Evapotranspiration Estimation with Small UAVs in Precision Agriculture

Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, s...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 22; p. 6427
Main Authors Niu, Haoyu, Hollenbeck, Derek, Zhao, Tiebiao, Wang, Dong, Chen, YangQuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.11.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.
AbstractList Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.
Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.
Author Niu, Haoyu
Wang, Dong
Hollenbeck, Derek
Zhao, Tiebiao
Chen, YangQuan
AuthorAffiliation 1 Electrical Engineering and Computer Science Department, University of California, Merced, CA 95340, USA; hniu2@ucmerced.edu
2 Mechanical Engineering Department, University of California, Merced, CA 95340, USA; dhollenbeck@ucmerced.edu (D.H.); tzhao3@ucmerced.edu (T.Z.)
3 USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA; Dong.Wang@usda.gov
AuthorAffiliation_xml – name: 1 Electrical Engineering and Computer Science Department, University of California, Merced, CA 95340, USA; hniu2@ucmerced.edu
– name: 2 Mechanical Engineering Department, University of California, Merced, CA 95340, USA; dhollenbeck@ucmerced.edu (D.H.); tzhao3@ucmerced.edu (T.Z.)
– name: 3 USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA; Dong.Wang@usda.gov
Author_xml – sequence: 1
  givenname: Haoyu
  orcidid: 0000-0002-7052-8877
  surname: Niu
  fullname: Niu, Haoyu
– sequence: 2
  givenname: Derek
  orcidid: 0000-0002-4782-1370
  surname: Hollenbeck
  fullname: Hollenbeck, Derek
– sequence: 3
  givenname: Tiebiao
  surname: Zhao
  fullname: Zhao, Tiebiao
– sequence: 4
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
– sequence: 5
  givenname: YangQuan
  orcidid: 0000-0002-7422-5988
  surname: Chen
  fullname: Chen, YangQuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33182824$$D View this record in MEDLINE/PubMed
BookMark eNplkUtPGzEUhS1EBSRl0T9QzRIWaa4fsWc2lSKUtEhIrdTC1vLYnmDkjFPbA-q_r_MAQVn5yvfc71z7jNBxH3qL0CcMXyhtYJoIEMIZEUfoDDPCJjUhcPyqPkWjlB4ACKW0PkGnlOKa1ISdoeXiUW1CjqpPGxdVdqGvFim79b58cvm--rVW3le387tUub76Ga12aducr6LTg89DtB_Rh075ZM8P5xjdLhe_r75Pbn58u76a30w0YzhP7IzotmOmaSjWILAAUkM7A2MUbS0AdJ2wpqGUcwOqE9xo0YHRhhMlGszpGF3vuSaoB7mJZc_4Vwbl5O4ixJVUMTvtreRUkAKmmPOaYSxasC23XcEDbwBmhfV1z9oM7doabfvyDf4N9G2nd_dyFR6l4I2YYVwAFwdADH8Gm7Jcu6St96q3YUiSMA6CcyivHaPPr71eTJ6DKILpXqBjSCnaTmqXdxkUa-clBrmNWr5EXSYu_5t4hr7X_gMkJKhA
CitedBy_id crossref_primary_10_1016_j_compag_2022_107017
crossref_primary_10_1016_j_jhydrol_2024_130901
crossref_primary_10_1007_s00271_023_00888_1
crossref_primary_10_1007_s10846_022_01588_2
crossref_primary_10_3390_geographies4030024
crossref_primary_10_3390_rs16203882
crossref_primary_10_1016_j_agrformet_2022_108981
crossref_primary_10_3390_drones8070290
crossref_primary_10_2166_wcc_2024_048
crossref_primary_10_3390_drones7030186
crossref_primary_10_3390_agronomy13071942
crossref_primary_10_3390_app11041403
crossref_primary_10_1016_j_agwat_2023_108247
crossref_primary_10_1016_j_buildenv_2022_109389
crossref_primary_10_3389_ffgc_2025_1457762
crossref_primary_10_3390_rs13132639
crossref_primary_10_3390_agronomy12112905
crossref_primary_10_3390_rs13163255
crossref_primary_10_1007_s00271_023_00899_y
crossref_primary_10_3390_hydrology10060120
crossref_primary_10_3390_w16091300
crossref_primary_10_3390_e23030297
crossref_primary_10_1002_arp_1946
crossref_primary_10_3390_s22093251
crossref_primary_10_1007_s10661_024_12479_4
crossref_primary_10_1016_j_eng_2022_02_008
crossref_primary_10_3390_s22114243
crossref_primary_10_17221_191_2022_JFS
crossref_primary_10_1002_ppj2_20100
crossref_primary_10_3390_drones8090476
crossref_primary_10_3390_agriengineering6010047
Cites_doi 10.1029/2000WR900033
10.1029/97WR00704
10.1109/MESA.2010.5552031
10.1007/s00271-009-0177-9
10.5194/hess-19-2017-2015
10.1175/1520-0493(1988)116<0600:EFNSAF>2.0.CO;2
10.13031/2013.29493
10.1029/WR017i004p01133
10.1007/s00704-015-1522-y
10.1002/rob.21508
10.3390/s8010070
10.1016/j.compag.2016.05.018
10.2151/jmsj.83.373
10.1175/JHM464.1
10.3390/s8053557
10.1016/0168-1923(95)02265-Y
10.1016/j.agrformet.2015.10.011
10.1007/s13593-014-0246-1
10.2134/agronj1973.00021962006500030001x
10.1109/IGARSS.2017.8128252
10.1016/S0022-1694(99)00104-3
10.1007/s11119-005-2324-5
10.1029/2001WR000386
10.1080/01431161.2017.1280202
10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2
10.1016/j.compag.2016.05.017
10.1061/(ASCE)0733-9437(2005)131:1(85)
10.1134/S0097807816020172
10.13031/2013.27401
10.3133/sir20175087
10.1007/s00271-007-0088-6
10.1016/S0022-1694(99)00202-4
10.3390/s17102173
10.3390/rs4061519
10.1109/ICUAS.2019.8798188
10.1016/j.advwatres.2012.06.004
10.1080/014311699211994
10.1080/01431169008955124
10.1016/j.agrformet.2009.07.002
10.3390/rs4061573
10.1117/12.559503
10.1109/ICUAS.2016.7502566
10.7127/iv-inovagri-meeting-2017-res4150694
10.1002/wrcr.20208
10.1016/j.rse.2006.11.028
10.1071/FP09123
10.1016/j.advwatres.2008.10.005
10.1016/S0168-1923(99)00005-2
10.1016/j.agrformet.2009.05.016
10.1016/j.compag.2015.04.015
10.1016/j.compag.2018.03.010
10.1117/12.2558824
10.2134/agronj2011.0082
10.3390/s17112488
10.1051/agro:2002053
10.1080/02626669609491522
10.3390/s17071499
10.1016/j.jhydrol.2017.03.032
10.1061/(ASCE)IR.1943-4774.0000949
10.1002/2016WR020175
10.3390/rs8080638
10.1016/j.compag.2017.05.002
10.1177/0309133312444943
10.3390/rs70404213
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1111/j.1749-8198.2010.00381.x
10.1023/A:1008168910634
10.1016/0168-1923(95)02259-Z
10.1007/s00138-013-0570-5
10.3390/w8010009
10.1109/TGRS.2008.2010457
10.1007/s00704-015-1624-6
10.1016/j.agrformet.2016.01.005
10.3390/en7052821
10.1007/s00267-014-0245-7
10.2134/jeq1991.00472425002000040003x
10.1016/j.jhydrol.2004.10.024
10.1016/j.rse.2005.05.011
10.3390/rs4030703
10.5194/hess-6-85-2002
10.1016/0168-1923(90)90110-R
10.1016/j.ecolmodel.2012.03.001
10.1109/ICUAS48674.2020.9213888
10.5194/hess-20-697-2016
10.1007/s00271-018-0585-9
10.1016/j.rse.2013.07.024
10.1029/95WR01955
10.1080/02626667.2016.1142667
10.1016/j.mcm.2010.11.039
10.1115/DETC2017-68246
10.1016/S0022-1694(96)03172-1
10.1016/j.atmosres.2015.12.002
10.1007/s00271-014-0447-z
10.1016/S1464-1909(99)00128-8
10.2747/1548-1603.48.1.99
10.1016/j.rse.2014.11.003
10.1117/12.2558221
10.1007/s10795-005-5187-z
10.1016/j.agrformet.2014.06.009
10.1109/ICUAS.2015.7152331
10.1007/s00271-012-0332-6
10.5194/hess-20-1523-2016
10.1016/j.tifs.2009.12.002
10.1515/acgeo-2015-0016
10.1097/00010694-200504000-00002
10.1080/01431161.2012.748990
10.1109/MESA.2016.7587161
10.1016/j.agrformet.2012.03.008
10.1017/CBO9780511808470
10.1007/s00704-016-1943-2
10.5194/hess-17-2809-2013
10.5194/bg-11-5021-2014
10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2
10.1016/j.compag.2015.04.012
10.1016/B978-0-444-42250-7.50012-4
10.1061/(ASCE)0733-9437(2005)131:1(94)
10.1029/2010WR010203
10.1002/hyp.8408
10.1016/j.compag.2015.02.010
10.2134/agronj2000.925847x
10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
10.1016/S0022-1694(98)00253-4
10.3390/rs4051392
10.1016/j.biosystemseng.2010.11.003
10.1117/12.2325570
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s20226427
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_63720dd316684117b0eb6efed9069005
PMC7697511
33182824
10_3390_s20226427
Genre Journal Article
Review
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-e52cbf4d9931c07170280b50dda3be000ff7ed93366d0af76dc7f0dcd62a79163
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:36 EDT 2025
Thu Aug 21 18:06:30 EDT 2025
Mon Jul 21 11:27:43 EDT 2025
Mon Jul 21 05:52:13 EDT 2025
Tue Jul 01 03:55:55 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords METRIC
remote sensing
evapotranspiration
unmanned aerial vehicles
clumped canopy
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-e52cbf4d9931c07170280b50dda3be000ff7ed93366d0af76dc7f0dcd62a79163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Current address: MESA Lab, Room 22, 4225 Hospital Road, Atwater, CA 95301, USA.
ORCID 0000-0002-4782-1370
0000-0002-7422-5988
0000-0002-7052-8877
OpenAccessLink https://doaj.org/article/63720dd316684117b0eb6efed9069005
PMID 33182824
PQID 2460766099
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_63720dd316684117b0eb6efed9069005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697511
proquest_miscellaneous_2460766099
pubmed_primary_33182824
crossref_citationtrail_10_3390_s20226427
crossref_primary_10_3390_s20226427
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201110
PublicationDateYYYYMMDD 2020-11-10
PublicationDate_xml – month: 11
  year: 2020
  text: 20201110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_139
ref_138
(ref_25) 2015; 7
Li (ref_110) 2005; 6
Fisher (ref_137) 2017; 53
ref_98
ref_132
Long (ref_112) 2013; 49
Fritschen (ref_10) 1965; 10
Wallace (ref_124) 2012; 4
ref_18
Gocic (ref_77) 2016; 125
Alizadeh (ref_84) 2017; 548
ref_16
Keshtegar (ref_52) 2016; 127
Misaghian (ref_76) 2017; 130
Martinelli (ref_136) 2015; 35
ref_125
Hardin (ref_118) 2010; 4
Harwin (ref_121) 2012; 4
Kustas (ref_24) 1996; 41
Motamedi (ref_73) 2015; 113
ref_129
Mehdizadeh (ref_75) 2017; 139
ref_120
Guzinski (ref_97) 2015; 19
Zipper (ref_49) 2014; 197
Gocic (ref_83) 2015; 114
ref_29
Brown (ref_131) 1973; 65
Allen (ref_14) 2005; 19
Xiang (ref_128) 2011; 108
Massman (ref_60) 1999; 223
Gowda (ref_39) 2009; 28
Roerink (ref_43) 2000; 25
Yassin (ref_79) 2016; 43
Jackson (ref_42) 1981; 17
Gowda (ref_105) 2008; 26
Kustas (ref_64) 1999; 94
Duggin (ref_113) 1990; 11
Matsushima (ref_68) 2005; 83
Crisci (ref_71) 2012; 240
Shamshirband (ref_85) 2015; 142
Park (ref_55) 2016; 216
Wetzel (ref_4) 1988; 116
Gade (ref_133) 2014; 25
Brenner (ref_40) 2017; 38
Kustas (ref_13) 2009; 149
Abrahart (ref_51) 2012; 36
Timmermans (ref_66) 2007; 108
Song (ref_93) 2016; 230
Jones (ref_134) 2009; 36
ref_87
Kustas (ref_88) 2000; 92
Wang (ref_115) 2009; 52
Moran (ref_23) 1991; 20
Priestley (ref_89) 1972; 100
Hsu (ref_50) 1995; 31
Ruhoff (ref_101) 2012; 4
Kalma (ref_59) 1990; 51
Hunt (ref_108) 2005; 6
Choi (ref_91) 2009; 149
Lelong (ref_127) 2008; 8
Xu (ref_6) 2005; 308
Kousari (ref_53) 2017; 127
Kaplan (ref_3) 2014; 53
Verstraeten (ref_1) 2008; 8
ref_56
Guzinski (ref_96) 2014; 11
Bastiaanssen (ref_104) 2005; 131
Troufleau (ref_67) 1997; 188
Timmermans (ref_70) 2015; 63
Bastiaanssen (ref_15) 1998; 212
Tasumi (ref_107) 2005; 131
Colaizzi (ref_92) 2012; 104
Allen (ref_5) 1998; 56
Hashim (ref_82) 2016; 171
Gowen (ref_135) 2010; 21
Jacob (ref_106) 2002; 22
Hardin (ref_119) 2011; 48
Smith (ref_126) 1999; 20
Wu (ref_2) 2005; 170
Williams (ref_28) 2013; 138
Santanello (ref_95) 2003; 42
Lucieer (ref_122) 2014; 31
Bastiaanssen (ref_99) 2000; 229
Moghaddamnia (ref_54) 2009; 32
Feng (ref_111) 2013; 34
Hoffmann (ref_21) 2016; 20
ref_69
Angus (ref_9) 1984; Volume 13
Sun (ref_102) 2011; 54
Swain (ref_27) 2010; 53
ref_62
Turner (ref_123) 2012; 4
Colaizzi (ref_65) 2012; 50
French (ref_90) 2015; 158
Antonopoulos (ref_72) 2016; 61
Guzinski (ref_94) 2013; 17
Kisi (ref_74) 2015; 115
Norman (ref_63) 1995; 77
ref_114
ref_117
ref_116
Liou (ref_7) 2014; 7
ref_36
ref_34
ref_33
ref_32
Berni (ref_130) 2009; 47
ref_31
ref_30
Tabari (ref_78) 2013; 31
Shiri (ref_86) 2012; 44
Quattrochi (ref_22) 1999; 14
Norman (ref_57) 2000; 36
Dou (ref_80) 2018; 148
ref_103
Goldhamer (ref_26) 2015; 33
Gocic (ref_81) 2016; 127
Kustas (ref_17) 1997; 33
Monteiro (ref_37) 2019; 8
Allen (ref_8) 2011; 25
ref_109
Nieto (ref_38) 2019; 37
ref_47
ref_46
ref_45
ref_44
Bastiaanssen (ref_100) 2002; 38
ref_41
Verhoef (ref_61) 1997; 36
Allen (ref_19) 2007; 133
Xia (ref_35) 2016; 20
ref_48
Nagler (ref_11) 2005; 97
Norman (ref_20) 1995; 77
Boulet (ref_58) 2012; 161
Su (ref_12) 2002; 6
References_xml – volume: 36
  start-page: 2263
  year: 2000
  ident: ref_57
  article-title: Surface Flux Estimation Using Radiometric Temperature: A Dual-temperature-difference Method to Minimize Measurement Errors
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900033
– ident: ref_117
– volume: 33
  start-page: 1495
  year: 1997
  ident: ref_17
  article-title: A Two-source Approach for Estimating Turbulent Fluxes Using Multiple Angle Thermal Infrared Observations
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR00704
– ident: ref_132
  doi: 10.1109/MESA.2010.5552031
– volume: 28
  start-page: 79
  year: 2009
  ident: ref_39
  article-title: Estimating Hourly Crop ET Using a Two-source Energy Balance Model and Multispectral Airborne Imagery
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-009-0177-9
– volume: 19
  start-page: 2017
  year: 2015
  ident: ref_97
  article-title: Inter-comparison of Energy Balance and Hydrological Models for Land Surface Energy Flux Estimation over a Whole River Catchment
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-2017-2015
– volume: 116
  start-page: 600
  year: 1988
  ident: ref_4
  article-title: Evapotranspiration from Nonuniform Surfaces: A First Approach for Short-Term Numerical Weather Prediction
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1988)116<0600:EFNSAF>2.0.CO;2
– ident: ref_16
– volume: 53
  start-page: 21
  year: 2010
  ident: ref_27
  article-title: Adoption of an Unmanned Helicopter for Low-altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop
  publication-title: Trans. ASABE
  doi: 10.13031/2013.29493
– volume: 17
  start-page: 1133
  year: 1981
  ident: ref_42
  article-title: Canopy Temperature as a Crop Water Stress Indicator
  publication-title: Water Resour. Res.
  doi: 10.1029/WR017i004p01133
– volume: 125
  start-page: 555
  year: 2016
  ident: ref_77
  article-title: Particle Swarm Optimization-based Radial Basis Function Network for Estimation of Reference Evapotranspiration
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1522-y
– volume: 31
  start-page: 571
  year: 2014
  ident: ref_122
  article-title: HyperUAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21508
– volume: 8
  start-page: 70
  year: 2008
  ident: ref_1
  article-title: Assessment of Evapotranspiration and Soil Moisture Content across Different Scales of Observation
  publication-title: Sensors
  doi: 10.3390/s8010070
– volume: 127
  start-page: 120
  year: 2016
  ident: ref_52
  article-title: A Nonlinear Mathematical Modeling of Daily Pan Evaporation Based on Conjugate Gradient Method
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.05.018
– volume: 83
  start-page: 373
  year: 2005
  ident: ref_68
  article-title: Relations between Aerodynamic Parameters of Heat Transfer and Thermal-infrared Thermometry in the Bulk Surface Formulation
  publication-title: J. Meteorol. Soc. Jpn. Ser. II
  doi: 10.2151/jmsj.83.373
– ident: ref_114
– volume: 6
  start-page: 878
  year: 2005
  ident: ref_110
  article-title: Utility of Remote Sensing-based Two-source Energy Balance Model under Low-and High-vegetation Cover Conditions
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM464.1
– volume: 8
  start-page: 3557
  year: 2008
  ident: ref_127
  article-title: Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots
  publication-title: Sensors
  doi: 10.3390/s8053557
– volume: 77
  start-page: 263
  year: 1995
  ident: ref_20
  article-title: Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02265-Y
– volume: 216
  start-page: 157
  year: 2016
  ident: ref_55
  article-title: Drought Assessment and Monitoring through Blending of Multi-sensor Indices Using Machine Learning Approaches for Different Climate Regions
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.011
– volume: 35
  start-page: 1
  year: 2015
  ident: ref_136
  article-title: Advanced Methods of Plant Disease Detection. A Review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-014-0246-1
– volume: 65
  start-page: 341
  year: 1973
  ident: ref_131
  article-title: A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field 1
  publication-title: Agron. J.
  doi: 10.2134/agronj1973.00021962006500030001x
– ident: ref_36
  doi: 10.1109/IGARSS.2017.8128252
– volume: 223
  start-page: 27
  year: 1999
  ident: ref_60
  article-title: A Model Study of kBH-1 for Vegetated Surfaces Using Localized Near-field Lagrangian Theory
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00104-3
– volume: 6
  start-page: 359
  year: 2005
  ident: ref_108
  article-title: Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-005-2324-5
– volume: 38
  start-page: 9-1
  year: 2002
  ident: ref_100
  article-title: Satellite Surveillance of Evaporative Depletion across the Indus Basin
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000386
– volume: 38
  start-page: 3003
  year: 2017
  ident: ref_40
  article-title: Estimating Spatially Distributed Turbulent Heat Fluxes from High-resolution Thermal Imagery Acquired with a UAV System
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1280202
– volume: 36
  start-page: 560
  year: 1997
  ident: ref_61
  article-title: Some Practical Notes on the Parameter kB-1 for Sparse Vegetation
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2
– volume: 127
  start-page: 56
  year: 2016
  ident: ref_81
  article-title: Comparative Analysis of Reference Evapotranspiration Equations Modelling by Extreme Learning Machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.05.017
– volume: 131
  start-page: 85
  year: 2005
  ident: ref_104
  article-title: SEBAL Model with Remotely Sensed Data to Improve Water-resources Management under Actual Field Conditions
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
– volume: 43
  start-page: 412
  year: 2016
  ident: ref_79
  article-title: Comparison between Gene Expression Programming and Traditional Models for Estimating Evapotranspiration under Hyper Arid Conditions
  publication-title: Water Resour.
  doi: 10.1134/S0097807816020172
– volume: 52
  start-page: 801
  year: 2009
  ident: ref_115
  article-title: Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL)
  publication-title: Trans. ASABE
  doi: 10.13031/2013.27401
– ident: ref_18
  doi: 10.3133/sir20175087
– volume: 26
  start-page: 223
  year: 2008
  ident: ref_105
  article-title: ET Mapping for Agricultural Water Management: Present Status and Challenges
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-007-0088-6
– volume: 229
  start-page: 87
  year: 2000
  ident: ref_99
  article-title: SEBAL-based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00202-4
– ident: ref_47
  doi: 10.3390/s17102173
– ident: ref_30
– volume: 4
  start-page: 1519
  year: 2012
  ident: ref_124
  article-title: Development of a UAV-LiDAR System with Application to Forest Inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs4061519
– ident: ref_48
  doi: 10.1109/ICUAS.2019.8798188
– volume: 50
  start-page: 134
  year: 2012
  ident: ref_65
  article-title: Two-source Energy Balance Model Estimates of Evapotranspiration Using Component and Composite Surface Temperatures
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.06.004
– volume: 20
  start-page: 2653
  year: 1999
  ident: ref_126
  article-title: The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699211994
– volume: 11
  start-page: 1669
  year: 1990
  ident: ref_113
  article-title: Assumptions Implicit in Remote Sensing Data Acquisition and Analysis
  publication-title: Remote Sens.
  doi: 10.1080/01431169008955124
– volume: 149
  start-page: 2082
  year: 2009
  ident: ref_91
  article-title: An Intercomparison of Three Remote Sensing-based Surface Energy Balance Algorithms over a Corn and Soybean Production Region (Iowa, US) during SMACEX
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.07.002
– volume: 4
  start-page: 1573
  year: 2012
  ident: ref_121
  article-title: Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-view Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs4061573
– ident: ref_62
  doi: 10.1117/12.559503
– ident: ref_129
  doi: 10.1109/ICUAS.2016.7502566
– ident: ref_34
  doi: 10.7127/iv-inovagri-meeting-2017-res4150694
– volume: 49
  start-page: 2601
  year: 2013
  ident: ref_112
  article-title: Assessing the Impact of End-member Selection on the Accuracy of Satellite-based Spatial Variability Models for Actual Evapotranspiration Estimation
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20208
– volume: 10
  start-page: 38
  year: 1965
  ident: ref_10
  article-title: Accuracy of Evapotranspiration Determinations by the Bowen Ratio Method
  publication-title: Hydrol. Sci. J.
– volume: 108
  start-page: 369
  year: 2007
  ident: ref_66
  article-title: An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-source Energy Balance (TSEB) Modeling Schemes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.028
– volume: 36
  start-page: 978
  year: 2009
  ident: ref_134
  article-title: Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP09123
– volume: 32
  start-page: 88
  year: 2009
  ident: ref_54
  article-title: Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-fuzzy Inference System Techniques
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2008.10.005
– volume: 94
  start-page: 13
  year: 1999
  ident: ref_64
  article-title: Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-source Model with Radiometric Temperatures for Partial Canopy Cover
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(99)00005-2
– volume: 149
  start-page: 2071
  year: 2009
  ident: ref_13
  article-title: Advances in Thermal Infrared Remote Sensing for Land Surface Modeling
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2009.05.016
– volume: 115
  start-page: 66
  year: 2015
  ident: ref_74
  article-title: Long-term Monthly Evapotranspiration Modeling by Several Data-driven Methods without Climatic Data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.04.015
– ident: ref_33
– volume: 148
  start-page: 95
  year: 2018
  ident: ref_80
  article-title: Evapotranspiration Estimation Using Four Different Machine Learning Approaches in Different Terrestrial Ecosystems
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.010
– ident: ref_87
  doi: 10.1117/12.2558824
– volume: 104
  start-page: 225
  year: 2012
  ident: ref_92
  article-title: Radiation Model for Row Crops: I. Geometric View Factors and Parameter Optimization
  publication-title: Agron. J.
  doi: 10.2134/agronj2011.0082
– ident: ref_56
  doi: 10.3390/s17112488
– volume: 22
  start-page: 669
  year: 2002
  ident: ref_106
  article-title: Mapping Surface Fluxes Using Airborne Visible, Near Infrared, Thermal Infrared Remote Sensing Data and a Spatialized Surface Energy Balance Model
  publication-title: Agronomie
  doi: 10.1051/agro:2002053
– volume: 41
  start-page: 495
  year: 1996
  ident: ref_24
  article-title: Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669609491522
– ident: ref_45
  doi: 10.3390/s17071499
– volume: 548
  start-page: 588
  year: 2017
  ident: ref_84
  article-title: A New Approach for Simulating and Forecasting the Rainfall-runoff Process within the Next Two Months
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.03.032
– volume: 142
  start-page: 04015044
  year: 2015
  ident: ref_85
  article-title: Estimation of Reference Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)IR.1943-4774.0000949
– volume: 53
  start-page: 2618
  year: 2017
  ident: ref_137
  article-title: The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020175
– ident: ref_31
  doi: 10.3390/rs8080638
– volume: 139
  start-page: 103
  year: 2017
  ident: ref_75
  article-title: Using MARS, SVM, GEP and Empirical Equations for Estimation of Monthly Mean Reference Evapotranspiration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.05.002
– volume: 36
  start-page: 480
  year: 2012
  ident: ref_51
  article-title: Two Decades of Anarchy? Emerging Themes and Outstanding Challenges for Neural Network River Forecasting
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133312444943
– volume: 7
  start-page: 4213
  year: 2015
  ident: ref_25
  article-title: High-resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials
  publication-title: Remote Sens.
  doi: 10.3390/rs70404213
– ident: ref_32
– volume: 133
  start-page: 380
  year: 2007
  ident: ref_19
  article-title: Satellite-based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 4
  start-page: 1297
  year: 2010
  ident: ref_118
  article-title: Small-scale Remotely Piloted Vehicles in Environmental Research
  publication-title: Geogr. Compass
  doi: 10.1111/j.1749-8198.2010.00381.x
– volume: 14
  start-page: 577
  year: 1999
  ident: ref_22
  article-title: Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications
  publication-title: Landsc. Ecol.
  doi: 10.1023/A:1008168910634
– volume: 77
  start-page: 153
  year: 1995
  ident: ref_63
  article-title: Terminology in Thermal Infrared Remote Sensing of Natural Surfaces
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(95)02259-Z
– volume: 25
  start-page: 245
  year: 2014
  ident: ref_133
  article-title: Thermal Cameras and Applications: A Survey
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-013-0570-5
– ident: ref_103
  doi: 10.3390/w8010009
– volume: 47
  start-page: 722
  year: 2009
  ident: ref_130
  article-title: Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2010457
– volume: 127
  start-page: 361
  year: 2017
  ident: ref_53
  article-title: Introducing an Operational Method to Forecast Long-term Regional Drought Based on the Application of Artificial Intelligence Capabilities
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1624-6
– volume: 230
  start-page: 8
  year: 2016
  ident: ref_93
  article-title: Application of Remote Sensing-based Two-source Energy Balance Model for Mapping Field Surface Fluxes with Composite and Component Surface Temperatures
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.01.005
– volume: 7
  start-page: 2821
  year: 2014
  ident: ref_7
  article-title: Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review
  publication-title: Energies
  doi: 10.3390/en7052821
– volume: 53
  start-page: 855
  year: 2014
  ident: ref_3
  article-title: Quantifying Outdoor Water Consumption of Urban Land Use/Land Cover: Sensitivity to Drought
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-014-0245-7
– volume: 20
  start-page: 725
  year: 1991
  ident: ref_23
  article-title: Assessing the Spatial Distribution of Evapotranspiration Using Remotely Sensed Inputs
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq1991.00472425002000040003x
– volume: 44
  start-page: 131
  year: 2012
  ident: ref_86
  article-title: Estimating Daily Reference Evapotranspiration Using Available and Estimated Climatic Data by Adaptive Neuro-fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN)
  publication-title: Hydrol. Res.
– ident: ref_98
– volume: 308
  start-page: 105
  year: 2005
  ident: ref_6
  article-title: Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach to Estimate Actual Regional Evapotranspiration in Different Climatic Regions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.10.024
– volume: 97
  start-page: 337
  year: 2005
  ident: ref_11
  article-title: Evapotranspiration on Western US Rivers Estimated Using the Enhanced Vegetation Index from MODIS and Data from Eddy Covariance and Bowen Ratio Flux Towers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.011
– volume: 4
  start-page: 703
  year: 2012
  ident: ref_101
  article-title: A MODIS-based Energy Balance to Estimate Evapotranspiration for Clear-sky Days in Brazilian Tropical Savannas
  publication-title: Remote Sens.
  doi: 10.3390/rs4030703
– volume: 6
  start-page: 85
  year: 2002
  ident: ref_12
  article-title: The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-6-85-2002
– volume: 51
  start-page: 223
  year: 1990
  ident: ref_59
  article-title: Estimating Evaporation from Pasture Using Infrared Thermometry: Evaluation of a One-layer Resistance Model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/0168-1923(90)90110-R
– volume: 240
  start-page: 113
  year: 2012
  ident: ref_71
  article-title: A Review of Supervised Machine Learning Algorithms and Their Applications to Ecological Data
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2012.03.001
– ident: ref_138
  doi: 10.1109/ICUAS48674.2020.9213888
– volume: 20
  start-page: 697
  year: 2016
  ident: ref_21
  article-title: Estimating Evaporation with Thermal UAV Data and Two-source Energy Balance Models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-697-2016
– volume: 37
  start-page: 389
  year: 2019
  ident: ref_38
  article-title: Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-018-0585-9
– volume: 138
  start-page: 38
  year: 2013
  ident: ref_28
  article-title: A PRI-based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-band Airborne Imagery and the CWSI Thermal Index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.024
– volume: 31
  start-page: 2517
  year: 1995
  ident: ref_50
  article-title: Artificial Neural Network Modeling of the Rainfall-runoff Process
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01955
– volume: 61
  start-page: 2590
  year: 2016
  ident: ref_72
  article-title: Artificial Neural Networks and Empirical Equations to Estimate Daily Evaporation: Application to Lake Vegoritis, Greece
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2016.1142667
– volume: 54
  start-page: 1086
  year: 2011
  ident: ref_102
  article-title: Evapotranspiration Estimation Based on the SEBAL Model in the Nansi Lake Wetland of China
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2010.11.039
– ident: ref_29
  doi: 10.1115/DETC2017-68246
– ident: ref_41
– volume: 188
  start-page: 815
  year: 1997
  ident: ref_67
  article-title: Sensible Heat Flux and Radiometric Surface Temperature over Sparse Sahelian Vegetation. I. An Experimental Analysis of the kB-1 Parameter
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03172-1
– volume: 171
  start-page: 21
  year: 2016
  ident: ref_82
  article-title: Selection of Meteorological Parameters Affecting Rainfall Estimation Using Neuro-fuzzy Computing Methodology
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.12.002
– volume: 33
  start-page: 43
  year: 2015
  ident: ref_26
  article-title: Improving the Precision of Irrigation in a Pistachio Farm Using an Unmanned Airborne Thermal System
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-014-0447-z
– volume: 25
  start-page: 147
  year: 2000
  ident: ref_43
  article-title: S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance
  publication-title: Phys. Chem. Earth Part B Hydrol. Ocean. Atmos.
  doi: 10.1016/S1464-1909(99)00128-8
– volume: 8
  start-page: 60
  year: 2019
  ident: ref_37
  article-title: Evapotranspiration Estimate Using Energy Balance Two Source Model With UAV Images: A Study in Vineyard
  publication-title: Am. J. Eng. Res.
– volume: 48
  start-page: 99
  year: 2011
  ident: ref_119
  article-title: Small-scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities
  publication-title: GISci. Remote Sens.
  doi: 10.2747/1548-1603.48.1.99
– volume: 158
  start-page: 281
  year: 2015
  ident: ref_90
  article-title: Remote Sensing of Evapotranspiration over Cotton Using the TSEB and METRIC Energy Balance Models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.003
– ident: ref_139
  doi: 10.1117/12.2558221
– volume: 56
  start-page: e156
  year: 1998
  ident: ref_5
  article-title: FAO Irrigation and Drainage Paper No. 56
  publication-title: Rome Food Agric. Organ. U. N.
– volume: 19
  start-page: 251
  year: 2005
  ident: ref_14
  article-title: A Landsat-based Energy Balance and Evapotranspiration Model in Western US Water Rights Regulation and Planning
  publication-title: Irrig. Drain. Syst.
  doi: 10.1007/s10795-005-5187-z
– volume: 197
  start-page: 91
  year: 2014
  ident: ref_49
  article-title: Using Evapotranspiration to Assess Drought Sensitivity on a Subfield Scale with HRMET, a High Resolution Surface Energy Balance Model
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.06.009
– ident: ref_125
  doi: 10.1109/ICUAS.2015.7152331
– volume: 31
  start-page: 575
  year: 2013
  ident: ref_78
  article-title: Applicability of Support Vector Machines and Adaptive Neurofuzzy Inference System for Modeling Potato Crop Evapotranspiration
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0332-6
– volume: 20
  start-page: 1523
  year: 2016
  ident: ref_35
  article-title: Mapping Evapotranspiration with High-resolution Aircraft Imagery over Vineyards Using One-and Two-source Modeling Schemes
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1523-2016
– volume: 21
  start-page: 190
  year: 2010
  ident: ref_135
  article-title: Applications of Thermal Imaging in Food Quality and Safety Assessment
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2009.12.002
– volume: 63
  start-page: 1571
  year: 2015
  ident: ref_70
  article-title: Utility of an Automated Thermal-based Approach for Monitoring Evapotranspiration
  publication-title: Acta Geophys.
  doi: 10.1515/acgeo-2015-0016
– volume: 170
  start-page: 235
  year: 2005
  ident: ref_2
  article-title: Estimating Evaporation Coefficient during Two-stage Evaporation from Soil Surfaces
  publication-title: Soil Sci.
  doi: 10.1097/00010694-200504000-00002
– volume: 34
  start-page: 2925
  year: 2013
  ident: ref_111
  article-title: A Satellite-based Energy Balance Algorithm with Reference Dry and Wet Limits
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748990
– ident: ref_120
  doi: 10.1109/MESA.2016.7587161
– volume: 161
  start-page: 148
  year: 2012
  ident: ref_58
  article-title: An Empirical Expression to Relate Aerodynamic and Surface Temperatures for Use within Single-source Energy Balance Models
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.03.008
– ident: ref_69
  doi: 10.1017/CBO9780511808470
– volume: 130
  start-page: 1099
  year: 2017
  ident: ref_76
  article-title: Predicting the Reference Evapotranspiration Based on Tensor Decomposition
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-016-1943-2
– ident: ref_116
– volume: 17
  start-page: 2809
  year: 2013
  ident: ref_94
  article-title: Using a Thermal-based Two Source Energy Balance Model with Time-differencing to Estimate Surface Energy Fluxes with Day-night MODIS Observations
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-2809-2013
– volume: 11
  start-page: 5021
  year: 2014
  ident: ref_96
  article-title: Remotely Sensed Land-surface Energy Fluxes at Sub-field Scale in Heterogeneous Agricultural Landscape and Coniferous Plantation
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-5021-2014
– volume: 42
  start-page: 851
  year: 2003
  ident: ref_95
  article-title: Diurnal Covariation in Soil Heat Flux and Net Radiation
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2
– ident: ref_46
– volume: 114
  start-page: 277
  year: 2015
  ident: ref_83
  article-title: Determination of the Most Influential Weather Parameters on Reference Evapotranspiration by Adaptive Neuro-fuzzy Methodology
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.04.012
– volume: Volume 13
  start-page: 133
  year: 1984
  ident: ref_9
  article-title: Evapotranspiration-How Good is the Bowen Ratio Method?
  publication-title: Developments in Agricultural and Managed Forest Ecology
  doi: 10.1016/B978-0-444-42250-7.50012-4
– volume: 131
  start-page: 94
  year: 2005
  ident: ref_107
  article-title: Satellite-based Energy Balance to Assess Within-population Variance of Crop Coefficient Curves
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(94)
– ident: ref_109
  doi: 10.1029/2010WR010203
– volume: 25
  start-page: 4011
  year: 2011
  ident: ref_8
  article-title: Satellite-based ET Estimation in Agriculture Using SEBAL and METRIC
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.8408
– volume: 113
  start-page: 164
  year: 2015
  ident: ref_73
  article-title: Soft Computing Approaches for Forecasting Reference Evapotranspiration
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.02.010
– volume: 92
  start-page: 847
  year: 2000
  ident: ref_88
  article-title: A Two-source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces
  publication-title: Agron. J.
  doi: 10.2134/agronj2000.925847x
– volume: 100
  start-page: 81
  year: 1972
  ident: ref_89
  article-title: On the Assessment of Surface Heat Flux and Evaporation Using Large-scale Parameters
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
– volume: 212
  start-page: 198
  year: 1998
  ident: ref_15
  article-title: A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 4
  start-page: 1392
  year: 2012
  ident: ref_123
  article-title: An Automated Technique for Generating Georectified Mosaics from Ultra-high Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds
  publication-title: Remote Sens.
  doi: 10.3390/rs4051392
– volume: 108
  start-page: 104
  year: 2011
  ident: ref_128
  article-title: Method for Automatic Georeferencing Aerial Remote Sensing (RS) Images from an Unmanned Aerial Vehicle (UAV) Platform
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2010.11.003
– ident: ref_44
  doi: 10.1117/12.2325570
SSID ssj0023338
Score 2.5011418
SecondaryResourceType review_article
Snippet Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6427
SubjectTerms Agriculture
Aircraft
clumped canopy
Crops, Agricultural - physiology
evapotranspiration
METRIC
Plant Transpiration
remote sensing
Remote Sensing Technology
Review
Soil
unmanned aerial vehicles
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4NAEN2YnvRg_Ba_shoPXkiBhVk4VtOm8WBMtKY3wrK72qTSpqX_31mWEmqaePEKm7CZYWbeY4c3hNyrOM5iqZSb6CB0w4iBK0QYuYlhI5HE8JNVg-wLDEfh8zgat0Z9mZ4wKw9sDdcFM0ZFSuYDxKHvc-EpAUormRiNXateijVvTaZqqsWQeVkdIYakvrtEio-V34yOaVWfSqR_G7L83SDZqjiDA7JfQ0Xas1s8JDuqOCJ7LQHBYzJAIDyflZVA-cT6kvYxaO3_iNR8ZKVv39l0Ske9jyWdFPR1UQ_Vob3PRa27oU7IaNB_fxq69WQEN0f4UroqCnLTYYfgws8NIzMHpCJCO2VMKMxyWnO0EGMA0ss0B5lz7clcQpBxBITslHSKWaHOCcWQ90WSg68TGeoACRRjmPO4kFJnoHyHPKwtlua1bLiZXjFNkT4Y46aNcR1y1yydW62MbYsejdmbBUbeurqATk9rp6d_Od0ht2unpRgO5owjK9RstUyDEDwOgLjXIWfWic2jGOYvZJihQ_iGezf2snmnmHxVktscEo7Q9OI_Nn9JdgND2qtewivSKRcrdY3IphQ31Uv8A78i9q4
  priority: 102
  providerName: Directory of Open Access Journals
Title Evapotranspiration Estimation with Small UAVs in Precision Agriculture
URI https://www.ncbi.nlm.nih.gov/pubmed/33182824
https://www.proquest.com/docview/2460766099
https://pubmed.ncbi.nlm.nih.gov/PMC7697511
https://doaj.org/article/63720dd316684117b0eb6efed9069005
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB314wIHRPlqgK4M4sAlkMSOnRxQta12qZCoKmDR3qI4tstKS7ZktxL8e2acbNSgPXDJIXGUeCbjec923gC8sVlWZsbaMHeJCEXKZai1SMOc2EhqMPyM3yB7KS9m4tM8ne_BtsZmZ8D1TmpH9aRmzfLd719_TjHgPxDjRMr-fo0EHvN6ovbhEBOSovj8LPrFhIRzX9Ca_ukKMR9GrcDQ8NZBWvLq_bsg5787J--koulDeNBhSDZunX4Ee7Z-BPfvKAs-hiki5JvVxiuXL1onswlGc_ujIqPZV_b1Z7lcstn4-5otanbVdNV22Pi66QQ57BOYTSffzi_CrmRCWCGu2YQ2TSraeoeoI66IqtHKqU4jY0quLQ5_zilrcs6lNFHplDSVcpGpjExKhUiRP4WDelXbY2A4FsQ6r2TsciNcgsyKcxwMlTbGldLGAbzdWqyoOj1xKmuxLJBXkHGL3rgBvO6b3rQiGrsanZHZ-wake-1PrJrrogujQlJRHWN4LGUm4ljpyGppHXaJFJejNIBXW6cVGCe0-FHWdnW7LhIhIyUlAuIAnrVO7B_FcWBD6ikCUAP3Dt5leKVe_PBa3ErmCjHr8__p4Qu4lxBb95sIX8LBprm1JwhpNnoE-2qu8JhNP47g8GxyefVl5KcHRv5T_gss0fhA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evapotranspiration+Estimation+with+Small+UAVs+in+Precision+Agriculture&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Niu%2C+Haoyu&rft.au=Hollenbeck%2C+Derek&rft.au=Zhao%2C+Tiebiao&rft.au=Wang%2C+Dong&rft.date=2020-11-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft.spage=6427&rft_id=info:doi/10.3390%2Fs20226427&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20226427
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon