Event-Triggering State and Fault Estimation for a Class of Nonlinear Systems Subject to Sensor Saturations
This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to i...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 4; p. 1242 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
10.02.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm. |
---|---|
AbstractList | This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm. This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm.This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the communication burden, an event-triggering protocol is utilized to govern the transmission frequency of the measurements from the sensor to its corresponding recursive estimator. Under the event-triggering mechanism (ETM), the current transmission is released only when the relative error of measurements is bigger than a prescribed threshold. The objective of this paper is to design an event-triggering recursive state and fault estimator such that the estimation error covariances for the state and fault are both guaranteed with upper bounds and subsequently derive the gain matrices minimizing such upper bounds, relying on the solutions to a set of difference equations. Finally, two experimental examples are given to validate the effectiveness of the designed algorithm. |
Author | Huang, Cong Shen, Bo Zou, Lei Shen, Yuxuan |
AuthorAffiliation | 5 Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China 1 College of Information Science and Technology, Donghua University, Shanghai 201620, China; c.huang@mail.dhu.edu.cn 2 Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China 3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; zouleicup@gmail.com 4 Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China; shenyuxuan5973@163.com |
AuthorAffiliation_xml | – name: 4 Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China; shenyuxuan5973@163.com – name: 5 Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China – name: 2 Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai 201620, China – name: 1 College of Information Science and Technology, Donghua University, Shanghai 201620, China; c.huang@mail.dhu.edu.cn – name: 3 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; zouleicup@gmail.com |
Author_xml | – sequence: 1 givenname: Cong surname: Huang fullname: Huang, Cong – sequence: 2 givenname: Bo surname: Shen fullname: Shen, Bo – sequence: 3 givenname: Lei surname: Zou fullname: Zou, Lei – sequence: 4 givenname: Yuxuan surname: Shen fullname: Shen, Yuxuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33578724$$D View this record in MEDLINE/PubMed |
BookMark | eNplkktv1DAUhS1URB-w4A8gL2ER6lcSe4OERlOoVMEiZW059vXgUcYutlOp_75hpq1aWPnKPuc71r33FB3FFAGh95R85lyR88IoEZQJ9gqdUMFEIxkjR8_qY3RaypYQxjmXb9Ax520veyZO0HZ9C7E21zlsNpBD3OChmgrYRIcvzDxVvC417EwNKWKfMjZ4NZlScPL4R4pTiGAyHu5KhV3BwzxuwVZcEx4glkU-mDrnvbu8Ra-9mQq8ezjP0K-L9fXqe3P189vl6utVY4WgtXFqHKWVvnOGg2Cj8R4o641gHEARKxxh4PuedGp0vZeuVQY8sYRZx3po-Rm6PHBdMlt9k5ff5zudTND7i5Q32uQa7ASamk70lHEiWyWkd0qOyivSSsGY6Mi4sL4cWDfzuANnl15lM72AvnyJ4bfepFvdK9q1jC6Ajw-AnP7MUKrehWJhmkyENBfNhFSslR2Xi_TD86ynkMdhLYLzg8DmVEoGr22o-94u0WHSlOi_66Cf1mFxfPrH8Qj9X3sP8jq1Yw |
CitedBy_id | crossref_primary_10_3390_s21227675 crossref_primary_10_1016_j_jfranklin_2021_08_011 crossref_primary_10_1109_TNNLS_2022_3212281 crossref_primary_10_1109_TCYB_2021_3100080 crossref_primary_10_1002_rnc_7667 crossref_primary_10_3390_math11061327 crossref_primary_10_1109_TII_2024_3413359 crossref_primary_10_1109_TCYB_2023_3237625 crossref_primary_10_1177_01423312211037965 crossref_primary_10_3390_machines10050347 crossref_primary_10_1016_j_jfranklin_2022_01_042 crossref_primary_10_3390_s24061967 |
Cites_doi | 10.1016/j.automatica.2018.03.005 10.1109/TSMC.2017.2723623 10.1109/78.485915 10.3390/s18030731 10.1016/j.jfranklin.2019.01.044 10.1109/TMECH.2018.2806350 10.1049/iet-cta.2015.0508 10.1109/TAC.2016.2614486 10.1016/j.automatica.2018.07.027 10.1002/rnc.2960 10.1016/j.automatica.2015.11.008 10.1109/TCYB.2014.2347697 10.3390/s18020321 10.1109/ChiCC.2014.6895885 10.1002/rnc.3221 10.1016/j.automatica.2012.01.008 10.1109/TCYB.2019.2932460 10.1109/TAES.2002.1039404 10.1080/00207721.2020.1754960 10.1016/j.sigpro.2016.12.004 10.1109/TFUZZ.2011.2168961 10.1007/s00521-016-2271-2 10.1115/1.3662552 10.1002/asjc.595 10.1016/j.automatica.2018.11.010 10.1016/j.jfranklin.2019.12.008 10.1016/j.neucom.2016.06.016 10.1109/TCSI.2019.2949014 10.1109/MED.2018.8442908 10.1109/TCYB.2018.2802044 10.1016/j.jfranklin.2019.08.029 10.1080/00207721.2020.1755476 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s21041242 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1a647123085948fd98b9f9058422460b PMC7916521 33578724 10_3390_s21041242 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61873059, 61922024 – fundername: Program of Shanghai Academic/Technology Research Leader grantid: 20XD1420100 – fundername: Natural Science Foundation of Shanghai grantid: 18ZR1401500 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PJZUB PPXIY 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-d9bb8c8f6da3e42baffe127a423ee90c4d02ef77069bd7f8d59aef0c02cd27e53 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:36 EDT 2025 Thu Aug 21 14:09:19 EDT 2025 Mon Jul 21 10:17:07 EDT 2025 Wed Feb 19 02:29:05 EST 2025 Tue Jul 01 03:56:04 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | event-triggering mechanism (ETM) state and fault estimation nonlinear system sensor saturations recursive estimator |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-d9bb8c8f6da3e42baffe127a423ee90c4d02ef77069bd7f8d59aef0c02cd27e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1a647123085948fd98b9f9058422460b |
PMID | 33578724 |
PQID | 2489258638 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a647123085948fd98b9f9058422460b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7916521 proquest_miscellaneous_2489258638 pubmed_primary_33578724 crossref_citationtrail_10_3390_s21041242 crossref_primary_10_3390_s21041242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210210 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210210 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Han (ref_1) 2018; 23 Li (ref_16) 2013; 25 Tan (ref_5) 2020; 51 Liu (ref_7) 2020; 67 Song (ref_13) 2016; 214 Huang (ref_25) 2019; 356 Zhang (ref_14) 2015; 45 Chan (ref_10) 2019; 356 Theodor (ref_30) 1996; 44 ref_17 Hu (ref_21) 2018; 97 Hosseini (ref_11) 2020; 357 Gu (ref_6) 2019; 49 Li (ref_26) 2016; 10 Qu (ref_3) 2020; 51 Li (ref_19) 2017; 28 Battistelli (ref_24) 2018; 93 Zhang (ref_12) 2012; 20 Zhao (ref_18) 2018; 48 Wang (ref_23) 2012; 48 Kalman (ref_2) 1960; 82 Shen (ref_31) 2020; 50 Mao (ref_8) 2017; 134 Ma (ref_20) 2017; 62 Dong (ref_22) 2014; 24 ref_29 ref_28 ref_27 Farina (ref_32) 2002; 38 Jiang (ref_15) 2014; 16 Shen (ref_4) 2019; 100 Hu (ref_9) 2016; 64 |
References_xml | – volume: 93 start-page: 75 year: 2018 ident: ref_24 article-title: Distributed Kalman filter with event-triggered communication and guaranteed stability publication-title: Automatica doi: 10.1016/j.automatica.2018.03.005 – volume: 48 start-page: 2070 year: 2018 ident: ref_18 article-title: H∞ fault estimation for 2-D linear discrete time-varying systems based on Krein space method publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2723623 – volume: 44 start-page: 181 year: 1996 ident: ref_30 article-title: Robust discrete-time minimum-variance filtering publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.485915 – ident: ref_28 doi: 10.3390/s18030731 – volume: 356 start-page: 3010 year: 2019 ident: ref_10 article-title: State and fault estimation for a class of non-infinitely observable descriptor systems using two sliding mode observers in cascade publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.01.044 – volume: 23 start-page: 646 year: 2018 ident: ref_1 article-title: Matching algorithm based on the nonlinear filter and similarity transformation for gravity-aided underwater navigation publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2018.2806350 – volume: 10 start-page: 103 year: 2016 ident: ref_26 article-title: Event-triggered Kalman consensus filter over sensor networks publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2015.0508 – volume: 62 start-page: 3524 year: 2017 ident: ref_20 article-title: Event-triggered mean-square consensus control for time-varying stochastic multi-agent system with sensor saturations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2016.2614486 – volume: 97 start-page: 150 year: 2018 ident: ref_21 article-title: Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations publication-title: Automatica doi: 10.1016/j.automatica.2018.07.027 – volume: 24 start-page: 1743 year: 2014 ident: ref_22 article-title: Distributed filtering in sensor networks with randomly occurring saturations and successive packet dropouts publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.2960 – volume: 64 start-page: 155 year: 2016 ident: ref_9 article-title: A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements publication-title: Automatica doi: 10.1016/j.automatica.2015.11.008 – volume: 45 start-page: 1225 year: 2015 ident: ref_14 article-title: Analysis and design of robust H∞ fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2347697 – ident: ref_29 doi: 10.3390/s18020321 – ident: ref_27 doi: 10.1109/ChiCC.2014.6895885 – volume: 25 start-page: 2671 year: 2013 ident: ref_16 article-title: H∞ fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: The finite-horizon case publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3221 – volume: 48 start-page: 556 year: 2012 ident: ref_23 article-title: H∞ filtering with randomly occurring sensor saturations and missing measurements publication-title: Automatica doi: 10.1016/j.automatica.2012.01.008 – volume: 50 start-page: 3605 year: 2020 ident: ref_31 article-title: Distributed state-saturated recursive filtering over sensor networks under round-robin protocol publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2932460 – volume: 38 start-page: 854 year: 2002 ident: ref_32 article-title: Tracking a ballistic target: Comparison of several nonlinear filters publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2002.1039404 – volume: 51 start-page: 1188 year: 2020 ident: ref_5 article-title: Robust recursive filtering for uncertain stochastic systems with amplify-and-forward relays publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2020.1754960 – volume: 134 start-page: 158 year: 2017 ident: ref_8 article-title: Event-based recursive filtering for time-delayed stochastic nonlinear systems with missing measurements publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.12.004 – volume: 20 start-page: 192 year: 2012 ident: ref_12 article-title: Fault estimation observer design for discrete-time Takagi-Sugeno fuzzy systems based on piecewise lyapunov functions publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2011.2168961 – volume: 28 start-page: 3815 year: 2017 ident: ref_19 article-title: Event-triggered H∞ state estimation for discrete-time neural networks with mixed time delays and sensor saturations publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2271-2 – volume: 82 start-page: 35 year: 1960 ident: ref_2 article-title: A new approach to linear filtering and prediction problems publication-title: J. Basic Eng. Trans. doi: 10.1115/1.3662552 – volume: 16 start-page: 126 year: 2014 ident: ref_15 article-title: Fault estimation for nonlinear networked systems with time-varying delay and random packet dropout publication-title: Asian J. Control doi: 10.1002/asjc.595 – volume: 100 start-page: 144 year: 2019 ident: ref_4 article-title: Finite-horizon filtering for a class of nonlinear time-delayed systems with an energy harvesting sensor publication-title: Automatica doi: 10.1016/j.automatica.2018.11.010 – volume: 357 start-page: 2978 year: 2020 ident: ref_11 article-title: Optimal reset unknown input observer design for fault and state estimation in a class of nonlinear uncertain systems publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.12.008 – volume: 214 start-page: 240 year: 2016 ident: ref_13 article-title: Recursive approach to networked fault estimation with packet dropouts and randomly occurring uncertainties publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.06.016 – volume: 67 start-page: 1021 year: 2020 ident: ref_7 article-title: Finite-time H∞ filtering for state-dependent uncertain systems with event-triggered mechanism and multiple attacks publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2019.2949014 – ident: ref_17 doi: 10.1109/MED.2018.8442908 – volume: 49 start-page: 1570 year: 2019 ident: ref_6 article-title: Decentralized adaptive event-triggered H∞ filtering for a class of networked nonlinear interconnected systems publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2802044 – volume: 356 start-page: 8870 year: 2019 ident: ref_25 article-title: A dynamically event-triggered approach to recursive filtering with censored measurements and parameter uncertainties publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.08.029 – volume: 51 start-page: 1200 year: 2020 ident: ref_3 article-title: Estimation for power quality disturbances with multiplicative noises and correlated noises: A recursive estimation approach publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2020.1755476 |
SSID | ssj0023338 |
Score | 2.3838162 |
Snippet | This paper is concerned with the state and fault estimation issue for nonlinear systems with sensor saturations and fault signals. For the sake of avoiding the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1242 |
SubjectTerms | Communication event-triggering mechanism (ETM) nonlinear system recursive estimator sensor saturations state and fault estimation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swELYmntgDGmxABkwG7YGXCNdxYvsRUKtq0vrSVuIt8s-xCaWoTf__3cVp1U5Ie-HVuSiW73z3nXP-jpDvJa-8Y8zmcmB1LqLyuVFlmWsbrOCeBVHhBeefk2o8Fz-eyqedVl9YE5bogdPC3Q1MBf4TgLJCYpHotbI6agZxE6nQmEXvCzFvk0z1qVYBmVfiESogqb9bQWKDbZb5XvTpSPrfQpb_FkjuRJzRJ3LUQ0V6n6Z4TD6E5oR83CEQ_Ez-DLFcMZ9Biv2rG6IdeKSm8XRk1i8tHcIWTrcTKcBTamjXBZMuIp0kkgyzpD1rOQUngqcytF3QKWS3ID5F2s90pveFzEfD2eM477sn5A4gTpt7ba1yKlbeFEFwa2IMAy4N4KcQNHPCMx6ilKzS1ktQUqlNiMwx7jyXoSxOyUGzaMI5oaFwRjtrQ8HhNfACrvIiKC5j5FZZm5HbzarWrqcWxw4XLzWkGKiAequAjNxsRV8Tn8ZbQg-omq0AUmB3A2AYdW8Y9f8MIyPXG8XWsGXwP4hpwmK9qrlQmpcKPE9GzpKit58qkP1HcpERuWcCe3PZf9L8fu5ouSUgbQBDX99j8hfkkGPxDHaeYZfkoF2uwxWgn9Z-6wz9L0wHA98 priority: 102 providerName: Directory of Open Access Journals |
Title | Event-Triggering State and Fault Estimation for a Class of Nonlinear Systems Subject to Sensor Saturations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33578724 https://www.proquest.com/docview/2489258638 https://pubmed.ncbi.nlm.nih.gov/PMC7916521 https://doaj.org/article/1a647123085948fd98b9f9058422460b |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB4tuxLaPSDeWx6VQRy4BFzHie0DQixqWSFthdit1Fvk5wKqEmhTCf494ySNNqhcckgmieXx2N_nxzcArzKWO0upScTEqIQH6RItsyxRxhvOHPU8jwecL-b5-YJ_XmbLA9jl2OwqcLOX2sV8Uov16s3vX3_eY8C_i4wTKfvbDdKWmEQZe-IjHJBEjM8L3i8msBRpWCsqNDQ_httpFHsRjA9GpUa8fx_i_Hfj5I2RaHYX7nQQknxofX4PDnx5H05uCAs-gB_TuI0xuULqfd3cIg2oJLp0ZKa3q5pMMbTbU4sEYSvRpMmOSapA5q14hl6TTs2cYOcSZ2tIXZFLZL1ofhnlQNu5voewmE2vPp4nXVaFxCL0qROnjJFWhtzp1HNmdAh-woRGXOW9opY7ynwQgubKOIHOy5T2gVrKrGPCZ-kjOCyr0p8C8anVyhrjU4avYe9gc8e9ZCIEZqQxI3i9q9XCdpLjMfPFqkDqEX1R9L4Ywcve9Gers7HP6Cy6pjeI0tjNjWp9XXSRVkx0jgMuMisZlWiCU9KooCgCraidR7FQL3aOLTCU4vqILn213RSMS8UyiT3SCB63ju5_tWsoIxCDJjAoy_BJ-f1bI9ctEIEjSHry328-hWMWd8rENDP0GRzW661_jlCnNmO4JZYCr3L2aQxHZ9P5l6_jZtpg3DTxvxumAwI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggering+State+and+Fault+Estimation+for+a+Class+of+Nonlinear+Systems+Subject+to+Sensor+Saturations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Cong&rft.au=Shen%2C+Bo&rft.au=Zou%2C+Lei&rft.au=Shen%2C+Yuxuan&rft.date=2021-02-10&rft.eissn=1424-8220&rft.volume=21&rft.issue=4&rft_id=info:doi/10.3390%2Fs21041242&rft_id=info%3Apmid%2F33578724&rft.externalDocID=33578724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |