Observation of a phononic higher-order Weyl semimetal

Weyl semimetals (WSMs) 1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons 1 and metamaterials for photons 2 and phonons 3 . Here we report a higher-order Weyl semimetal (HOWSM...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 6; pp. 794 - 799
Main Authors Luo, Li, Wang, Hai-Xiao, Lin, Zhi-Kang, Jiang, Bin, Wu, Ying, Li, Feng, Jiang, Jian-Hua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Weyl semimetals (WSMs) 1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons 1 and metamaterials for photons 2 and phonons 3 . Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics 4 – 8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals. Symmetry is utilized to realize a phononic higher-order Weyl semimetal.
AbstractList Weyl semimetals (WSMs) 1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons 1 and metamaterials for photons 2 and phonons 3 . Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics 4 – 8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals. Symmetry is utilized to realize a phononic higher-order Weyl semimetal.
Weyl semimetals (WSMs) exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons and metamaterials for photons and phonons . Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.
Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4-8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump-probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4-8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.
Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4–8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.Symmetry is utilized to realize a phononic higher-order Weyl semimetal.
Author Jiang, Bin
Luo, Li
Lin, Zhi-Kang
Li, Feng
Wu, Ying
Jiang, Jian-Hua
Wang, Hai-Xiao
Author_xml – sequence: 1
  givenname: Li
  surname: Luo
  fullname: Luo, Li
  organization: School of Physics and Optoelectronics, South China University of Technology
– sequence: 2
  givenname: Hai-Xiao
  surname: Wang
  fullname: Wang, Hai-Xiao
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, School of Physical Science and Technology, Guangxi Normal University
– sequence: 3
  givenname: Zhi-Kang
  surname: Lin
  fullname: Lin, Zhi-Kang
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
– sequence: 4
  givenname: Bin
  surname: Jiang
  fullname: Jiang, Bin
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
– sequence: 5
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: School of Physics and Optoelectronics, South China University of Technology
– sequence: 6
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  email: phlifeng@bit.edu.cn
  organization: School of Physics, Beijing Institute of Technology
– sequence: 7
  givenname: Jian-Hua
  orcidid: 0000-0001-6505-0998
  surname: Jiang
  fullname: Jiang, Jian-Hua
  email: jianhuajiang@suda.edu.cn
  organization: School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33859382$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUQC1URB_wAwwoEguLwY4fcUZU8ZIqdQExWk5it66SuNgpUv8etykgdehkD-fce3XGYNC6VgNwjdE9RkQ8BIoZJxClGCKUCwb5GRhhmnFIOUeDwx_jNB2CcQgrFEnG-AUYEiJYTkQ6AmxeBO2_VWddmziTqGS9dHGPLZOlXSy1h85X2iefelsnQTe20Z2qL8G5UXXQV4d3Aj6en96nr3A2f3mbPs5gSSnuYCUqVArGMmQEJopqikuS84JWwmQizQqFM0JynZnKYJ4rZhBllGZGRS7NMzIBd_3ctXdfGx062dhQ6rpWrXabIFOGKUcMkx16e4Su3Ma38bpIEYIYEnvq5kBtikZXcu1to_xW_gaJQNoDpXcheG3-EIzkrrrsq8vYUu6rSx4lcSSVttsn7byy9WmV9GqIe9qF9v9nn7B-AAXnk2Q
CitedBy_id crossref_primary_10_1103_PhysRevB_106_134108
crossref_primary_10_1038_s41467_022_33306_9
crossref_primary_10_1103_PhysRevB_108_L161104
crossref_primary_10_1063_5_0245475
crossref_primary_10_1002_smsc_202200052
crossref_primary_10_1103_PhysRevB_109_134107
crossref_primary_10_1002_lpor_202100452
crossref_primary_10_1002_advs_202205723
crossref_primary_10_1103_PhysRevLett_128_115701
crossref_primary_10_1088_1361_648X_ad5ad1
crossref_primary_10_1103_PhysRevB_104_205117
crossref_primary_10_1103_PhysRevLett_127_146601
crossref_primary_10_1088_1361_648X_ada410
crossref_primary_10_1093_nsr_nwae121
crossref_primary_10_1002_andp_202200025
crossref_primary_10_1016_j_scib_2024_01_041
crossref_primary_10_1038_s42005_023_01254_5
crossref_primary_10_1088_1361_648X_ace1c2
crossref_primary_10_1016_j_mtnano_2023_100389
crossref_primary_10_1088_1361_6633_aceeee
crossref_primary_10_1103_PhysRevApplied_20_064034
crossref_primary_10_1038_s42005_023_01461_0
crossref_primary_10_1103_PhysRevB_109_024305
crossref_primary_10_1121_10_0026118
crossref_primary_10_1103_PhysRevB_104_014203
crossref_primary_10_1103_PhysRevApplied_22_054079
crossref_primary_10_1103_PhysRevLett_133_126602
crossref_primary_10_1038_s41377_021_00698_0
crossref_primary_10_1103_PhysRevApplied_17_024054
crossref_primary_10_1038_s42254_023_00565_4
crossref_primary_10_1103_PhysRevB_109_035148
crossref_primary_10_1016_j_ijmecsci_2023_108669
crossref_primary_10_1103_PhysRevLett_131_046101
crossref_primary_10_1103_PhysRevB_109_085402
crossref_primary_10_1103_PhysRevB_105_L081102
crossref_primary_10_1088_1361_6463_ad6b35
crossref_primary_10_1103_PhysRevB_108_085141
crossref_primary_10_3389_fphy_2022_1073295
crossref_primary_10_1103_PhysRevB_107_L121407
crossref_primary_10_3389_fphy_2022_866347
crossref_primary_10_1038_s41467_023_40252_7
crossref_primary_10_1103_PhysRevApplied_20_064047
crossref_primary_10_1103_PhysRevB_108_205135
crossref_primary_10_1103_PhysRevB_109_134205
crossref_primary_10_3389_fphy_2021_789697
crossref_primary_10_1103_PhysRevLett_127_255501
crossref_primary_10_1103_PhysRevB_106_195129
crossref_primary_10_1038_s41467_025_56717_w
crossref_primary_10_1103_PhysRevApplied_21_054048
crossref_primary_10_1103_PhysRevB_108_104110
crossref_primary_10_1088_1361_648X_ac4dbd
crossref_primary_10_1038_s42254_024_00745_w
crossref_primary_10_1360_TB_2024_0964
crossref_primary_10_1002_lpor_202401631
crossref_primary_10_1007_s11071_024_10219_4
crossref_primary_10_1088_1361_648X_ad3abd
crossref_primary_10_1103_PhysRevB_107_035128
crossref_primary_10_1103_PhysRevB_106_035105
crossref_primary_10_1103_PhysRevB_106_054403
crossref_primary_10_1002_adma_202407437
crossref_primary_10_1103_PhysRevB_110_104103
crossref_primary_10_1103_PhysRevB_108_165427
crossref_primary_10_1103_PhysRevB_110_184303
crossref_primary_10_1103_PhysRevB_105_L060101
crossref_primary_10_1021_acsphotonics_3c01651
crossref_primary_10_1038_s41535_022_00422_0
crossref_primary_10_1103_PhysRevLett_132_266602
crossref_primary_10_1103_PhysRevB_109_134302
crossref_primary_10_1103_PhysRevB_109_L060101
crossref_primary_10_1103_PhysRevApplied_19_024023
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1007_s11433_023_2198_2
crossref_primary_10_1007_s11433_023_2176_9
crossref_primary_10_1103_PhysRevLett_132_186601
crossref_primary_10_1364_OL_472397
crossref_primary_10_1088_1367_2630_acd9e2
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123497
crossref_primary_10_1109_JLT_2022_3200139
crossref_primary_10_1103_PhysRevResearch_5_023189
crossref_primary_10_1103_PhysRevLett_130_116103
crossref_primary_10_1038_s41563_021_01018_y
crossref_primary_10_1103_PhysRevLett_132_197202
crossref_primary_10_3390_sym15091651
crossref_primary_10_1103_PhysRevB_110_094104
crossref_primary_10_1103_PhysRevB_108_L241402
crossref_primary_10_1103_PhysRevB_107_L121101
crossref_primary_10_1103_PhysRevB_108_094103
crossref_primary_10_1103_PhysRevB_108_L220303
crossref_primary_10_1103_PhysRevB_111_045152
crossref_primary_10_1002_idm2_12071
crossref_primary_10_1103_PhysRevB_109_L081101
crossref_primary_10_1103_PhysRevB_106_184101
crossref_primary_10_1038_s41467_022_28182_2
crossref_primary_10_1103_PhysRevB_106_075301
crossref_primary_10_1103_PhysRevB_109_205137
crossref_primary_10_1103_PhysRevLett_132_066601
crossref_primary_10_1038_s41578_022_00465_6
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126182
crossref_primary_10_1038_s41467_023_39117_w
crossref_primary_10_1103_PhysRevB_104_L161116
crossref_primary_10_1038_s41467_023_42457_2
crossref_primary_10_1103_PhysRevLett_127_196801
crossref_primary_10_1103_PhysRevB_104_L161117
crossref_primary_10_1039_D4TC03286A
crossref_primary_10_1038_s41467_022_33652_8
crossref_primary_10_1093_nsr_nwac203
crossref_primary_10_1103_PhysRevApplied_19_064064
crossref_primary_10_1038_s41524_022_00894_5
crossref_primary_10_1103_PhysRevB_111_L041402
crossref_primary_10_1103_PhysRevB_110_L121122
crossref_primary_10_1103_PhysRevB_106_075139
crossref_primary_10_1016_j_physrep_2024_09_007
crossref_primary_10_1016_j_scib_2022_09_020
crossref_primary_10_1016_j_matt_2023_10_028
crossref_primary_10_1103_PhysRevB_105_115119
crossref_primary_10_22331_q_2022_06_07_731
crossref_primary_10_1002_lpor_202300384
crossref_primary_10_1103_PhysRevApplied_20_054054
crossref_primary_10_1103_PhysRevB_107_085108
crossref_primary_10_1038_s42254_021_00323_4
crossref_primary_10_1063_5_0173791
crossref_primary_10_1063_5_0202383
crossref_primary_10_1364_OE_444780
crossref_primary_10_1039_D3CP00140G
crossref_primary_10_1364_OE_431233
crossref_primary_10_1038_s41467_022_31084_y
crossref_primary_10_1103_PhysRevB_106_035308
Cites_doi 10.1103/PhysRevB.97.180101
10.1038/s41567-018-0246-1
10.1038/s41566-018-0179-3
10.1038/s41467-020-16350-1
10.1038/s41563-018-0251-x
10.1038/nature25777
10.1103/RevModPhys.91.015006
10.1038/s41467-019-13861-4
10.1038/nphys3782
10.1103/PhysRevLett.119.246402
10.1038/s42254-019-0030-x
10.1126/sciadv.aat0346
10.1103/RevModPhys.90.015001
10.1103/PhysRevLett.120.016401
10.1103/PhysRevLett.122.244301
10.1103/PhysRevLett.124.206601
10.1038/s41567-019-0472-1
10.1038/s41598-019-41746-5
10.1038/s41563-018-0252-9
10.1038/s41467-020-15705-y
10.1103/PhysRevLett.119.246401
10.1103/PhysRevLett.125.266804
10.1126/science.aah6442
10.1103/PhysRevLett.120.026801
10.1038/nature25156
10.1038/s41467-019-13333-9
10.1126/sciadv.aay4166
10.1103/PhysRevLett.125.146401
10.1103/PhysRevB.98.241103
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-021-00985-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1476-4660
EndPage 799
ExternalDocumentID 33859382
10_1038_s41563_021_00985_6
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11904060; 12074281; 12074281; 12074281
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672615
  funderid: https://doi.org/10.13039/501100002858
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2020A1515010549; 2020A1515010549; 2020A1515010549
  funderid: https://doi.org/10.13039/501100003453
– fundername: Jiangsu province specially appointed professor funding
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672615
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11904060
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12074281
– fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation)
  grantid: 2020A1515010549
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c441t-d8d0c85570f813a4e41c396b4d8f7827ba17339e7fdf169a5f045447fa1c32973
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri Jul 11 03:14:28 EDT 2025
Sat Aug 23 13:31:23 EDT 2025
Mon Jul 21 05:33:51 EDT 2025
Tue Jul 01 02:14:02 EDT 2025
Thu Apr 24 22:56:17 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-d8d0c85570f813a4e41c396b4d8f7827ba17339e7fdf169a5f045447fa1c32973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6505-0998
PMID 33859382
PQID 2533050837
PQPubID 27576
PageCount 6
ParticipantIDs proquest_miscellaneous_2514605137
proquest_journals_2533050837
pubmed_primary_33859382
crossref_primary_10_1038_s41563_021_00985_6
crossref_citationtrail_10_1038_s41563_021_00985_6
springer_journals_10_1038_s41563_021_00985_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Xue (CR20) 2019; 122
Ni, Weiner, Alù, Khanikaev (CR16) 2019; 18
Ezawa (CR8) 2018; 120
Zhang (CR21) 2019; 10
Noh (CR14) 2018; 12
Xue (CR23) 2020; 11
Benalcazar, Bernevig, Hughes (CR4) 2017; 357
Zhang (CR17) 2019; 15
Zhang (CR18) 2020; 11
Qi (CR19) 2020; 124
Weiner, Ni, Li, Alù, Khanikaev (CR24) 2020; 6
Ezawa (CR30) 2019; 9
Ozawa (CR2) 2019; 91
Xue, Yang, Gao, Chong, Zhang (CR15) 2019; 18
Ghorashi, Li, Hughes (CR26) 2020; 125
Wang, Lin, Jiang, Guo, Jiang (CR25) 2020; 125
Xiong (CR10) 2018; 97
Langbehn, Peng, Trifunovic, von Oppen, Brouwer (CR5) 2017; 119
Schindler (CR7) 2018; 4
CR27
Peterson, Benalcazar, Hughes, Bahl (CR12) 2018; 555
Ma, Xiao, Chan (CR3) 2019; 1
Lin, Hughes (CR29) 2018; 98
Imhof (CR13) 2018; 14
Armitage, Mele, Vishwanath (CR1) 2018; 90
Ni, Li, Weiner, Alù, Khanikaev (CR22) 2020; 11
Song, Fang, Fang (CR6) 2017; 119
Zhang (CR9) 2018; 120
Serra-Garcia (CR11) 2018; 555
Fang, Lu, Liu, Fu (CR28) 2016; 12
X Ni (985_CR22) 2020; 11
CW Peterson (985_CR12) 2018; 555
J Noh (985_CR14) 2018; 12
NP Armitage (985_CR1) 2018; 90
G Ma (985_CR3) 2019; 1
M Ezawa (985_CR8) 2018; 120
H Xue (985_CR20) 2019; 122
Y Qi (985_CR19) 2020; 124
985_CR27
SAA Ghorashi (985_CR26) 2020; 125
X Zhang (985_CR21) 2019; 10
H-X Wang (985_CR25) 2020; 125
M Weiner (985_CR24) 2020; 6
H Xue (985_CR23) 2020; 11
X Zhang (985_CR18) 2020; 11
F Schindler (985_CR7) 2018; 4
H Xue (985_CR15) 2019; 18
T Zhang (985_CR9) 2018; 120
J Langbehn (985_CR5) 2017; 119
M Lin (985_CR29) 2018; 98
ZD Song (985_CR6) 2017; 119
C Fang (985_CR28) 2016; 12
T Ozawa (985_CR2) 2019; 91
S Imhof (985_CR13) 2018; 14
X Zhang (985_CR17) 2019; 15
M Serra-Garcia (985_CR11) 2018; 555
X Ni (985_CR16) 2019; 18
WA Benalcazar (985_CR4) 2017; 357
Z Xiong (985_CR10) 2018; 97
M Ezawa (985_CR30) 2019; 9
References_xml – volume: 97
  start-page: 180101
  year: 2018
  ident: CR10
  article-title: Topological node lines in mechanical metacrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.180101
– volume: 14
  start-page: 925
  year: 2018
  end-page: 929
  ident: CR13
  article-title: Topolectrical circuit realization of topological corner modes
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0246-1
– volume: 12
  start-page: 408
  year: 2018
  end-page: 415
  ident: CR14
  article-title: Topological protection of photonic mid-gap defect modes
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0179-3
– volume: 11
  year: 2020
  ident: CR23
  article-title: Observation of an acoustic octupole topological insulator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16350-1
– volume: 18
  start-page: 108
  year: 2019
  end-page: 112
  ident: CR15
  article-title: Acoustic higher-order topological insulator on a kagome lattice
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0251-x
– volume: 555
  start-page: 346
  year: 2018
  end-page: 350
  ident: CR12
  article-title: A quantized microwave quadrupole insulator with topological protected corner states
  publication-title: Nature
  doi: 10.1038/nature25777
– volume: 91
  start-page: 015006
  year: 2019
  ident: CR2
  article-title: Topological photonics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.015006
– volume: 11
  year: 2020
  ident: CR18
  article-title: Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13861-4
– volume: 12
  start-page: 936
  year: 2016
  end-page: 941
  ident: CR28
  article-title: Topological semimetals with helicoid surface states
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3782
– volume: 119
  start-page: 246402
  year: 2017
  ident: CR6
  article-title: ( –2)-dimensional edge states of rotation symmetry protected topological states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– volume: 1
  start-page: 281
  year: 2019
  end-page: 294
  ident: CR3
  article-title: Topological phases in acoustic and mechanical systems
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0030-x
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: CR7
  article-title: Higher-order topological insulators
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 90
  start-page: 015001
  year: 2018
  ident: CR1
  article-title: Weyl and Dirac semimetals in three-dimensional solids
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015001
– ident: CR27
– volume: 120
  start-page: 016401
  year: 2018
  ident: CR9
  article-title: Double-Weyl phonons in transition-metal monosilicides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.016401
– volume: 122
  start-page: 244301
  year: 2019
  ident: CR20
  article-title: Realization of an acoustic third-order topological insulator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.244301
– volume: 124
  start-page: 206601
  year: 2020
  ident: CR19
  article-title: Acoustic realization of quadrupole topological insulators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.206601
– volume: 15
  start-page: 582
  year: 2019
  end-page: 588
  ident: CR17
  article-title: Second-order topology and multi-dimensional topological transitions in sonic crystals
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0472-1
– volume: 9
  year: 2019
  ident: CR30
  article-title: Second-order topological insulators and loop-nodal semimetals in transition metal dichalcogenides XTe (X = Mo, W)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41746-5
– volume: 18
  start-page: 113
  year: 2019
  end-page: 120
  ident: CR16
  article-title: Observation of higher-order topological acoustic states protected by generalized chiral symmetry
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0252-9
– volume: 11
  year: 2020
  ident: CR22
  article-title: Demonstration of a quantized acoustic octupole topological insulator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15705-y
– volume: 119
  start-page: 246401
  year: 2017
  ident: CR5
  article-title: Reflection-symmetric second-order topological insulators and superconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– volume: 125
  start-page: 266804
  year: 2020
  ident: CR26
  article-title: Higher-order Weyl semimetals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.266804
– volume: 357
  start-page: 61
  year: 2017
  end-page: 66
  ident: CR4
  article-title: Quantized electric multipole insulators
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 120
  start-page: 026801
  year: 2018
  ident: CR8
  article-title: Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.026801
– volume: 555
  start-page: 342
  year: 2018
  end-page: 345
  ident: CR11
  article-title: Observation of a phononic quadrupole topological insulator
  publication-title: Nature
  doi: 10.1038/nature25156
– volume: 10
  year: 2019
  ident: CR21
  article-title: Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13333-9
– volume: 6
  start-page: eaay4166
  year: 2020
  ident: CR24
  article-title: Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4166
– volume: 125
  start-page: 146401
  year: 2020
  ident: CR25
  article-title: Higher-order Weyl semimetals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.146401
– volume: 98
  start-page: 241103(R)
  year: 2018
  ident: CR29
  article-title: Topological quadrupolar semimetals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241103
– volume: 14
  start-page: 925
  year: 2018
  ident: 985_CR13
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0246-1
– volume: 12
  start-page: 408
  year: 2018
  ident: 985_CR14
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-018-0179-3
– volume: 125
  start-page: 266804
  year: 2020
  ident: 985_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.266804
– volume: 90
  start-page: 015001
  year: 2018
  ident: 985_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015001
– volume: 120
  start-page: 016401
  year: 2018
  ident: 985_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.016401
– volume: 4
  start-page: eaat0346
  year: 2018
  ident: 985_CR7
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0346
– volume: 97
  start-page: 180101
  year: 2018
  ident: 985_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.180101
– volume: 6
  start-page: eaay4166
  year: 2020
  ident: 985_CR24
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay4166
– volume: 11
  year: 2020
  ident: 985_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16350-1
– volume: 124
  start-page: 206601
  year: 2020
  ident: 985_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.206601
– volume: 11
  year: 2020
  ident: 985_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15705-y
– volume: 11
  year: 2020
  ident: 985_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13861-4
– volume: 119
  start-page: 246402
  year: 2017
  ident: 985_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246402
– volume: 12
  start-page: 936
  year: 2016
  ident: 985_CR28
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3782
– volume: 357
  start-page: 61
  year: 2017
  ident: 985_CR4
  publication-title: Science
  doi: 10.1126/science.aah6442
– volume: 555
  start-page: 346
  year: 2018
  ident: 985_CR12
  publication-title: Nature
  doi: 10.1038/nature25777
– volume: 10
  year: 2019
  ident: 985_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13333-9
– volume: 98
  start-page: 241103(R)
  year: 2018
  ident: 985_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241103
– volume: 91
  start-page: 015006
  year: 2019
  ident: 985_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.015006
– volume: 15
  start-page: 582
  year: 2019
  ident: 985_CR17
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0472-1
– volume: 9
  year: 2019
  ident: 985_CR30
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41746-5
– volume: 120
  start-page: 026801
  year: 2018
  ident: 985_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.026801
– volume: 18
  start-page: 108
  year: 2019
  ident: 985_CR15
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0251-x
– volume: 119
  start-page: 246401
  year: 2017
  ident: 985_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.246401
– volume: 18
  start-page: 113
  year: 2019
  ident: 985_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0252-9
– volume: 125
  start-page: 146401
  year: 2020
  ident: 985_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.146401
– volume: 122
  start-page: 244301
  year: 2019
  ident: 985_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.244301
– ident: 985_CR27
– volume: 1
  start-page: 281
  year: 2019
  ident: 985_CR3
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0030-x
– volume: 555
  start-page: 342
  year: 2018
  ident: 985_CR11
  publication-title: Nature
  doi: 10.1038/nature25156
SSID ssj0021556
Score 2.6737316
Snippet Weyl semimetals (WSMs) 1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band...
Weyl semimetals (WSMs) exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band...
Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 794
SubjectTerms 639/301/1019/1015
639/301/119/2792/4128
Acoustics
Anomalies
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystal structure
Crystallinity
Letter
Materials Science
Metalloids
Metamaterials
Nanotechnology
Optical and Electronic Materials
Physical sciences
Physics
Symmetry
Topology
Title Observation of a phononic higher-order Weyl semimetal
URI https://link.springer.com/article/10.1038/s41563-021-00985-6
https://www.ncbi.nlm.nih.gov/pubmed/33859382
https://www.proquest.com/docview/2533050837
https://www.proquest.com/docview/2514605137
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IOhBfLu-qOBNg02bpslJXHEVwVVEcW8lzQMFddWuB_-9mbS7q4he2kOnSZjJY175BmAvY5zaRCuieeoNFKcdUVQqwiU3QlpmucDLyZddfn7HLnpZr3G4VU1a5XBPDBu16Wv0kR8mmAaJ2OX50esbwapRGF1tSmhMwjRCl-Gszntjg8uflfXtopwTr1ckzaWZOBWHFRouGMH0xnQsMQH_58H0S9v8FSkNB1BnAeYbzTE6rkW9CBP2ZQnmvuEJLsFMyOfU1TJkV-XI3Rr1XaQizEFHGNzoIWR2kIC5Gd3bz6eoss-Pz9Zr4Stw1zm9PTknTYUEor0aMyBGmFgLRNFygqaKWUZ1KnnJjHD-6M9LRfM0lTZ3xlEuVeYQcY_lTnk6rFq1ClO-b7sOEY-lZlwxXRrNfEtlLq2MeWkUTQzPshbQIXsK3cCHYxWLpyKEsVNR1CwtPEuLwNKCt2B_9M9rDZ7xL_XWkOtFs5CqYiz2FuyOPvslgHEN9WL7H0hDMbpLkWatltaoO2-BZzIVSQsOhuIbN_73WDb-H8smzCZh6qA3ZgumBu8fdtsrJ4NyJ8xA_xSdsx2YPu60213_bp92r2--ACg53-Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLZKEQIOCMproUCQ4ARRJzOZTHJACAHLlj64tKK3aSYPgdR2C7MV6p_iN2JnHgVV9NbzeJLIcWI7tj8DvCilEiF3ljtVoIMSXeRWGMuVUV6bIIPSVJy8ta1mu_LzXrm3BL-HWhhKqxzuxHRR-7mjN_K1nNIgCbu8env8g1PXKIquDi00OrHYCKe_0GVr36x_wP19mefTjzvvZ7zvKsAdqv4F99pnThPyVNSisDJI4QqjGul1RHVZNVZURWFCFX0UytgyEkqdrKJFOur0hONegasSacjZ09NPo4OHurmrZqoURzsm74t0skKvteQoUcQUnffMUML_v4rwnHV7LjKbFN70NtzqLVX2rhOtO7AUjlbg5l_4hStwLeWPuvYulF-a8XmXzSOzjHLeCXaXfUuZJDxhfLKv4fSAteHw-2FAq_8e7F4K7-7DMs4dHgJTmXFSWeka7ySO1FQmmEw13orcq7KcgBjYU7serpy6ZhzUKWxe6LpjaY0srRNLazWBV-M_xx1Yx4XUqwPX6_7gtvWZmE3g-fgZjxzFUexRmJ8QjaBosiCaB91ujdOhx1-aQucTeD1s39ng_1_Lo4vX8gyuz3a2NuvN9e2Nx3AjT2JEL0GrsLz4eRKeoGG0aJ4maWSwf9ni_wfOixen
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gEQ0-GMWvU9Sa6JM2t93tdtsHY1S4gOhJjETearfbBhPg0D1i-Nf865zZLzRE3nje2baZTjvz63wBPMulEiH1jnuVIUCJPnInjOPKqEqbIIPSlJz8caY2d-X7vXxvCX73uTAUVtnfic1FXc09vZFPUgqDpNrlxSR2YRE769PXxz84dZAiT2vfTqMVke1w-gvhW_1qax33-nmaTje-vNvkXYcB7tEMWPBKV4nXVIUqapE5GaTwmVGlrHRE1VmUThRZZkIRqyiUcXmkinWyiA7pqOsTjnsFlgtCRSNYfrsx2_k8wD3U1G1uU6E4WjVpl7KTZHpSE2wi_ylC-cRQ-P-_avGcrXvOT9uov-lNuNHZrexNK2i3YCkcrcL1v6oZrsLVJprU17ch_1QOj71sHpljFAFPRXjZfhNXwpuKn-xrOD1gdTj8fhgQA9yB3Uvh3l0Y4dzhPjCVGC-Vk76svMSRysIEk6iyciKtVJ6PQfTssb4rXk49NA5s40TPtG1ZapGltmGpVWN4Mfxz3JbuuJB6ree67Y5xbc-EbgxPh894AMmr4o7C_IRoBPmWBdHca3drmA7xf24ynY7hZb99Z4P_fy0PLl7LE7iGom8_bM22H8JK2kgRPQutwWjx8yQ8QitpUT7uxJHBt8s-AX8A53QdOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+a+phononic+higher-order+Weyl+semimetal&rft.jtitle=Nature+materials&rft.au=Luo%2C+Li&rft.au=Wang%2C+Hai-Xiao&rft.au=Lin%2C+Zhi-Kang&rft.au=Jiang%2C+Bin&rft.date=2021-06-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=6&rft.spage=794&rft.epage=799&rft_id=info:doi/10.1038%2Fs41563-021-00985-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_021_00985_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon