Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease
In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in th...
Saved in:
Published in | Cell transplantation Vol. 23; no. 1_suppl; pp. 123 - 139 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.01.2014
SAGE Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 104) after INA of 1 × 106 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 103. Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation. |
---|---|
AbstractList | In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation. In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation. In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10 4 ) after INA of 1 × 10 6 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10 3 . Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation. In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 104) after INA of 1 × 106 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 103. Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation. |
Author | Beer-Hammer, Sandra Kahle, Philipp Schäfer, Richard Fabian, Claire Biedermann, Tilo Gleiter, Christoph H. Lourhmati, Ali Novakovic, Ana Siegel, Georg Frey, William H. Buadze, Marine Stolzing, Alexandra Schwab, Matthias Proksch, Barbara Danielyan, Lusine |
Author_xml | – sequence: 1 givenname: Lusine surname: Danielyan fullname: Danielyan, Lusine email: lusine.danielyan@med.uni-tuebingen.de – sequence: 2 givenname: Sandra surname: Beer-Hammer fullname: Beer-Hammer, Sandra – sequence: 3 givenname: Alexandra surname: Stolzing fullname: Stolzing, Alexandra – sequence: 4 givenname: Richard surname: Schäfer fullname: Schäfer, Richard – sequence: 5 givenname: Georg surname: Siegel fullname: Siegel, Georg – sequence: 6 givenname: Claire surname: Fabian fullname: Fabian, Claire – sequence: 7 givenname: Philipp surname: Kahle fullname: Kahle, Philipp – sequence: 8 givenname: Tilo surname: Biedermann fullname: Biedermann, Tilo – sequence: 9 givenname: Ali surname: Lourhmati fullname: Lourhmati, Ali – sequence: 10 givenname: Marine surname: Buadze fullname: Buadze, Marine – sequence: 11 givenname: Ana surname: Novakovic fullname: Novakovic, Ana – sequence: 12 givenname: Barbara surname: Proksch fullname: Proksch, Barbara – sequence: 13 givenname: Christoph H. surname: Gleiter fullname: Gleiter, Christoph H. – sequence: 14 givenname: William H. surname: Frey fullname: Frey, William H. – sequence: 15 givenname: Matthias surname: Schwab fullname: Schwab, Matthias |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25302802$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk2P0zAQhi20iP2AOyfkGxwIOLZjJ8fdlo9KW4EESNyiSTJpXRK72Cmo_Bv-KdPtsoeVQLJk-Z3nfUea8Tk78cEjY09z8UpZaV-LyihTVrn-akpdWfGAneVFUWSqrOQJOzuUM6rbU3ae0kYIYZUsHrFTWSghSyHP2O-FnyJ4SDDwOQ7uB8Y9Dz2_okZ8CTGGn9kcI-kdX2JC3673I7GfJhz5DIchvSSsjWG7hhXSAzyBjoTV4IBPgU9r5FcRnOd0lmGXKDd0OKRDm8vh1xrdiPF5unF-hPjN-RQ8vecuISR8zB72MCR8cntfsC9v33yevc-uP7xbzC6vs1brfMo6q40FqfNeoyiULVSJFkjqdCdNoaVtlGgahB6sAugaqWVppAaEyqquURdsccztAmzqbXQjxH0dwNU3QoirGuLk2gHrvtQFJedCWasl2IoEU_ZCWyltn1vKenHM2sbwfYdpqkeXWpoWeKQJ1LlRVWWlEYbQZ7forhmxu2v8d0UEiCNAM00pYn-H5KI-_IL6_i8gi7lnad0EkwuHXbvhf8bsaEy0zHoTdtHTyP_N_wHdLsGO |
CitedBy_id | crossref_primary_10_1007_s12031_016_0819_3 crossref_primary_10_1089_neu_2020_6990 crossref_primary_10_1016_j_mayocp_2019_01_001 crossref_primary_10_3390_jdad1020008 crossref_primary_10_3233_JAD_160250 crossref_primary_10_1007_s12035_016_0027_8 crossref_primary_10_1002_glia_23275 crossref_primary_10_1186_s40478_018_0644_8 crossref_primary_10_3892_etm_2017_4073 crossref_primary_10_1186_s13287_023_03280_0 crossref_primary_10_4103_jmau_jmau_90_24 crossref_primary_10_1016_j_neuroscience_2024_07_019 crossref_primary_10_1155_2018_5023925 crossref_primary_10_1177_0963689717735411 crossref_primary_10_4252_wjsc_v13_i8_1072 crossref_primary_10_1016_j_advms_2024_06_001 crossref_primary_10_1111_nyas_13985 crossref_primary_10_1007_s11055_018_0655_8 crossref_primary_10_3390_jpm13081253 crossref_primary_10_3233_JHD_170275 crossref_primary_10_1155_2020_4636397 crossref_primary_10_1016_j_intimp_2020_107207 crossref_primary_10_1093_jnci_djy138 crossref_primary_10_1016_j_retram_2016_10_007 crossref_primary_10_1159_000511569 crossref_primary_10_1007_s10266_018_0395_9 crossref_primary_10_3389_fphar_2021_644103 crossref_primary_10_1007_s13770_025_00702_3 crossref_primary_10_1523_JNEUROSCI_1636_16_2016 crossref_primary_10_1016_j_apsb_2022_04_001 crossref_primary_10_1016_j_nsa_2024_104061 crossref_primary_10_1038_s41536_020_00106_y crossref_primary_10_18632_oncotarget_26272 crossref_primary_10_1111_cns_70178 crossref_primary_10_1186_s13287_021_02274_0 crossref_primary_10_1089_scd_2017_0148 crossref_primary_10_1042_BSR20150025 crossref_primary_10_1177_1533317520927169 crossref_primary_10_1016_j_pneurobio_2016_01_005 crossref_primary_10_31548_ujvs2019_03_001 crossref_primary_10_1016_j_ebiom_2020_102989 crossref_primary_10_1177_0271678X251317374 crossref_primary_10_3390_ijms241814117 crossref_primary_10_3390_ph14020095 crossref_primary_10_1007_s10571_023_01344_6 crossref_primary_10_1177_0963689718754561 crossref_primary_10_1177_15353702211056866 crossref_primary_10_1111_cns_12386 crossref_primary_10_1111_cns_13111 crossref_primary_10_1016_j_neuro_2017_10_008 crossref_primary_10_3390_pharmaceutics15071999 crossref_primary_10_3389_fimmu_2019_01645 crossref_primary_10_1002_JLB_MR0818_319R crossref_primary_10_2147_IJN_S238266 crossref_primary_10_1016_j_lfs_2020_117405 crossref_primary_10_1007_s13311_019_00822_4 crossref_primary_10_14336_AD_2023_0904 crossref_primary_10_1016_j_drudis_2022_01_004 crossref_primary_10_1155_2018_6392986 crossref_primary_10_1080_17425247_2018_1378642 crossref_primary_10_1089_scd_2019_0173 crossref_primary_10_1016_j_molmed_2023_08_005 crossref_primary_10_1002_glia_23985 crossref_primary_10_1016_j_scr_2015_04_008 crossref_primary_10_3390_cancers15204912 crossref_primary_10_18632_aging_103675 crossref_primary_10_3390_cells10102757 crossref_primary_10_1016_j_ymthe_2021_06_005 crossref_primary_10_1002_ame2_12207 crossref_primary_10_1186_s40779_024_00550_7 crossref_primary_10_1016_j_jconrel_2023_10_052 crossref_primary_10_2147_JIR_S327538 crossref_primary_10_1038_s41598_023_36772_3 crossref_primary_10_1016_j_jcyt_2015_10_006 crossref_primary_10_1007_s12035_016_0214_7 crossref_primary_10_1039_D2NH00188H crossref_primary_10_3390_biomedicines9070750 crossref_primary_10_1016_j_yexmp_2015_01_016 crossref_primary_10_1074_jbc_M117_807180 crossref_primary_10_1016_j_yexcr_2021_112563 crossref_primary_10_1016_S1474_4422_15_00332_4 crossref_primary_10_1080_23808993_2020_1738217 crossref_primary_10_1016_j_jcyt_2015_07_019 crossref_primary_10_1016_j_jds_2024_11_029 crossref_primary_10_1590_2237_6089_2016_0074 crossref_primary_10_1586_14737175_2015_1091727 crossref_primary_10_3390_ijms21113807 crossref_primary_10_1002_jcp_26192 crossref_primary_10_1002_nep3_42 crossref_primary_10_1186_s13046_017_0605_2 crossref_primary_10_3390_cells11193095 crossref_primary_10_3390_cells8060595 crossref_primary_10_1016_j_bbadis_2015_10_003 crossref_primary_10_3389_fnagi_2018_00077 crossref_primary_10_1515_revneuro_2021_0163 crossref_primary_10_1177_1721727X17706855 crossref_primary_10_1016_j_parkreldis_2024_107087 |
Cites_doi | 10.3109/17435390903470093 10.1038/mt.2013.199 10.1016/S0304-3940(98)00504-7 10.1038/nm1781 10.1038/nn.2432 10.1097/01.tp.0000288185.09601.4d 10.1038/gt.2009.113 10.1172/JCI200215777 10.1016/j.neulet.2012.01.078 10.1016/S0002-9440(10)63072-6 10.1073/pnas.0701267104 10.1523/JNEUROSCI.4147-08.2008 10.3233/JAD-2012-112198 10.4103/2277-9175.100157 10.1034/j.1399-6576.2002.460702.x 10.1523/JNEUROSCI.11-11-03398.1991 10.1016/j.clineuro.2005.11.007 10.1038/nm790 10.1016/0166-2236(93)90180-T 10.2174/187152710791292657 10.1002/stem.277 10.1038/sj.mp.4001907 10.1007/s11481-012-9401-0 10.1016/j.neulet.2008.05.090 10.1634/stemcells.2006-0174 10.1016/j.brainres.2008.11.094 10.2217/rme.10.72 10.1371/journal.pone.0077182 10.1371/journal.pone.0051253 10.1038/nm1239 10.1186/scrt159 10.1177/0269881113494939 10.1111/j.1471-4159.2011.07534.x 10.1093/brain/awh531 10.1038/cdd.2009.95 10.1186/1476-9255-9-12 10.1089/rej.2010.1130 10.1186/1741-7007-9-27 10.1007/s11095-012-0915-1 10.5966/sctm.2012-0045 10.1038/78682 10.1016/j.ejcb.2004.12.030 10.1016/j.neuroscience.2004.05.029 10.1016/j.jneuroim.2009.02.015 10.1016/j.ejcb.2009.02.001 10.1159/000105473 10.1161/STROKEAHA.107.483008 10.1089/scd.2007.9993 10.1006/exnr.1996.0141 10.1186/1742-2094-6-17 10.1074/jbc.M109.081125 10.1038/nm1555 10.1371/journal.pone.0019808 10.3727/096368910X508762 10.1097/nen.0b013e3180517b28 10.3233/JAD-131160 10.1203/00006450-201011001-00834 10.1161/STROKEAHA.109.575993 10.1007/s12015-009-9081-1 10.4172/2155-9899.1000142 10.1007/s00401-008-0481-0 10.3727/096368912X657251 10.1161/STROKEAHA.111.000821 10.1073/pnas.0805453106 10.1016/0165-5728(91)90008-U 10.1186/1742-2094-9-112 10.1016/j.addr.2011.11.002 10.1002/jps.21924 10.1073/pnas.92.10.4621 10.1371/journal.pone.0054296 10.1016/j.ejcb.2005.07.001 10.1016/j.neuron.2006.01.022 |
ContentType | Journal Article |
Copyright | 2014 Cognizant Comm. Corp. |
Copyright_xml | – notice: 2014 Cognizant Comm. Corp. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3727/096368914X684970 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Biology |
EISSN | 1555-3892 |
EndPage | 139 |
ExternalDocumentID | oai_doaj_org_article_f84567a1037742a79f8468f047227f17 25302802 10_3727_096368914X684970 10.3727_096368914X684970 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 0VX 1B1 29B 4.4 53G 54M 5GY 7X7 8FI 8FJ AAEDT AAGGD AALRI AAPEO AAQGT AAQXH AAQXK AASGM AAXUO ABDWY ABJIS ABQKF ABQXT ABUWG ABVFX ABWVN ABYTW ACARO ACFMA ACGBL ACLHI ACROE ACRPL ACVFH ADBBV ADCNI ADEIA ADMUD ADNMO ADOGD ADTBJ ADUKL AENEX AEUPX AEWDL AFCOW AFDWT AFKRA AFKRG AFPUW AFRWT AFYCX AGQPQ AJEFB AJMMQ AJUZI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APTNG AUTPY AYAKG BAWUL BCNDV BDDNI BENPR BPHCQ BSEHC BVXVI CBRKF CCPQU CORYS CQQTX CS3 DC. DU5 EBS EJD EMOBN F5P FDB FEDTE FGOYB FYUFA GROUPED_DOAJ H13 HMCUK HVGLF HYE HZ~ IHE J8X K.F M41 NQ- OK1 P2P PHGZM PHGZT PIMPY PQQKQ Q1R R2- R9- ROL RPM RPZ SAUOL SCDPB SCNPE SFC UHS UKHRP AAYXX ACHEB CITATION AAEJI CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c441t-d7467a241f4e0537538e7a67ad4d265427b30bbeafa73aadb2428624aea973db3 |
IEDL.DBID | DOA |
ISSN | 0963-6897 1555-3892 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Fri Jul 11 10:01:10 EDT 2025 Mon Jul 21 05:50:40 EDT 2025 Tue Jul 01 05:23:19 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Tue Jun 17 22:52:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1_suppl |
Keywords | Mesenchymal stem cells (MSCs) Parkinson's disease Intranasal Macrophages Alzheimer's disease Amyloid beta (Aβ) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-d7467a241f4e0537538e7a67ad4d265427b30bbeafa73aadb2428624aea973db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/f84567a1037742a79f8468f047227f17 |
PMID | 25302802 |
PQID | 1639972606 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f84567a1037742a79f8468f047227f17 proquest_miscellaneous_1639972606 pubmed_primary_25302802 crossref_primary_10_3727_096368914X684970 crossref_citationtrail_10_3727_096368914X684970 sage_journals_10_3727_096368914X684970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140100 2014-01-00 2014-00-00 20140101 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 1 year: 2014 text: 20140100 |
PublicationDecade | 2010 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States |
PublicationTitle | Cell transplantation |
PublicationTitleAlternate | Cell Transplant |
PublicationYear | 2014 |
Publisher | SAGE Publications SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: SAGE Publishing |
References | Stemberger, Jamnig, Stefanova, Lepperdinger, Reindl, Wenning 2011; 6 Calvo, Moglia, Balma, Chiò 2010; 9 Koenigsknecht-Talboo, Meyer-Luehmann, Parsadanian, Garcia-Alloza, Finn, Hyman 2008; 28 Lomoio, López-González, Aso, Carmona, Torrejón-Escribano, Scherini, Ferrer 2012; 31 Karussis, Grigoriadis, Polyzoidou, Grigoriadis, Slavin, Abramsky 2006; 108 Balyasnikova, Prasol, Ferguson, Han, Ahmed, Gutova, Tobias, Mustafi, Rincón, Zhang, Aboody, Lesniak 2014; 22 Maurice, Mustafa, Desrumaux, Keller, Naert, de la C García-Barceló, Rodríguez Cruz, Garcia Rodríguez 2013; 26 Béraud, Hathaway, Trecki, Chasovskikh, Johnson, Johnson, Federoff, Shimoji, Mhyre, Maguire-Zeiss 2013; 8 Yang, Migliati, Parsha, Schaar, Xi, Aronowski, Savitz 2013; 44 Zaghi, Goldenson, Inayathullah, Lossinsky, Masoumi, Avagyan, Mahanian, Bernas, Weinand, Rosenthal, Espinosa-Jeffrey, de Vellis, Teplow, Fiala 2009; 117 Hussain 1989; 292 Lochhead, Thorne 2012; 64 Danielyan, Mueller, Proksch, Kabisch, Weller, Wiesinger, Buniatian, Gleiter 2005; 84 Lee, Suk, Patrick, Bae, Cho, Rho, Hwang, Masliah, Lee 2010; 285 Fransson, Piras, Burman, Nilsson, Essand, Lu, Harris, Magnusson, Brittebo, Loskog 2012; 9 Gonzalez, McQuillen, Mu, Chang, Wendland, Vexler, Ferriero 2007; 29 Simard, Soulet, Gowing, Julien, Rivest 2006; 49 Dhuria, Hanson, Frey 2010; 99 Dale, Hjortkjaer, Kharasch 2002; 46 McLaurin, Cecal, Kierstead, Tian, Phinney, Manea 2002; 8 Walker, Aroom, Jimenez, Shah, Harting, Gill, Cox 2009; 5 Chapman, Frey, Craft, Danielyan, Hallschmid, Schiöth, Benedict 2013; 30 Spillantini, Crowther, Jakes, Cairns, Lantos 1998; 251 Xue, Ma, Zhao, Tatom, Li, Jiang, Klein, Duan 2010; 17 McKeon, Schreiber, Rudge, Silver 1991; 11 Wang, Yang, Li, Wang, Zhu, Fan, Wang 2013; 8 Yagi, Soto-Gutierrez, Parekkadan, Kitagawa, Tompkins, Kobayashi, Yarmush 2010; 19 Pendharkar, Chua, Andres, Wang, Gaeta, Wang, De, Choi, Chen, Rutt, Gambhir, Guzman 2010; 41 Lee, Jin, Endo, Schuchman, Carter, Bae 2010; 28 Kadota, Shingo, Yasuhara, Tajiri, Kondo, Morimoto, Yuan, Wang, Baba, Tokunaga, Miyoshi, Date 2009; 1254 Avagyan, Goldenson, Tse, Masoumi, Porter, Wiedau-Pazos, Sayre, Ong, Mahanian, Koo, Bae, Micic, Liu, Rosenthal, Fiala 2009; 210 Bossolasco, Cova, Levandis, Diana, Cerri, Lambertenghi Deliliers, Polli, Silani, Blandini, Armentero 2012; 7 El Khoury, Toft, Hickman, Means, Terada, Geula, Luster 2007; 13 Gutiérrez-Fernández, Rodríguez-Frutos, Ramos-Cejudo, Teresa Vallejo-Cremades, Fuentes, Cerdán, Díez-Tejedor 2013; 4 Thorne, Pronk, Padmanabhan, Frey 2004; 127 Danielyan, Schäfer, von Ameln-Mayerhofer, Bernhard, Verleysdonk, Buadze, Lourhmati, Klopfer, Schaumann, Schmid, Koehle, Proksch, Weissert, Reichardt, van den Brandt, Buniatian, Schwab, Gleiter, Frey 2011; 14 Saresella, Marventano, Calabrese, Piancone, Rainone, Gatti, Alberoni, Nemni, Clerici 2014; 38 Steiner, Roch, Holtkamp, Kurtz 2012; 513 Kozlowska 2007; 16 Coyne, Marcus, Reynolds, Black, Woodbury 2007; 84 Danielyan, Schäfer, Schulz, Ladewig, Lourhmati, Buadze, Schmitt, Verleysdonk, Kabisch, Koeppen, Siegel, Proksch, Kluba, Eckert, Köhle, Schöneberg, Northoff, Schwab, Gleiter 2009; 16 Grathwohl, Kälin, Bolmont, Prokop, Winkelmann, Kaeser, Odenthal, Radde, Eldh, Gandy, Aguzzi, Staufenbiel, Mathews, Wolburg, Heppner, Jucker 2009; 12 Joyce, Annett, Wirthlin, Olson, Bauer, Nolta 2010; 5 Town, Laouar, Pittenger, Mori, Szekely, Tan 2008; 14 Liu, Walter, Stagi, Cherny, Letiembre, Schulz-Schaeffer 2005; 128 Assaraf, Diaz, Liberman, Miller, Arvanitakis, Li, Bennett 2007; 66 Bard, Cannon, Barbour, Burke, Games, Grajeda 2000; 6 Barker, Dunnett, Faissner, Fawcett 1996; 141 Camp, Loeffler, Farrah, Borneman, LeWitt 2009; 6 Danielyan, Gembizki, Proksch, Weinmann, Morgalla, Wiesinger, Buniatian, Gleiter 2005; 84 Iwai, Cao, Yin, Stetler, Liu, Chen 2007; 38 Wu, Li, Yan, Gran, Han, Zhou, Guan, Rostami, Zhang 2013; 4 Tuszynski, Thal, Pay, Salmon, U, Bakay, Patel, Blesch, Vahlsing, Ho 2005; 11 Tuszynski, Gage 1995; 92 Coyne, Marcus, Woodbury, Black 2006; 24 Donega, van Velthoven, Nijboer, van Bel, Kas 2013; 8 Louhrmati, Buniatian, Paul, Verleydonk, Buecheler, Buadze, Proksch, Schwab, Gleiter, Danielyan 2013; 8 Fiala, Liu, Espinosa-Jeffrey, Rosenthal, Bernard, Ringman, Sayre, Zhang, Zaghi, Dejbakhsh, Chiang, Hui, Mahanian, Baghaee, Hong, Cashman 2007; 104 Reitz, Demestre, Sedlacik, Meissner, Fiehler, Kim, Westphal, Schmidt 2012; 1 Perry, Andersson, Gordon 1993; 16 van Velthoven, Kavelaars, van Bel, Heijnen 2010; 68 Neumann, Kahle, Giasson, Ozmen, Borroni, Spooren, Müller, Odoy, Fujiwara, Hasegawa, Iwatsubo, Trojanowski, Kretzschmar, Haass 2002; 110 Danielyan, Schäfer, von Ameln-Mayerhofer, Buadze, Geisler, Klopfer, Burkhardt, Proksch, Verleysdonk, Ayturan, Buniatian, Gleiter, Frey 2009; 88 Finsen, Sorensen, Castellano, Pedersen, Zimmer 1991; 32 Kitada, Dezawa 2012; 12 Lappalainen, Narkilahti, Huhtala, Liimatainen, Suuronen, Närvänen, Suuronen, Hovatta, Jolkkonen 2008; 440 Lee, Chu, Park, Jung, Jeon, Lim, Lee, Kim, Roh 2012; 120 Wei, Yu, Gu, Taylor, Song, Liu, Wei 2013; 22 Ehrenreich, Hinze-Selch, Stawicki, Aust, Knolle-Veentjer, Wilms, Heinz, Erdag, Jahn, Degner, Ritzen, Mohr, Wagner, Schneider, Bohn, Huber, Czernik, Pollmächer, Maier, Sirén, Klosterkötter, Falkai, Rüther, Aldenhoff, Krampe 2007; 12 Ramot, Steiner, Morad, Leibovitch, Amouyal, Cesta, Nyska 2010; 4 Hawkes, McLaurin 2009; 106 Hinze, Stolzing 2012; 9 Arabpoor, Hamidi, Rashidi, Shabrang, Alaei, Sharifi, Salami, Dolatabadi, Reisi 2012; 1 Kahle, Neumann, Ozmen, Müller, Odoy, Okamoto, Jacobsen, Iwatsubo, Trojanowski, Takahashi, Wakabayashi, Bogdanovic, Riederer, Kretzschmar, Haass 2001; 159 Sargin, El-Kordi, Agarwal, Müller, Wojcik, Hassouna, Sperling, Nave, Ehrenreich 2011; 9 Sinden, Patel, Hodges 1992; 5 Blesch, Tuszynski 1995; 3 Frey W. H. (bibr29-096368914X684970) 1995 bibr5-096368914X684970 bibr18-096368914X684970 bibr43-096368914X684970 bibr52-096368914X684970 Chien Y. W. (bibr13-096368914X684970) 1989 bibr4-096368914X684970 bibr26-096368914X684970 bibr69-096368914X684970 bibr78-096368914X684970 bibr6-096368914X684970 bibr61-096368914X684970 bibr10-096368914X684970 bibr44-096368914X684970 bibr28-096368914X684970 bibr45-096368914X684970 bibr27-096368914X684970 bibr19-096368914X684970 bibr53-096368914X684970 Sinden J. D. (bibr63-096368914X684970) 1992; 5 bibr36-096368914X684970 bibr79-096368914X684970 bibr24-096368914X684970 bibr11-096368914X684970 bibr16-096368914X684970 Hussain A. A. (bibr35-096368914X684970) 1989; 292 bibr70-096368914X684970 bibr76-096368914X684970 bibr37-096368914X684970 bibr50-096368914X684970 bibr55-096368914X684970 bibr47-096368914X684970 bibr68-096368914X684970 Bossolasco P. (bibr9-096368914X684970) 2012; 7 bibr42-096368914X684970 bibr3-096368914X684970 Blesch A. (bibr8-096368914X684970) 1995; 3 van Velthoven C. T. (bibr71-096368914X684970) 2010; 68 bibr60-096368914X684970 bibr34-096368914X684970 bibr21-096368914X684970 bibr48-096368914X684970 bibr30-096368914X684970 bibr73-096368914X684970 bibr56-096368914X684970 bibr39-096368914X684970 bibr22-096368914X684970 bibr65-096368914X684970 bibr74-096368914X684970 bibr23-096368914X684970 bibr31-096368914X684970 bibr57-096368914X684970 bibr15-096368914X684970 bibr58-096368914X684970 bibr14-096368914X684970 bibr40-096368914X684970 bibr32-096368914X684970 bibr49-096368914X684970 bibr66-096368914X684970 bibr1-096368914X684970 bibr67-096368914X684970 bibr62-096368914X684970 bibr54-096368914X684970 bibr75-096368914X684970 bibr59-096368914X684970 bibr7-096368914X684970 bibr33-096368914X684970 Lee J. K. (bibr46-096368914X684970) 2010; 28 Kitada M. (bibr41-096368914X684970) 2012; 12 bibr2-096368914X684970 bibr20-096368914X684970 bibr17-096368914X684970 bibr12-096368914X684970 bibr72-096368914X684970 bibr77-096368914X684970 bibr25-096368914X684970 bibr51-096368914X684970 bibr38-096368914X684970 bibr64-096368914X684970 |
References_xml | – volume: 66 start-page: 389 year: 2007 end-page: 398 article-title: Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment publication-title: J. Neuropathol. Exp. Neurol. – volume: 5 start-page: 902 year: 1992 end-page: 908 article-title: Neural transplantation: Problems and prospects for therapeutic application publication-title: Curr. Opin. Neurol. Neurosurg. – volume: 128 start-page: 1778 year: 2005 end-page: 1789 article-title: LPS receptor (CD14): A receptor for phagocytosis of Alzheimer's amyloid peptide publication-title: Brain – volume: 29 start-page: 321 year: 2007 end-page: 330 article-title: Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke publication-title: Dev. Neurosci. – volume: 440 start-page: 246 year: 2008 end-page: 250 article-title: The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats publication-title: Neurosci. Lett. – volume: 120 start-page: 115 year: 2012 end-page: 124 article-title: Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer's disease models publication-title: J. Neurochem. – volume: 19 start-page: 667 year: 2010 end-page: 679 article-title: Mesenchymal stem cells: Mechanisms of immunomodulation and homing publication-title: Cell Transplant. – volume: 12 start-page: 206 year: 2007 end-page: 220 article-title: Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin publication-title: Mol. Psychiatry – volume: 64 start-page: 614 year: 2012 end-page: 628 article-title: Intranasal delivery of biologics to the central nervous system publication-title: Adv. Drug Deliv. Rev. – volume: 92 start-page: 4621 year: 1995 end-page: 4625 article-title: Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 112 year: 2012 article-title: CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery publication-title: J. Neuroinflammation – volume: 26 start-page: 1044 year: 2013 end-page: 1057 article-title: Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25-35 non-transgenic mouse model of Alzheimer's disease publication-title: J. Psychopharmacol. – volume: 6 start-page: e19808 year: 2011 article-title: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: Immunomodulation and neuroprotection publication-title: PLoS One – volume: 46 start-page: 759 year: 2002 end-page: 770 article-title: Nasal administration of opioids for pain management in adults publication-title: Acta Anaesthesiol. Scand. – volume: 8 start-page: e54296 year: 2013 article-title: Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease publication-title: PLoS One – volume: 292 start-page: 261 year: 1989 end-page: 272 article-title: Mechanism of nasal absorption of drugs. Prog publication-title: Clin. Biol. Res. – volume: 159 start-page: 2215 year: 2001 end-page: 2225 article-title: Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model publication-title: Am. J. Pathol. – volume: 14 start-page: 3 year: 2011 end-page: 16 article-title: Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease publication-title: Rejuv. Res. – volume: 6 start-page: 916 year: 2000 end-page: 919 article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease publication-title: Nat. Med. – volume: 68 start-page: 419 year: 2010 end-page: 422 article-title: Nasal administration of stem cells: A promising novel route to treat neonatal ischemic brain damage publication-title: Pediatr. Res. – volume: 4 start-page: 11 year: 2013 article-title: Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke publication-title: Stem Cell Res. Ther. – volume: 12 start-page: 1361 year: 2009 end-page: 1363 article-title: Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia publication-title: Nat. Neurosci. – volume: 38 start-page: 2795 year: 2007 end-page: 2803 article-title: Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats publication-title: Stroke – volume: 11 start-page: 3398 year: 1991 end-page: 3411 article-title: Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes publication-title: J. Neurosci. – volume: 6 start-page: 17 year: 2009 article-title: Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease publication-title: J. Neuroinflammation – volume: 104 start-page: 12849 year: 2007 end-page: 12854 article-title: Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer's disease patients are improved by bisdemethoxycurcumin publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 681 year: 2008 end-page: 687 article-title: Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology publication-title: Nat. Med. – volume: 5 start-page: 933 year: 2010 end-page: 946 article-title: Mesenchymal stem cells for the treatment of neurodegenerative disease publication-title: Regen. Med. – volume: 22 start-page: 977 year: 2013 end-page: 991 article-title: Delayed intranasal delivery of hypoxicpreconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice publication-title: Cell Transplant. – volume: 32 start-page: 159 year: 1991 end-page: 183 article-title: Leukocyte infiltration and glial reactions in xenografts of mouse brain tissue undergoing rejection in the adult rat brain: A light and electron microscopical immunocytochemical study publication-title: J. Neuroimmunol. – volume: 1 start-page: 866 year: 2012 end-page: 873 article-title: Intranasal delivery of neural stem/progenitor cells: A noninvasive passage to target intracerebral glioma publication-title: Stem Cells Transl. Med. – volume: 513 start-page: 25 year: 2012 end-page: 30 article-title: Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAO-mouse model for cerebral ischemia publication-title: Neurosci. Lett. – volume: 16 start-page: 481 year: 2007 end-page: 488 article-title: Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct publication-title: Stem Cells Dev. – volume: 8 start-page: 1263 year: 2002 end-page: 1269 article-title: Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis publication-title: Nat. Med. – volume: 9 start-page: 12 year: 2012 article-title: Microglia differentiation using a culture system for the expansion of mice non-adherent bone marrow stem cells publication-title: J. Inflamm. – volume: 8 start-page: e77182 year: 2013 article-title: Age-dependent astroglial vulnerability to hypoxia and glutamate: The role for erythropoietin publication-title: PLoS One – volume: 16 start-page: 268 year: 1993 end-page: 273 article-title: Macrophages and inflammation in the central nervous system publication-title: Trends Neurosci. – volume: 11 start-page: 551 year: 2005 end-page: 555 article-title: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease publication-title: Nat. Med. – volume: 141 start-page: 79 year: 1996 end-page: 93 article-title: The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum publication-title: Exp. Neurol. – volume: 106 start-page: 1261 year: 2009 end-page: 1266 article-title: Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy publication-title: Proc. Natl. Acad. Sci. USA – volume: 38 start-page: 403 year: 2014 end-page: 413 article-title: A complex proinflammatory role for peripheral monocytes in Alzheimer's disease publication-title: J. Alzheimers Dis. – volume: 4 start-page: 98 year: 2010 end-page: 105 article-title: Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells publication-title: Nanotoxicology – volume: 4 start-page: 142 year: 2013 article-title: Intranasal delivery of neural stem cells: A CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis publication-title: J. Clin. Cell. Immunol. – volume: 117 start-page: 111 year: 2009 end-page: 124 article-title: Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels: Contributing to amyloid angiopathy publication-title: Acta Neuropathol. – volume: 8 start-page: e51253 year: 2013 article-title: Intranasal mesenchymal stem cell treatment for neonatal brain damage: Long-term cognitive and sensorimotor improvement publication-title: PLoS One – volume: 28 start-page: 14156 year: 2008 end-page: 14164 article-title: Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice publication-title: J. Neurosci. – volume: 13 start-page: 432 year: 2007 end-page: 438 article-title: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease publication-title: Nat. Med. – volume: 24 start-page: 2483 year: 2006 end-page: 2492 article-title: Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia publication-title: Stem Cells – volume: 210 start-page: 67 year: 2009 end-page: 72 article-title: Immune blood biomarkers of Alzheimer disease patients publication-title: J. Neuroimmunol. – volume: 44 start-page: 3463 year: 2013 end-page: 3472 article-title: Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke publication-title: Stroke – volume: 30 start-page: 2475 year: 2013 end-page: 2484 article-title: Intranasal treatment of central nervous system dysfunction in humans publication-title: Pharm. Res. – volume: 3 start-page: 268 year: 1995 end-page: 274 article-title: Ex vivo gene therapy for Alzheimer's disease and spinal cord injury publication-title: Clin. Neurosci. – volume: 31 start-page: 285 year: 2012 end-page: 300 article-title: Cerebellar amyloid-β plaques: Disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer's disease publication-title: J. Alzheimer's Dis. – volume: 88 start-page: 315 year: 2009 end-page: 324 article-title: Intranasal delivery of cells to the brain publication-title: Eur. J. Cell. Biol. – volume: 110 start-page: 1429 year: 2002 end-page: 1439 article-title: Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies publication-title: J. Clin. Invest. – volume: 12 start-page: 873706 year: 2012 article-title: Parkinson's disease and mesenchymal stem cells: Potential for cell-based therapy publication-title: Parkinsons Dis. – volume: 16 start-page: 1599 year: 2009 end-page: 1614 article-title: Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: The critical role of erythropoietin publication-title: Cell Death Differ. – volume: 7 start-page: 435 year: 2012 end-page: 447 article-title: Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease publication-title: Int. J. Nanomedicine – volume: 28 start-page: 329 year: 2010 end-page: 343 article-title: Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses publication-title: Stem Cells – volume: 84 start-page: 567 year: 2005 end-page: 579 article-title: The blockade of endothelin A receptor protects astrocytes against hypoxic injury: Common effects of BQ-123 and erythropoietin on the rejuvenation of the astrocyte population publication-title: Eur. J. Cell. Biol. – volume: 99 start-page: 1654 year: 2010 end-page: 1673 article-title: Intranasal delivery to the central nervous system: Mechanisms and experimental considerations publication-title: J. Pharm. Sci. – volume: 285 start-page: 9262 year: 2010 end-page: 9272 article-title: Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies publication-title: J. Biol. Chem. – volume: 41 start-page: 2064 year: 2010 end-page: 2070 article-title: Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia publication-title: Stroke – volume: 49 start-page: 489 year: 2006 end-page: 502 article-title: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease publication-title: Neuron – volume: 9 start-page: 27 year: 2011 article-title: Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice publication-title: BMC Biol. – volume: 84 start-page: 1507 year: 2007 end-page: 1516 article-title: Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain publication-title: Transplantation – volume: 108 start-page: 250 year: 2006 end-page: 254 article-title: Neuroprotection in multiple sclerosis publication-title: Clin. Neurol. Neurosurg. – volume: 1 start-page: 50 year: 2012 article-title: Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease publication-title: Adv. Biomed. Res. – volume: 8 start-page: 94 year: 2013 end-page: 117 article-title: Microglial activation and antioxidant responses induced by the Parkinson's disease protein α-synuclein publication-title: J. Neuroimmune Pharmacol. – volume: 22 start-page: 140 year: 2014 end-page: 148 article-title: Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors publication-title: Mol. Ther. – volume: 9 start-page: 325 year: 2010 end-page: 330 article-title: Involvement of immune response in the pathogenesis of amyotrophic lateral sclerosis: A therapeutic opportunity? CNS Neurol publication-title: Disord. Drug Targets – volume: 127 start-page: 481 year: 2004 end-page: 496 article-title: Delivery of insulin-like growth factor-I to the brain and spinal cord along olfactory and trigeminal pathways following intranasal administration publication-title: Neuroscience – volume: 5 start-page: 283 year: 2009 end-page: 300 article-title: Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury publication-title: Stem Cell Rev. – volume: 17 start-page: 83 year: 2010 end-page: 94 article-title: AAV9-mediated erythropoietin gene delivery into the brain protects nigral dopaminergic neurons in a rat model of Parkinson's disease publication-title: Gene Ther. – volume: 1254 start-page: 120 year: 2009 end-page: 127 article-title: Continuous intraventricular infusion of erythropoietin exerts neuroprotective/rescue effects upon Parkinson's disease model of rats with enhanced neurogenesis publication-title: Brain Res. – volume: 251 start-page: 205 year: 1998 end-page: 208 article-title: Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies publication-title: Neurosci. Lett. – volume: 84 start-page: 907 year: 2005 end-page: 913 article-title: Similar protective effects of BQ-123 and erythropoietin on survival of neural cells and generation of neurons upon hypoxic injury publication-title: Eur. J. Cell. Biol. – ident: bibr58-096368914X684970 doi: 10.3109/17435390903470093 – ident: bibr4-096368914X684970 doi: 10.1038/mt.2013.199 – ident: bibr64-096368914X684970 doi: 10.1016/S0304-3940(98)00504-7 – ident: bibr68-096368914X684970 doi: 10.1038/nm1781 – ident: bibr31-096368914X684970 doi: 10.1038/nn.2432 – start-page: 329 volume-title: Research advances in Alzheimer's Disease and related disorders. year: 1995 ident: bibr29-096368914X684970 – ident: bibr14-096368914X684970 doi: 10.1097/01.tp.0000288185.09601.4d – ident: bibr76-096368914X684970 doi: 10.1038/gt.2009.113 – ident: bibr55-096368914X684970 doi: 10.1172/JCI200215777 – ident: bibr65-096368914X684970 doi: 10.1016/j.neulet.2012.01.078 – ident: bibr39-096368914X684970 doi: 10.1016/S0002-9440(10)63072-6 – ident: bibr26-096368914X684970 doi: 10.1073/pnas.0701267104 – ident: bibr42-096368914X684970 doi: 10.1523/JNEUROSCI.4147-08.2008 – ident: bibr50-096368914X684970 doi: 10.3233/JAD-2012-112198 – volume: 292 start-page: 261 year: 1989 ident: bibr35-096368914X684970 publication-title: Clin. Biol. Res. – ident: bibr1-096368914X684970 doi: 10.4103/2277-9175.100157 – ident: bibr16-096368914X684970 doi: 10.1034/j.1399-6576.2002.460702.x – volume: 12 start-page: 873706 year: 2012 ident: bibr41-096368914X684970 publication-title: Parkinsons Dis. – ident: bibr53-096368914X684970 doi: 10.1523/JNEUROSCI.11-11-03398.1991 – ident: bibr40-096368914X684970 doi: 10.1016/j.clineuro.2005.11.007 – ident: bibr54-096368914X684970 doi: 10.1038/nm790 – ident: bibr57-096368914X684970 doi: 10.1016/0166-2236(93)90180-T – ident: bibr10-096368914X684970 doi: 10.2174/187152710791292657 – volume: 28 start-page: 329 year: 2010 ident: bibr46-096368914X684970 publication-title: Stem Cells doi: 10.1002/stem.277 – volume: 5 start-page: 902 year: 1992 ident: bibr63-096368914X684970 publication-title: Curr. Opin. Neurol. Neurosurg. – start-page: 1 volume-title: Nasal systemic drug delivery. year: 1989 ident: bibr13-096368914X684970 – ident: bibr24-096368914X684970 doi: 10.1038/sj.mp.4001907 – ident: bibr7-096368914X684970 doi: 10.1007/s11481-012-9401-0 – ident: bibr44-096368914X684970 doi: 10.1016/j.neulet.2008.05.090 – ident: bibr15-096368914X684970 doi: 10.1634/stemcells.2006-0174 – ident: bibr38-096368914X684970 doi: 10.1016/j.brainres.2008.11.094 – ident: bibr37-096368914X684970 doi: 10.2217/rme.10.72 – ident: bibr51-096368914X684970 doi: 10.1371/journal.pone.0077182 – ident: bibr23-096368914X684970 doi: 10.1371/journal.pone.0051253 – ident: bibr70-096368914X684970 doi: 10.1038/nm1239 – ident: bibr32-096368914X684970 doi: 10.1186/scrt159 – ident: bibr52-096368914X684970 doi: 10.1177/0269881113494939 – ident: bibr47-096368914X684970 doi: 10.1111/j.1471-4159.2011.07534.x – ident: bibr48-096368914X684970 doi: 10.1093/brain/awh531 – ident: bibr19-096368914X684970 doi: 10.1038/cdd.2009.95 – ident: bibr34-096368914X684970 doi: 10.1186/1476-9255-9-12 – ident: bibr20-096368914X684970 doi: 10.1089/rej.2010.1130 – ident: bibr61-096368914X684970 doi: 10.1186/1741-7007-9-27 – ident: bibr12-096368914X684970 doi: 10.1007/s11095-012-0915-1 – ident: bibr59-096368914X684970 doi: 10.5966/sctm.2012-0045 – volume: 7 start-page: 435 year: 2012 ident: bibr9-096368914X684970 publication-title: Int. J. Nanomedicine – ident: bibr5-096368914X684970 doi: 10.1038/78682 – ident: bibr17-096368914X684970 doi: 10.1016/j.ejcb.2004.12.030 – ident: bibr67-096368914X684970 doi: 10.1016/j.neuroscience.2004.05.029 – ident: bibr3-096368914X684970 doi: 10.1016/j.jneuroim.2009.02.015 – ident: bibr21-096368914X684970 doi: 10.1016/j.ejcb.2009.02.001 – ident: bibr30-096368914X684970 doi: 10.1159/000105473 – ident: bibr36-096368914X684970 doi: 10.1161/STROKEAHA.107.483008 – ident: bibr43-096368914X684970 doi: 10.1089/scd.2007.9993 – ident: bibr6-096368914X684970 doi: 10.1006/exnr.1996.0141 – ident: bibr11-096368914X684970 doi: 10.1186/1742-2094-6-17 – ident: bibr45-096368914X684970 doi: 10.1074/jbc.M109.081125 – ident: bibr25-096368914X684970 doi: 10.1038/nm1555 – ident: bibr66-096368914X684970 doi: 10.1371/journal.pone.0019808 – ident: bibr77-096368914X684970 doi: 10.3727/096368910X508762 – ident: bibr2-096368914X684970 doi: 10.1097/nen.0b013e3180517b28 – volume: 3 start-page: 268 year: 1995 ident: bibr8-096368914X684970 publication-title: Clin. Neurosci. – ident: bibr60-096368914X684970 doi: 10.3233/JAD-131160 – volume: 68 start-page: 419 year: 2010 ident: bibr71-096368914X684970 publication-title: Pediatr. Res. doi: 10.1203/00006450-201011001-00834 – ident: bibr56-096368914X684970 doi: 10.1161/STROKEAHA.109.575993 – ident: bibr72-096368914X684970 doi: 10.1007/s12015-009-9081-1 – ident: bibr75-096368914X684970 doi: 10.4172/2155-9899.1000142 – ident: bibr79-096368914X684970 doi: 10.1007/s00401-008-0481-0 – ident: bibr74-096368914X684970 doi: 10.3727/096368912X657251 – ident: bibr78-096368914X684970 doi: 10.1161/STROKEAHA.111.000821 – ident: bibr33-096368914X684970 doi: 10.1073/pnas.0805453106 – ident: bibr27-096368914X684970 doi: 10.1016/0165-5728(91)90008-U – ident: bibr28-096368914X684970 doi: 10.1186/1742-2094-9-112 – ident: bibr49-096368914X684970 doi: 10.1016/j.addr.2011.11.002 – ident: bibr22-096368914X684970 doi: 10.1002/jps.21924 – ident: bibr69-096368914X684970 doi: 10.1073/pnas.92.10.4621 – ident: bibr73-096368914X684970 doi: 10.1371/journal.pone.0054296 – ident: bibr18-096368914X684970 doi: 10.1016/j.ejcb.2005.07.001 – ident: bibr62-096368914X684970 doi: 10.1016/j.neuron.2006.01.022 |
SSID | ssj0007325 |
Score | 2.4233096 |
Snippet | In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and... |
SourceID | doaj proquest pubmed crossref sage |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123 |
SubjectTerms | Administration, Intranasal Alzheimer Disease - therapy Animals Biomarkers - metabolism Bone Marrow Cells - cytology Brain - pathology Cell Differentiation Cell Lineage Disease Models, Animal Female Flow Cytometry Green Fluorescent Proteins - metabolism Macrophages - transplantation Male Mesenchymal Stem Cell Transplantation Mesenchymal Stromal Cells - cytology Mice Mice, Inbred C57BL Mice, Transgenic Microglia - transplantation Parkinson Disease - therapy |
SummonAdditionalLinks | – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiR4QLDxkfEhI6EhJMLS2ImTJ9SuVAOpPMAm-hbZsb1OysfUpEjlv-E_5c5JKoYGQupDY11sJ_bFP5_v7kfIK251rCKG-bTT3OewYPgSYIHPtNGBVCzIXbjY_HN8es4_LaLFDqmGWJj-DTbv0K0KeuQ-1qjdaI1GFWew4B4D7mZxko74Ik54KoL367bMOmv3QKqBJXg8vS7xZDtHf8iNP0S33SJ7oYgjUOS98ezLt7Ptt1swR9OK9fvQgOgONm9s89pC5vL93wRSrzmIuTVrdp_c68EmHXez4wHZMdU-ORhXsNEuN_SIOvdPZ1ffJ7cnw7-7v-UoPCA_P6L5t5INVDQ1BbpxbGht6aSuDJ27FI7-FGS_G03nGMqULzclyH5tTUlPTFE0b0EMicKW0EO4kBUIohvgRXEpaVtTgKB0gkwVFH7zet1AvcjP02Az4-LH0lyWZvW6cXdilLYLWIPraXe49JCczz6cnZz6Pa-DnwP4an2NFCcSoIPlSEwBG6bECAlFmusQCbQEzBGljLRSMCm1AhiBcSzSyFQwrdgjslvBQz4hNFWhVTqIAThaLjRXoYpsGCXSsjxgKvXI8TBIWd4nPUfujSKDzQ8Oa_bnsHrkzfaOqy7hxz9kJzjuWzlM1e0K6tVF1mt-ZhPAqEJiPKbgoRQpFMSJdVk6hR0Jj7wcZk0Gqo3nNbIy8LKzEaJHARvO2COPu-m0bSpEtqckCD1yhPMrG_Tmr309_F_Bp-QOgELemZmekd12tTbPAXi16kWvLb8Aj4MkpA priority: 102 providerName: SAGE Publications |
Title | Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease |
URI | https://journals.sagepub.com/doi/full/10.3727/096368914X684970 https://www.ncbi.nlm.nih.gov/pubmed/25302802 https://www.proquest.com/docview/1639972606 https://doaj.org/article/f84567a1037742a79f8468f047227f17 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9Gx2B7GFu7D69b0WB0DGbiWIplPyZNQzfIHraW5c1IltQUHGfUbiH9b_qf7k52Qjr28TLwg32cbdk6-34n6e4H8E44k-gBp3raWREKdBihQlgQcmNNpDSPCp8uNv2SnJyJz7PBbIvqi9aEteWB2xfXcym6eKkonQ2jOCUzFCSp80UOpev7PHL0eetgqvsHS-7pVhGf8zBJM9lOUHJ01j2SoagvZkkqMiIp3nJIvm7_78DmnYVe3vdMnsDjDjSyYdvYp3DPVruwN6wwYF6s2CHzyzj9-PguPBit9x5t1Rrcg9tPNIxbqRovNLYlLcdYsaVjo2Vl2dSXYgzHqHttDZtSSlIxXy1Q91tjF-zIlmX9EdWI8GuOLcQDVaEiLec7Ly8Ua5YMoSQbEeMEw226vKrxusSzU9NthuXN3F4s7OX72p9J2dY-8QyPx-0k0TM4mxyfHp2EHT9DWCCIakJDVCUKIYATRDCBgU9qpUKRESYmIiyJfa21VU5JrpTRCAcoH0VZlUluNH8OOxU-5EtgmY6dNlGCANAJaYSO9cDFg1Q5XkRcZwH01p2UF13xcuLQKHMMYqhb81-7NYAPmzN-tIU7_qI7on7f6FHJbS9AQ8w7Q8z_ZYgBvF1bTY6fKM27qMriy877hAIlBo5JAC9ac9rcKibWpjSKAzgk-8q7P0j9x7a--h9t3YeHCPxEO5T0Gnaayyv7BsFVow_g_nDy9fvpgf-efgLbfBkk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJwQ8INj4CJ9GQkNIZEtjN04e25Wqg2UP0Im-RXZsr5PSBDUZUvlv-E-5c9JqQwMh9aGxzo6T88U_23f3I-QttzpSA4b5tJPc5zBh-BJggc-00YFULMhduFh6Gk3P-Kf5YH6F6qt7g_UBulVBj9zHurNuBnPtIUBuFsVJn8-jmCcCVus7HCetHtkZTr58m20_w4I5xlWU96GCaM8ob2zj2pzkUvffhDev-Xq56WfygNzvcCMdtop-SG6ZcpfsDUtYMy_XdJ86T063Rb5Lbo82_-5dSTe4R34d405uKWtoaGwK9MhY08rSUVUamrpsjP4YZH8YTVOMSsoX6yXIfm3Mkh6Zoqg_gBhyfi2gh3AhSxBEj77z4kLSpqKAJukISSco_NLqsoZ2kWqnxtsMi58Lc7E0q3e1q4kB1y72DK7H7TnRI3I2-Tg7mvodRYOfA45qfI1sJRJQgOXIMQFrn9gICUWa6xC5sASoWykjrRRMSq0AEWBIijQyEUwr9pj0SnjIp4QmKrRKBxFgQMuF5ipUAxsOYmlZHjCVeORwo6Qs7_KXI41GkcE6BtWa_alWj7zf1vje5u74h-wI9b6Vw6zbrqBanWedEWc2BrgpJIZWCh5KkUBBFFuXcFPYvvDIm82oycBK8ehFlgZedtZHIChg7Rh55Ek7nLa3CpG4KQ5Cj-zj-Mo2JvDXvj77X8HX5M50lp5kJ8enn5-Tu4D1eLt79IL0mtWleQl4qlGvOsv5DRXZEg0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJxA8INj4CJ9GQkNIZEtjN04e25VqAzoh2ETfLDu210lpMjUZUvlv-E-5c9KKoYGQ-tBYZ8fJ-XK_s--DkNfcmUQPGObTzvKQg8IIFcCCkBlrIqVZlPtwselxcnjKP8wGs843B2NhujdY76FbFczIf6xRui-MQwlnoG_3AXazJM36fJakPBNgsW9xDqqxR7aGky_fTjafYsF81VWkD6GDaM8prx3jil7y6fuvw5xX_L28CprcI3c77EiHLbPvkxu23CY7wxLs5sWK7lLvzem3ybfJzdH6353fUg7ukJ9HuJtbqhoGGtsCvTJWtHJ0VJWWTn1GxnAMtN-toVOMTMrnqwXQfm3sgh7YoqjfARnW_ZrDDOFClUCIXn1nxbmiTUUBUdIRFp6g8JtWlzWMi-V2arzNsPgxt-cLu3xT-54YdO3jz-B63J4VPSCnk_cnB4dhV6YhzAFLNaHBiiUKkIDjWGcC7J_UCgVNhpsY62EJYLnWVjklmFJGAyrAsBRlVSaY0ewh6ZXwkI8JzXTstIkSwIGOC8N1rAcuHqTKsTxiOgvI_ppJMu9ymGMpjUKCLYNslX-yNSBvNz0u2vwd_6AdId83dJh52zdUyzPZCbJ0KUBOoTC8UvBYiQwaktT5pJvC9UVAXq1XjQRJxeMXVVp42bKPYFCA_ZgE5FG7nDa3irF4UxrFAdnF9SXXYvDXuT75X8KX5Nbn8UR-Ojr--JTcBrjH2w2kZ6TXLC_tc4BUjX7RCc4vNEQTHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intranasal+delivery+of+bone+marrow-derived+mesenchymal+stem+cells%2C+macrophages%2C+and+microglia+to+the+brain+in+mouse+models+of+Alzheimer%27s+and+Parkinson%27s+disease&rft.jtitle=Cell+transplantation&rft.au=Danielyan%2C+Lusine&rft.au=Beer-Hammer%2C+Sandra&rft.au=Stolzing%2C+Alexandra&rft.au=Sch%C3%A4fer%2C+Richard&rft.date=2014&rft.eissn=1555-3892&rft.volume=23+Suppl+1&rft.spage=S123&rft_id=info:doi/10.3727%2F096368914X684970&rft_id=info%3Apmid%2F25302802&rft.externalDocID=25302802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-6897&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-6897&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-6897&client=summon |