Event-Triggering State and Fault Estimation for a Class of Nonlinear Systems Subject to Sensor Saturations

This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to i...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 4; p. 1242
Main Authors Huang, Cong, Shen, Bo, Zou, Lei, Shen, Yuxuan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.02.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.
AbstractList This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.
This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.
Author Huang, Cong
Shen, Bo
Zou, Lei
Shen, Yuxuan
AuthorAffiliation 5 Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China
1 College of Information Science and Technology, Donghua University, Shanghai 201620, China; c.huang@mail.dhu.edu.cn
2 Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China
3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; zouleicup@gmail.com
4 Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China; shenyuxuan5973@163.com
AuthorAffiliation_xml – name: 4 Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China; shenyuxuan5973@163.com
– name: 5 Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China
– name: 2 Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China
– name: 1 College of Information Science and Technology, Donghua University, Shanghai 201620, China; c.huang@mail.dhu.edu.cn
– name: 3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; zouleicup@gmail.com
Author_xml – sequence: 1
  givenname: Cong
  surname: Huang
  fullname: Huang, Cong
– sequence: 2
  givenname: Bo
  surname: Shen
  fullname: Shen, Bo
– sequence: 3
  givenname: Lei
  surname: Zou
  fullname: Zou, Lei
– sequence: 4
  givenname: Yuxuan
  surname: Shen
  fullname: Shen, Yuxuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33578724$$D View this record in MEDLINE/PubMed
BookMark eNplkktv1DAUhS1URB-w4A8gL2ER6lcSe4OERlOoVMEiZW059vXgUcYutlOp_75hpq1aWPnKPuc71r33FB3FFAGh95R85lyR88IoEZQJ9gqdUMFEIxkjR8_qY3RaypYQxjmXb9Ax520veyZO0HZ9C7E21zlsNpBD3OChmgrYRIcvzDxVvC417EwNKWKfMjZ4NZlScPL4R4pTiGAyHu5KhV3BwzxuwVZcEx4glkU-mDrnvbu8Ra-9mQq8ezjP0K-L9fXqe3P189vl6utVY4WgtXFqHKWVvnOGg2Cj8R4o641gHEARKxxh4PuedGp0vZeuVQY8sYRZx3po-Rm6PHBdMlt9k5ff5zudTND7i5Q32uQa7ASamk70lHEiWyWkd0qOyivSSsGY6Mi4sL4cWDfzuANnl15lM72AvnyJ4bfepFvdK9q1jC6Ajw-AnP7MUKrehWJhmkyENBfNhFSslR2Xi_TD86ynkMdhLYLzg8DmVEoGr22o-94u0WHSlOi_66Cf1mFxfPrH8Qj9X3sP8jq1Yw
CitedBy_id crossref_primary_10_3390_s21227675
crossref_primary_10_1016_j_jfranklin_2021_08_011
crossref_primary_10_1109_TNNLS_2022_3212281
crossref_primary_10_1109_TCYB_2021_3100080
crossref_primary_10_1002_rnc_7667
crossref_primary_10_3390_math11061327
crossref_primary_10_1109_TII_2024_3413359
crossref_primary_10_1109_TCYB_2023_3237625
crossref_primary_10_1177_01423312211037965
crossref_primary_10_3390_machines10050347
crossref_primary_10_1016_j_jfranklin_2022_01_042
crossref_primary_10_3390_s24061967
Cites_doi 10.1016/j.automatica.2018.03.005
10.1109/TSMC.2017.2723623
10.1109/78.485915
10.3390/s18030731
10.1016/j.jfranklin.2019.01.044
10.1109/TMECH.2018.2806350
10.1049/iet-cta.2015.0508
10.1109/TAC.2016.2614486
10.1016/j.automatica.2018.07.027
10.1002/rnc.2960
10.1016/j.automatica.2015.11.008
10.1109/TCYB.2014.2347697
10.3390/s18020321
10.1109/ChiCC.2014.6895885
10.1002/rnc.3221
10.1016/j.automatica.2012.01.008
10.1109/TCYB.2019.2932460
10.1109/TAES.2002.1039404
10.1080/00207721.2020.1754960
10.1016/j.sigpro.2016.12.004
10.1109/TFUZZ.2011.2168961
10.1007/s00521-016-2271-2
10.1115/1.3662552
10.1002/asjc.595
10.1016/j.automatica.2018.11.010
10.1016/j.jfranklin.2019.12.008
10.1016/j.neucom.2016.06.016
10.1109/TCSI.2019.2949014
10.1109/MED.2018.8442908
10.1109/TCYB.2018.2802044
10.1016/j.jfranklin.2019.08.029
10.1080/00207721.2020.1755476
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s21041242
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1a647123085948fd98b9f9058422460b
PMC7916521
33578724
10_3390_s21041242
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61873059, 61922024
– fundername: Program of Shanghai Academic/Technology Research Leader
  grantid: 20XD1420100
– fundername: Natural Science Foundation of Shanghai
  grantid: 18ZR1401500
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
5PM
PUEGO
ID FETCH-LOGICAL-c441t-d9bb8c8f6da3e42baffe127a423ee90c4d02ef77069bd7f8d59aef0c02cd27e53
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:36 EDT 2025
Thu Aug 21 14:09:19 EDT 2025
Mon Jul 21 10:17:07 EDT 2025
Wed Feb 19 02:29:05 EST 2025
Tue Jul 01 03:56:04 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords event-triggering mechanism (ETM)
state and fault estimation
nonlinear system
sensor saturations
recursive estimator
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-d9bb8c8f6da3e42baffe127a423ee90c4d02ef77069bd7f8d59aef0c02cd27e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1a647123085948fd98b9f9058422460b
PMID 33578724
PQID 2489258638
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1a647123085948fd98b9f9058422460b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7916521
proquest_miscellaneous_2489258638
pubmed_primary_33578724
crossref_citationtrail_10_3390_s21041242
crossref_primary_10_3390_s21041242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210210
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 2
  year: 2021
  text: 20210210
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Han (ref_1) 2018; 23
Li (ref_16) 2013; 25
Tan (ref_5) 2020; 51
Liu (ref_7) 2020; 67
Song (ref_13) 2016; 214
Huang (ref_25) 2019; 356
Zhang (ref_14) 2015; 45
Chan (ref_10) 2019; 356
Theodor (ref_30) 1996; 44
ref_17
Hu (ref_21) 2018; 97
Hosseini (ref_11) 2020; 357
Gu (ref_6) 2019; 49
Li (ref_26) 2016; 10
Qu (ref_3) 2020; 51
Li (ref_19) 2017; 28
Battistelli (ref_24) 2018; 93
Zhang (ref_12) 2012; 20
Zhao (ref_18) 2018; 48
Wang (ref_23) 2012; 48
Kalman (ref_2) 1960; 82
Shen (ref_31) 2020; 50
Mao (ref_8) 2017; 134
Ma (ref_20) 2017; 62
Dong (ref_22) 2014; 24
ref_29
ref_28
ref_27
Farina (ref_32) 2002; 38
Jiang (ref_15) 2014; 16
Shen (ref_4) 2019; 100
Hu (ref_9) 2016; 64
References_xml – volume: 93
  start-page: 75
  year: 2018
  ident: ref_24
  article-title: Distributed Kalman filter with event-triggered communication and guaranteed stability
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.03.005
– volume: 48
  start-page: 2070
  year: 2018
  ident: ref_18
  article-title: H∞ fault estimation for 2-D linear discrete time-varying systems based on Krein space method
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2723623
– volume: 44
  start-page: 181
  year: 1996
  ident: ref_30
  article-title: Robust discrete-time minimum-variance filtering
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.485915
– ident: ref_28
  doi: 10.3390/s18030731
– volume: 356
  start-page: 3010
  year: 2019
  ident: ref_10
  article-title: State and fault estimation for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.01.044
– volume: 23
  start-page: 646
  year: 2018
  ident: ref_1
  article-title: Matching algorithm based on the nonlinear filter and similarity transformation for gravity-aided underwater navigation
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2018.2806350
– volume: 10
  start-page: 103
  year: 2016
  ident: ref_26
  article-title: Event-triggered Kalman consensus filter over sensor networks
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2015.0508
– volume: 62
  start-page: 3524
  year: 2017
  ident: ref_20
  article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2016.2614486
– volume: 97
  start-page: 150
  year: 2018
  ident: ref_21
  article-title: Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.07.027
– volume: 24
  start-page: 1743
  year: 2014
  ident: ref_22
  article-title: Distributed filtering in sensor networks with randomly occurring saturations and successive packet dropouts
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.2960
– volume: 64
  start-page: 155
  year: 2016
  ident: ref_9
  article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2015.11.008
– volume: 45
  start-page: 1225
  year: 2015
  ident: ref_14
  article-title: Analysis and design of robust H∞ fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2347697
– ident: ref_29
  doi: 10.3390/s18020321
– ident: ref_27
  doi: 10.1109/ChiCC.2014.6895885
– volume: 25
  start-page: 2671
  year: 2013
  ident: ref_16
  article-title: H∞ fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: The finite-horizon case
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3221
– volume: 48
  start-page: 556
  year: 2012
  ident: ref_23
  article-title: H∞ filtering with randomly occurring sensor saturations and missing measurements
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.01.008
– volume: 50
  start-page: 3605
  year: 2020
  ident: ref_31
  article-title: Distributed state-saturated recursive filtering over sensor networks under round-robin protocol
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2932460
– volume: 38
  start-page: 854
  year: 2002
  ident: ref_32
  article-title: Tracking a ballistic target: Comparison of several nonlinear filters
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2002.1039404
– volume: 51
  start-page: 1188
  year: 2020
  ident: ref_5
  article-title: Robust recursive filtering for uncertain stochastic systems with amplify-and-forward relays
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2020.1754960
– volume: 134
  start-page: 158
  year: 2017
  ident: ref_8
  article-title: Event-based recursive filtering for time-delayed stochastic nonlinear systems with missing measurements
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.12.004
– volume: 20
  start-page: 192
  year: 2012
  ident: ref_12
  article-title: Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on piecewise lyapunov functions
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2011.2168961
– volume: 28
  start-page: 3815
  year: 2017
  ident: ref_19
  article-title: Event-triggered H∞ state estimation for discrete-time neural networks with mixed time delays and sensor saturations
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2271-2
– volume: 82
  start-page: 35
  year: 1960
  ident: ref_2
  article-title: A new approach to linear filtering and prediction problems
  publication-title: J. Basic Eng. Trans.
  doi: 10.1115/1.3662552
– volume: 16
  start-page: 126
  year: 2014
  ident: ref_15
  article-title: Fault estimation for nonlinear networked systems with time-varying delay and random packet dropout
  publication-title: Asian J. Control
  doi: 10.1002/asjc.595
– volume: 100
  start-page: 144
  year: 2019
  ident: ref_4
  article-title: Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.11.010
– volume: 357
  start-page: 2978
  year: 2020
  ident: ref_11
  article-title: Optimal reset unknown input observer design for fault and state estimation in a class of nonlinear uncertain systems
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.12.008
– volume: 214
  start-page: 240
  year: 2016
  ident: ref_13
  article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.06.016
– volume: 67
  start-page: 1021
  year: 2020
  ident: ref_7
  article-title: Finite-time H∞ filtering for state-dependent uncertain systems with event-triggered mechanism and multiple attacks
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2019.2949014
– ident: ref_17
  doi: 10.1109/MED.2018.8442908
– volume: 49
  start-page: 1570
  year: 2019
  ident: ref_6
  article-title: Decentralized adaptive event-triggered H∞ filtering for a class of networked nonlinear interconnected systems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2802044
– volume: 356
  start-page: 8870
  year: 2019
  ident: ref_25
  article-title: A dynamically event-triggered approach to recursive filtering with censored measurements and parameter uncertainties
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.08.029
– volume: 51
  start-page: 1200
  year: 2020
  ident: ref_3
  article-title: Estimation for power quality disturbances with multiplicative noises and correlated noises: A recursive estimation approach
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2020.1755476
SSID ssj0023338
Score 2.3838162
Snippet This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1242
SubjectTerms Communication
event-triggering mechanism (ETM)
nonlinear system
recursive estimator
sensor saturations
state and fault estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmntgDGmxABkwG7YGXCNdxYvsRUKtq0vrSVuIt8s-xCaWoTf__3cVp1U5Ie-HVuSiW73z3nXP-jpDvJa-8Y8zmcmB1LqLyuVFlmWsbrOCeBVHhBeefk2o8Fz-eyqedVl9YE5bogdPC3Q1MBf4TgLJCYpHotbI6agZxE6nQmEXvCzFvk0z1qVYBmVfiESogqb9bQWKDbZb5XvTpSPrfQpb_FkjuRJzRJ3LUQ0V6n6Z4TD6E5oR83CEQ_Ez-DLFcMZ9Biv2rG6IdeKSm8XRk1i8tHcIWTrcTKcBTamjXBZMuIp0kkgyzpD1rOQUngqcytF3QKWS3ID5F2s90pveFzEfD2eM477sn5A4gTpt7ba1yKlbeFEFwa2IMAy4N4KcQNHPCMx6ilKzS1ktQUqlNiMwx7jyXoSxOyUGzaMI5oaFwRjtrQ8HhNfACrvIiKC5j5FZZm5HbzarWrqcWxw4XLzWkGKiAequAjNxsRV8Tn8ZbQg-omq0AUmB3A2AYdW8Y9f8MIyPXG8XWsGXwP4hpwmK9qrlQmpcKPE9GzpKit58qkP1HcpERuWcCe3PZf9L8fu5ouSUgbQBDX99j8hfkkGPxDHaeYZfkoF2uwxWgn9Z-6wz9L0wHA98
  priority: 102
  providerName: Directory of Open Access Journals
Title Event-Triggering State and Fault Estimation for a Class of Nonlinear Systems Subject to Sensor Saturations
URI https://www.ncbi.nlm.nih.gov/pubmed/33578724
https://www.proquest.com/docview/2489258638
https://pubmed.ncbi.nlm.nih.gov/PMC7916521
https://doaj.org/article/1a647123085948fd98b9f9058422460b
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB4tuxLaPSDeWx6VQRy4BFzHie0DQixqWSFthdit1Fvk5wKqEmhTCf494ySNNqhcckgmieXx2N_nxzcArzKWO0upScTEqIQH6RItsyxRxhvOHPU8jwecL-b5-YJ_XmbLA9jl2OwqcLOX2sV8Uov16s3vX3_eY8C_i4wTKfvbDdKWmEQZe-IjHJBEjM8L3i8msBRpWCsqNDQ_httpFHsRjA9GpUa8fx_i_Hfj5I2RaHYX7nQQknxofX4PDnx5H05uCAs-gB_TuI0xuULqfd3cIg2oJLp0ZKa3q5pMMbTbU4sEYSvRpMmOSapA5q14hl6TTs2cYOcSZ2tIXZFLZL1ofhnlQNu5voewmE2vPp4nXVaFxCL0qROnjJFWhtzp1HNmdAh-woRGXOW9opY7ynwQgubKOIHOy5T2gVrKrGPCZ-kjOCyr0p8C8anVyhrjU4avYe9gc8e9ZCIEZqQxI3i9q9XCdpLjMfPFqkDqEX1R9L4Ywcve9Gers7HP6Cy6pjeI0tjNjWp9XXSRVkx0jgMuMisZlWiCU9KooCgCraidR7FQL3aOLTCU4vqILn213RSMS8UyiT3SCB63ju5_tWsoIxCDJjAoy_BJ-f1bI9ctEIEjSHry328-hWMWd8rENDP0GRzW661_jlCnNmO4JZYCr3L2aQxHZ9P5l6_jZtpg3DTxvxumAwI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggering+State+and+Fault+Estimation+for+a+Class+of+Nonlinear+Systems+Subject+to+Sensor+Saturations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Cong&rft.au=Shen%2C+Bo&rft.au=Zou%2C+Lei&rft.au=Shen%2C+Yuxuan&rft.date=2021-02-10&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft_id=info:doi/10.3390%2Fs21041242&rft_id=info%3Apmid%2F33578724&rft.externalDocID=33578724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon