Evapotranspiration Estimation with Small UAVs in Precision Agriculture
Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, s...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 22; p. 6427 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
10.11.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks. |
---|---|
AbstractList | Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks. Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks.Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and climate change. The accurate estimation and mapping of ET are necessary for crop water management. Traditionally, researchers use water balance, soil moisture, weighing lysimeters, or an energy balance approach, such as Bowen ratio or eddy covariance towers to estimate ET. However, these ET methods are point-specific or area-weighted measurements and cannot be extended to a large scale. With the advent of satellite technology, remote sensing images became able to provide spatially distributed measurements. However, the spatial resolution of multispectral satellite images is in the range of meters, tens of meters, or hundreds of meters, which is often not enough for crops with clumped canopy structures, such as trees and vines. Unmanned aerial vehicles (UAVs) can mitigate these spatial and temporal limitations. Lightweight cameras and sensors can be mounted on the UAVs and take high-resolution images. Unlike satellite imagery, the spatial resolution of the UAV images can be at the centimeter-level. UAVs can also fly on-demand, which provides high temporal imagery. In this study, the authors examined different UAV-based approaches of ET estimation at first. Models and algorithms, such as mapping evapotranspiration at high resolution with internalized calibration (METRIC), the two-source energy balance (TSEB) model, and machine learning (ML) are analyzed and discussed herein. Second, challenges and opportunities for UAVs in ET estimation are also discussed, such as uncooled thermal camera calibration, UAV image collection, and image processing. Then, the authors share views on ET estimation with UAVs for future research and draw conclusive remarks. |
Author | Niu, Haoyu Wang, Dong Hollenbeck, Derek Zhao, Tiebiao Chen, YangQuan |
AuthorAffiliation | 1 Electrical Engineering and Computer Science Department, University of California, Merced, CA 95340, USA; hniu2@ucmerced.edu 2 Mechanical Engineering Department, University of California, Merced, CA 95340, USA; dhollenbeck@ucmerced.edu (D.H.); tzhao3@ucmerced.edu (T.Z.) 3 USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA; Dong.Wang@usda.gov |
AuthorAffiliation_xml | – name: 1 Electrical Engineering and Computer Science Department, University of California, Merced, CA 95340, USA; hniu2@ucmerced.edu – name: 2 Mechanical Engineering Department, University of California, Merced, CA 95340, USA; dhollenbeck@ucmerced.edu (D.H.); tzhao3@ucmerced.edu (T.Z.) – name: 3 USDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA; Dong.Wang@usda.gov |
Author_xml | – sequence: 1 givenname: Haoyu orcidid: 0000-0002-7052-8877 surname: Niu fullname: Niu, Haoyu – sequence: 2 givenname: Derek orcidid: 0000-0002-4782-1370 surname: Hollenbeck fullname: Hollenbeck, Derek – sequence: 3 givenname: Tiebiao surname: Zhao fullname: Zhao, Tiebiao – sequence: 4 givenname: Dong surname: Wang fullname: Wang, Dong – sequence: 5 givenname: YangQuan orcidid: 0000-0002-7422-5988 surname: Chen fullname: Chen, YangQuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33182824$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtPGzEUhS1EBSRl0T9QzRIWaa4fsWc2lSKUtEhIrdTC1vLYnmDkjFPbA-q_r_MAQVn5yvfc71z7jNBxH3qL0CcMXyhtYJoIEMIZEUfoDDPCJjUhcPyqPkWjlB4ACKW0PkGnlOKa1ISdoeXiUW1CjqpPGxdVdqGvFim79b58cvm--rVW3le387tUub76Ga12aducr6LTg89DtB_Rh075ZM8P5xjdLhe_r75Pbn58u76a30w0YzhP7IzotmOmaSjWILAAUkM7A2MUbS0AdJ2wpqGUcwOqE9xo0YHRhhMlGszpGF3vuSaoB7mJZc_4Vwbl5O4ixJVUMTvtreRUkAKmmPOaYSxasC23XcEDbwBmhfV1z9oM7doabfvyDf4N9G2nd_dyFR6l4I2YYVwAFwdADH8Gm7Jcu6St96q3YUiSMA6CcyivHaPPr71eTJ6DKILpXqBjSCnaTmqXdxkUa-clBrmNWr5EXSYu_5t4hr7X_gMkJKhA |
CitedBy_id | crossref_primary_10_1016_j_compag_2022_107017 crossref_primary_10_1016_j_jhydrol_2024_130901 crossref_primary_10_1007_s00271_023_00888_1 crossref_primary_10_1007_s10846_022_01588_2 crossref_primary_10_3390_geographies4030024 crossref_primary_10_3390_rs16203882 crossref_primary_10_1016_j_agrformet_2022_108981 crossref_primary_10_3390_drones8070290 crossref_primary_10_2166_wcc_2024_048 crossref_primary_10_3390_drones7030186 crossref_primary_10_3390_agronomy13071942 crossref_primary_10_3390_app11041403 crossref_primary_10_1016_j_agwat_2023_108247 crossref_primary_10_1016_j_buildenv_2022_109389 crossref_primary_10_3389_ffgc_2025_1457762 crossref_primary_10_3390_rs13132639 crossref_primary_10_3390_agronomy12112905 crossref_primary_10_3390_rs13163255 crossref_primary_10_1007_s00271_023_00899_y crossref_primary_10_3390_hydrology10060120 crossref_primary_10_3390_w16091300 crossref_primary_10_3390_e23030297 crossref_primary_10_1002_arp_1946 crossref_primary_10_3390_s22093251 crossref_primary_10_1007_s10661_024_12479_4 crossref_primary_10_1016_j_eng_2022_02_008 crossref_primary_10_3390_s22114243 crossref_primary_10_17221_191_2022_JFS crossref_primary_10_1002_ppj2_20100 crossref_primary_10_3390_drones8090476 crossref_primary_10_3390_agriengineering6010047 |
Cites_doi | 10.1029/2000WR900033 10.1029/97WR00704 10.1109/MESA.2010.5552031 10.1007/s00271-009-0177-9 10.5194/hess-19-2017-2015 10.1175/1520-0493(1988)116<0600:EFNSAF>2.0.CO;2 10.13031/2013.29493 10.1029/WR017i004p01133 10.1007/s00704-015-1522-y 10.1002/rob.21508 10.3390/s8010070 10.1016/j.compag.2016.05.018 10.2151/jmsj.83.373 10.1175/JHM464.1 10.3390/s8053557 10.1016/0168-1923(95)02265-Y 10.1016/j.agrformet.2015.10.011 10.1007/s13593-014-0246-1 10.2134/agronj1973.00021962006500030001x 10.1109/IGARSS.2017.8128252 10.1016/S0022-1694(99)00104-3 10.1007/s11119-005-2324-5 10.1029/2001WR000386 10.1080/01431161.2017.1280202 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2 10.1016/j.compag.2016.05.017 10.1061/(ASCE)0733-9437(2005)131:1(85) 10.1134/S0097807816020172 10.13031/2013.27401 10.3133/sir20175087 10.1007/s00271-007-0088-6 10.1016/S0022-1694(99)00202-4 10.3390/s17102173 10.3390/rs4061519 10.1109/ICUAS.2019.8798188 10.1016/j.advwatres.2012.06.004 10.1080/014311699211994 10.1080/01431169008955124 10.1016/j.agrformet.2009.07.002 10.3390/rs4061573 10.1117/12.559503 10.1109/ICUAS.2016.7502566 10.7127/iv-inovagri-meeting-2017-res4150694 10.1002/wrcr.20208 10.1016/j.rse.2006.11.028 10.1071/FP09123 10.1016/j.advwatres.2008.10.005 10.1016/S0168-1923(99)00005-2 10.1016/j.agrformet.2009.05.016 10.1016/j.compag.2015.04.015 10.1016/j.compag.2018.03.010 10.1117/12.2558824 10.2134/agronj2011.0082 10.3390/s17112488 10.1051/agro:2002053 10.1080/02626669609491522 10.3390/s17071499 10.1016/j.jhydrol.2017.03.032 10.1061/(ASCE)IR.1943-4774.0000949 10.1002/2016WR020175 10.3390/rs8080638 10.1016/j.compag.2017.05.002 10.1177/0309133312444943 10.3390/rs70404213 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1111/j.1749-8198.2010.00381.x 10.1023/A:1008168910634 10.1016/0168-1923(95)02259-Z 10.1007/s00138-013-0570-5 10.3390/w8010009 10.1109/TGRS.2008.2010457 10.1007/s00704-015-1624-6 10.1016/j.agrformet.2016.01.005 10.3390/en7052821 10.1007/s00267-014-0245-7 10.2134/jeq1991.00472425002000040003x 10.1016/j.jhydrol.2004.10.024 10.1016/j.rse.2005.05.011 10.3390/rs4030703 10.5194/hess-6-85-2002 10.1016/0168-1923(90)90110-R 10.1016/j.ecolmodel.2012.03.001 10.1109/ICUAS48674.2020.9213888 10.5194/hess-20-697-2016 10.1007/s00271-018-0585-9 10.1016/j.rse.2013.07.024 10.1029/95WR01955 10.1080/02626667.2016.1142667 10.1016/j.mcm.2010.11.039 10.1115/DETC2017-68246 10.1016/S0022-1694(96)03172-1 10.1016/j.atmosres.2015.12.002 10.1007/s00271-014-0447-z 10.1016/S1464-1909(99)00128-8 10.2747/1548-1603.48.1.99 10.1016/j.rse.2014.11.003 10.1117/12.2558221 10.1007/s10795-005-5187-z 10.1016/j.agrformet.2014.06.009 10.1109/ICUAS.2015.7152331 10.1007/s00271-012-0332-6 10.5194/hess-20-1523-2016 10.1016/j.tifs.2009.12.002 10.1515/acgeo-2015-0016 10.1097/00010694-200504000-00002 10.1080/01431161.2012.748990 10.1109/MESA.2016.7587161 10.1016/j.agrformet.2012.03.008 10.1017/CBO9780511808470 10.1007/s00704-016-1943-2 10.5194/hess-17-2809-2013 10.5194/bg-11-5021-2014 10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2 10.1016/j.compag.2015.04.012 10.1016/B978-0-444-42250-7.50012-4 10.1061/(ASCE)0733-9437(2005)131:1(94) 10.1029/2010WR010203 10.1002/hyp.8408 10.1016/j.compag.2015.02.010 10.2134/agronj2000.925847x 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 10.1016/S0022-1694(98)00253-4 10.3390/rs4051392 10.1016/j.biosystemseng.2010.11.003 10.1117/12.2325570 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s20226427 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_63720dd316684117b0eb6efed9069005 PMC7697511 33182824 10_3390_s20226427 |
Genre | Journal Article Review |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-e52cbf4d9931c07170280b50dda3be000ff7ed93366d0af76dc7f0dcd62a79163 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:36 EDT 2025 Thu Aug 21 18:06:30 EDT 2025 Mon Jul 21 11:27:43 EDT 2025 Mon Jul 21 05:52:13 EDT 2025 Tue Jul 01 03:55:55 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | METRIC remote sensing evapotranspiration unmanned aerial vehicles clumped canopy |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-e52cbf4d9931c07170280b50dda3be000ff7ed93366d0af76dc7f0dcd62a79163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Current address: MESA Lab, Room 22, 4225 Hospital Road, Atwater, CA 95301, USA. |
ORCID | 0000-0002-4782-1370 0000-0002-7422-5988 0000-0002-7052-8877 |
OpenAccessLink | https://doaj.org/article/63720dd316684117b0eb6efed9069005 |
PMID | 33182824 |
PQID | 2460766099 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_63720dd316684117b0eb6efed9069005 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7697511 proquest_miscellaneous_2460766099 pubmed_primary_33182824 crossref_citationtrail_10_3390_s20226427 crossref_primary_10_3390_s20226427 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201110 |
PublicationDateYYYYMMDD | 2020-11-10 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201110 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | ref_139 ref_138 (ref_25) 2015; 7 Li (ref_110) 2005; 6 Fisher (ref_137) 2017; 53 ref_98 ref_132 Long (ref_112) 2013; 49 Fritschen (ref_10) 1965; 10 Wallace (ref_124) 2012; 4 ref_18 Gocic (ref_77) 2016; 125 Alizadeh (ref_84) 2017; 548 ref_16 Keshtegar (ref_52) 2016; 127 Misaghian (ref_76) 2017; 130 Martinelli (ref_136) 2015; 35 ref_125 Hardin (ref_118) 2010; 4 Harwin (ref_121) 2012; 4 Kustas (ref_24) 1996; 41 Motamedi (ref_73) 2015; 113 ref_129 Mehdizadeh (ref_75) 2017; 139 ref_120 Guzinski (ref_97) 2015; 19 Zipper (ref_49) 2014; 197 Gocic (ref_83) 2015; 114 ref_29 Brown (ref_131) 1973; 65 Allen (ref_14) 2005; 19 Xiang (ref_128) 2011; 108 Massman (ref_60) 1999; 223 Gowda (ref_39) 2009; 28 Roerink (ref_43) 2000; 25 Yassin (ref_79) 2016; 43 Jackson (ref_42) 1981; 17 Gowda (ref_105) 2008; 26 Kustas (ref_64) 1999; 94 Duggin (ref_113) 1990; 11 Matsushima (ref_68) 2005; 83 Crisci (ref_71) 2012; 240 Shamshirband (ref_85) 2015; 142 Park (ref_55) 2016; 216 Wetzel (ref_4) 1988; 116 Gade (ref_133) 2014; 25 Brenner (ref_40) 2017; 38 Kustas (ref_13) 2009; 149 Abrahart (ref_51) 2012; 36 Timmermans (ref_66) 2007; 108 Song (ref_93) 2016; 230 Jones (ref_134) 2009; 36 ref_87 Kustas (ref_88) 2000; 92 Wang (ref_115) 2009; 52 Moran (ref_23) 1991; 20 Priestley (ref_89) 1972; 100 Hsu (ref_50) 1995; 31 Ruhoff (ref_101) 2012; 4 Kalma (ref_59) 1990; 51 Hunt (ref_108) 2005; 6 Choi (ref_91) 2009; 149 Lelong (ref_127) 2008; 8 Xu (ref_6) 2005; 308 Kousari (ref_53) 2017; 127 Kaplan (ref_3) 2014; 53 Verstraeten (ref_1) 2008; 8 ref_56 Guzinski (ref_96) 2014; 11 Bastiaanssen (ref_104) 2005; 131 Troufleau (ref_67) 1997; 188 Timmermans (ref_70) 2015; 63 Bastiaanssen (ref_15) 1998; 212 Tasumi (ref_107) 2005; 131 Colaizzi (ref_92) 2012; 104 Allen (ref_5) 1998; 56 Hashim (ref_82) 2016; 171 Gowen (ref_135) 2010; 21 Jacob (ref_106) 2002; 22 Hardin (ref_119) 2011; 48 Smith (ref_126) 1999; 20 Wu (ref_2) 2005; 170 Williams (ref_28) 2013; 138 Santanello (ref_95) 2003; 42 Lucieer (ref_122) 2014; 31 Bastiaanssen (ref_99) 2000; 229 Moghaddamnia (ref_54) 2009; 32 Feng (ref_111) 2013; 34 Hoffmann (ref_21) 2016; 20 ref_69 Angus (ref_9) 1984; Volume 13 Sun (ref_102) 2011; 54 Swain (ref_27) 2010; 53 ref_62 Turner (ref_123) 2012; 4 Colaizzi (ref_65) 2012; 50 French (ref_90) 2015; 158 Antonopoulos (ref_72) 2016; 61 Guzinski (ref_94) 2013; 17 Kisi (ref_74) 2015; 115 Norman (ref_63) 1995; 77 ref_114 ref_117 ref_116 Liou (ref_7) 2014; 7 ref_36 ref_34 ref_33 ref_32 Berni (ref_130) 2009; 47 ref_31 ref_30 Tabari (ref_78) 2013; 31 Shiri (ref_86) 2012; 44 Quattrochi (ref_22) 1999; 14 Norman (ref_57) 2000; 36 Dou (ref_80) 2018; 148 ref_103 Goldhamer (ref_26) 2015; 33 Gocic (ref_81) 2016; 127 Kustas (ref_17) 1997; 33 Monteiro (ref_37) 2019; 8 Allen (ref_8) 2011; 25 ref_109 Nieto (ref_38) 2019; 37 ref_47 ref_46 ref_45 ref_44 Bastiaanssen (ref_100) 2002; 38 ref_41 Verhoef (ref_61) 1997; 36 Allen (ref_19) 2007; 133 Xia (ref_35) 2016; 20 ref_48 Nagler (ref_11) 2005; 97 Norman (ref_20) 1995; 77 Boulet (ref_58) 2012; 161 Su (ref_12) 2002; 6 |
References_xml | – volume: 36 start-page: 2263 year: 2000 ident: ref_57 article-title: Surface Flux Estimation Using Radiometric Temperature: A Dual-temperature-difference Method to Minimize Measurement Errors publication-title: Water Resour. Res. doi: 10.1029/2000WR900033 – ident: ref_117 – volume: 33 start-page: 1495 year: 1997 ident: ref_17 article-title: A Two-source Approach for Estimating Turbulent Fluxes Using Multiple Angle Thermal Infrared Observations publication-title: Water Resour. Res. doi: 10.1029/97WR00704 – ident: ref_132 doi: 10.1109/MESA.2010.5552031 – volume: 28 start-page: 79 year: 2009 ident: ref_39 article-title: Estimating Hourly Crop ET Using a Two-source Energy Balance Model and Multispectral Airborne Imagery publication-title: Irrig. Sci. doi: 10.1007/s00271-009-0177-9 – volume: 19 start-page: 2017 year: 2015 ident: ref_97 article-title: Inter-comparison of Energy Balance and Hydrological Models for Land Surface Energy Flux Estimation over a Whole River Catchment publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-2017-2015 – volume: 116 start-page: 600 year: 1988 ident: ref_4 article-title: Evapotranspiration from Nonuniform Surfaces: A First Approach for Short-Term Numerical Weather Prediction publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1988)116<0600:EFNSAF>2.0.CO;2 – ident: ref_16 – volume: 53 start-page: 21 year: 2010 ident: ref_27 article-title: Adoption of an Unmanned Helicopter for Low-altitude Remote Sensing to Estimate Yield and Total Biomass of a Rice Crop publication-title: Trans. ASABE doi: 10.13031/2013.29493 – volume: 17 start-page: 1133 year: 1981 ident: ref_42 article-title: Canopy Temperature as a Crop Water Stress Indicator publication-title: Water Resour. Res. doi: 10.1029/WR017i004p01133 – volume: 125 start-page: 555 year: 2016 ident: ref_77 article-title: Particle Swarm Optimization-based Radial Basis Function Network for Estimation of Reference Evapotranspiration publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1522-y – volume: 31 start-page: 571 year: 2014 ident: ref_122 article-title: HyperUAS—Imaging Spectroscopy from a Multirotor Unmanned Aircraft System publication-title: J. Field Robot. doi: 10.1002/rob.21508 – volume: 8 start-page: 70 year: 2008 ident: ref_1 article-title: Assessment of Evapotranspiration and Soil Moisture Content across Different Scales of Observation publication-title: Sensors doi: 10.3390/s8010070 – volume: 127 start-page: 120 year: 2016 ident: ref_52 article-title: A Nonlinear Mathematical Modeling of Daily Pan Evaporation Based on Conjugate Gradient Method publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.05.018 – volume: 83 start-page: 373 year: 2005 ident: ref_68 article-title: Relations between Aerodynamic Parameters of Heat Transfer and Thermal-infrared Thermometry in the Bulk Surface Formulation publication-title: J. Meteorol. Soc. Jpn. Ser. II doi: 10.2151/jmsj.83.373 – ident: ref_114 – volume: 6 start-page: 878 year: 2005 ident: ref_110 article-title: Utility of Remote Sensing-based Two-source Energy Balance Model under Low-and High-vegetation Cover Conditions publication-title: J. Hydrometeorol. doi: 10.1175/JHM464.1 – volume: 8 start-page: 3557 year: 2008 ident: ref_127 article-title: Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots publication-title: Sensors doi: 10.3390/s8053557 – volume: 77 start-page: 263 year: 1995 ident: ref_20 article-title: Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02265-Y – volume: 216 start-page: 157 year: 2016 ident: ref_55 article-title: Drought Assessment and Monitoring through Blending of Multi-sensor Indices Using Machine Learning Approaches for Different Climate Regions publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.011 – volume: 35 start-page: 1 year: 2015 ident: ref_136 article-title: Advanced Methods of Plant Disease Detection. A Review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-014-0246-1 – volume: 65 start-page: 341 year: 1973 ident: ref_131 article-title: A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field 1 publication-title: Agron. J. doi: 10.2134/agronj1973.00021962006500030001x – ident: ref_36 doi: 10.1109/IGARSS.2017.8128252 – volume: 223 start-page: 27 year: 1999 ident: ref_60 article-title: A Model Study of kBH-1 for Vegetated Surfaces Using Localized Near-field Lagrangian Theory publication-title: J. Hydrol. doi: 10.1016/S0022-1694(99)00104-3 – volume: 6 start-page: 359 year: 2005 ident: ref_108 article-title: Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status publication-title: Precis. Agric. doi: 10.1007/s11119-005-2324-5 – volume: 38 start-page: 9-1 year: 2002 ident: ref_100 article-title: Satellite Surveillance of Evaporative Depletion across the Indus Basin publication-title: Water Resour. Res. doi: 10.1029/2001WR000386 – volume: 38 start-page: 3003 year: 2017 ident: ref_40 article-title: Estimating Spatially Distributed Turbulent Heat Fluxes from High-resolution Thermal Imagery Acquired with a UAV System publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1280202 – volume: 36 start-page: 560 year: 1997 ident: ref_61 article-title: Some Practical Notes on the Parameter kB-1 for Sparse Vegetation publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2 – volume: 127 start-page: 56 year: 2016 ident: ref_81 article-title: Comparative Analysis of Reference Evapotranspiration Equations Modelling by Extreme Learning Machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.05.017 – volume: 131 start-page: 85 year: 2005 ident: ref_104 article-title: SEBAL Model with Remotely Sensed Data to Improve Water-resources Management under Actual Field Conditions publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85) – volume: 43 start-page: 412 year: 2016 ident: ref_79 article-title: Comparison between Gene Expression Programming and Traditional Models for Estimating Evapotranspiration under Hyper Arid Conditions publication-title: Water Resour. doi: 10.1134/S0097807816020172 – volume: 52 start-page: 801 year: 2009 ident: ref_115 article-title: Sensitivity Analysis of the Surface Energy Balance Algorithm for Land (SEBAL) publication-title: Trans. ASABE doi: 10.13031/2013.27401 – ident: ref_18 doi: 10.3133/sir20175087 – volume: 26 start-page: 223 year: 2008 ident: ref_105 article-title: ET Mapping for Agricultural Water Management: Present Status and Challenges publication-title: Irrig. Sci. doi: 10.1007/s00271-007-0088-6 – volume: 229 start-page: 87 year: 2000 ident: ref_99 article-title: SEBAL-based Sensible and Latent Heat Fluxes in the Irrigated Gediz Basin, Turkey publication-title: J. Hydrol. doi: 10.1016/S0022-1694(99)00202-4 – ident: ref_47 doi: 10.3390/s17102173 – ident: ref_30 – volume: 4 start-page: 1519 year: 2012 ident: ref_124 article-title: Development of a UAV-LiDAR System with Application to Forest Inventory publication-title: Remote Sens. doi: 10.3390/rs4061519 – ident: ref_48 doi: 10.1109/ICUAS.2019.8798188 – volume: 50 start-page: 134 year: 2012 ident: ref_65 article-title: Two-source Energy Balance Model Estimates of Evapotranspiration Using Component and Composite Surface Temperatures publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.06.004 – volume: 20 start-page: 2653 year: 1999 ident: ref_126 article-title: The Use of the Empirical Line Method to Calibrate Remotely Sensed Data to Reflectance publication-title: Int. J. Remote Sens. doi: 10.1080/014311699211994 – volume: 11 start-page: 1669 year: 1990 ident: ref_113 article-title: Assumptions Implicit in Remote Sensing Data Acquisition and Analysis publication-title: Remote Sens. doi: 10.1080/01431169008955124 – volume: 149 start-page: 2082 year: 2009 ident: ref_91 article-title: An Intercomparison of Three Remote Sensing-based Surface Energy Balance Algorithms over a Corn and Soybean Production Region (Iowa, US) during SMACEX publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.07.002 – volume: 4 start-page: 1573 year: 2012 ident: ref_121 article-title: Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-view Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery publication-title: Remote Sens. doi: 10.3390/rs4061573 – ident: ref_62 doi: 10.1117/12.559503 – ident: ref_129 doi: 10.1109/ICUAS.2016.7502566 – ident: ref_34 doi: 10.7127/iv-inovagri-meeting-2017-res4150694 – volume: 49 start-page: 2601 year: 2013 ident: ref_112 article-title: Assessing the Impact of End-member Selection on the Accuracy of Satellite-based Spatial Variability Models for Actual Evapotranspiration Estimation publication-title: Water Resour. Res. doi: 10.1002/wrcr.20208 – volume: 10 start-page: 38 year: 1965 ident: ref_10 article-title: Accuracy of Evapotranspiration Determinations by the Bowen Ratio Method publication-title: Hydrol. Sci. J. – volume: 108 start-page: 369 year: 2007 ident: ref_66 article-title: An Intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-source Energy Balance (TSEB) Modeling Schemes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.028 – volume: 36 start-page: 978 year: 2009 ident: ref_134 article-title: Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field publication-title: Funct. Plant Biol. doi: 10.1071/FP09123 – volume: 32 start-page: 88 year: 2009 ident: ref_54 article-title: Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-fuzzy Inference System Techniques publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2008.10.005 – volume: 94 start-page: 13 year: 1999 ident: ref_64 article-title: Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-source Model with Radiometric Temperatures for Partial Canopy Cover publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(99)00005-2 – volume: 149 start-page: 2071 year: 2009 ident: ref_13 article-title: Advances in Thermal Infrared Remote Sensing for Land Surface Modeling publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2009.05.016 – volume: 115 start-page: 66 year: 2015 ident: ref_74 article-title: Long-term Monthly Evapotranspiration Modeling by Several Data-driven Methods without Climatic Data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.04.015 – ident: ref_33 – volume: 148 start-page: 95 year: 2018 ident: ref_80 article-title: Evapotranspiration Estimation Using Four Different Machine Learning Approaches in Different Terrestrial Ecosystems publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.010 – ident: ref_87 doi: 10.1117/12.2558824 – volume: 104 start-page: 225 year: 2012 ident: ref_92 article-title: Radiation Model for Row Crops: I. Geometric View Factors and Parameter Optimization publication-title: Agron. J. doi: 10.2134/agronj2011.0082 – ident: ref_56 doi: 10.3390/s17112488 – volume: 22 start-page: 669 year: 2002 ident: ref_106 article-title: Mapping Surface Fluxes Using Airborne Visible, Near Infrared, Thermal Infrared Remote Sensing Data and a Spatialized Surface Energy Balance Model publication-title: Agronomie doi: 10.1051/agro:2002053 – volume: 41 start-page: 495 year: 1996 ident: ref_24 article-title: Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces publication-title: Hydrol. Sci. J. doi: 10.1080/02626669609491522 – ident: ref_45 doi: 10.3390/s17071499 – volume: 548 start-page: 588 year: 2017 ident: ref_84 article-title: A New Approach for Simulating and Forecasting the Rainfall-runoff Process within the Next Two Months publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.03.032 – volume: 142 start-page: 04015044 year: 2015 ident: ref_85 article-title: Estimation of Reference Evapotranspiration Using Neural Networks and Cuckoo Search Algorithm publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)IR.1943-4774.0000949 – volume: 53 start-page: 2618 year: 2017 ident: ref_137 article-title: The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources publication-title: Water Resour. Res. doi: 10.1002/2016WR020175 – ident: ref_31 doi: 10.3390/rs8080638 – volume: 139 start-page: 103 year: 2017 ident: ref_75 article-title: Using MARS, SVM, GEP and Empirical Equations for Estimation of Monthly Mean Reference Evapotranspiration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.05.002 – volume: 36 start-page: 480 year: 2012 ident: ref_51 article-title: Two Decades of Anarchy? Emerging Themes and Outstanding Challenges for Neural Network River Forecasting publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133312444943 – volume: 7 start-page: 4213 year: 2015 ident: ref_25 article-title: High-resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials publication-title: Remote Sens. doi: 10.3390/rs70404213 – ident: ref_32 – volume: 133 start-page: 380 year: 2007 ident: ref_19 article-title: Satellite-based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 4 start-page: 1297 year: 2010 ident: ref_118 article-title: Small-scale Remotely Piloted Vehicles in Environmental Research publication-title: Geogr. Compass doi: 10.1111/j.1749-8198.2010.00381.x – volume: 14 start-page: 577 year: 1999 ident: ref_22 article-title: Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications publication-title: Landsc. Ecol. doi: 10.1023/A:1008168910634 – volume: 77 start-page: 153 year: 1995 ident: ref_63 article-title: Terminology in Thermal Infrared Remote Sensing of Natural Surfaces publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02259-Z – volume: 25 start-page: 245 year: 2014 ident: ref_133 article-title: Thermal Cameras and Applications: A Survey publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-013-0570-5 – ident: ref_103 doi: 10.3390/w8010009 – volume: 47 start-page: 722 year: 2009 ident: ref_130 article-title: Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2010457 – volume: 127 start-page: 361 year: 2017 ident: ref_53 article-title: Introducing an Operational Method to Forecast Long-term Regional Drought Based on the Application of Artificial Intelligence Capabilities publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1624-6 – volume: 230 start-page: 8 year: 2016 ident: ref_93 article-title: Application of Remote Sensing-based Two-source Energy Balance Model for Mapping Field Surface Fluxes with Composite and Component Surface Temperatures publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.01.005 – volume: 7 start-page: 2821 year: 2014 ident: ref_7 article-title: Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review publication-title: Energies doi: 10.3390/en7052821 – volume: 53 start-page: 855 year: 2014 ident: ref_3 article-title: Quantifying Outdoor Water Consumption of Urban Land Use/Land Cover: Sensitivity to Drought publication-title: Environ. Manag. doi: 10.1007/s00267-014-0245-7 – volume: 20 start-page: 725 year: 1991 ident: ref_23 article-title: Assessing the Spatial Distribution of Evapotranspiration Using Remotely Sensed Inputs publication-title: J. Environ. Qual. doi: 10.2134/jeq1991.00472425002000040003x – volume: 44 start-page: 131 year: 2012 ident: ref_86 article-title: Estimating Daily Reference Evapotranspiration Using Available and Estimated Climatic Data by Adaptive Neuro-fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) publication-title: Hydrol. Res. – ident: ref_98 – volume: 308 start-page: 105 year: 2005 ident: ref_6 article-title: Evaluation of Three Complementary Relationship Evapotranspiration Models by Water Balance Approach to Estimate Actual Regional Evapotranspiration in Different Climatic Regions publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.10.024 – volume: 97 start-page: 337 year: 2005 ident: ref_11 article-title: Evapotranspiration on Western US Rivers Estimated Using the Enhanced Vegetation Index from MODIS and Data from Eddy Covariance and Bowen Ratio Flux Towers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.05.011 – volume: 4 start-page: 703 year: 2012 ident: ref_101 article-title: A MODIS-based Energy Balance to Estimate Evapotranspiration for Clear-sky Days in Brazilian Tropical Savannas publication-title: Remote Sens. doi: 10.3390/rs4030703 – volume: 6 start-page: 85 year: 2002 ident: ref_12 article-title: The Surface Energy Balance System (SEBS) for Estimation of Turbulent Heat Fluxes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-6-85-2002 – volume: 51 start-page: 223 year: 1990 ident: ref_59 article-title: Estimating Evaporation from Pasture Using Infrared Thermometry: Evaluation of a One-layer Resistance Model publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(90)90110-R – volume: 240 start-page: 113 year: 2012 ident: ref_71 article-title: A Review of Supervised Machine Learning Algorithms and Their Applications to Ecological Data publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2012.03.001 – ident: ref_138 doi: 10.1109/ICUAS48674.2020.9213888 – volume: 20 start-page: 697 year: 2016 ident: ref_21 article-title: Estimating Evaporation with Thermal UAV Data and Two-source Energy Balance Models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-697-2016 – volume: 37 start-page: 389 year: 2019 ident: ref_38 article-title: Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery publication-title: Irrig. Sci. doi: 10.1007/s00271-018-0585-9 – volume: 138 start-page: 38 year: 2013 ident: ref_28 article-title: A PRI-based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-band Airborne Imagery and the CWSI Thermal Index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.024 – volume: 31 start-page: 2517 year: 1995 ident: ref_50 article-title: Artificial Neural Network Modeling of the Rainfall-runoff Process publication-title: Water Resour. Res. doi: 10.1029/95WR01955 – volume: 61 start-page: 2590 year: 2016 ident: ref_72 article-title: Artificial Neural Networks and Empirical Equations to Estimate Daily Evaporation: Application to Lake Vegoritis, Greece publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2016.1142667 – volume: 54 start-page: 1086 year: 2011 ident: ref_102 article-title: Evapotranspiration Estimation Based on the SEBAL Model in the Nansi Lake Wetland of China publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2010.11.039 – ident: ref_29 doi: 10.1115/DETC2017-68246 – ident: ref_41 – volume: 188 start-page: 815 year: 1997 ident: ref_67 article-title: Sensible Heat Flux and Radiometric Surface Temperature over Sparse Sahelian Vegetation. I. An Experimental Analysis of the kB-1 Parameter publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03172-1 – volume: 171 start-page: 21 year: 2016 ident: ref_82 article-title: Selection of Meteorological Parameters Affecting Rainfall Estimation Using Neuro-fuzzy Computing Methodology publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.12.002 – volume: 33 start-page: 43 year: 2015 ident: ref_26 article-title: Improving the Precision of Irrigation in a Pistachio Farm Using an Unmanned Airborne Thermal System publication-title: Irrig. Sci. doi: 10.1007/s00271-014-0447-z – volume: 25 start-page: 147 year: 2000 ident: ref_43 article-title: S-SEBI: A Simple Remote Sensing Algorithm to Estimate the Surface Energy Balance publication-title: Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. doi: 10.1016/S1464-1909(99)00128-8 – volume: 8 start-page: 60 year: 2019 ident: ref_37 article-title: Evapotranspiration Estimate Using Energy Balance Two Source Model With UAV Images: A Study in Vineyard publication-title: Am. J. Eng. Res. – volume: 48 start-page: 99 year: 2011 ident: ref_119 article-title: Small-scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities publication-title: GISci. Remote Sens. doi: 10.2747/1548-1603.48.1.99 – volume: 158 start-page: 281 year: 2015 ident: ref_90 article-title: Remote Sensing of Evapotranspiration over Cotton Using the TSEB and METRIC Energy Balance Models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.003 – ident: ref_139 doi: 10.1117/12.2558221 – volume: 56 start-page: e156 year: 1998 ident: ref_5 article-title: FAO Irrigation and Drainage Paper No. 56 publication-title: Rome Food Agric. Organ. U. N. – volume: 19 start-page: 251 year: 2005 ident: ref_14 article-title: A Landsat-based Energy Balance and Evapotranspiration Model in Western US Water Rights Regulation and Planning publication-title: Irrig. Drain. Syst. doi: 10.1007/s10795-005-5187-z – volume: 197 start-page: 91 year: 2014 ident: ref_49 article-title: Using Evapotranspiration to Assess Drought Sensitivity on a Subfield Scale with HRMET, a High Resolution Surface Energy Balance Model publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.06.009 – ident: ref_125 doi: 10.1109/ICUAS.2015.7152331 – volume: 31 start-page: 575 year: 2013 ident: ref_78 article-title: Applicability of Support Vector Machines and Adaptive Neurofuzzy Inference System for Modeling Potato Crop Evapotranspiration publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0332-6 – volume: 20 start-page: 1523 year: 2016 ident: ref_35 article-title: Mapping Evapotranspiration with High-resolution Aircraft Imagery over Vineyards Using One-and Two-source Modeling Schemes publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-1523-2016 – volume: 21 start-page: 190 year: 2010 ident: ref_135 article-title: Applications of Thermal Imaging in Food Quality and Safety Assessment publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2009.12.002 – volume: 63 start-page: 1571 year: 2015 ident: ref_70 article-title: Utility of an Automated Thermal-based Approach for Monitoring Evapotranspiration publication-title: Acta Geophys. doi: 10.1515/acgeo-2015-0016 – volume: 170 start-page: 235 year: 2005 ident: ref_2 article-title: Estimating Evaporation Coefficient during Two-stage Evaporation from Soil Surfaces publication-title: Soil Sci. doi: 10.1097/00010694-200504000-00002 – volume: 34 start-page: 2925 year: 2013 ident: ref_111 article-title: A Satellite-based Energy Balance Algorithm with Reference Dry and Wet Limits publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.748990 – ident: ref_120 doi: 10.1109/MESA.2016.7587161 – volume: 161 start-page: 148 year: 2012 ident: ref_58 article-title: An Empirical Expression to Relate Aerodynamic and Surface Temperatures for Use within Single-source Energy Balance Models publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.03.008 – ident: ref_69 doi: 10.1017/CBO9780511808470 – volume: 130 start-page: 1099 year: 2017 ident: ref_76 article-title: Predicting the Reference Evapotranspiration Based on Tensor Decomposition publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-016-1943-2 – ident: ref_116 – volume: 17 start-page: 2809 year: 2013 ident: ref_94 article-title: Using a Thermal-based Two Source Energy Balance Model with Time-differencing to Estimate Surface Energy Fluxes with Day-night MODIS Observations publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-2809-2013 – volume: 11 start-page: 5021 year: 2014 ident: ref_96 article-title: Remotely Sensed Land-surface Energy Fluxes at Sub-field Scale in Heterogeneous Agricultural Landscape and Coniferous Plantation publication-title: Biogeosciences doi: 10.5194/bg-11-5021-2014 – volume: 42 start-page: 851 year: 2003 ident: ref_95 article-title: Diurnal Covariation in Soil Heat Flux and Net Radiation publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2003)042<0851:DCISHF>2.0.CO;2 – ident: ref_46 – volume: 114 start-page: 277 year: 2015 ident: ref_83 article-title: Determination of the Most Influential Weather Parameters on Reference Evapotranspiration by Adaptive Neuro-fuzzy Methodology publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.04.012 – volume: Volume 13 start-page: 133 year: 1984 ident: ref_9 article-title: Evapotranspiration-How Good is the Bowen Ratio Method? publication-title: Developments in Agricultural and Managed Forest Ecology doi: 10.1016/B978-0-444-42250-7.50012-4 – volume: 131 start-page: 94 year: 2005 ident: ref_107 article-title: Satellite-based Energy Balance to Assess Within-population Variance of Crop Coefficient Curves publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:1(94) – ident: ref_109 doi: 10.1029/2010WR010203 – volume: 25 start-page: 4011 year: 2011 ident: ref_8 article-title: Satellite-based ET Estimation in Agriculture Using SEBAL and METRIC publication-title: Hydrol. Process. doi: 10.1002/hyp.8408 – volume: 113 start-page: 164 year: 2015 ident: ref_73 article-title: Soft Computing Approaches for Forecasting Reference Evapotranspiration publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.02.010 – volume: 92 start-page: 847 year: 2000 ident: ref_88 article-title: A Two-source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces publication-title: Agron. J. doi: 10.2134/agronj2000.925847x – volume: 100 start-page: 81 year: 1972 ident: ref_89 article-title: On the Assessment of Surface Heat Flux and Evaporation Using Large-scale Parameters publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2 – volume: 212 start-page: 198 year: 1998 ident: ref_15 article-title: A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00253-4 – volume: 4 start-page: 1392 year: 2012 ident: ref_123 article-title: An Automated Technique for Generating Georectified Mosaics from Ultra-high Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds publication-title: Remote Sens. doi: 10.3390/rs4051392 – volume: 108 start-page: 104 year: 2011 ident: ref_128 article-title: Method for Automatic Georeferencing Aerial Remote Sensing (RS) Images from an Unmanned Aerial Vehicle (UAV) Platform publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2010.11.003 – ident: ref_44 doi: 10.1117/12.2325570 |
SSID | ssj0023338 |
Score | 2.5011418 |
SecondaryResourceType | review_article |
Snippet | Estimating evapotranspiration (ET) has been one of the most critical research areas in agriculture because of water scarcity, the growing population, and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6427 |
SubjectTerms | Agriculture Aircraft clumped canopy Crops, Agricultural - physiology evapotranspiration METRIC Plant Transpiration remote sensing Remote Sensing Technology Review Soil unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4NAEN2YnvRg_Ba_shoPXkiBhVk4VtOm8WBMtKY3wrK72qTSpqX_31mWEmqaePEKm7CZYWbeY4c3hNyrOM5iqZSb6CB0w4iBK0QYuYlhI5HE8JNVg-wLDEfh8zgat0Z9mZ4wKw9sDdcFM0ZFSuYDxKHvc-EpAUormRiNXateijVvTaZqqsWQeVkdIYakvrtEio-V34yOaVWfSqR_G7L83SDZqjiDA7JfQ0Xas1s8JDuqOCJ7LQHBYzJAIDyflZVA-cT6kvYxaO3_iNR8ZKVv39l0Ske9jyWdFPR1UQ_Vob3PRa27oU7IaNB_fxq69WQEN0f4UroqCnLTYYfgws8NIzMHpCJCO2VMKMxyWnO0EGMA0ss0B5lz7clcQpBxBITslHSKWaHOCcWQ90WSg68TGeoACRRjmPO4kFJnoHyHPKwtlua1bLiZXjFNkT4Y46aNcR1y1yydW62MbYsejdmbBUbeurqATk9rp6d_Od0ht2unpRgO5owjK9RstUyDEDwOgLjXIWfWic2jGOYvZJihQ_iGezf2snmnmHxVktscEo7Q9OI_Nn9JdgND2qtewivSKRcrdY3IphQ31Uv8A78i9q4 priority: 102 providerName: Directory of Open Access Journals |
Title | Evapotranspiration Estimation with Small UAVs in Precision Agriculture |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33182824 https://www.proquest.com/docview/2460766099 https://pubmed.ncbi.nlm.nih.gov/PMC7697511 https://doaj.org/article/63720dd316684117b0eb6efed9069005 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB314wIHRPlqgK4M4sAlkMSOnRxQta12qZCoKmDR3qI4tstKS7ZktxL8e2acbNSgPXDJIXGUeCbjec923gC8sVlWZsbaMHeJCEXKZai1SMOc2EhqMPyM3yB7KS9m4tM8ne_BtsZmZ8D1TmpH9aRmzfLd719_TjHgPxDjRMr-fo0EHvN6ovbhEBOSovj8LPrFhIRzX9Ca_ukKMR9GrcDQ8NZBWvLq_bsg5787J--koulDeNBhSDZunX4Ee7Z-BPfvKAs-hiki5JvVxiuXL1onswlGc_ujIqPZV_b1Z7lcstn4-5otanbVdNV22Pi66QQ57BOYTSffzi_CrmRCWCGu2YQ2TSraeoeoI66IqtHKqU4jY0quLQ5_zilrcs6lNFHplDSVcpGpjExKhUiRP4WDelXbY2A4FsQ6r2TsciNcgsyKcxwMlTbGldLGAbzdWqyoOj1xKmuxLJBXkHGL3rgBvO6b3rQiGrsanZHZ-wake-1PrJrrogujQlJRHWN4LGUm4ljpyGppHXaJFJejNIBXW6cVGCe0-FHWdnW7LhIhIyUlAuIAnrVO7B_FcWBD6ikCUAP3Dt5leKVe_PBa3ErmCjHr8__p4Qu4lxBb95sIX8LBprm1JwhpNnoE-2qu8JhNP47g8GxyefVl5KcHRv5T_gss0fhA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evapotranspiration+Estimation+with+Small+UAVs+in+Precision+Agriculture&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Niu%2C+Haoyu&rft.au=Hollenbeck%2C+Derek&rft.au=Zhao%2C+Tiebiao&rft.au=Wang%2C+Dong&rft.date=2020-11-10&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=20&rft.issue=22&rft.spage=6427&rft_id=info:doi/10.3390%2Fs20226427&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s20226427 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |