An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis
A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 4; p. 991 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
12.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences. |
---|---|
AbstractList | A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences. A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences.A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The method of growing graphene is employed directly on the copper, and then a gold film of optimum thickness is sputtered, and the copper foil is etched to obtain the structure. This method makes the contact closer between the gold layer and the graphene layer to improve surface plasmon resonance performance. The performance of this type of surface plasmon resonance (SPR) sensor has been previously verified both theoretically and experimentally. With the proposed Au-graphene structure D-type fiber biosensor, the SPR behaviors are obtained and discussed. In the detection of ethanol solution, a red shift of 40 nm is found between the refractive index of 1.3330 and 1.3657. By calculation, the sensitivity of the sensor we designed is 1223 nm/RIU. Besides, the proposed sensor can detect the nucleotide bonding between the double-stranded DNA helix structures. Thus, our sensors can distinguish between mismatched DNA sequences. |
Author | Han, Yanshun Yang, Wen Xu, Jihua Li, Shuanglu Fan, Xiuwei Song, Jingyi Sun, Yang Jiang, Shouzhen Xi, Xiangtai |
AuthorAffiliation | 2 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China 3 Qilu Institute of Technology, Jinan 250200, China 1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2017020511@stu.sdnu.edu.cn (X.X.); xujihua23@163.com (J.X.); 19862176156@139.com (S.L.); sjywywysjy@163.com (J.S.); wenyang0@126.com (W.Y.); 2017020496@stu.sdnu.edu.cn (Y.S.); jiang_sz@126.com (S.J.) |
AuthorAffiliation_xml | – name: 2 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, China – name: 1 Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; 2017020511@stu.sdnu.edu.cn (X.X.); xujihua23@163.com (J.X.); 19862176156@139.com (S.L.); sjywywysjy@163.com (J.S.); wenyang0@126.com (W.Y.); 2017020496@stu.sdnu.edu.cn (Y.S.); jiang_sz@126.com (S.J.) – name: 3 Qilu Institute of Technology, Jinan 250200, China |
Author_xml | – sequence: 1 givenname: Xiangtai surname: Xi fullname: Xi, Xiangtai – sequence: 2 givenname: Jihua surname: Xu fullname: Xu, Jihua – sequence: 3 givenname: Shuanglu surname: Li fullname: Li, Shuanglu – sequence: 4 givenname: Jingyi surname: Song fullname: Song, Jingyi – sequence: 5 givenname: Wen surname: Yang fullname: Yang, Wen – sequence: 6 givenname: Yang surname: Sun fullname: Sun, Yang – sequence: 7 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen – sequence: 8 givenname: Yanshun surname: Han fullname: Han, Yanshun – sequence: 9 givenname: Xiuwei surname: Fan fullname: Fan, Xiuwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32059555$$D View this record in MEDLINE/PubMed |
BookMark | eNplkk9v1DAQxS1URNuFA18A5QiHdO3YSZwL0lL6T6oA0XK2Js5415Vjp3ZSab89abetWjhYtt68-T3JM4dkzwePhHxk9Ijzhi5TQamgTcPekAMmCpHLoqB7L9775DClG0oLzrl8R_Z5QcumLMsDElc-W03ZD_DBWNfnZxGGDXpcfs-vtwNmp7bFmF1N0YDG7JeD1Aef_cYUPPhZuUKfQszMfM7teuO2D4od7d1cG1BbY7Udt9k3G8CD2yab3pO3BlzCD4_3gvw5Pbk-Ps8vf55dHK8ucy0EG3PkQmstG2PqtqgYVF2JhoGUsm15Vze0qQyVJTed4GY2do0wtNUV0opTDpQvyMWO2wW4UUO0PcStCmDVgxDiWkEcrXaooORC6gJFxWvRMQp1ywBlbVhDQbZiZn3dsYap7bHT6McI7hX0dcXbjVqHO1XTmlZCzoDPj4AYbidMo-pt0ugceAxTUgUvy6aq6nlAC_LpZdZzyNPQZsNyZ9AxpBTRqPmLYbThPto6xai6Xwv1vBZzx5d_Op6g_3v_AntHuCQ |
CitedBy_id | crossref_primary_10_1016_j_yofte_2021_102580 crossref_primary_10_1016_j_yofte_2023_103256 crossref_primary_10_1039_D4SD00045E crossref_primary_10_1007_s13538_021_00969_6 crossref_primary_10_1016_j_cej_2024_151435 crossref_primary_10_1021_acsomega_2c06704 crossref_primary_10_1007_s11468_023_01920_y crossref_primary_10_1039_D1TC02217B crossref_primary_10_1364_OE_447107 crossref_primary_10_1016_j_ijleo_2022_169894 crossref_primary_10_1109_JSEN_2021_3111960 crossref_primary_10_3390_s23115218 crossref_primary_10_1016_j_flatc_2020_100184 crossref_primary_10_1063_10_0006524 crossref_primary_10_1364_OE_453806 crossref_primary_10_1016_j_yofte_2020_102316 crossref_primary_10_3390_s23031644 crossref_primary_10_1515_ntrev_2023_0132 crossref_primary_10_1016_j_optcom_2021_127545 crossref_primary_10_1364_PRJ_416815 crossref_primary_10_3390_s22030950 |
Cites_doi | 10.1364/AO.56.003510 10.1038/ncomms14902 10.1016/S0925-4005(00)00649-3 10.1016/j.sna.2015.10.030 10.1088/0022-3727/49/30/305104 10.1039/C7RA08246K 10.1016/j.snb.2014.10.124 10.1016/j.optcom.2017.03.035 10.1016/j.snb.2017.05.045 10.1016/j.snb.2017.04.110 10.1016/j.optcom.2015.12.071 10.1002/adma.201802440 10.1088/1361-6463/aa7b06 10.1039/C5NR08866F 10.1088/1361-6463/aa628c 10.1016/j.snb.2013.01.040 10.1002/adma.201501754 10.3390/s131114676 10.1016/j.apsusc.2017.09.113 10.1063/1.4959982 10.1016/j.bios.2019.04.054 10.1109/JSEN.2014.2329896 10.1063/1.1287631 10.1038/srep28190 10.1166/jnn.2011.3885 10.1016/j.snb.2012.06.013 10.1016/j.ijleo.2017.01.055 10.1021/nl404795z 10.1155/2016/6070742 10.1088/0957-4484/24/27/275702 10.1364/OE.23.024811 10.1002/admt.201600185 10.1016/j.carbon.2017.01.090 10.1039/C4NR03275F 10.1016/j.snb.2013.10.067 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s20040991 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a5348c2e46374d10a7b1ae87f190a8b4 PMC7070648 32059555 10_3390_s20040991 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: 2017GGX20120 – fundername: National Natural Science Foundation of China grantid: 11804196 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2017BA018 – fundername: National Natural Science Foundation of China grantid: 11674199 – fundername: National Natural Science Foundation of China grantid: 11774208 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c441t-e34ccc89ff7b261a6d5ef1a888bb3d79096f0853fd43fcc8d94f0bc6e06303a03 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:29:31 EDT 2025 Thu Aug 21 14:06:03 EDT 2025 Thu Jul 10 22:45:08 EDT 2025 Wed Feb 19 02:30:38 EST 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 00:42:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | high sensitivity specificity detection surface plasmon resonance biosensor Au-graphene structure D-type plastic fiber |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-e34ccc89ff7b261a6d5ef1a888bb3d79096f0853fd43fcc8d94f0bc6e06303a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20040991 |
PMID | 32059555 |
PQID | 2355966733 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a5348c2e46374d10a7b1ae87f190a8b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070648 proquest_miscellaneous_2355966733 pubmed_primary_32059555 crossref_citationtrail_10_3390_s20040991 crossref_primary_10_3390_s20040991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200212 |
PublicationDateYYYYMMDD | 2020-02-12 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200212 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Jiang (ref_13) 2017; 50 Zhu (ref_29) 2016; 8 Mishra (ref_2) 2012; 171 Wu (ref_11) 2017; 249 Rahman (ref_18) 2017; 396 Diez (ref_7) 2001; 73 Yang (ref_35) 2014; 6 Qiu (ref_23) 2016; 366 Kim (ref_25) 2013; 187 Hwang (ref_33) 2018; 30 Sun (ref_32) 2019; 137 Cennamo (ref_34) 2013; 13 Cennamo (ref_9) 2014; 191 Zhang (ref_10) 2012; 2 Ruiz (ref_36) 2017; 116 Li (ref_22) 2017; 50 Lee (ref_21) 2013; 24 Yue (ref_19) 2017; 7 Shah (ref_4) 2017; 135 Xu (ref_31) 2017; 8 Yu (ref_17) 2014; 14 Rezaei (ref_12) 2014; 14 Noor (ref_8) 2015; 236 Zeng (ref_3) 2015; 27 Zeng (ref_16) 2015; 207 Zhang (ref_20) 2015; 23 Johansen (ref_28) 2000; 71 Ouyang (ref_1) 2016; 6 Hossain (ref_27) 2016; 2016 Zhang (ref_5) 2017; 251 Xu (ref_24) 2016; 120 Guo (ref_30) 2011; 11 Galatus (ref_26) 2013; 1 Paul (ref_14) 2016; 49 Xu (ref_15) 2018; 427 Nayak (ref_6) 2017; 56 |
References_xml | – volume: 56 start-page: 3510 year: 2017 ident: ref_6 article-title: Numerical simulation on the performance analysis of a graphene-coated optical fiber plasmonic sensor at anti-crossing publication-title: Appl. Opt. doi: 10.1364/AO.56.003510 – volume: 8 start-page: 14902 year: 2017 ident: ref_31 article-title: Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor publication-title: Nat. Commun. doi: 10.1038/ncomms14902 – volume: 73 start-page: 95 year: 2001 ident: ref_7 article-title: In-line fiber-optic sensors based on the excitation of surface plasmon modes in metal-coated tapered fibers publication-title: Sens. Actuators B Chem. doi: 10.1016/S0925-4005(00)00649-3 – volume: 236 start-page: 38 year: 2015 ident: ref_8 article-title: Experimental realization and performance evaluation of refractive index SPR sensor based on unmasked short tapered multimode-fiber operating in aqueous environments publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2015.10.030 – volume: 49 start-page: 305104 year: 2016 ident: ref_14 article-title: LSPR enhanced gasoline sensing with a U-bent optical fiber publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/49/30/305104 – volume: 7 start-page: 44559 year: 2017 ident: ref_19 article-title: An electricity-fluorescence double-checking biosensor based on graphene for detection of binding kinetics of DNA hybridization publication-title: RSC Adv. doi: 10.1039/C7RA08246K – volume: 207 start-page: 801 year: 2015 ident: ref_16 article-title: Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2014.10.124 – volume: 396 start-page: 36 year: 2017 ident: ref_18 article-title: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.03.035 – volume: 251 start-page: 127 year: 2017 ident: ref_5 article-title: U-bent fiber optic SPR sensor based on graphene/AgNPs publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.045 – volume: 249 start-page: 542 year: 2017 ident: ref_11 article-title: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.110 – volume: 366 start-page: 275 year: 2016 ident: ref_23 article-title: Evanescent wave absorption sensor based on tapered multimode fiber coated with monolayer graphene film publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.12.071 – volume: 30 start-page: 1802440 year: 2018 ident: ref_33 article-title: DNA Nanotweezers and Graphene Transistor Enable Label-Free Genotyping publication-title: Adv. Mater. doi: 10.1002/adma.201802440 – volume: 50 start-page: 315302 year: 2017 ident: ref_22 article-title: Evanescent wave absorption sensor with direct-growth MoS2 film based on U-bent tapered multimode fiber publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aa7b06 – volume: 8 start-page: 5815 year: 2016 ident: ref_29 article-title: A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules publication-title: Nanoscale doi: 10.1039/C5NR08866F – volume: 50 start-page: 165105 year: 2017 ident: ref_13 article-title: A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aa628c – volume: 187 start-page: 426 year: 2013 ident: ref_25 article-title: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.01.040 – volume: 27 start-page: 6163 year: 2015 ident: ref_3 article-title: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing publication-title: Adv. Mater. doi: 10.1002/adma.201501754 – volume: 13 start-page: 14676 year: 2013 ident: ref_34 article-title: Localized Surface Plasmon Resonance with Five-Branched Gold Nanostars in a Plastic Optical Fiber for Bio-Chemical Sensor Implementation publication-title: Sensors doi: 10.3390/s131114676 – volume: 427 start-page: 1114 year: 2018 ident: ref_15 article-title: Ultrasensitive label-free detection of DNA hybridization by sapphire-based graphene field-effect transistor biosensor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.113 – volume: 120 start-page: 053101 year: 2016 ident: ref_24 article-title: An ultra-high sensitivity surface plasmon resonance sensor based on graphene-aluminum-graphene sandwich-like structure publication-title: J. Appl. Phys. doi: 10.1063/1.4959982 – volume: 137 start-page: 255 year: 2019 ident: ref_32 article-title: Suspended CNT-Based FET sensor for ultrasensitive and label-free detection of DNA hybridization publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.04.054 – volume: 14 start-page: 3611 year: 2014 ident: ref_12 article-title: A high sensitivity surface plasmon resonance D-shaped fiber sensor based on a waveguide-coupled bimetallic structure: Modeling and optimization publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2329896 – volume: 71 start-page: 3530 year: 2000 ident: ref_28 article-title: Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1287631 – volume: 6 start-page: 28190 year: 2016 ident: ref_1 article-title: Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor publication-title: Sci. Rep. doi: 10.1038/srep28190 – volume: 11 start-page: 5258 year: 2011 ident: ref_30 article-title: Label free DNA detection using large area graphene based field effect transistor biosensors publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2011.3885 – volume: 171 start-page: 976 year: 2012 ident: ref_2 article-title: Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2012.06.013 – volume: 135 start-page: 50 year: 2017 ident: ref_4 article-title: SPR based fiber optic sensor with bi layers of indium tin oxide and platinum: A theoretical evaluation publication-title: Optik doi: 10.1016/j.ijleo.2017.01.055 – volume: 14 start-page: 3055 year: 2014 ident: ref_17 article-title: Graphene/MoS2 hybrid technology for large scale two-dimensional electronics publication-title: Nano Lett. doi: 10.1021/nl404795z – volume: 2016 start-page: 6070742 year: 2016 ident: ref_27 article-title: DNA hybridization detection based on resonance frequency readout in graphene on Au SPR biosensor publication-title: J. Sens. doi: 10.1155/2016/6070742 – volume: 24 start-page: 275702 year: 2013 ident: ref_21 article-title: Control of density and LSPR of Au nanopar-ticles on graphene publication-title: Nanotechnology. doi: 10.1088/0957-4484/24/27/275702 – volume: 23 start-page: 24811 year: 2015 ident: ref_20 article-title: SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure publication-title: Opt. Express doi: 10.1364/OE.23.024811 – volume: 1 start-page: 1 year: 2013 ident: ref_26 article-title: Sensitivity enhancement of D-shape SPR-POF low coast sensor using graphene publication-title: Int. J. Adv. Res. Eng. – volume: 2 start-page: 1600185 year: 2012 ident: ref_10 article-title: Hybrid Graphene/Gold Plasmonic Fiber-Optic Biosensor publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600185 – volume: 116 start-page: 366 year: 2017 ident: ref_36 article-title: Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration publication-title: Carbon doi: 10.1016/j.carbon.2017.01.090 – volume: 6 start-page: 11744 year: 2014 ident: ref_35 article-title: Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology publication-title: Nanoscale doi: 10.1039/C4NR03275F – volume: 191 start-page: 529 year: 2014 ident: ref_9 article-title: High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.10.067 |
SSID | ssj0023338 |
Score | 2.3941793 |
Snippet | A highly sensitive Au-graphene structure D-type fiber surface plasmon resonance biosensor is presented in this study to specifically detect biomolecules. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 991 |
SubjectTerms | au-graphene structure d-type plastic fiber high sensitivity specificity detection surface plasmon resonance biosensor |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7Et_HFKh68hDbZzaPHVq1FUIQqeAuzLyzUVGp78N87s0lLKwUvXjdLsmRmZ75vM_mGsStQ0FKZ1WEkVBxKTCIhKJXijs8dBk0nXZP-Rn58Snuv8uEteVto9UU1YZU8cPXiGpAImevYylRk0kRNyFQENs8cZjLIlVcCxZw3I1M11RLIvCodIYGkvvFFvoBYKFrKPl6kfxWy_F0guZBxuttsq4aKvF0tcYet2XKXbS4ICO6xcbvk7SnHEEmdtz_Ce5KfxujVuA2JYPIu1YPw_nTsQFv-jEgZvY7TkT3pbFjeRxI7GnMErpwKPobffsSXE3HfmZ70JSbfvDMYQa1ess9eu3cvN72w7qIQaoQ6k9AKqbXO6WxWIV2C1CTWRYDMVylhshZyGIe4SzgjhcOJpkX20aklNS4BTXHA1stRaY8YN8gdwQE4p51MRJyrFAzdX0hjdBwF7Hr2dgtdS4xTp4thgVSDDFHMDRGwy_nUz0pXY9WkDploPoGksP0AOkhRO0jxl4ME7GJm4AK3Dn0PgdKOpl9FjFirRW1PRcAOK4PPHyVixJ1JkgQsW3KFpbUsXykH716eO8Momsr8-D8Wf8I2YiL4vgPNKVufjKf2DFHQRJ17h_8BL5IIZw priority: 102 providerName: Directory of Open Access Journals |
Title | An Au Nanofilm-Graphene/D-Type Fiber Surface Plasmon Resonance Sensor for Highly Sensitive Specificity Bioanalysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32059555 https://www.proquest.com/docview/2355966733 https://pubmed.ncbi.nlm.nih.gov/PMC7070648 https://doaj.org/article/a5348c2e46374d10a7b1ae87f190a8b4 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2V9gIHxDfmI1oQBy6msXftdQ4IJdC0QmpVUSLlZu1nqRRscBKJ_HtmNo5Voxy5-LAe2ZZnZ_e99fo9gHdKq5GWzsQJ12kscBKJldY5VnzhcdD0wg_pb-Tzi_xsJr7Os_kB7Dw22xe43EvtyE9q1iw-_Pm9-YQF_5EYJ1L24yVlGpEOkqAjnJAkGRmci-5jQsqRhm1FhfrhvakoKPbvg5n_7pa8Nf1MH8D9Fjey8TbRD-HAVY_g3i01wcfQjCs2XjMcL8mG-2d8SlrUOJQdf4mJbbIpbQ5hV-vGK-PYJcJm7IKM1u9JdMOxK2S0dcMQxTLa_bHYhJawt4gFm3oSm1ht2OSmVq2UyROYTU--fz6LW0uF2CDuWcWOC2NMQQu1GrmTym3mfKKQBmvNrRwhofEIwri3gnsMtCNKlskdSXNxNeRP4bCqK_ccmEUiqbxS3hsvMp4WOleWrs-FtSZNIni_e7ulafXGyfZiUSLvoESUXSIieNuF_tqKbOwLmlCKugDSxQ4NdXNdtmVWqoyLwqRO5FwKmwyV1IlyhfSIe1ShRQRvdgkusY7o44iqXL1elikCrxF5oPIInm0T3t2KpwhCsyyLQPa6Qu9Z-meqmx9Bq1vikJqL4sX_ePiXcDclth_saF7B4apZu9cIiVZ6AHfkXOKxmJ4O4GhycnH5bRCWFwahFP4CiTIS1g |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Au+Nanofilm-Graphene%2FD-Type+Fiber+Surface+Plasmon+Resonance+Sensor+for+Highly+Sensitive+Specificity+Bioanalysis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiangtai+Xi&rft.au=Jihua+Xu&rft.au=Shuanglu+Li&rft.au=Jingyi+Song&rft.date=2020-02-12&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=20&rft.issue=4&rft.spage=991&rft_id=info:doi/10.3390%2Fs20040991&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a5348c2e46374d10a7b1ae87f190a8b4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |