
crossref_primary_10_3390_coatings11060715
crossref_primary_10_3390_met14121457
crossref_primary_10_1016_j_intermet_2022_107738
crossref_primary_10_3390_ma16041547
crossref_primary_10_1111_jace_20317
crossref_primary_10_1016_j_ijrmhm_2019_105088
crossref_primary_10_1016_j_ceramint_2024_07_166
crossref_primary_10_1016_j_vacuum_2025_114084
crossref_primary_10_3390_gels8030140
crossref_primary_10_1016_j_apmt_2019_04_014
crossref_primary_10_1016_j_ijrmhm_2022_106023
crossref_primary_10_1016_j_ijrmhm_2019_01_012
crossref_primary_10_1016_j_jallcom_2019_152218
crossref_primary_10_1016_j_apmt_2023_102013
crossref_primary_10_1016_j_ijrmhm_2018_12_004
crossref_primary_10_2139_ssrn_4149539
crossref_primary_10_1103_PhysRevMaterials_2_094407
crossref_primary_10_1016_j_ceramint_2022_12_009
crossref_primary_10_1080_10426914_2021_2006223
crossref_primary_10_1126_sciadv_ads3926
crossref_primary_10_1016_j_jallcom_2023_172069
crossref_primary_10_1016_j_ijrmhm_2021_105748
crossref_primary_10_1016_j_actamat_2019_02_036
crossref_primary_10_1016_j_jmrt_2022_02_021
crossref_primary_10_1016_j_ijrmhm_2020_105375
crossref_primary_10_1016_j_mtcomm_2023_107137
crossref_primary_10_1111_ijac_13643
crossref_primary_10_1016_j_jallcom_2019_153141
crossref_primary_10_1016_j_progsolidstchem_2024_100454
crossref_primary_10_1016_j_triboint_2024_109804
crossref_primary_10_52676_1729_7885_2023_1_25_39
Cites_doi 10.1016/j.ijrmhm.2016.07.005
10.1016/j.ijrmhm.2017.11.030
10.1038/366303a0
10.1038/s41598-017-02385-w
10.1016/j.jallcom.2013.10.133
10.1016/0364-5916(92)90002-F
10.1016/0025-5416(88)90500-9
10.1007/s11669-017-0570-7
10.1016/j.ijrmhm.2014.01.005
10.1063/1.4973627
10.1063/1.4983762
10.1016/S0364-5916(02)00037-8
10.1016/j.scriptamat.2010.05.031
10.1016/j.matlet.2013.08.087
10.1016/S0043-1648(03)00122-4
10.1039/C7NR07281C
10.1016/j.matchemphys.2017.07.082
10.1016/j.actamat.2017.07.010
10.1007/s11837-014-1095-8
10.2355/isijinternational.32.1117
10.1103/PhysRevLett.77.3865
10.1002/adem.200300567
10.1136/oem.2003.009605
10.1038/nmat790
10.1038/ncomms15634
10.1016/j.matdes.2016.11.027
10.1080/00325899.2016.1260903
10.1103/PhysRevB.64.144104
10.1007/s12598-017-0921-x
10.1103/PhysRevLett.88.155501
10.1007/BF00555296
10.1016/j.intermet.2016.09.005
10.1016/j.actamat.2017.02.017
10.1103/PhysRevLett.87.156401
10.1103/PhysRev.156.809
10.1038/s41598-017-03877-5
10.1016/j.ijrmhm.2013.11.005
10.1016/j.scriptamat.2016.09.023
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
D8V
DF2
DOI 10.1016/j.apmt.2018.07.001
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-9415
EndPage 329
ExternalDocumentID oai_DiVA_org_uu_366157
oai_DiVA_org_kth_235109
10_1016_j_apmt_2018_07_001
S2352940718302580
GroupedDBID --M
0R~
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ADTPV
AOWAS
D8V
EFKBS
DF2
ID FETCH-LOGICAL-c441t-eab7d9898737ce8a4c5c26b91336100c65b26b33c9c716171d40dcd378278c053
IEDL.DBID AIKHN
ISSN 2352-9407
2352-9415
IngestDate Fri Aug 29 03:11:43 EDT 2025
Tue Jul 01 01:19:16 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:48:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High entropy alloys
Cobalt binder
Density functional theory
Cemented carbides
Calphad
Alternative binders
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-eab7d9898737ce8a4c5c26b91336100c65b26b33c9c716171d40dcd378278c053
PageCount 8
ParticipantIDs swepub_primary_oai_DiVA_org_uu_366157
swepub_primary_oai_DiVA_org_kth_235109
crossref_citationtrail_10_1016_j_apmt_2018_07_001
crossref_primary_10_1016_j_apmt_2018_07_001
elsevier_sciencedirect_doi_10_1016_j_apmt_2018_07_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied materials today
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Linder, Holmström, Norgren (bib0045) 2018; 71
Poletti, Fiore, Gili, Mangherini, Battezzati (bib0230) 2017; 115
Tolédano, Krexner, Prem, Weber, Dmitriev (bib0055) 2001; 64
Hardmetals–Vickers hardness test (bib0190) 1983
He, Wang, Hao, Zou, Zhao (bib0100) 2017; 36
Zhu, Liu, Ye (bib0085) 2014; 44
Qiu (bib0245) 1992; 32
Toller, Liu, Holmström, Larsson, Norgren (bib0040) 2017; 62
Tian, Lizárraga, Larsson, Holmström, Vitos (bib0060) 2017; 136
Lee (bib0240) 1992; 16
Linna, Oksa, Groundstroem, Halkosaari, Palmroos, Huikko, Uitti (bib0025) 2004; 61
Lin, Tsai, Huang, Yang, Yeh (bib0075) 2014; 66
Bracq, Laurent-Brocq, Perri??re, Pir??s, Joubert, Guillot (bib0170) 2017; 128
Murty, Yeh, Ranganathan (bib0070) 2014
Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib0065) 2004; 6
Vitos, Abrikosov, Johansson (bib0105) 2001; 87
Choudhuri, Gwalani, Gorsse, Mikler, Ramanujan, Gibson, Banerjee (bib0165) 2017; 127
Poetschke, Richter, Michaelis (bib0250) 2015; 49
Walbrühl, Linder, Ågren, Borgenstam (bib0035) 2016
Perdew, Burke, Ernzerhof (bib0140) 1996; 77
Rogal, Bobrowski, Körmann, Divinski, Stein, Grabowski (bib0215) 2017; 7
Andersen, Arcangeli, Tank, Saha-Dasgupta, Krier, Jepsen, Dasgupta (bib0115) 1997
Zhang, Zhao, Jin, Bei, Popov, Park, Neuefeind, Weber, Zhang (bib0220) 2017; 110
Soven (bib0120) 1967; 156
Andersson, Helander, Hoglund, Shi, Sundman (bib0145) 2002; 26
Mao, Chen, Chen (bib0150) 2017; 38
Andersen, Jepsen, Krier (bib0110) 1994
Hummelshøj, Christiansen, Somers (bib0225) 2010; 63
Chen, Mao, Chen (bib0155) 2018; 210
Lizárraga, Pan, Bergqvist, Holmström, Vitos (bib0235) 2017; 7
Jobs, Balhausen (bib0015) 1940; 8
Persson (bib0010) 2005
Singh, Subramaniam (bib0265) 2014; 587
Zhou, Xiao, Yuan (bib0095) 2017; 60
Vitos (bib0135) 2007
National Institute of Health (bib0020) 2013
Lu, Gao, Dong, Wang, Chen, Mao, Zhao, Jiang, Cao, Li, Guo (bib0180) 2018; 10
Persson, Jacobson, Hogmark (bib0005) 2003; 255
Vitos, Korzhavyi, Johansson (bib0130) 2003; 2
Sheikh, Mao, Guo (bib0175) 2017; 121
Shetty (bib0195) 1985; 20
Schwarzkopf, Exner, Fischmeister, Schinlmeister (bib0185) 1988; A105/106
Tracy, Park, Rittman, Zinkle, Bei, Lang, Ewing, Mao (bib0210) 2017; 8
Spiegler, Schmauder, Sigl (bib0200) 1990; 1
Chen, Yang, Chai, Yeh, Chau (bib0090) 2014; 43
He, Wang, Wu, Liu, Mao, Nieh, Lu (bib0160) 2016; 79
Lindahl (bib0255) 2010
Greer (bib0205) 1993; 366
Kaplan (bib0260) 2015
Liu (bib0030) 2015
Vitos, Korzhavyi, Johansson (bib0125) 2002; 88
Bhushan (bib0050) 2001
Zhu, Liu, Ye (bib0080) 2013; 113
Vitos (10.1016/j.apmt.2018.07.001_bib0125) 2002; 88
Andersen (10.1016/j.apmt.2018.07.001_bib0110) 1994
Zhu (10.1016/j.apmt.2018.07.001_bib0080) 2013; 113
Vitos (10.1016/j.apmt.2018.07.001_bib0135) 2007
Singh (10.1016/j.apmt.2018.07.001_bib0265) 2014; 587
Chen (10.1016/j.apmt.2018.07.001_bib0090) 2014; 43
Yeh (10.1016/j.apmt.2018.07.001_bib0065) 2004; 6
Lu (10.1016/j.apmt.2018.07.001_bib0180) 2018; 10
Jobs (10.1016/j.apmt.2018.07.001_bib0015) 1940; 8
Shetty (10.1016/j.apmt.2018.07.001_bib0195) 1985; 20
Vitos (10.1016/j.apmt.2018.07.001_bib0130) 2003; 2
Mao (10.1016/j.apmt.2018.07.001_bib0150) 2017; 38
Kaplan (10.1016/j.apmt.2018.07.001_bib0260) 2015
Persson (10.1016/j.apmt.2018.07.001_bib0005) 2003; 255
Liu (10.1016/j.apmt.2018.07.001_bib0030) 2015
Bhushan (10.1016/j.apmt.2018.07.001_bib0050) 2001
Qiu (10.1016/j.apmt.2018.07.001_bib0245) 1992; 32
Linna (10.1016/j.apmt.2018.07.001_bib0025) 2004; 61
Tian (10.1016/j.apmt.2018.07.001_bib0060) 2017; 136
Rogal (10.1016/j.apmt.2018.07.001_bib0215) 2017; 7
Walbrühl (10.1016/j.apmt.2018.07.001_bib0035) 2016
He (10.1016/j.apmt.2018.07.001_bib0160) 2016; 79
Lee (10.1016/j.apmt.2018.07.001_bib0240) 1992; 16
Andersson (10.1016/j.apmt.2018.07.001_bib0145) 2002; 26
Poletti (10.1016/j.apmt.2018.07.001_bib0230) 2017; 115
Zhu (10.1016/j.apmt.2018.07.001_bib0085) 2014; 44
Chen (10.1016/j.apmt.2018.07.001_bib0155) 2018; 210
Linder (10.1016/j.apmt.2018.07.001_bib0045) 2018; 71
Bracq (10.1016/j.apmt.2018.07.001_bib0170) 2017; 128
Tolédano (10.1016/j.apmt.2018.07.001_bib0055) 2001; 64
Perdew (10.1016/j.apmt.2018.07.001_bib0140) 1996; 77
Zhang (10.1016/j.apmt.2018.07.001_bib0220) 2017; 110
Lindahl (10.1016/j.apmt.2018.07.001_bib0255) 2010
Sheikh (10.1016/j.apmt.2018.07.001_bib0175) 2017; 121
Andersen (10.1016/j.apmt.2018.07.001_bib0115) 1997
Greer (10.1016/j.apmt.2018.07.001_bib0205) 1993; 366
Vitos (10.1016/j.apmt.2018.07.001_bib0105) 2001; 87
Lin (10.1016/j.apmt.2018.07.001_bib0075) 2014; 66
Hardmetals–Vickers hardness test (10.1016/j.apmt.2018.07.001_bib0190) 1983
Hummelshøj (10.1016/j.apmt.2018.07.001_bib0225) 2010; 63
Soven (10.1016/j.apmt.2018.07.001_bib0120) 1967; 156
Choudhuri (10.1016/j.apmt.2018.07.001_bib0165) 2017; 127
Persson (10.1016/j.apmt.2018.07.001_bib0010) 2005
Poetschke (10.1016/j.apmt.2018.07.001_bib0250) 2015; 49
Toller (10.1016/j.apmt.2018.07.001_bib0040) 2017; 62
Spiegler (10.1016/j.apmt.2018.07.001_bib0200) 1990; 1
Murty (10.1016/j.apmt.2018.07.001_bib0070) 2014
Zhou (10.1016/j.apmt.2018.07.001_bib0095) 2017; 60
Tracy (10.1016/j.apmt.2018.07.001_bib0210) 2017; 8
He (10.1016/j.apmt.2018.07.001_bib0100) 2017; 36
Schwarzkopf (10.1016/j.apmt.2018.07.001_bib0185) 1988; A105/106
National Institute of Health (10.1016/j.apmt.2018.07.001_bib0020) 2013
Lizárraga (10.1016/j.apmt.2018.07.001_bib0235) 2017; 7
References_xml – year: 2001
  ident: bib0050
  article-title: Modern Tribology Handbook
– volume: 136
  start-page: 215
  year: 2017
  ident: bib0060
  publication-title: Acta Mater.
– volume: 44
  start-page: 35
  year: 2014
  end-page: 41
  ident: bib0085
  publication-title: Int. J. Refract. Met. Hard Mater.
– volume: 156
  start-page: 809
  year: 1967
  ident: bib0120
  publication-title: Phys. Rev.
– start-page: 3
  year: 1997
  ident: bib0115
  article-title: MRS Proceedings, vol. 491
– volume: 255
  start-page: 498
  year: 2003
  end-page: 503
  ident: bib0005
  publication-title: Wear
– volume: 7
  start-page: 3778
  year: 2017
  ident: bib0235
  publication-title: Sci. Rep.
– volume: 16
  start-page: 121
  year: 1992
  end-page: 149
  ident: bib0240
  publication-title: Calphad
– year: 2015
  ident: bib0030
  article-title: Master Thesis, KTH
– volume: 366
  start-page: 303
  year: 1993
  end-page: 304
  ident: bib0205
  publication-title: Nature
– volume: 79
  start-page: 41
  year: 2016
  end-page: 52
  ident: bib0160
  publication-title: Intermetallics
– volume: 43
  start-page: 200
  year: 2014
  end-page: 204
  ident: bib0090
  publication-title: Int. J. Refract. Met. Hard Mater.
– volume: 127
  start-page: 186
  year: 2017
  end-page: 190
  ident: bib0165
  publication-title: Scr. Mat.
– volume: 49
  start-page: 124
  year: 2015
  end-page: 132
  ident: bib0250
  publication-title: IJRMHM
– volume: 26
  start-page: 273
  year: 2002
  ident: bib0145
  publication-title: Calphad
– volume: 128
  start-page: 327
  year: 2017
  ident: bib0170
  publication-title: Acta Mater.
– volume: 8
  start-page: 142
  year: 1940
  end-page: 148
  ident: bib0015
  publication-title: Vertrauensarzt und Krankenkasse
– volume: 63
  start-page: 761
  year: 2010
  end-page: 763
  ident: bib0225
  publication-title: Script. Mater.
– volume: 88
  start-page: 155501
  year: 2002
  ident: bib0125
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 877
  year: 2004
  end-page: 885
  ident: bib0025
  publication-title: Occup. Environ. Med.
– volume: 66
  start-page: 2050
  year: 2014
  end-page: 2056
  ident: bib0075
  publication-title: JOM
– volume: 60
  start-page: 1
  year: 2017
  end-page: 6
  ident: bib0095
  publication-title: Power Metal.
– volume: 110
  start-page: 011902
  year: 2017
  ident: bib0220
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2209
  year: 2017
  ident: bib0215
  publication-title: Sci. Rep.
– volume: 587
  start-page: 113
  year: 2014
  end-page: 119
  ident: bib0265
  publication-title: J. Alloys Comp.
– volume: 20
  start-page: 1873
  year: 1985
  end-page: 1882
  ident: bib0195
  article-title: Indentation fracture of WC-Co cerments
  publication-title: J. Mat. Sci.
– volume: 38
  start-page: 353
  year: 2017
  end-page: 368
  ident: bib0150
  publication-title: J. Phase Equilib. Diff.
– year: 2005
  ident: bib0010
  article-title: On the mechanisms behind the tribological performance of Stellites
– volume: 210
  start-page: 279
  year: 2018
  end-page: 290
  ident: bib0155
  publication-title: Mater. Chem. Phys.
– volume: 115
  start-page: 247
  year: 2017
  end-page: 253
  ident: bib0230
  publication-title: Mate. Des.
– volume: 71
  start-page: 217
  year: 2018
  end-page: 220
  ident: bib0045
  publication-title: Int. J. Refr. Met. Hard Mater.
– volume: 64
  start-page: 144104
  year: 2001
  ident: bib0055
  publication-title: Phys. Rev. B
– year: 1983
  ident: bib0190
  article-title: International Organization for Standardization
– year: 2013
  ident: bib0020
  article-title: Tech. Rep. 14-5923, National Toxicology Program, U.S. Department of Health and Human Services
– volume: 113
  start-page: 80
  year: 2013
  end-page: 82
  ident: bib0080
  publication-title: Mater. Lett.
– volume: 32
  start-page: 1117
  year: 1992
  end-page: 1127
  ident: bib0245
  publication-title: ISIJ Int.
– volume: 36
  start-page: 494
  year: 2017
  end-page: 500
  ident: bib0100
  publication-title: Rare Met.
– year: 2007
  ident: bib0135
  article-title: Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
– volume: A105/106
  start-page: 225
  year: 1988
  end-page: 231
  ident: bib0185
  publication-title: Mat. Sci. Eng.
– year: 2016
  ident: bib0035
  article-title: Proceedings Paper WorldPM
– volume: 1
  start-page: 147
  year: 1990
  end-page: 158
  ident: bib0200
  article-title: Fracture toughness evaluation of WC-Co alloys by indentation testing
  publication-title: J. Hard Mater.
– start-page: 63
  year: 1994
  ident: bib0110
  publication-title: World Sci.
– year: 2010
  ident: bib0255
  article-title: Master Thesis, KTH
– volume: 62
  start-page: 225
  year: 2017
  end-page: 229
  ident: bib0040
  publication-title: Int. J. Refr. Met. Hard Mater.
– volume: 2
  start-page: 25
  year: 2003
  ident: bib0130
  publication-title: Nat. Mater.
– volume: 8
  start-page: 15634
  year: 2017
  ident: bib0210
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1912
  year: 2018
  end-page: 1919
  ident: bib0180
  publication-title: Nanoscale
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: bib0140
  publication-title: Phys. Rev. Lett.
– year: 2014
  ident: bib0070
  article-title: High-Entropy Alloys
– year: 2015
  ident: bib0260
  article-title: Equilibrium Aspects of Cr-alloyed Cemented Carbides
– volume: 87
  start-page: 156401
  year: 2001
  ident: bib0105
  publication-title: Phys. Rev. Lett.
– volume: 121
  start-page: 194903
  year: 2017
  ident: bib0175
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib0065
  publication-title: Adv. Eng. Mater.
– volume: 62
  start-page: 225
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0040
  publication-title: Int. J. Refr. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2016.07.005
– volume: 71
  start-page: 217
  year: 2018
  ident: 10.1016/j.apmt.2018.07.001_bib0045
  publication-title: Int. J. Refr. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2017.11.030
– start-page: 3
  year: 1997
  ident: 10.1016/j.apmt.2018.07.001_bib0115
– year: 2013
  ident: 10.1016/j.apmt.2018.07.001_bib0020
– start-page: 63
  year: 1994
  ident: 10.1016/j.apmt.2018.07.001_bib0110
  publication-title: World Sci.
– volume: 1
  start-page: 147
  issue: 3
  year: 1990
  ident: 10.1016/j.apmt.2018.07.001_bib0200
  article-title: Fracture toughness evaluation of WC-Co alloys by indentation testing
  publication-title: J. Hard Mater.
– volume: 366
  start-page: 303
  year: 1993
  ident: 10.1016/j.apmt.2018.07.001_bib0205
  publication-title: Nature
  doi: 10.1038/366303a0
– volume: 8
  start-page: 142
  year: 1940
  ident: 10.1016/j.apmt.2018.07.001_bib0015
  publication-title: Vertrauensarzt und Krankenkasse
– volume: 7
  start-page: 2209
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0215
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02385-w
– volume: 587
  start-page: 113
  year: 2014
  ident: 10.1016/j.apmt.2018.07.001_bib0265
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2013.10.133
– volume: 16
  start-page: 121
  year: 1992
  ident: 10.1016/j.apmt.2018.07.001_bib0240
  publication-title: Calphad
  doi: 10.1016/0364-5916(92)90002-F
– volume: A105/106
  start-page: 225
  year: 1988
  ident: 10.1016/j.apmt.2018.07.001_bib0185
  publication-title: Mat. Sci. Eng.
  doi: 10.1016/0025-5416(88)90500-9
– volume: 38
  start-page: 353
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0150
  publication-title: J. Phase Equilib. Diff.
  doi: 10.1007/s11669-017-0570-7
– volume: 44
  start-page: 35
  year: 2014
  ident: 10.1016/j.apmt.2018.07.001_bib0085
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2014.01.005
– volume: 110
  start-page: 011902
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0220
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4973627
– year: 2001
  ident: 10.1016/j.apmt.2018.07.001_bib0050
– volume: 121
  start-page: 194903
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0175
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4983762
– volume: 26
  start-page: 273
  year: 2002
  ident: 10.1016/j.apmt.2018.07.001_bib0145
  publication-title: Calphad
  doi: 10.1016/S0364-5916(02)00037-8
– year: 2015
  ident: 10.1016/j.apmt.2018.07.001_bib0260
– volume: 63
  start-page: 761
  year: 2010
  ident: 10.1016/j.apmt.2018.07.001_bib0225
  publication-title: Script. Mater.
  doi: 10.1016/j.scriptamat.2010.05.031
– volume: 113
  start-page: 80
  year: 2013
  ident: 10.1016/j.apmt.2018.07.001_bib0080
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.08.087
– year: 2007
  ident: 10.1016/j.apmt.2018.07.001_bib0135
– volume: 255
  start-page: 498
  year: 2003
  ident: 10.1016/j.apmt.2018.07.001_bib0005
  publication-title: Wear
  doi: 10.1016/S0043-1648(03)00122-4
– volume: 10
  start-page: 1912
  year: 2018
  ident: 10.1016/j.apmt.2018.07.001_bib0180
  publication-title: Nanoscale
  doi: 10.1039/C7NR07281C
– volume: 49
  start-page: 124
  year: 2015
  ident: 10.1016/j.apmt.2018.07.001_bib0250
  publication-title: IJRMHM
– year: 2010
  ident: 10.1016/j.apmt.2018.07.001_bib0255
– volume: 210
  start-page: 279
  year: 2018
  ident: 10.1016/j.apmt.2018.07.001_bib0155
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.07.082
– volume: 136
  start-page: 215
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0060
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.07.010
– year: 2005
  ident: 10.1016/j.apmt.2018.07.001_bib0010
– volume: 66
  start-page: 2050
  year: 2014
  ident: 10.1016/j.apmt.2018.07.001_bib0075
  publication-title: JOM
  doi: 10.1007/s11837-014-1095-8
– volume: 32
  start-page: 1117
  year: 1992
  ident: 10.1016/j.apmt.2018.07.001_bib0245
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.32.1117
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.apmt.2018.07.001_bib0140
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.apmt.2018.07.001_bib0065
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– volume: 61
  start-page: 877
  year: 2004
  ident: 10.1016/j.apmt.2018.07.001_bib0025
  publication-title: Occup. Environ. Med.
  doi: 10.1136/oem.2003.009605
– volume: 2
  start-page: 25
  year: 2003
  ident: 10.1016/j.apmt.2018.07.001_bib0130
  publication-title: Nat. Mater.
  doi: 10.1038/nmat790
– volume: 8
  start-page: 15634
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0210
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15634
– volume: 115
  start-page: 247
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0230
  publication-title: Mate. Des.
  doi: 10.1016/j.matdes.2016.11.027
– year: 2016
  ident: 10.1016/j.apmt.2018.07.001_bib0035
– volume: 60
  start-page: 1
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0095
  publication-title: Power Metal.
  doi: 10.1080/00325899.2016.1260903
– volume: 64
  start-page: 144104
  year: 2001
  ident: 10.1016/j.apmt.2018.07.001_bib0055
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.144104
– volume: 36
  start-page: 494
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0100
  publication-title: Rare Met.
  doi: 10.1007/s12598-017-0921-x
– volume: 88
  start-page: 155501
  year: 2002
  ident: 10.1016/j.apmt.2018.07.001_bib0125
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.155501
– volume: 20
  start-page: 1873
  year: 1985
  ident: 10.1016/j.apmt.2018.07.001_bib0195
  article-title: Indentation fracture of WC-Co cerments
  publication-title: J. Mat. Sci.
  doi: 10.1007/BF00555296
– volume: 79
  start-page: 41
  year: 2016
  ident: 10.1016/j.apmt.2018.07.001_bib0160
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2016.09.005
– volume: 128
  start-page: 327
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0170
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.02.017
– volume: 87
  start-page: 156401
  year: 2001
  ident: 10.1016/j.apmt.2018.07.001_bib0105
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.156401
– year: 2015
  ident: 10.1016/j.apmt.2018.07.001_bib0030
– year: 1983
  ident: 10.1016/j.apmt.2018.07.001_bib0190
– volume: 156
  start-page: 809
  year: 1967
  ident: 10.1016/j.apmt.2018.07.001_bib0120
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.156.809
– volume: 7
  start-page: 3778
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0235
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03877-5
– volume: 43
  start-page: 200
  year: 2014
  ident: 10.1016/j.apmt.2018.07.001_bib0090
  publication-title: Int. J. Refract. Met. Hard Mater.
  doi: 10.1016/j.ijrmhm.2013.11.005
– year: 2014
  ident: 10.1016/j.apmt.2018.07.001_bib0070
– volume: 127
  start-page: 186
  year: 2017
  ident: 10.1016/j.apmt.2018.07.001_bib0165
  publication-title: Scr. Mat.
  doi: 10.1016/j.scriptamat.2016.09.023
SSID ssj0001651191
Score 2.3917382
Snippet •Metal cutting tools made of cemented carbide are a strong pillar to today's industry.•A key ingredient in cemented carbide is cobalt, but it needs to be...
Cemented carbide, also known as hard metal, is one of the most outstanding composite engineering materials since its commercial introduction in the 1920s. The...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 322
SubjectTerms Alternative binders
Calphad
Cemented carbides
Cobalt binder
Density functional theory
High entropy alloys
Title High entropy alloys: Substituting for cobalt in cutting edge technology
URI https://dx.doi.org/10.1016/j.apmt.2018.07.001
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235109
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-366157
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqdoEB8RTlJQ_AgqLGiRMnbFV5FBAsPMRmxZcUyqONIBn499wlbikS6sCYyFass3P-7vz5O8b2pWuUayQ4WRLHjkSA7JhBHDpSZDJODW7BhvKQ1zdh_15ePgaPDdab3IUhWqX1_bVPr7y1fdOx1uzkw2Hn1kPsEFM8QhJWQYRxe8vD3dVtslb34qp_85NqCemwTFRl5gLPoT72-kzN9Eryd2JViqiS8bTlYf7aoma1RKv952yZLVngyLv12FZYIxutssUZOcE1dk6kDU7p2nH-xelE_evzmJNrqPgA2IYjROVAEiAFH444lBXrmVNOjRfTJPs6uz87vev1HVsowQFEMwXa2aiUCkEqX0EWJRIC8EITY_yJ6MiFMECjG9-HGBTFMyKVbgqpj-hARYC_4QZrjsajbJPxDAaQqQAiDGykSLzEJEYk6cD1TarA89tMTGyjwaqIUzGLNz2hi71osqcme2qXDrdFmx1N--S1hsbc1sHE5PrXStDo5Of2O6znZ_oNUs4-GT509fjjSb8WzxqnX7hxmx3Ma1iW2kfQEqitfw5kmy3QU01E22HN4qPMdhG5FGbPrsxvChjsqg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7QE4IJ4i5bUHygVZ2bXXXhuJQ9RSEtLmQot6W7zjDaRAErWOUH4Xf7Az9iYUCeWA1Ku9K49m1_Pab78BeKWlM9JpjHxZFJGmADly4yKLtPK6qBy5YMd1yONR1j_VH8_Ssy34vboLw7DKYPtbm95Y6_CkG7TZnU8m3U8xxQ4F5yNMYZXmMiArh375i_K2y3eDA1rkvTg-fH-y349Ca4EIyf_XJJkzFbdONIlBn5caU4wzV1DGRvGExCwlMV2SYIGGMwBVaVlhlZA_NTlKbhVBdn-H2bDot9rpDYb90Z_STsaHc6ppa5fGEcsYruu0yLJy_pNRnCpvaENDO5p_ucTr3KWNvzu8B3dDoCp6rS7uw5afPoA71-gLH8IHBokILg_P5kvBJ_jLy7eCTVGDP6AxgkJigUw5UovJVOCiQVkLruGJel3UfwSnN6K9x7A9nU39ExAex-hNijklUlqVcelKp8pqLBNXGYyTDqiVbiwG1nJunvHDruBp55b1aVmfVvJhuurAm_WcecvZsXF0ulK5_WvnWXIqG-e9btdn_Q1m6j6YfO7Z2cVX-73-Zmn5lSw6sLdp4GJhEwqSUrP7n4K8hFv9k-MjezQYDZ_CbX7TguCewXZ9sfDPKWqq3YuwSwV8uekf4wrFrSgG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+entropy+alloys&rft.jtitle=Applied+materials+today&rft.au=Holmstr%C3%B6m%2C+Erik&rft.au=Lizarraga%2C+Raquel&rft.au=Linder%2C+David&rft.au=Salmasi%2C+Armin&rft.date=2018-09-01&rft.issn=2352-9415&rft.volume=12&rft.spage=322&rft_id=info:doi/10.1016%2Fj.apmt.2018.07.001&rft.externalDocID=oai_DiVA_org_kth_235109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-9407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-9407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-9407&client=summon