Observation of a phononic higher-order Weyl semimetal
Weyl semimetals (WSMs) 1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons 1 and metamaterials for photons 2 and phonons 3 . Here we report a higher-order Weyl semimetal (HOWSM...
Saved in:
Published in | Nature materials Vol. 20; no. 6; pp. 794 - 799 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Weyl semimetals (WSMs)
1
exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons
1
and metamaterials for photons
2
and phonons
3
. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics
4
–
8
in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.
Symmetry is utilized to realize a phononic higher-order Weyl semimetal. |
---|---|
AbstractList | Weyl semimetals (WSMs)
1
exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons
1
and metamaterials for photons
2
and phonons
3
. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics
4
–
8
in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.
Symmetry is utilized to realize a phononic higher-order Weyl semimetal. Weyl semimetals (WSMs) exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons and metamaterials for photons and phonons . Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals. Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4-8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4-8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals. Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4–8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.Symmetry is utilized to realize a phononic higher-order Weyl semimetal. |
Author | Jiang, Bin Luo, Li Lin, Zhi-Kang Li, Feng Wu, Ying Jiang, Jian-Hua Wang, Hai-Xiao |
Author_xml | – sequence: 1 givenname: Li surname: Luo fullname: Luo, Li organization: School of Physics and Optoelectronics, South China University of Technology – sequence: 2 givenname: Hai-Xiao surname: Wang fullname: Wang, Hai-Xiao organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, School of Physical Science and Technology, Guangxi Normal University – sequence: 3 givenname: Zhi-Kang surname: Lin fullname: Lin, Zhi-Kang organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University – sequence: 4 givenname: Bin surname: Jiang fullname: Jiang, Bin organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University – sequence: 5 givenname: Ying surname: Wu fullname: Wu, Ying organization: School of Physics and Optoelectronics, South China University of Technology – sequence: 6 givenname: Feng surname: Li fullname: Li, Feng email: phlifeng@bit.edu.cn organization: School of Physics, Beijing Institute of Technology – sequence: 7 givenname: Jian-Hua orcidid: 0000-0001-6505-0998 surname: Jiang fullname: Jiang, Jian-Hua email: jianhuajiang@suda.edu.cn organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33859382$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kLtOwzAUQC1URB_wAwwoEguLwY4fcUZU8ZIqdQExWk5it66SuNgpUv8etykgdehkD-fce3XGYNC6VgNwjdE9RkQ8BIoZJxClGCKUCwb5GRhhmnFIOUeDwx_jNB2CcQgrFEnG-AUYEiJYTkQ6AmxeBO2_VWddmziTqGS9dHGPLZOlXSy1h85X2iefelsnQTe20Z2qL8G5UXXQV4d3Aj6en96nr3A2f3mbPs5gSSnuYCUqVArGMmQEJopqikuS84JWwmQizQqFM0JynZnKYJ4rZhBllGZGRS7NMzIBd_3ctXdfGx062dhQ6rpWrXabIFOGKUcMkx16e4Su3Ma38bpIEYIYEnvq5kBtikZXcu1to_xW_gaJQNoDpXcheG3-EIzkrrrsq8vYUu6rSx4lcSSVttsn7byy9WmV9GqIe9qF9v9nn7B-AAXnk2Q |
CitedBy_id | crossref_primary_10_1103_PhysRevB_106_134108 crossref_primary_10_1038_s41467_022_33306_9 crossref_primary_10_1103_PhysRevB_108_L161104 crossref_primary_10_1063_5_0245475 crossref_primary_10_1002_smsc_202200052 crossref_primary_10_1103_PhysRevB_109_134107 crossref_primary_10_1002_lpor_202100452 crossref_primary_10_1002_advs_202205723 crossref_primary_10_1103_PhysRevLett_128_115701 crossref_primary_10_1088_1361_648X_ad5ad1 crossref_primary_10_1103_PhysRevB_104_205117 crossref_primary_10_1103_PhysRevLett_127_146601 crossref_primary_10_1088_1361_648X_ada410 crossref_primary_10_1093_nsr_nwae121 crossref_primary_10_1002_andp_202200025 crossref_primary_10_1016_j_scib_2024_01_041 crossref_primary_10_1038_s42005_023_01254_5 crossref_primary_10_1088_1361_648X_ace1c2 crossref_primary_10_1016_j_mtnano_2023_100389 crossref_primary_10_1088_1361_6633_aceeee crossref_primary_10_1103_PhysRevApplied_20_064034 crossref_primary_10_1038_s42005_023_01461_0 crossref_primary_10_1103_PhysRevB_109_024305 crossref_primary_10_1121_10_0026118 crossref_primary_10_1103_PhysRevB_104_014203 crossref_primary_10_1103_PhysRevApplied_22_054079 crossref_primary_10_1103_PhysRevLett_133_126602 crossref_primary_10_1038_s41377_021_00698_0 crossref_primary_10_1103_PhysRevApplied_17_024054 crossref_primary_10_1038_s42254_023_00565_4 crossref_primary_10_1103_PhysRevB_109_035148 crossref_primary_10_1016_j_ijmecsci_2023_108669 crossref_primary_10_1103_PhysRevLett_131_046101 crossref_primary_10_1103_PhysRevB_109_085402 crossref_primary_10_1103_PhysRevB_105_L081102 crossref_primary_10_1088_1361_6463_ad6b35 crossref_primary_10_1103_PhysRevB_108_085141 crossref_primary_10_3389_fphy_2022_1073295 crossref_primary_10_1103_PhysRevB_107_L121407 crossref_primary_10_3389_fphy_2022_866347 crossref_primary_10_1038_s41467_023_40252_7 crossref_primary_10_1103_PhysRevApplied_20_064047 crossref_primary_10_1103_PhysRevB_108_205135 crossref_primary_10_1103_PhysRevB_109_134205 crossref_primary_10_3389_fphy_2021_789697 crossref_primary_10_1103_PhysRevLett_127_255501 crossref_primary_10_1103_PhysRevB_106_195129 crossref_primary_10_1038_s41467_025_56717_w crossref_primary_10_1103_PhysRevApplied_21_054048 crossref_primary_10_1103_PhysRevB_108_104110 crossref_primary_10_1088_1361_648X_ac4dbd crossref_primary_10_1038_s42254_024_00745_w crossref_primary_10_1360_TB_2024_0964 crossref_primary_10_1002_lpor_202401631 crossref_primary_10_1007_s11071_024_10219_4 crossref_primary_10_1088_1361_648X_ad3abd crossref_primary_10_1103_PhysRevB_107_035128 crossref_primary_10_1103_PhysRevB_106_035105 crossref_primary_10_1103_PhysRevB_106_054403 crossref_primary_10_1002_adma_202407437 crossref_primary_10_1103_PhysRevB_110_104103 crossref_primary_10_1103_PhysRevB_108_165427 crossref_primary_10_1103_PhysRevB_110_184303 crossref_primary_10_1103_PhysRevB_105_L060101 crossref_primary_10_1021_acsphotonics_3c01651 crossref_primary_10_1038_s41535_022_00422_0 crossref_primary_10_1103_PhysRevLett_132_266602 crossref_primary_10_1103_PhysRevB_109_134302 crossref_primary_10_1103_PhysRevB_109_L060101 crossref_primary_10_1103_PhysRevApplied_19_024023 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1007_s11433_023_2198_2 crossref_primary_10_1007_s11433_023_2176_9 crossref_primary_10_1103_PhysRevLett_132_186601 crossref_primary_10_1364_OL_472397 crossref_primary_10_1088_1367_2630_acd9e2 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123497 crossref_primary_10_1109_JLT_2022_3200139 crossref_primary_10_1103_PhysRevResearch_5_023189 crossref_primary_10_1103_PhysRevLett_130_116103 crossref_primary_10_1038_s41563_021_01018_y crossref_primary_10_1103_PhysRevLett_132_197202 crossref_primary_10_3390_sym15091651 crossref_primary_10_1103_PhysRevB_110_094104 crossref_primary_10_1103_PhysRevB_108_L241402 crossref_primary_10_1103_PhysRevB_107_L121101 crossref_primary_10_1103_PhysRevB_108_094103 crossref_primary_10_1103_PhysRevB_108_L220303 crossref_primary_10_1103_PhysRevB_111_045152 crossref_primary_10_1002_idm2_12071 crossref_primary_10_1103_PhysRevB_109_L081101 crossref_primary_10_1103_PhysRevB_106_184101 crossref_primary_10_1038_s41467_022_28182_2 crossref_primary_10_1103_PhysRevB_106_075301 crossref_primary_10_1103_PhysRevB_109_205137 crossref_primary_10_1103_PhysRevLett_132_066601 crossref_primary_10_1038_s41578_022_00465_6 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126182 crossref_primary_10_1038_s41467_023_39117_w crossref_primary_10_1103_PhysRevB_104_L161116 crossref_primary_10_1038_s41467_023_42457_2 crossref_primary_10_1103_PhysRevLett_127_196801 crossref_primary_10_1103_PhysRevB_104_L161117 crossref_primary_10_1039_D4TC03286A crossref_primary_10_1038_s41467_022_33652_8 crossref_primary_10_1093_nsr_nwac203 crossref_primary_10_1103_PhysRevApplied_19_064064 crossref_primary_10_1038_s41524_022_00894_5 crossref_primary_10_1103_PhysRevB_111_L041402 crossref_primary_10_1103_PhysRevB_110_L121122 crossref_primary_10_1103_PhysRevB_106_075139 crossref_primary_10_1016_j_physrep_2024_09_007 crossref_primary_10_1016_j_scib_2022_09_020 crossref_primary_10_1016_j_matt_2023_10_028 crossref_primary_10_1103_PhysRevB_105_115119 crossref_primary_10_22331_q_2022_06_07_731 crossref_primary_10_1002_lpor_202300384 crossref_primary_10_1103_PhysRevApplied_20_054054 crossref_primary_10_1103_PhysRevB_107_085108 crossref_primary_10_1038_s42254_021_00323_4 crossref_primary_10_1063_5_0173791 crossref_primary_10_1063_5_0202383 crossref_primary_10_1364_OE_444780 crossref_primary_10_1039_D3CP00140G crossref_primary_10_1364_OE_431233 crossref_primary_10_1038_s41467_022_31084_y crossref_primary_10_1103_PhysRevB_106_035308 |
Cites_doi | 10.1103/PhysRevB.97.180101 10.1038/s41567-018-0246-1 10.1038/s41566-018-0179-3 10.1038/s41467-020-16350-1 10.1038/s41563-018-0251-x 10.1038/nature25777 10.1103/RevModPhys.91.015006 10.1038/s41467-019-13861-4 10.1038/nphys3782 10.1103/PhysRevLett.119.246402 10.1038/s42254-019-0030-x 10.1126/sciadv.aat0346 10.1103/RevModPhys.90.015001 10.1103/PhysRevLett.120.016401 10.1103/PhysRevLett.122.244301 10.1103/PhysRevLett.124.206601 10.1038/s41567-019-0472-1 10.1038/s41598-019-41746-5 10.1038/s41563-018-0252-9 10.1038/s41467-020-15705-y 10.1103/PhysRevLett.119.246401 10.1103/PhysRevLett.125.266804 10.1126/science.aah6442 10.1103/PhysRevLett.120.026801 10.1038/nature25156 10.1038/s41467-019-13333-9 10.1126/sciadv.aay4166 10.1103/PhysRevLett.125.146401 10.1103/PhysRevB.98.241103 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-021-00985-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1476-4660 |
EndPage | 799 |
ExternalDocumentID | 33859382 10_1038_s41563_021_00985_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11904060; 12074281; 12074281; 12074281 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2020M672615 funderid: https://doi.org/10.13039/501100002858 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2020A1515010549; 2020A1515010549; 2020A1515010549 funderid: https://doi.org/10.13039/501100003453 – fundername: Jiangsu province specially appointed professor funding – fundername: China Postdoctoral Science Foundation grantid: 2020M672615 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11904060 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12074281 – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2020A1515010549 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c441t-d8d0c85570f813a4e41c396b4d8f7827ba17339e7fdf169a5f045447fa1c32973 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 03:14:28 EDT 2025 Sat Aug 23 13:31:23 EDT 2025 Mon Jul 21 05:33:51 EDT 2025 Tue Jul 01 02:14:02 EDT 2025 Thu Apr 24 22:56:17 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-d8d0c85570f813a4e41c396b4d8f7827ba17339e7fdf169a5f045447fa1c32973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6505-0998 |
PMID | 33859382 |
PQID | 2533050837 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2514605137 proquest_journals_2533050837 pubmed_primary_33859382 crossref_primary_10_1038_s41563_021_00985_6 crossref_citationtrail_10_1038_s41563_021_00985_6 springer_journals_10_1038_s41563_021_00985_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Xue (CR20) 2019; 122 Ni, Weiner, Alù, Khanikaev (CR16) 2019; 18 Ezawa (CR8) 2018; 120 Zhang (CR21) 2019; 10 Noh (CR14) 2018; 12 Xue (CR23) 2020; 11 Benalcazar, Bernevig, Hughes (CR4) 2017; 357 Zhang (CR17) 2019; 15 Zhang (CR18) 2020; 11 Qi (CR19) 2020; 124 Weiner, Ni, Li, Alù, Khanikaev (CR24) 2020; 6 Ezawa (CR30) 2019; 9 Ozawa (CR2) 2019; 91 Xue, Yang, Gao, Chong, Zhang (CR15) 2019; 18 Ghorashi, Li, Hughes (CR26) 2020; 125 Wang, Lin, Jiang, Guo, Jiang (CR25) 2020; 125 Xiong (CR10) 2018; 97 Langbehn, Peng, Trifunovic, von Oppen, Brouwer (CR5) 2017; 119 Schindler (CR7) 2018; 4 CR27 Peterson, Benalcazar, Hughes, Bahl (CR12) 2018; 555 Ma, Xiao, Chan (CR3) 2019; 1 Lin, Hughes (CR29) 2018; 98 Imhof (CR13) 2018; 14 Armitage, Mele, Vishwanath (CR1) 2018; 90 Ni, Li, Weiner, Alù, Khanikaev (CR22) 2020; 11 Song, Fang, Fang (CR6) 2017; 119 Zhang (CR9) 2018; 120 Serra-Garcia (CR11) 2018; 555 Fang, Lu, Liu, Fu (CR28) 2016; 12 X Ni (985_CR22) 2020; 11 CW Peterson (985_CR12) 2018; 555 J Noh (985_CR14) 2018; 12 NP Armitage (985_CR1) 2018; 90 G Ma (985_CR3) 2019; 1 M Ezawa (985_CR8) 2018; 120 H Xue (985_CR20) 2019; 122 Y Qi (985_CR19) 2020; 124 985_CR27 SAA Ghorashi (985_CR26) 2020; 125 X Zhang (985_CR21) 2019; 10 H-X Wang (985_CR25) 2020; 125 M Weiner (985_CR24) 2020; 6 H Xue (985_CR23) 2020; 11 X Zhang (985_CR18) 2020; 11 F Schindler (985_CR7) 2018; 4 H Xue (985_CR15) 2019; 18 T Zhang (985_CR9) 2018; 120 J Langbehn (985_CR5) 2017; 119 M Lin (985_CR29) 2018; 98 ZD Song (985_CR6) 2017; 119 C Fang (985_CR28) 2016; 12 T Ozawa (985_CR2) 2019; 91 S Imhof (985_CR13) 2018; 14 X Zhang (985_CR17) 2019; 15 M Serra-Garcia (985_CR11) 2018; 555 X Ni (985_CR16) 2019; 18 WA Benalcazar (985_CR4) 2017; 357 Z Xiong (985_CR10) 2018; 97 M Ezawa (985_CR30) 2019; 9 |
References_xml | – volume: 97 start-page: 180101 year: 2018 ident: CR10 article-title: Topological node lines in mechanical metacrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.180101 – volume: 14 start-page: 925 year: 2018 end-page: 929 ident: CR13 article-title: Topolectrical circuit realization of topological corner modes publication-title: Nat. Phys. doi: 10.1038/s41567-018-0246-1 – volume: 12 start-page: 408 year: 2018 end-page: 415 ident: CR14 article-title: Topological protection of photonic mid-gap defect modes publication-title: Nat. Photon. doi: 10.1038/s41566-018-0179-3 – volume: 11 year: 2020 ident: CR23 article-title: Observation of an acoustic octupole topological insulator publication-title: Nat. Commun. doi: 10.1038/s41467-020-16350-1 – volume: 18 start-page: 108 year: 2019 end-page: 112 ident: CR15 article-title: Acoustic higher-order topological insulator on a kagome lattice publication-title: Nat. Mater. doi: 10.1038/s41563-018-0251-x – volume: 555 start-page: 346 year: 2018 end-page: 350 ident: CR12 article-title: A quantized microwave quadrupole insulator with topological protected corner states publication-title: Nature doi: 10.1038/nature25777 – volume: 91 start-page: 015006 year: 2019 ident: CR2 article-title: Topological photonics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.015006 – volume: 11 year: 2020 ident: CR18 article-title: Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals publication-title: Nat. Commun. doi: 10.1038/s41467-019-13861-4 – volume: 12 start-page: 936 year: 2016 end-page: 941 ident: CR28 article-title: Topological semimetals with helicoid surface states publication-title: Nat. Phys. doi: 10.1038/nphys3782 – volume: 119 start-page: 246402 year: 2017 ident: CR6 article-title: ( –2)-dimensional edge states of rotation symmetry protected topological states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – volume: 1 start-page: 281 year: 2019 end-page: 294 ident: CR3 article-title: Topological phases in acoustic and mechanical systems publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0030-x – volume: 4 start-page: eaat0346 year: 2018 ident: CR7 article-title: Higher-order topological insulators publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0346 – volume: 90 start-page: 015001 year: 2018 ident: CR1 article-title: Weyl and Dirac semimetals in three-dimensional solids publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015001 – ident: CR27 – volume: 120 start-page: 016401 year: 2018 ident: CR9 article-title: Double-Weyl phonons in transition-metal monosilicides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.016401 – volume: 122 start-page: 244301 year: 2019 ident: CR20 article-title: Realization of an acoustic third-order topological insulator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.244301 – volume: 124 start-page: 206601 year: 2020 ident: CR19 article-title: Acoustic realization of quadrupole topological insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.206601 – volume: 15 start-page: 582 year: 2019 end-page: 588 ident: CR17 article-title: Second-order topology and multi-dimensional topological transitions in sonic crystals publication-title: Nat. Phys. doi: 10.1038/s41567-019-0472-1 – volume: 9 year: 2019 ident: CR30 article-title: Second-order topological insulators and loop-nodal semimetals in transition metal dichalcogenides XTe (X = Mo, W) publication-title: Sci. Rep. doi: 10.1038/s41598-019-41746-5 – volume: 18 start-page: 113 year: 2019 end-page: 120 ident: CR16 article-title: Observation of higher-order topological acoustic states protected by generalized chiral symmetry publication-title: Nat. Mater. doi: 10.1038/s41563-018-0252-9 – volume: 11 year: 2020 ident: CR22 article-title: Demonstration of a quantized acoustic octupole topological insulator publication-title: Nat. Commun. doi: 10.1038/s41467-020-15705-y – volume: 119 start-page: 246401 year: 2017 ident: CR5 article-title: Reflection-symmetric second-order topological insulators and superconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – volume: 125 start-page: 266804 year: 2020 ident: CR26 article-title: Higher-order Weyl semimetals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.266804 – volume: 357 start-page: 61 year: 2017 end-page: 66 ident: CR4 article-title: Quantized electric multipole insulators publication-title: Science doi: 10.1126/science.aah6442 – volume: 120 start-page: 026801 year: 2018 ident: CR8 article-title: Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.026801 – volume: 555 start-page: 342 year: 2018 end-page: 345 ident: CR11 article-title: Observation of a phononic quadrupole topological insulator publication-title: Nature doi: 10.1038/nature25156 – volume: 10 year: 2019 ident: CR21 article-title: Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals publication-title: Nat. Commun. doi: 10.1038/s41467-019-13333-9 – volume: 6 start-page: eaay4166 year: 2020 ident: CR24 article-title: Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4166 – volume: 125 start-page: 146401 year: 2020 ident: CR25 article-title: Higher-order Weyl semimetals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.146401 – volume: 98 start-page: 241103(R) year: 2018 ident: CR29 article-title: Topological quadrupolar semimetals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241103 – volume: 14 start-page: 925 year: 2018 ident: 985_CR13 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0246-1 – volume: 12 start-page: 408 year: 2018 ident: 985_CR14 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0179-3 – volume: 125 start-page: 266804 year: 2020 ident: 985_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.266804 – volume: 90 start-page: 015001 year: 2018 ident: 985_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.015001 – volume: 120 start-page: 016401 year: 2018 ident: 985_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.016401 – volume: 4 start-page: eaat0346 year: 2018 ident: 985_CR7 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0346 – volume: 97 start-page: 180101 year: 2018 ident: 985_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.180101 – volume: 6 start-page: eaay4166 year: 2020 ident: 985_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay4166 – volume: 11 year: 2020 ident: 985_CR23 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16350-1 – volume: 124 start-page: 206601 year: 2020 ident: 985_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.206601 – volume: 11 year: 2020 ident: 985_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15705-y – volume: 11 year: 2020 ident: 985_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13861-4 – volume: 119 start-page: 246402 year: 2017 ident: 985_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246402 – volume: 12 start-page: 936 year: 2016 ident: 985_CR28 publication-title: Nat. Phys. doi: 10.1038/nphys3782 – volume: 357 start-page: 61 year: 2017 ident: 985_CR4 publication-title: Science doi: 10.1126/science.aah6442 – volume: 555 start-page: 346 year: 2018 ident: 985_CR12 publication-title: Nature doi: 10.1038/nature25777 – volume: 10 year: 2019 ident: 985_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13333-9 – volume: 98 start-page: 241103(R) year: 2018 ident: 985_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241103 – volume: 91 start-page: 015006 year: 2019 ident: 985_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.015006 – volume: 15 start-page: 582 year: 2019 ident: 985_CR17 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0472-1 – volume: 9 year: 2019 ident: 985_CR30 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41746-5 – volume: 120 start-page: 026801 year: 2018 ident: 985_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.026801 – volume: 18 start-page: 108 year: 2019 ident: 985_CR15 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0251-x – volume: 119 start-page: 246401 year: 2017 ident: 985_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.246401 – volume: 18 start-page: 113 year: 2019 ident: 985_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0252-9 – volume: 125 start-page: 146401 year: 2020 ident: 985_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.146401 – volume: 122 start-page: 244301 year: 2019 ident: 985_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.244301 – ident: 985_CR27 – volume: 1 start-page: 281 year: 2019 ident: 985_CR3 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0030-x – volume: 555 start-page: 342 year: 2018 ident: 985_CR11 publication-title: Nature doi: 10.1038/nature25156 |
SSID | ssj0021556 |
Score | 2.6737316 |
Snippet | Weyl semimetals (WSMs)
1
exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band... Weyl semimetals (WSMs) exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band... Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 794 |
SubjectTerms | 639/301/1019/1015 639/301/119/2792/4128 Acoustics Anomalies Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystal structure Crystallinity Letter Materials Science Metalloids Metamaterials Nanotechnology Optical and Electronic Materials Physical sciences Physics Symmetry Topology |
Title | Observation of a phononic higher-order Weyl semimetal |
URI | https://link.springer.com/article/10.1038/s41563-021-00985-6 https://www.ncbi.nlm.nih.gov/pubmed/33859382 https://www.proquest.com/docview/2533050837 https://www.proquest.com/docview/2514605137 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IOhBfLu-qOBNg02bpslJXHEVwVVEcW8lzQMFddWuB_-9mbS7q4he2kOnSZjJY175BmAvY5zaRCuieeoNFKcdUVQqwiU3QlpmucDLyZddfn7HLnpZr3G4VU1a5XBPDBu16Wv0kR8mmAaJ2OX50esbwapRGF1tSmhMwjRCl-Gszntjg8uflfXtopwTr1ckzaWZOBWHFRouGMH0xnQsMQH_58H0S9v8FSkNB1BnAeYbzTE6rkW9CBP2ZQnmvuEJLsFMyOfU1TJkV-XI3Rr1XaQizEFHGNzoIWR2kIC5Gd3bz6eoss-Pz9Zr4Stw1zm9PTknTYUEor0aMyBGmFgLRNFygqaKWUZ1KnnJjHD-6M9LRfM0lTZ3xlEuVeYQcY_lTnk6rFq1ClO-b7sOEY-lZlwxXRrNfEtlLq2MeWkUTQzPshbQIXsK3cCHYxWLpyKEsVNR1CwtPEuLwNKCt2B_9M9rDZ7xL_XWkOtFs5CqYiz2FuyOPvslgHEN9WL7H0hDMbpLkWatltaoO2-BZzIVSQsOhuIbN_73WDb-H8smzCZh6qA3ZgumBu8fdtsrJ4NyJ8xA_xSdsx2YPu60213_bp92r2--ACg53-Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKEQIOCMproUCQ4ARRJzOZTHJACAHLlj64tKK3aSYPgdR2C7MV6p_iN2JnHgVV9NbzeJLIcWI7tj8DvCilEiF3ljtVoIMSXeRWGMuVUV6bIIPSVJy8ta1mu_LzXrm3BL-HWhhKqxzuxHRR-7mjN_K1nNIgCbu8env8g1PXKIquDi00OrHYCKe_0GVr36x_wP19mefTjzvvZ7zvKsAdqv4F99pnThPyVNSisDJI4QqjGul1RHVZNVZURWFCFX0UytgyEkqdrKJFOur0hONegasSacjZ09NPo4OHurmrZqoURzsm74t0skKvteQoUcQUnffMUML_v4rwnHV7LjKbFN70NtzqLVX2rhOtO7AUjlbg5l_4hStwLeWPuvYulF-a8XmXzSOzjHLeCXaXfUuZJDxhfLKv4fSAteHw-2FAq_8e7F4K7-7DMs4dHgJTmXFSWeka7ySO1FQmmEw13orcq7KcgBjYU7serpy6ZhzUKWxe6LpjaY0srRNLazWBV-M_xx1Yx4XUqwPX6_7gtvWZmE3g-fgZjxzFUexRmJ8QjaBosiCaB91ujdOhx1-aQucTeD1s39ng_1_Lo4vX8gyuz3a2NuvN9e2Nx3AjT2JEL0GrsLz4eRKeoGG0aJ4maWSwf9ni_wfOixen |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gEQ0-GMWvU9Sa6JM2t93tdtsHY1S4gOhJjETearfbBhPg0D1i-Nf865zZLzRE3nje2baZTjvz63wBPMulEiH1jnuVIUCJPnInjOPKqEqbIIPSlJz8caY2d-X7vXxvCX73uTAUVtnfic1FXc09vZFPUgqDpNrlxSR2YRE769PXxz84dZAiT2vfTqMVke1w-gvhW_1qax33-nmaTje-vNvkXYcB7tEMWPBKV4nXVIUqapE5GaTwmVGlrHRE1VmUThRZZkIRqyiUcXmkinWyiA7pqOsTjnsFlgtCRSNYfrsx2_k8wD3U1G1uU6E4WjVpl7KTZHpSE2wi_ylC-cRQ-P-_avGcrXvOT9uov-lNuNHZrexNK2i3YCkcrcL1v6oZrsLVJprU17ch_1QOj71sHpljFAFPRXjZfhNXwpuKn-xrOD1gdTj8fhgQA9yB3Uvh3l0Y4dzhPjCVGC-Vk76svMSRysIEk6iyciKtVJ6PQfTssb4rXk49NA5s40TPtG1ZapGltmGpVWN4Mfxz3JbuuJB6ree67Y5xbc-EbgxPh894AMmr4o7C_IRoBPmWBdHca3drmA7xf24ynY7hZb99Z4P_fy0PLl7LE7iGom8_bM22H8JK2kgRPQutwWjx8yQ8QitpUT7uxJHBt8s-AX8A53QdOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+a+phononic+higher-order+Weyl+semimetal&rft.jtitle=Nature+materials&rft.au=Luo%2C+Li&rft.au=Wang%2C+Hai-Xiao&rft.au=Lin%2C+Zhi-Kang&rft.au=Jiang%2C+Bin&rft.date=2021-06-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=6&rft.spage=794&rft.epage=799&rft_id=info:doi/10.1038%2Fs41563-021-00985-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_021_00985_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |