Space-time dual quantum Zeno effect: Interferometric engineering of open quantum system dynamics
Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum communication tasks. However, little is known about its impact from the viewpoint of open quantum systems. Thus we examine this subject from the pe...
Saved in:
Published in | Physical review research Vol. 4; no. 3; p. 033143 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
22.08.2022
|
Online Access | Get full text |
ISSN | 2643-1564 2643-1564 |
DOI | 10.1103/PhysRevResearch.4.033143 |
Cover
Loading…
Abstract | Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum communication tasks. However, little is known about its impact from the viewpoint of open quantum systems. Thus we examine this subject from the perspective of system-environment interactions. We show that the superposition of multiple trajectories can result in quantum state freezing, suggesting a space-time dual to the quantum Zeno effect. Moreover, nontrivial Dicke-like super(sub)radiance can be triggered without utilizing multiatom correlations. |
---|---|
AbstractList | Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum communication tasks. However, little is known about its impact from the viewpoint of open quantum systems. Thus we examine this subject from the perspective of system-environment interactions. We show that the superposition of multiple trajectories can result in quantum state freezing, suggesting a space-time dual to the quantum Zeno effect. Moreover, nontrivial Dicke-like super(sub)radiance can be triggered without utilizing multiatom correlations. |
ArticleNumber | 033143 |
Author | Lambert, Neill Chen, Guang-Yin Nori, Franco Lin, Jhen-Dong Huang, Ching-Yu Chen, Yueh-Nan |
Author_xml | – sequence: 1 givenname: Jhen-Dong surname: Lin fullname: Lin, Jhen-Dong – sequence: 2 givenname: Ching-Yu surname: Huang fullname: Huang, Ching-Yu – sequence: 3 givenname: Neill orcidid: 0000-0001-7873-0773 surname: Lambert fullname: Lambert, Neill – sequence: 4 givenname: Guang-Yin orcidid: 0000-0002-0075-6428 surname: Chen fullname: Chen, Guang-Yin – sequence: 5 givenname: Franco orcidid: 0000-0003-3682-7432 surname: Nori fullname: Nori, Franco – sequence: 6 givenname: Yueh-Nan orcidid: 0000-0002-2785-7675 surname: Chen fullname: Chen, Yueh-Nan |
BookMark | eNqFkMFOGzEQhq2KSqVp3sEvsMFe28TuoRJCtESKBKLlwsXM2uNglLVT20HK2zc0UCEuPc1opP-bme8zOUo5ISGUsxnnTJxcP-zqDT7dYEUo7mEmZ0wILsUHctyfStFxdSqP3vSfyLTWR8ZYrziXWh2T-58bcNi1OCL1W1jT31tIbTvSO0yZYgjo2le6SA1LwJJHbCU6imkVE2KJaUVzoHmD6V-w7mrDkfpdgjG6-oV8DLCuOH2pE3L7_eLX-WW3vPqxOD9bdk5K3jo0wxA0RzWg0CpIH3qz_8UY7dVgcO41d0qjUk5qPTdKD5IFpebADQcRUEzI4sD1GR7tpsQRys5miPbvIJeVhdKiW6OVzinnQYHb7-6DAOkNY6JXvTdcsn7P-nZguZJrLRisiw1azKkViGvLmX3Wb9_pt9Ie9O8B-h3g9aD_Rv8AnhGUPQ |
CitedBy_id | crossref_primary_10_1103_PhysRevA_108_022203 crossref_primary_10_3390_e27030228 crossref_primary_10_1038_s41377_022_01063_5 crossref_primary_10_1103_PhysRevA_106_052201 crossref_primary_10_1103_PhysRevA_107_042415 crossref_primary_10_1364_OE_500690 crossref_primary_10_1002_adma_202302297 crossref_primary_10_1103_PhysRevResearch_6_023136 crossref_primary_10_1103_PhysRevResearch_5_013103 crossref_primary_10_1088_1751_8121_ad3ab4 |
Cites_doi | 10.1103/PhysRevLett.87.040402 10.1103/RevModPhys.88.021002 10.1038/35002001 10.1038/s41534-019-0235-y 10.1103/PhysRevResearch.3.013093 10.1103/PhysRevA.82.022119 10.1103/PhysRevLett.90.166802 10.1038/ncomms2076 10.1103/PhysRevA.99.022107 10.1103/PhysRevA.80.062109 10.1088/1367-2630/ab8ef7 10.1103/PhysRevLett.103.210401 10.1103/PhysRevLett.107.230501 10.1103/PhysRevD.102.085013 10.1103/PhysRevA.89.024101 10.1103/PhysRevLett.89.080401 10.1126/science.1192739 10.1103/PhysRevLett.126.060501 10.1038/nphys1994 10.1103/PhysRevA.90.012101 10.1038/srep02154 10.1038/s41566-021-00770-6 10.1038/srep01752 10.1103/PhysRevA.95.033610 10.1103/PhysRevLett.108.140403 10.1103/PhysRevLett.129.030401 10.1103/PhysRevA.101.062304 10.1103/PhysRevA.72.012338 10.1364/OPTICA.388912 10.1038/35014537 10.1038/s41467-018-05817-x 10.1103/PhysRevA.49.2133 10.1103/PRXQuantum.2.040319 10.1103/PhysRevA.81.062306 10.1038/s41598-017-06059-5 10.1038/srep29497 10.1103/PhysRevA.101.012340 10.1126/sciadv.abg2879 10.22331/q-2020-09-24-333 10.1088/1367-2630/7/1/172 10.1038/ncomms3254 10.1103/PhysRevA.103.022605 10.1103/PhysRevLett.120.120502 10.1103/PhysRevLett.90.037901 10.1103/PhysRevLett.83.4888 10.1038/ncomms5705 10.1038/s41467-019-11579-x 10.1103/PhysRevLett.95.180501 10.1103/PhysRevA.94.022118 10.1016/j.physleta.2013.05.029 10.1007/s11128-020-02856-6 10.1103/PhysRevA.65.010101 10.1119/1.1531580 10.1103/PhysRevLett.124.210502 10.1063/1.523304 10.1103/PhysRevA.88.052320 10.1103/PhysRevLett.120.117702 10.1103/PhysRevA.77.062339 10.1103/PhysRevA.41.2295 10.1016/j.physrep.2005.03.001 10.1103/PhysRevLett.91.067902 10.1103/PhysRevA.103.032223 10.1103/PhysRevLett.87.270405 10.1098/rspa.2018.0903 10.1038/nphys2085 10.1103/RevModPhys.81.1051 10.1038/nature08470 10.1103/PhysRevA.88.063806 10.1016/j.physrep.2004.12.002 10.1007/s11467-010-0113-8 10.1016/j.physleta.2020.126936 10.1126/sciadv.abk3160 10.1103/PhysRevLett.128.180602 10.1103/PhysRevLett.76.2049 10.1016/0370-1573(82)90102-8 10.1103/PhysRevLett.125.131602 10.1103/PhysRevA.98.063815 10.1103/PhysRevA.62.012105 10.1103/PhysRevA.89.062316 10.1103/PhysRevD.103.065013 10.1103/PhysRevLett.73.58 10.1038/ncomms11243 10.1016/j.physleta.2011.11.045 10.1088/1367-2630/ab4f46 10.1126/sciadv.1602589 10.1016/j.physrep.2017.02.003 10.1103/PhysRev.93.99 10.1038/srep00968 10.1103/PhysRevLett.82.2417 10.1088/1367-2630/aab2f9 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.4.033143 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_4cc5cda5acc442f3a4d9003252d91402 10_1103_PhysRevResearch_4_033143 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c441t-e9bbf81e5be385f4df29033998d5b9e7d81c58e55c4887958b40f557a191a3fe3 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:24:38 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Tue Jul 01 02:05:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-e9bbf81e5be385f4df29033998d5b9e7d81c58e55c4887958b40f557a191a3fe3 |
ORCID | 0000-0002-2785-7675 0000-0003-3682-7432 0000-0001-7873-0773 0000-0002-0075-6428 |
OpenAccessLink | https://doaj.org/article/4cc5cda5acc442f3a4d9003252d91402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cc5cda5acc442f3a4d9003252d91402 crossref_citationtrail_10_1103_PhysRevResearch_4_033143 crossref_primary_10_1103_PhysRevResearch_4_033143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-22 |
PublicationDateYYYYMMDD | 2022-08-22 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2022 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.4.033143Cc18R1 PhysRevResearch.4.033143Cc16R1 PhysRevResearch.4.033143Cc39R1 PhysRevResearch.4.033143Cc21R1 PhysRevResearch.4.033143Cc46R1 PhysRevResearch.4.033143Cc67R1 PhysRevResearch.4.033143Cc48R1 PhysRevResearch.4.033143Cc69R1 PhysRevResearch.4.033143Cc25R1 PhysRevResearch.4.033143Cc42R1 PhysRevResearch.4.033143Cc63R1 PhysRevResearch.4.033143Cc88R1 PhysRevResearch.4.033143Cc23R1 PhysRevResearch.4.033143Cc44R1 PhysRevResearch.4.033143Cc65R1 PhysRevResearch.4.033143Cc86R1 PhysRevResearch.4.033143Cc84R1 PhysRevResearch.4.033143Cc40R1 PhysRevResearch.4.033143Cc82R1 PhysRevResearch.4.033143Cc80R1 PhysRevResearch.4.033143Cc29R1 PhysRevResearch.4.033143Cc27R1 PhysRevResearch.4.033143Cc11R1 PhysRevResearch.4.033143Cc32R1 PhysRevResearch.4.033143Cc57R1 PhysRevResearch.4.033143Cc78R1 PhysRevResearch.4.033143Cc30R1 PhysRevResearch.4.033143Cc4R1 PhysRevResearch.4.033143Cc15R1 PhysRevResearch.4.033143Cc36R1 PhysRevResearch.4.033143Cc53R1 PhysRevResearch.4.033143Cc74R1 PhysRevResearch.4.033143Cc2R1 PhysRevResearch.4.033143Cc34R1 PhysRevResearch.4.033143Cc55R1 PhysRevResearch.4.033143Cc76R1 PhysRevResearch.4.033143Cc8R1 PhysRevResearch.4.033143Cc70R1 PhysRevResearch.4.033143Cc6R1 PhysRevResearch.4.033143Cc51R1 PhysRevResearch.4.033143Cc72R1 PhysRevResearch.4.033143Cc93R1 PhysRevResearch.4.033143Cc91R1 PhysRevResearch.4.033143Cc19R1 PhysRevResearch.4.033143Cc17R1 PhysRevResearch.4.033143Cc38R1 H.-P. Breuer (PhysRevResearch.4.033143Cc61R1) 2002 PhysRevResearch.4.033143Cc22R1 PhysRevResearch.4.033143Cc45R1 PhysRevResearch.4.033143Cc68R1 PhysRevResearch.4.033143Cc20R1 PhysRevResearch.4.033143Cc47R1 PhysRevResearch.4.033143Cc89R1 PhysRevResearch.4.033143Cc26R1 PhysRevResearch.4.033143Cc41R1 PhysRevResearch.4.033143Cc64R1 PhysRevResearch.4.033143Cc87R1 H. M. Wiseman (PhysRevResearch.4.033143Cc13R1) 2010 PhysRevResearch.4.033143Cc24R1 PhysRevResearch.4.033143Cc43R1 PhysRevResearch.4.033143Cc66R1 PhysRevResearch.4.033143Cc85R1 PhysRevResearch.4.033143Cc83R1 PhysRevResearch.4.033143Cc62R1 PhysRevResearch.4.033143Cc81R1 PhysRevResearch.4.033143Cc28R1 PhysRevResearch.4.033143Cc49R1 PhysRevResearch.4.033143Cc10R1 PhysRevResearch.4.033143Cc33R1 PhysRevResearch.4.033143Cc56R1 PhysRevResearch.4.033143Cc79R1 PhysRevResearch.4.033143Cc31R1 PhysRevResearch.4.033143Cc58R1 PhysRevResearch.4.033143Cc37R1 PhysRevResearch.4.033143Cc52R1 PhysRevResearch.4.033143Cc75R1 PhysRevResearch.4.033143Cc3R1 PhysRevResearch.4.033143Cc14R1 PhysRevResearch.4.033143Cc12R1 PhysRevResearch.4.033143Cc35R1 PhysRevResearch.4.033143Cc54R1 PhysRevResearch.4.033143Cc77R1 PhysRevResearch.4.033143Cc1R1 PhysRevResearch.4.033143Cc71R1 PhysRevResearch.4.033143Cc94R1 PhysRevResearch.4.033143Cc7R1 PhysRevResearch.4.033143Cc50R1 PhysRevResearch.4.033143Cc73R1 PhysRevResearch.4.033143Cc92R1 PhysRevResearch.4.033143Cc5R1 PhysRevResearch.4.033143Cc90R1 PhysRevResearch.4.033143Cc9R1 |
References_xml | – ident: PhysRevResearch.4.033143Cc28R1 doi: 10.1103/PhysRevLett.87.040402 – ident: PhysRevResearch.4.033143Cc93R1 doi: 10.1103/RevModPhys.88.021002 – ident: PhysRevResearch.4.033143Cc1R1 doi: 10.1038/35002001 – ident: PhysRevResearch.4.033143Cc8R1 doi: 10.1038/s41534-019-0235-y – ident: PhysRevResearch.4.033143Cc45R1 doi: 10.1103/PhysRevResearch.3.013093 – ident: PhysRevResearch.4.033143Cc35R1 doi: 10.1103/PhysRevA.82.022119 – ident: PhysRevResearch.4.033143Cc73R1 doi: 10.1103/PhysRevLett.90.166802 – ident: PhysRevResearch.4.033143Cc88R1 doi: 10.1038/ncomms2076 – ident: PhysRevResearch.4.033143Cc7R1 doi: 10.1103/PhysRevA.99.022107 – ident: PhysRevResearch.4.033143Cc34R1 doi: 10.1103/PhysRevA.80.062109 – ident: PhysRevResearch.4.033143Cc44R1 doi: 10.1088/1367-2630/ab8ef7 – ident: PhysRevResearch.4.033143Cc92R1 doi: 10.1103/PhysRevLett.103.210401 – ident: PhysRevResearch.4.033143Cc63R1 doi: 10.1103/PhysRevLett.107.230501 – ident: PhysRevResearch.4.033143Cc47R1 doi: 10.1103/PhysRevD.102.085013 – ident: PhysRevResearch.4.033143Cc94R1 doi: 10.1103/PhysRevA.89.024101 – ident: PhysRevResearch.4.033143Cc29R1 doi: 10.1103/PhysRevLett.89.080401 – ident: PhysRevResearch.4.033143Cc22R1 doi: 10.1126/science.1192739 – ident: PhysRevResearch.4.033143Cc67R1 doi: 10.1103/PhysRevLett.126.060501 – ident: PhysRevResearch.4.033143Cc62R1 doi: 10.1038/nphys1994 – ident: PhysRevResearch.4.033143Cc31R1 doi: 10.1103/PhysRevA.90.012101 – ident: PhysRevResearch.4.033143Cc75R1 doi: 10.1038/srep02154 – ident: PhysRevResearch.4.033143Cc87R1 doi: 10.1038/s41566-021-00770-6 – ident: PhysRevResearch.4.033143Cc38R1 doi: 10.1038/srep01752 – ident: PhysRevResearch.4.033143Cc5R1 doi: 10.1103/PhysRevA.95.033610 – ident: PhysRevResearch.4.033143Cc64R1 doi: 10.1103/PhysRevLett.108.140403 – ident: PhysRevResearch.4.033143Cc65R1 doi: 10.1103/PhysRevLett.129.030401 – ident: PhysRevResearch.4.033143Cc83R1 doi: 10.1103/PhysRevA.101.062304 – ident: PhysRevResearch.4.033143Cc40R1 doi: 10.1103/PhysRevA.72.012338 – ident: PhysRevResearch.4.033143Cc57R1 doi: 10.1364/OPTICA.388912 – ident: PhysRevResearch.4.033143Cc27R1 doi: 10.1038/35014537 – ident: PhysRevResearch.4.033143Cc6R1 doi: 10.1038/s41467-018-05817-x – ident: PhysRevResearch.4.033143Cc10R1 doi: 10.1103/PhysRevA.49.2133 – ident: PhysRevResearch.4.033143Cc66R1 doi: 10.1103/PRXQuantum.2.040319 – ident: PhysRevResearch.4.033143Cc15R1 doi: 10.1103/PhysRevA.81.062306 – ident: PhysRevResearch.4.033143Cc80R1 doi: 10.1038/s41598-017-06059-5 – ident: PhysRevResearch.4.033143Cc32R1 doi: 10.1038/srep29497 – ident: PhysRevResearch.4.033143Cc42R1 doi: 10.1103/PhysRevA.101.012340 – ident: PhysRevResearch.4.033143Cc58R1 doi: 10.1126/sciadv.abg2879 – ident: PhysRevResearch.4.033143Cc43R1 doi: 10.22331/q-2020-09-24-333 – ident: PhysRevResearch.4.033143Cc71R1 doi: 10.1088/1367-2630/7/1/172 – ident: PhysRevResearch.4.033143Cc23R1 doi: 10.1038/ncomms3254 – ident: PhysRevResearch.4.033143Cc84R1 doi: 10.1103/PhysRevA.103.022605 – ident: PhysRevResearch.4.033143Cc90R1 doi: 10.1103/PhysRevLett.120.120502 – ident: PhysRevResearch.4.033143Cc21R1 doi: 10.1103/PhysRevLett.90.037901 – ident: PhysRevResearch.4.033143Cc17R1 doi: 10.1103/PhysRevLett.83.4888 – ident: PhysRevResearch.4.033143Cc86R1 doi: 10.1038/ncomms5705 – ident: PhysRevResearch.4.033143Cc91R1 doi: 10.1038/s41467-019-11579-x – ident: PhysRevResearch.4.033143Cc18R1 doi: 10.1103/PhysRevLett.95.180501 – ident: PhysRevResearch.4.033143Cc81R1 doi: 10.1103/PhysRevA.94.022118 – ident: PhysRevResearch.4.033143Cc37R1 doi: 10.1016/j.physleta.2013.05.029 – ident: PhysRevResearch.4.033143Cc50R1 doi: 10.1007/s11128-020-02856-6 – ident: PhysRevResearch.4.033143Cc12R1 doi: 10.1103/PhysRevA.65.010101 – ident: PhysRevResearch.4.033143Cc55R1 doi: 10.1119/1.1531580 – ident: PhysRevResearch.4.033143Cc9R1 doi: 10.1103/PhysRevLett.124.210502 – ident: PhysRevResearch.4.033143Cc25R1 doi: 10.1063/1.523304 – ident: PhysRevResearch.4.033143Cc72R1 doi: 10.1103/PhysRevA.88.052320 – ident: PhysRevResearch.4.033143Cc77R1 doi: 10.1103/PhysRevLett.120.117702 – ident: PhysRevResearch.4.033143Cc33R1 doi: 10.1103/PhysRevA.77.062339 – ident: PhysRevResearch.4.033143Cc26R1 doi: 10.1103/PhysRevA.41.2295 – ident: PhysRevResearch.4.033143Cc30R1 doi: 10.1016/j.physrep.2005.03.001 – ident: PhysRevResearch.4.033143Cc39R1 doi: 10.1103/PhysRevLett.91.067902 – ident: PhysRevResearch.4.033143Cc51R1 doi: 10.1103/PhysRevA.103.032223 – volume-title: The Theory of Open Quantum Systems year: 2002 ident: PhysRevResearch.4.033143Cc61R1 – ident: PhysRevResearch.4.033143Cc85R1 doi: 10.1103/PhysRevLett.87.270405 – ident: PhysRevResearch.4.033143Cc41R1 doi: 10.1098/rspa.2018.0903 – ident: PhysRevResearch.4.033143Cc2R1 doi: 10.1038/nphys2085 – ident: PhysRevResearch.4.033143Cc54R1 doi: 10.1103/RevModPhys.81.1051 – ident: PhysRevResearch.4.033143Cc20R1 doi: 10.1038/nature08470 – ident: PhysRevResearch.4.033143Cc4R1 doi: 10.1103/PhysRevA.88.063806 – ident: PhysRevResearch.4.033143Cc74R1 doi: 10.1016/j.physrep.2004.12.002 – ident: PhysRevResearch.4.033143Cc19R1 doi: 10.1007/s11467-010-0113-8 – ident: PhysRevResearch.4.033143Cc49R1 doi: 10.1016/j.physleta.2020.126936 – ident: PhysRevResearch.4.033143Cc78R1 doi: 10.1126/sciadv.abk3160 – ident: PhysRevResearch.4.033143Cc79R1 doi: 10.1103/PhysRevLett.128.180602 – ident: PhysRevResearch.4.033143Cc69R1 doi: 10.1103/PhysRevLett.76.2049 – ident: PhysRevResearch.4.033143Cc70R1 doi: 10.1016/0370-1573(82)90102-8 – ident: PhysRevResearch.4.033143Cc48R1 doi: 10.1103/PhysRevLett.125.131602 – ident: PhysRevResearch.4.033143Cc76R1 doi: 10.1103/PhysRevA.98.063815 – ident: PhysRevResearch.4.033143Cc11R1 doi: 10.1103/PhysRevA.62.012105 – ident: PhysRevResearch.4.033143Cc53R1 doi: 10.1103/PhysRevA.89.062316 – ident: PhysRevResearch.4.033143Cc46R1 doi: 10.1103/PhysRevD.103.065013 – ident: PhysRevResearch.4.033143Cc52R1 doi: 10.1103/PhysRevLett.73.58 – ident: PhysRevResearch.4.033143Cc24R1 doi: 10.1038/ncomms11243 – ident: PhysRevResearch.4.033143Cc36R1 doi: 10.1016/j.physleta.2011.11.045 – ident: PhysRevResearch.4.033143Cc56R1 doi: 10.1088/1367-2630/ab4f46 – ident: PhysRevResearch.4.033143Cc89R1 doi: 10.1126/sciadv.1602589 – ident: PhysRevResearch.4.033143Cc14R1 doi: 10.1016/j.physrep.2017.02.003 – ident: PhysRevResearch.4.033143Cc68R1 doi: 10.1103/PhysRev.93.99 – ident: PhysRevResearch.4.033143Cc3R1 doi: 10.1038/srep00968 – volume-title: Quantum Measurement and Control year: 2010 ident: PhysRevResearch.4.033143Cc13R1 – ident: PhysRevResearch.4.033143Cc16R1 doi: 10.1103/PhysRevLett.82.2417 – ident: PhysRevResearch.4.033143Cc82R1 doi: 10.1088/1367-2630/aab2f9 |
SSID | ssj0002511485 |
Score | 2.287425 |
Snippet | Superposition of trajectories, which modify quantum evolutions by superposing paths through interferometry, has been utilized to enhance various quantum... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 033143 |
Title | Space-time dual quantum Zeno effect: Interferometric engineering of open quantum system dynamics |
URI | https://doaj.org/article/4cc5cda5acc442f3a4d9003252d91402 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEhIL4inKSx5Y0yaxL3HYALWqkMoAVKpYgp8TpEBbRn47PictEQsMLBmiXJR8uZzvrO--I-RcpgoJNTZC5buIg4wjJY2IMp9b80KgxBz2O49us-GY30xg0hr1hZywWh64Bq7HtQZtJEitOU8dk9zg5lsKqSl8cRCir1_zWsUUxmBMnLmAJXUnZj0kVN7ZjyWfrcu7MWOhWae1HrVk-8P6MtgmW01iSC_rB9oha7baJRuBoKlne-Tp3he3NsJR8BTbp-jbwmOyeKGPtprSmpVxQcP-nrMoQYDK-9R-qw3SqaM4KmtlWGs4U1OPpJ_tk_Gg_3A9jJrpCJEHIplHtlDKicSCskyA48alhX8lXz4ZUIXNjUg0CAug_T-aFyAUjx1ALn2FJpmz7ICsV9PKHhLqklQzyzOjZc4lg8L4NE-rzGPojBbQIfkSo1I30uE4weK5DCVEzMof6Ja8rNHtkGRl-VrLZ_zB5go_w-p6FMAOJ7xblI1blL-5xdF_3OSYbKbY7RD7YJKekPX5-8Ke-hxkrs6Cu_nj6LP_BRMY3fc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-time+dual+quantum+Zeno+effect%3A+Interferometric+engineering+of+open+quantum+system+dynamics&rft.jtitle=Physical+review+research&rft.au=Lin%2C+Jhen-Dong&rft.au=Huang%2C+Ching-Yu&rft.au=Lambert%2C+Neill&rft.au=Chen%2C+Guang-Yin&rft.date=2022-08-22&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=4&rft.issue=3&rft_id=info:doi/10.1103%2FPhysRevResearch.4.033143&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_4_033143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |