Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease

In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in th...

Full description

Saved in:
Bibliographic Details
Published inCell transplantation Vol. 23; no. 1_suppl; pp. 123 - 139
Main Authors Danielyan, Lusine, Beer-Hammer, Sandra, Stolzing, Alexandra, Schäfer, Richard, Siegel, Georg, Fabian, Claire, Kahle, Philipp, Biedermann, Tilo, Lourhmati, Ali, Buadze, Marine, Novakovic, Ana, Proksch, Barbara, Gleiter, Christoph H., Frey, William H., Schwab, Matthias
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.01.2014
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 104) after INA of 1 × 106 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 103. Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
AbstractList In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10 4 ) after INA of 1 × 10 6 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10 3 . Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 104) after INA of 1 × 106 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 103. Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Author Beer-Hammer, Sandra
Kahle, Philipp
Schäfer, Richard
Fabian, Claire
Biedermann, Tilo
Gleiter, Christoph H.
Lourhmati, Ali
Novakovic, Ana
Siegel, Georg
Frey, William H.
Buadze, Marine
Stolzing, Alexandra
Schwab, Matthias
Proksch, Barbara
Danielyan, Lusine
Author_xml – sequence: 1
  givenname: Lusine
  surname: Danielyan
  fullname: Danielyan, Lusine
  email: lusine.danielyan@med.uni-tuebingen.de
– sequence: 2
  givenname: Sandra
  surname: Beer-Hammer
  fullname: Beer-Hammer, Sandra
– sequence: 3
  givenname: Alexandra
  surname: Stolzing
  fullname: Stolzing, Alexandra
– sequence: 4
  givenname: Richard
  surname: Schäfer
  fullname: Schäfer, Richard
– sequence: 5
  givenname: Georg
  surname: Siegel
  fullname: Siegel, Georg
– sequence: 6
  givenname: Claire
  surname: Fabian
  fullname: Fabian, Claire
– sequence: 7
  givenname: Philipp
  surname: Kahle
  fullname: Kahle, Philipp
– sequence: 8
  givenname: Tilo
  surname: Biedermann
  fullname: Biedermann, Tilo
– sequence: 9
  givenname: Ali
  surname: Lourhmati
  fullname: Lourhmati, Ali
– sequence: 10
  givenname: Marine
  surname: Buadze
  fullname: Buadze, Marine
– sequence: 11
  givenname: Ana
  surname: Novakovic
  fullname: Novakovic, Ana
– sequence: 12
  givenname: Barbara
  surname: Proksch
  fullname: Proksch, Barbara
– sequence: 13
  givenname: Christoph H.
  surname: Gleiter
  fullname: Gleiter, Christoph H.
– sequence: 14
  givenname: William H.
  surname: Frey
  fullname: Frey, William H.
– sequence: 15
  givenname: Matthias
  surname: Schwab
  fullname: Schwab, Matthias
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25302802$$D View this record in MEDLINE/PubMed
BookMark eNp9kk2P0zAQhi20iP2AOyfkGxwIOLZjJ8fdlo9KW4EESNyiSTJpXRK72Cmo_Bv-KdPtsoeVQLJk-Z3nfUea8Tk78cEjY09z8UpZaV-LyihTVrn-akpdWfGAneVFUWSqrOQJOzuUM6rbU3ae0kYIYZUsHrFTWSghSyHP2O-FnyJ4SDDwOQ7uB8Y9Dz2_okZ8CTGGn9kcI-kdX2JC3673I7GfJhz5DIchvSSsjWG7hhXSAzyBjoTV4IBPgU9r5FcRnOd0lmGXKDd0OKRDm8vh1xrdiPF5unF-hPjN-RQ8vecuISR8zB72MCR8cntfsC9v33yevc-uP7xbzC6vs1brfMo6q40FqfNeoyiULVSJFkjqdCdNoaVtlGgahB6sAugaqWVppAaEyqquURdsccztAmzqbXQjxH0dwNU3QoirGuLk2gHrvtQFJedCWasl2IoEU_ZCWyltn1vKenHM2sbwfYdpqkeXWpoWeKQJ1LlRVWWlEYbQZ7forhmxu2v8d0UEiCNAM00pYn-H5KI-_IL6_i8gi7lnad0EkwuHXbvhf8bsaEy0zHoTdtHTyP_N_wHdLsGO
CitedBy_id crossref_primary_10_1007_s12031_016_0819_3
crossref_primary_10_1089_neu_2020_6990
crossref_primary_10_1016_j_mayocp_2019_01_001
crossref_primary_10_3390_jdad1020008
crossref_primary_10_3233_JAD_160250
crossref_primary_10_1007_s12035_016_0027_8
crossref_primary_10_1002_glia_23275
crossref_primary_10_1186_s40478_018_0644_8
crossref_primary_10_3892_etm_2017_4073
crossref_primary_10_1186_s13287_023_03280_0
crossref_primary_10_4103_jmau_jmau_90_24
crossref_primary_10_1016_j_neuroscience_2024_07_019
crossref_primary_10_1155_2018_5023925
crossref_primary_10_1177_0963689717735411
crossref_primary_10_4252_wjsc_v13_i8_1072
crossref_primary_10_1016_j_advms_2024_06_001
crossref_primary_10_1111_nyas_13985
crossref_primary_10_1007_s11055_018_0655_8
crossref_primary_10_3390_jpm13081253
crossref_primary_10_3233_JHD_170275
crossref_primary_10_1155_2020_4636397
crossref_primary_10_1016_j_intimp_2020_107207
crossref_primary_10_1093_jnci_djy138
crossref_primary_10_1016_j_retram_2016_10_007
crossref_primary_10_1159_000511569
crossref_primary_10_1007_s10266_018_0395_9
crossref_primary_10_3389_fphar_2021_644103
crossref_primary_10_1007_s13770_025_00702_3
crossref_primary_10_1523_JNEUROSCI_1636_16_2016
crossref_primary_10_1016_j_apsb_2022_04_001
crossref_primary_10_1016_j_nsa_2024_104061
crossref_primary_10_1038_s41536_020_00106_y
crossref_primary_10_18632_oncotarget_26272
crossref_primary_10_1111_cns_70178
crossref_primary_10_1186_s13287_021_02274_0
crossref_primary_10_1089_scd_2017_0148
crossref_primary_10_1042_BSR20150025
crossref_primary_10_1177_1533317520927169
crossref_primary_10_1016_j_pneurobio_2016_01_005
crossref_primary_10_31548_ujvs2019_03_001
crossref_primary_10_1016_j_ebiom_2020_102989
crossref_primary_10_1177_0271678X251317374
crossref_primary_10_3390_ijms241814117
crossref_primary_10_3390_ph14020095
crossref_primary_10_1007_s10571_023_01344_6
crossref_primary_10_1177_0963689718754561
crossref_primary_10_1177_15353702211056866
crossref_primary_10_1111_cns_12386
crossref_primary_10_1111_cns_13111
crossref_primary_10_1016_j_neuro_2017_10_008
crossref_primary_10_3390_pharmaceutics15071999
crossref_primary_10_3389_fimmu_2019_01645
crossref_primary_10_1002_JLB_MR0818_319R
crossref_primary_10_2147_IJN_S238266
crossref_primary_10_1016_j_lfs_2020_117405
crossref_primary_10_1007_s13311_019_00822_4
crossref_primary_10_14336_AD_2023_0904
crossref_primary_10_1016_j_drudis_2022_01_004
crossref_primary_10_1155_2018_6392986
crossref_primary_10_1080_17425247_2018_1378642
crossref_primary_10_1089_scd_2019_0173
crossref_primary_10_1016_j_molmed_2023_08_005
crossref_primary_10_1002_glia_23985
crossref_primary_10_1016_j_scr_2015_04_008
crossref_primary_10_3390_cancers15204912
crossref_primary_10_18632_aging_103675
crossref_primary_10_3390_cells10102757
crossref_primary_10_1016_j_ymthe_2021_06_005
crossref_primary_10_1002_ame2_12207
crossref_primary_10_1186_s40779_024_00550_7
crossref_primary_10_1016_j_jconrel_2023_10_052
crossref_primary_10_2147_JIR_S327538
crossref_primary_10_1038_s41598_023_36772_3
crossref_primary_10_1016_j_jcyt_2015_10_006
crossref_primary_10_1007_s12035_016_0214_7
crossref_primary_10_1039_D2NH00188H
crossref_primary_10_3390_biomedicines9070750
crossref_primary_10_1016_j_yexmp_2015_01_016
crossref_primary_10_1074_jbc_M117_807180
crossref_primary_10_1016_j_yexcr_2021_112563
crossref_primary_10_1016_S1474_4422_15_00332_4
crossref_primary_10_1080_23808993_2020_1738217
crossref_primary_10_1016_j_jcyt_2015_07_019
crossref_primary_10_1016_j_jds_2024_11_029
crossref_primary_10_1590_2237_6089_2016_0074
crossref_primary_10_1586_14737175_2015_1091727
crossref_primary_10_3390_ijms21113807
crossref_primary_10_1002_jcp_26192
crossref_primary_10_1002_nep3_42
crossref_primary_10_1186_s13046_017_0605_2
crossref_primary_10_3390_cells11193095
crossref_primary_10_3390_cells8060595
crossref_primary_10_1016_j_bbadis_2015_10_003
crossref_primary_10_3389_fnagi_2018_00077
crossref_primary_10_1515_revneuro_2021_0163
crossref_primary_10_1177_1721727X17706855
crossref_primary_10_1016_j_parkreldis_2024_107087
Cites_doi 10.3109/17435390903470093
10.1038/mt.2013.199
10.1016/S0304-3940(98)00504-7
10.1038/nm1781
10.1038/nn.2432
10.1097/01.tp.0000288185.09601.4d
10.1038/gt.2009.113
10.1172/JCI200215777
10.1016/j.neulet.2012.01.078
10.1016/S0002-9440(10)63072-6
10.1073/pnas.0701267104
10.1523/JNEUROSCI.4147-08.2008
10.3233/JAD-2012-112198
10.4103/2277-9175.100157
10.1034/j.1399-6576.2002.460702.x
10.1523/JNEUROSCI.11-11-03398.1991
10.1016/j.clineuro.2005.11.007
10.1038/nm790
10.1016/0166-2236(93)90180-T
10.2174/187152710791292657
10.1002/stem.277
10.1038/sj.mp.4001907
10.1007/s11481-012-9401-0
10.1016/j.neulet.2008.05.090
10.1634/stemcells.2006-0174
10.1016/j.brainres.2008.11.094
10.2217/rme.10.72
10.1371/journal.pone.0077182
10.1371/journal.pone.0051253
10.1038/nm1239
10.1186/scrt159
10.1177/0269881113494939
10.1111/j.1471-4159.2011.07534.x
10.1093/brain/awh531
10.1038/cdd.2009.95
10.1186/1476-9255-9-12
10.1089/rej.2010.1130
10.1186/1741-7007-9-27
10.1007/s11095-012-0915-1
10.5966/sctm.2012-0045
10.1038/78682
10.1016/j.ejcb.2004.12.030
10.1016/j.neuroscience.2004.05.029
10.1016/j.jneuroim.2009.02.015
10.1016/j.ejcb.2009.02.001
10.1159/000105473
10.1161/STROKEAHA.107.483008
10.1089/scd.2007.9993
10.1006/exnr.1996.0141
10.1186/1742-2094-6-17
10.1074/jbc.M109.081125
10.1038/nm1555
10.1371/journal.pone.0019808
10.3727/096368910X508762
10.1097/nen.0b013e3180517b28
10.3233/JAD-131160
10.1203/00006450-201011001-00834
10.1161/STROKEAHA.109.575993
10.1007/s12015-009-9081-1
10.4172/2155-9899.1000142
10.1007/s00401-008-0481-0
10.3727/096368912X657251
10.1161/STROKEAHA.111.000821
10.1073/pnas.0805453106
10.1016/0165-5728(91)90008-U
10.1186/1742-2094-9-112
10.1016/j.addr.2011.11.002
10.1002/jps.21924
10.1073/pnas.92.10.4621
10.1371/journal.pone.0054296
10.1016/j.ejcb.2005.07.001
10.1016/j.neuron.2006.01.022
ContentType Journal Article
Copyright 2014 Cognizant Comm. Corp.
Copyright_xml – notice: 2014 Cognizant Comm. Corp.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.3727/096368914X684970
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Biology
EISSN 1555-3892
EndPage 139
ExternalDocumentID oai_doaj_org_article_f84567a1037742a79f8468f047227f17
25302802
10_3727_096368914X684970
10.3727_096368914X684970
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
0VX
1B1
29B
4.4
53G
54M
5GY
7X7
8FI
8FJ
AAEDT
AAGGD
AALRI
AAPEO
AAQGT
AAQXH
AAQXK
AASGM
AAXUO
ABDWY
ABJIS
ABQKF
ABQXT
ABUWG
ABVFX
ABWVN
ABYTW
ACARO
ACFMA
ACGBL
ACLHI
ACROE
ACRPL
ACVFH
ADBBV
ADCNI
ADEIA
ADMUD
ADNMO
ADOGD
ADTBJ
ADUKL
AENEX
AEUPX
AEWDL
AFCOW
AFDWT
AFKRA
AFKRG
AFPUW
AFRWT
AFYCX
AGQPQ
AJEFB
AJMMQ
AJUZI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APTNG
AUTPY
AYAKG
BAWUL
BCNDV
BDDNI
BENPR
BPHCQ
BSEHC
BVXVI
CBRKF
CCPQU
CORYS
CQQTX
CS3
DC.
DU5
EBS
EJD
EMOBN
F5P
FDB
FEDTE
FGOYB
FYUFA
GROUPED_DOAJ
H13
HMCUK
HVGLF
HYE
HZ~
IHE
J8X
K.F
M41
NQ-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
Q1R
R2-
R9-
ROL
RPM
RPZ
SAUOL
SCDPB
SCNPE
SFC
UHS
UKHRP
AAYXX
ACHEB
CITATION
AAEJI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c441t-d7467a241f4e0537538e7a67ad4d265427b30bbeafa73aadb2428624aea973db3
IEDL.DBID DOA
ISSN 0963-6897
1555-3892
IngestDate Wed Aug 27 01:29:21 EDT 2025
Fri Jul 11 10:01:10 EDT 2025
Mon Jul 21 05:50:40 EDT 2025
Tue Jul 01 05:23:19 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Tue Jun 17 22:52:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1_suppl
Keywords Mesenchymal stem cells (MSCs)
Parkinson's disease
Intranasal
Macrophages
Alzheimer's disease
Amyloid beta (Aβ)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-d7467a241f4e0537538e7a67ad4d265427b30bbeafa73aadb2428624aea973db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/f84567a1037742a79f8468f047227f17
PMID 25302802
PQID 1639972606
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_f84567a1037742a79f8468f047227f17
proquest_miscellaneous_1639972606
pubmed_primary_25302802
crossref_primary_10_3727_096368914X684970
crossref_citationtrail_10_3727_096368914X684970
sage_journals_10_3727_096368914X684970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140100
2014-01-00
2014-00-00
20140101
2014-01-01
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 1
  year: 2014
  text: 20140100
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
PublicationTitle Cell transplantation
PublicationTitleAlternate Cell Transplant
PublicationYear 2014
Publisher SAGE Publications
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: SAGE Publishing
References Stemberger, Jamnig, Stefanova, Lepperdinger, Reindl, Wenning 2011; 6
Calvo, Moglia, Balma, Chiò 2010; 9
Koenigsknecht-Talboo, Meyer-Luehmann, Parsadanian, Garcia-Alloza, Finn, Hyman 2008; 28
Lomoio, López-González, Aso, Carmona, Torrejón-Escribano, Scherini, Ferrer 2012; 31
Karussis, Grigoriadis, Polyzoidou, Grigoriadis, Slavin, Abramsky 2006; 108
Balyasnikova, Prasol, Ferguson, Han, Ahmed, Gutova, Tobias, Mustafi, Rincón, Zhang, Aboody, Lesniak 2014; 22
Maurice, Mustafa, Desrumaux, Keller, Naert, de la C García-Barceló, Rodríguez Cruz, Garcia Rodríguez 2013; 26
Béraud, Hathaway, Trecki, Chasovskikh, Johnson, Johnson, Federoff, Shimoji, Mhyre, Maguire-Zeiss 2013; 8
Yang, Migliati, Parsha, Schaar, Xi, Aronowski, Savitz 2013; 44
Zaghi, Goldenson, Inayathullah, Lossinsky, Masoumi, Avagyan, Mahanian, Bernas, Weinand, Rosenthal, Espinosa-Jeffrey, de Vellis, Teplow, Fiala 2009; 117
Hussain 1989; 292
Lochhead, Thorne 2012; 64
Danielyan, Mueller, Proksch, Kabisch, Weller, Wiesinger, Buniatian, Gleiter 2005; 84
Lee, Suk, Patrick, Bae, Cho, Rho, Hwang, Masliah, Lee 2010; 285
Fransson, Piras, Burman, Nilsson, Essand, Lu, Harris, Magnusson, Brittebo, Loskog 2012; 9
Gonzalez, McQuillen, Mu, Chang, Wendland, Vexler, Ferriero 2007; 29
Simard, Soulet, Gowing, Julien, Rivest 2006; 49
Dhuria, Hanson, Frey 2010; 99
Dale, Hjortkjaer, Kharasch 2002; 46
McLaurin, Cecal, Kierstead, Tian, Phinney, Manea 2002; 8
Walker, Aroom, Jimenez, Shah, Harting, Gill, Cox 2009; 5
Chapman, Frey, Craft, Danielyan, Hallschmid, Schiöth, Benedict 2013; 30
Spillantini, Crowther, Jakes, Cairns, Lantos 1998; 251
Xue, Ma, Zhao, Tatom, Li, Jiang, Klein, Duan 2010; 17
McKeon, Schreiber, Rudge, Silver 1991; 11
Wang, Yang, Li, Wang, Zhu, Fan, Wang 2013; 8
Yagi, Soto-Gutierrez, Parekkadan, Kitagawa, Tompkins, Kobayashi, Yarmush 2010; 19
Pendharkar, Chua, Andres, Wang, Gaeta, Wang, De, Choi, Chen, Rutt, Gambhir, Guzman 2010; 41
Lee, Jin, Endo, Schuchman, Carter, Bae 2010; 28
Kadota, Shingo, Yasuhara, Tajiri, Kondo, Morimoto, Yuan, Wang, Baba, Tokunaga, Miyoshi, Date 2009; 1254
Avagyan, Goldenson, Tse, Masoumi, Porter, Wiedau-Pazos, Sayre, Ong, Mahanian, Koo, Bae, Micic, Liu, Rosenthal, Fiala 2009; 210
Bossolasco, Cova, Levandis, Diana, Cerri, Lambertenghi Deliliers, Polli, Silani, Blandini, Armentero 2012; 7
El Khoury, Toft, Hickman, Means, Terada, Geula, Luster 2007; 13
Gutiérrez-Fernández, Rodríguez-Frutos, Ramos-Cejudo, Teresa Vallejo-Cremades, Fuentes, Cerdán, Díez-Tejedor 2013; 4
Thorne, Pronk, Padmanabhan, Frey 2004; 127
Danielyan, Schäfer, von Ameln-Mayerhofer, Bernhard, Verleysdonk, Buadze, Lourhmati, Klopfer, Schaumann, Schmid, Koehle, Proksch, Weissert, Reichardt, van den Brandt, Buniatian, Schwab, Gleiter, Frey 2011; 14
Saresella, Marventano, Calabrese, Piancone, Rainone, Gatti, Alberoni, Nemni, Clerici 2014; 38
Steiner, Roch, Holtkamp, Kurtz 2012; 513
Kozlowska 2007; 16
Coyne, Marcus, Reynolds, Black, Woodbury 2007; 84
Danielyan, Schäfer, Schulz, Ladewig, Lourhmati, Buadze, Schmitt, Verleysdonk, Kabisch, Koeppen, Siegel, Proksch, Kluba, Eckert, Köhle, Schöneberg, Northoff, Schwab, Gleiter 2009; 16
Grathwohl, Kälin, Bolmont, Prokop, Winkelmann, Kaeser, Odenthal, Radde, Eldh, Gandy, Aguzzi, Staufenbiel, Mathews, Wolburg, Heppner, Jucker 2009; 12
Joyce, Annett, Wirthlin, Olson, Bauer, Nolta 2010; 5
Town, Laouar, Pittenger, Mori, Szekely, Tan 2008; 14
Liu, Walter, Stagi, Cherny, Letiembre, Schulz-Schaeffer 2005; 128
Assaraf, Diaz, Liberman, Miller, Arvanitakis, Li, Bennett 2007; 66
Bard, Cannon, Barbour, Burke, Games, Grajeda 2000; 6
Barker, Dunnett, Faissner, Fawcett 1996; 141
Camp, Loeffler, Farrah, Borneman, LeWitt 2009; 6
Danielyan, Gembizki, Proksch, Weinmann, Morgalla, Wiesinger, Buniatian, Gleiter 2005; 84
Iwai, Cao, Yin, Stetler, Liu, Chen 2007; 38
Wu, Li, Yan, Gran, Han, Zhou, Guan, Rostami, Zhang 2013; 4
Tuszynski, Thal, Pay, Salmon, U, Bakay, Patel, Blesch, Vahlsing, Ho 2005; 11
Tuszynski, Gage 1995; 92
Coyne, Marcus, Woodbury, Black 2006; 24
Donega, van Velthoven, Nijboer, van Bel, Kas 2013; 8
Louhrmati, Buniatian, Paul, Verleydonk, Buecheler, Buadze, Proksch, Schwab, Gleiter, Danielyan 2013; 8
Fiala, Liu, Espinosa-Jeffrey, Rosenthal, Bernard, Ringman, Sayre, Zhang, Zaghi, Dejbakhsh, Chiang, Hui, Mahanian, Baghaee, Hong, Cashman 2007; 104
Reitz, Demestre, Sedlacik, Meissner, Fiehler, Kim, Westphal, Schmidt 2012; 1
Perry, Andersson, Gordon 1993; 16
van Velthoven, Kavelaars, van Bel, Heijnen 2010; 68
Neumann, Kahle, Giasson, Ozmen, Borroni, Spooren, Müller, Odoy, Fujiwara, Hasegawa, Iwatsubo, Trojanowski, Kretzschmar, Haass 2002; 110
Danielyan, Schäfer, von Ameln-Mayerhofer, Buadze, Geisler, Klopfer, Burkhardt, Proksch, Verleysdonk, Ayturan, Buniatian, Gleiter, Frey 2009; 88
Finsen, Sorensen, Castellano, Pedersen, Zimmer 1991; 32
Kitada, Dezawa 2012; 12
Lappalainen, Narkilahti, Huhtala, Liimatainen, Suuronen, Närvänen, Suuronen, Hovatta, Jolkkonen 2008; 440
Lee, Chu, Park, Jung, Jeon, Lim, Lee, Kim, Roh 2012; 120
Wei, Yu, Gu, Taylor, Song, Liu, Wei 2013; 22
Ehrenreich, Hinze-Selch, Stawicki, Aust, Knolle-Veentjer, Wilms, Heinz, Erdag, Jahn, Degner, Ritzen, Mohr, Wagner, Schneider, Bohn, Huber, Czernik, Pollmächer, Maier, Sirén, Klosterkötter, Falkai, Rüther, Aldenhoff, Krampe 2007; 12
Ramot, Steiner, Morad, Leibovitch, Amouyal, Cesta, Nyska 2010; 4
Hawkes, McLaurin 2009; 106
Hinze, Stolzing 2012; 9
Arabpoor, Hamidi, Rashidi, Shabrang, Alaei, Sharifi, Salami, Dolatabadi, Reisi 2012; 1
Kahle, Neumann, Ozmen, Müller, Odoy, Okamoto, Jacobsen, Iwatsubo, Trojanowski, Takahashi, Wakabayashi, Bogdanovic, Riederer, Kretzschmar, Haass 2001; 159
Sargin, El-Kordi, Agarwal, Müller, Wojcik, Hassouna, Sperling, Nave, Ehrenreich 2011; 9
Sinden, Patel, Hodges 1992; 5
Blesch, Tuszynski 1995; 3
Frey W. H. (bibr29-096368914X684970) 1995
bibr5-096368914X684970
bibr18-096368914X684970
bibr43-096368914X684970
bibr52-096368914X684970
Chien Y. W. (bibr13-096368914X684970) 1989
bibr4-096368914X684970
bibr26-096368914X684970
bibr69-096368914X684970
bibr78-096368914X684970
bibr6-096368914X684970
bibr61-096368914X684970
bibr10-096368914X684970
bibr44-096368914X684970
bibr28-096368914X684970
bibr45-096368914X684970
bibr27-096368914X684970
bibr19-096368914X684970
bibr53-096368914X684970
Sinden J. D. (bibr63-096368914X684970) 1992; 5
bibr36-096368914X684970
bibr79-096368914X684970
bibr24-096368914X684970
bibr11-096368914X684970
bibr16-096368914X684970
Hussain A. A. (bibr35-096368914X684970) 1989; 292
bibr70-096368914X684970
bibr76-096368914X684970
bibr37-096368914X684970
bibr50-096368914X684970
bibr55-096368914X684970
bibr47-096368914X684970
bibr68-096368914X684970
Bossolasco P. (bibr9-096368914X684970) 2012; 7
bibr42-096368914X684970
bibr3-096368914X684970
Blesch A. (bibr8-096368914X684970) 1995; 3
van Velthoven C. T. (bibr71-096368914X684970) 2010; 68
bibr60-096368914X684970
bibr34-096368914X684970
bibr21-096368914X684970
bibr48-096368914X684970
bibr30-096368914X684970
bibr73-096368914X684970
bibr56-096368914X684970
bibr39-096368914X684970
bibr22-096368914X684970
bibr65-096368914X684970
bibr74-096368914X684970
bibr23-096368914X684970
bibr31-096368914X684970
bibr57-096368914X684970
bibr15-096368914X684970
bibr58-096368914X684970
bibr14-096368914X684970
bibr40-096368914X684970
bibr32-096368914X684970
bibr49-096368914X684970
bibr66-096368914X684970
bibr1-096368914X684970
bibr67-096368914X684970
bibr62-096368914X684970
bibr54-096368914X684970
bibr75-096368914X684970
bibr59-096368914X684970
bibr7-096368914X684970
bibr33-096368914X684970
Lee J. K. (bibr46-096368914X684970) 2010; 28
Kitada M. (bibr41-096368914X684970) 2012; 12
bibr2-096368914X684970
bibr20-096368914X684970
bibr17-096368914X684970
bibr12-096368914X684970
bibr72-096368914X684970
bibr77-096368914X684970
bibr25-096368914X684970
bibr51-096368914X684970
bibr38-096368914X684970
bibr64-096368914X684970
References_xml – volume: 66
  start-page: 389
  year: 2007
  end-page: 398
  article-title: Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 5
  start-page: 902
  year: 1992
  end-page: 908
  article-title: Neural transplantation: Problems and prospects for therapeutic application
  publication-title: Curr. Opin. Neurol. Neurosurg.
– volume: 128
  start-page: 1778
  year: 2005
  end-page: 1789
  article-title: LPS receptor (CD14): A receptor for phagocytosis of Alzheimer's amyloid peptide
  publication-title: Brain
– volume: 29
  start-page: 321
  year: 2007
  end-page: 330
  article-title: Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke
  publication-title: Dev. Neurosci.
– volume: 440
  start-page: 246
  year: 2008
  end-page: 250
  article-title: The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats
  publication-title: Neurosci. Lett.
– volume: 120
  start-page: 115
  year: 2012
  end-page: 124
  article-title: Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer's disease models
  publication-title: J. Neurochem.
– volume: 19
  start-page: 667
  year: 2010
  end-page: 679
  article-title: Mesenchymal stem cells: Mechanisms of immunomodulation and homing
  publication-title: Cell Transplant.
– volume: 12
  start-page: 206
  year: 2007
  end-page: 220
  article-title: Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin
  publication-title: Mol. Psychiatry
– volume: 64
  start-page: 614
  year: 2012
  end-page: 628
  article-title: Intranasal delivery of biologics to the central nervous system
  publication-title: Adv. Drug Deliv. Rev.
– volume: 92
  start-page: 4621
  year: 1995
  end-page: 4625
  article-title: Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 112
  year: 2012
  article-title: CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery
  publication-title: J. Neuroinflammation
– volume: 26
  start-page: 1044
  year: 2013
  end-page: 1057
  article-title: Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25-35 non-transgenic mouse model of Alzheimer's disease
  publication-title: J. Psychopharmacol.
– volume: 6
  start-page: e19808
  year: 2011
  article-title: Mesenchymal stem cells in a transgenic mouse model of multiple system atrophy: Immunomodulation and neuroprotection
  publication-title: PLoS One
– volume: 46
  start-page: 759
  year: 2002
  end-page: 770
  article-title: Nasal administration of opioids for pain management in adults
  publication-title: Acta Anaesthesiol. Scand.
– volume: 8
  start-page: e54296
  year: 2013
  article-title: Hypoxia promotes dopaminergic differentiation of mesenchymal stem cells and shows benefits for transplantation in a rat model of Parkinson's disease
  publication-title: PLoS One
– volume: 292
  start-page: 261
  year: 1989
  end-page: 272
  article-title: Mechanism of nasal absorption of drugs. Prog
  publication-title: Clin. Biol. Res.
– volume: 159
  start-page: 2215
  year: 2001
  end-page: 2225
  article-title: Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model
  publication-title: Am. J. Pathol.
– volume: 14
  start-page: 3
  year: 2011
  end-page: 16
  article-title: Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease
  publication-title: Rejuv. Res.
– volume: 6
  start-page: 916
  year: 2000
  end-page: 919
  article-title: Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease
  publication-title: Nat. Med.
– volume: 68
  start-page: 419
  year: 2010
  end-page: 422
  article-title: Nasal administration of stem cells: A promising novel route to treat neonatal ischemic brain damage
  publication-title: Pediatr. Res.
– volume: 4
  start-page: 11
  year: 2013
  article-title: Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke
  publication-title: Stem Cell Res. Ther.
– volume: 12
  start-page: 1361
  year: 2009
  end-page: 1363
  article-title: Formation and maintenance of Alzheimer's disease beta-amyloid plaques in the absence of microglia
  publication-title: Nat. Neurosci.
– volume: 38
  start-page: 2795
  year: 2007
  end-page: 2803
  article-title: Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats
  publication-title: Stroke
– volume: 11
  start-page: 3398
  year: 1991
  end-page: 3411
  article-title: Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes
  publication-title: J. Neurosci.
– volume: 6
  start-page: 17
  year: 2009
  article-title: Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease
  publication-title: J. Neuroinflammation
– volume: 104
  start-page: 12849
  year: 2007
  end-page: 12854
  article-title: Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer's disease patients are improved by bisdemethoxycurcumin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 681
  year: 2008
  end-page: 687
  article-title: Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology
  publication-title: Nat. Med.
– volume: 5
  start-page: 933
  year: 2010
  end-page: 946
  article-title: Mesenchymal stem cells for the treatment of neurodegenerative disease
  publication-title: Regen. Med.
– volume: 22
  start-page: 977
  year: 2013
  end-page: 991
  article-title: Delayed intranasal delivery of hypoxicpreconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice
  publication-title: Cell Transplant.
– volume: 32
  start-page: 159
  year: 1991
  end-page: 183
  article-title: Leukocyte infiltration and glial reactions in xenografts of mouse brain tissue undergoing rejection in the adult rat brain: A light and electron microscopical immunocytochemical study
  publication-title: J. Neuroimmunol.
– volume: 1
  start-page: 866
  year: 2012
  end-page: 873
  article-title: Intranasal delivery of neural stem/progenitor cells: A noninvasive passage to target intracerebral glioma
  publication-title: Stem Cells Transl. Med.
– volume: 513
  start-page: 25
  year: 2012
  end-page: 30
  article-title: Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAO-mouse model for cerebral ischemia
  publication-title: Neurosci. Lett.
– volume: 16
  start-page: 481
  year: 2007
  end-page: 488
  article-title: Transplantation of a novel human cord blood-derived neural-like stem cell line in a rat model of cortical infarct
  publication-title: Stem Cells Dev.
– volume: 8
  start-page: 1263
  year: 2002
  end-page: 1269
  article-title: Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis
  publication-title: Nat. Med.
– volume: 9
  start-page: 12
  year: 2012
  article-title: Microglia differentiation using a culture system for the expansion of mice non-adherent bone marrow stem cells
  publication-title: J. Inflamm.
– volume: 8
  start-page: e77182
  year: 2013
  article-title: Age-dependent astroglial vulnerability to hypoxia and glutamate: The role for erythropoietin
  publication-title: PLoS One
– volume: 16
  start-page: 268
  year: 1993
  end-page: 273
  article-title: Macrophages and inflammation in the central nervous system
  publication-title: Trends Neurosci.
– volume: 11
  start-page: 551
  year: 2005
  end-page: 555
  article-title: A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease
  publication-title: Nat. Med.
– volume: 141
  start-page: 79
  year: 1996
  end-page: 93
  article-title: The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum
  publication-title: Exp. Neurol.
– volume: 106
  start-page: 1261
  year: 2009
  end-page: 1266
  article-title: Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 38
  start-page: 403
  year: 2014
  end-page: 413
  article-title: A complex proinflammatory role for peripheral monocytes in Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 4
  start-page: 98
  year: 2010
  end-page: 105
  article-title: Pulmonary thrombosis in the mouse following intravenous administration of quantum dot-labeled mesenchymal cells
  publication-title: Nanotoxicology
– volume: 4
  start-page: 142
  year: 2013
  article-title: Intranasal delivery of neural stem cells: A CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis
  publication-title: J. Clin. Cell. Immunol.
– volume: 117
  start-page: 111
  year: 2009
  end-page: 124
  article-title: Alzheimer disease macrophages shuttle amyloid-beta from neurons to vessels: Contributing to amyloid angiopathy
  publication-title: Acta Neuropathol.
– volume: 8
  start-page: e51253
  year: 2013
  article-title: Intranasal mesenchymal stem cell treatment for neonatal brain damage: Long-term cognitive and sensorimotor improvement
  publication-title: PLoS One
– volume: 28
  start-page: 14156
  year: 2008
  end-page: 14164
  article-title: Rapid microglial response around amyloid pathology after systemic anti-Abeta antibody administration in PDAPP mice
  publication-title: J. Neurosci.
– volume: 13
  start-page: 432
  year: 2007
  end-page: 438
  article-title: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease
  publication-title: Nat. Med.
– volume: 24
  start-page: 2483
  year: 2006
  end-page: 2492
  article-title: Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia
  publication-title: Stem Cells
– volume: 210
  start-page: 67
  year: 2009
  end-page: 72
  article-title: Immune blood biomarkers of Alzheimer disease patients
  publication-title: J. Neuroimmunol.
– volume: 44
  start-page: 3463
  year: 2013
  end-page: 3472
  article-title: Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke
  publication-title: Stroke
– volume: 30
  start-page: 2475
  year: 2013
  end-page: 2484
  article-title: Intranasal treatment of central nervous system dysfunction in humans
  publication-title: Pharm. Res.
– volume: 3
  start-page: 268
  year: 1995
  end-page: 274
  article-title: Ex vivo gene therapy for Alzheimer's disease and spinal cord injury
  publication-title: Clin. Neurosci.
– volume: 31
  start-page: 285
  year: 2012
  end-page: 300
  article-title: Cerebellar amyloid-β plaques: Disturbed cortical circuitry in AβPP/PS1 transgenic mice as a model of familial Alzheimer's disease
  publication-title: J. Alzheimer's Dis.
– volume: 88
  start-page: 315
  year: 2009
  end-page: 324
  article-title: Intranasal delivery of cells to the brain
  publication-title: Eur. J. Cell. Biol.
– volume: 110
  start-page: 1429
  year: 2002
  end-page: 1439
  article-title: Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies
  publication-title: J. Clin. Invest.
– volume: 12
  start-page: 873706
  year: 2012
  article-title: Parkinson's disease and mesenchymal stem cells: Potential for cell-based therapy
  publication-title: Parkinsons Dis.
– volume: 16
  start-page: 1599
  year: 2009
  end-page: 1614
  article-title: Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: The critical role of erythropoietin
  publication-title: Cell Death Differ.
– volume: 7
  start-page: 435
  year: 2012
  end-page: 447
  article-title: Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson's disease
  publication-title: Int. J. Nanomedicine
– volume: 28
  start-page: 329
  year: 2010
  end-page: 343
  article-title: Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer's disease mice by modulation of immune responses
  publication-title: Stem Cells
– volume: 84
  start-page: 567
  year: 2005
  end-page: 579
  article-title: The blockade of endothelin A receptor protects astrocytes against hypoxic injury: Common effects of BQ-123 and erythropoietin on the rejuvenation of the astrocyte population
  publication-title: Eur. J. Cell. Biol.
– volume: 99
  start-page: 1654
  year: 2010
  end-page: 1673
  article-title: Intranasal delivery to the central nervous system: Mechanisms and experimental considerations
  publication-title: J. Pharm. Sci.
– volume: 285
  start-page: 9262
  year: 2010
  end-page: 9272
  article-title: Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies
  publication-title: J. Biol. Chem.
– volume: 41
  start-page: 2064
  year: 2010
  end-page: 2070
  article-title: Biodistribution of neural stem cells after intravascular therapy for hypoxic-ischemia
  publication-title: Stroke
– volume: 49
  start-page: 489
  year: 2006
  end-page: 502
  article-title: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease
  publication-title: Neuron
– volume: 9
  start-page: 27
  year: 2011
  article-title: Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice
  publication-title: BMC Biol.
– volume: 84
  start-page: 1507
  year: 2007
  end-page: 1516
  article-title: Disparate host response and donor survival after the transplantation of mesenchymal or neuroectodermal cells to the intact rodent brain
  publication-title: Transplantation
– volume: 108
  start-page: 250
  year: 2006
  end-page: 254
  article-title: Neuroprotection in multiple sclerosis
  publication-title: Clin. Neurol. Neurosurg.
– volume: 1
  start-page: 50
  year: 2012
  article-title: Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease
  publication-title: Adv. Biomed. Res.
– volume: 8
  start-page: 94
  year: 2013
  end-page: 117
  article-title: Microglial activation and antioxidant responses induced by the Parkinson's disease protein α-synuclein
  publication-title: J. Neuroimmune Pharmacol.
– volume: 22
  start-page: 140
  year: 2014
  end-page: 148
  article-title: Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors
  publication-title: Mol. Ther.
– volume: 9
  start-page: 325
  year: 2010
  end-page: 330
  article-title: Involvement of immune response in the pathogenesis of amyotrophic lateral sclerosis: A therapeutic opportunity? CNS Neurol
  publication-title: Disord. Drug Targets
– volume: 127
  start-page: 481
  year: 2004
  end-page: 496
  article-title: Delivery of insulin-like growth factor-I to the brain and spinal cord along olfactory and trigeminal pathways following intranasal administration
  publication-title: Neuroscience
– volume: 5
  start-page: 283
  year: 2009
  end-page: 300
  article-title: Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury
  publication-title: Stem Cell Rev.
– volume: 17
  start-page: 83
  year: 2010
  end-page: 94
  article-title: AAV9-mediated erythropoietin gene delivery into the brain protects nigral dopaminergic neurons in a rat model of Parkinson's disease
  publication-title: Gene Ther.
– volume: 1254
  start-page: 120
  year: 2009
  end-page: 127
  article-title: Continuous intraventricular infusion of erythropoietin exerts neuroprotective/rescue effects upon Parkinson's disease model of rats with enhanced neurogenesis
  publication-title: Brain Res.
– volume: 251
  start-page: 205
  year: 1998
  end-page: 208
  article-title: Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies
  publication-title: Neurosci. Lett.
– volume: 84
  start-page: 907
  year: 2005
  end-page: 913
  article-title: Similar protective effects of BQ-123 and erythropoietin on survival of neural cells and generation of neurons upon hypoxic injury
  publication-title: Eur. J. Cell. Biol.
– ident: bibr58-096368914X684970
  doi: 10.3109/17435390903470093
– ident: bibr4-096368914X684970
  doi: 10.1038/mt.2013.199
– ident: bibr64-096368914X684970
  doi: 10.1016/S0304-3940(98)00504-7
– ident: bibr68-096368914X684970
  doi: 10.1038/nm1781
– ident: bibr31-096368914X684970
  doi: 10.1038/nn.2432
– start-page: 329
  volume-title: Research advances in Alzheimer's Disease and related disorders.
  year: 1995
  ident: bibr29-096368914X684970
– ident: bibr14-096368914X684970
  doi: 10.1097/01.tp.0000288185.09601.4d
– ident: bibr76-096368914X684970
  doi: 10.1038/gt.2009.113
– ident: bibr55-096368914X684970
  doi: 10.1172/JCI200215777
– ident: bibr65-096368914X684970
  doi: 10.1016/j.neulet.2012.01.078
– ident: bibr39-096368914X684970
  doi: 10.1016/S0002-9440(10)63072-6
– ident: bibr26-096368914X684970
  doi: 10.1073/pnas.0701267104
– ident: bibr42-096368914X684970
  doi: 10.1523/JNEUROSCI.4147-08.2008
– ident: bibr50-096368914X684970
  doi: 10.3233/JAD-2012-112198
– volume: 292
  start-page: 261
  year: 1989
  ident: bibr35-096368914X684970
  publication-title: Clin. Biol. Res.
– ident: bibr1-096368914X684970
  doi: 10.4103/2277-9175.100157
– ident: bibr16-096368914X684970
  doi: 10.1034/j.1399-6576.2002.460702.x
– volume: 12
  start-page: 873706
  year: 2012
  ident: bibr41-096368914X684970
  publication-title: Parkinsons Dis.
– ident: bibr53-096368914X684970
  doi: 10.1523/JNEUROSCI.11-11-03398.1991
– ident: bibr40-096368914X684970
  doi: 10.1016/j.clineuro.2005.11.007
– ident: bibr54-096368914X684970
  doi: 10.1038/nm790
– ident: bibr57-096368914X684970
  doi: 10.1016/0166-2236(93)90180-T
– ident: bibr10-096368914X684970
  doi: 10.2174/187152710791292657
– volume: 28
  start-page: 329
  year: 2010
  ident: bibr46-096368914X684970
  publication-title: Stem Cells
  doi: 10.1002/stem.277
– volume: 5
  start-page: 902
  year: 1992
  ident: bibr63-096368914X684970
  publication-title: Curr. Opin. Neurol. Neurosurg.
– start-page: 1
  volume-title: Nasal systemic drug delivery.
  year: 1989
  ident: bibr13-096368914X684970
– ident: bibr24-096368914X684970
  doi: 10.1038/sj.mp.4001907
– ident: bibr7-096368914X684970
  doi: 10.1007/s11481-012-9401-0
– ident: bibr44-096368914X684970
  doi: 10.1016/j.neulet.2008.05.090
– ident: bibr15-096368914X684970
  doi: 10.1634/stemcells.2006-0174
– ident: bibr38-096368914X684970
  doi: 10.1016/j.brainres.2008.11.094
– ident: bibr37-096368914X684970
  doi: 10.2217/rme.10.72
– ident: bibr51-096368914X684970
  doi: 10.1371/journal.pone.0077182
– ident: bibr23-096368914X684970
  doi: 10.1371/journal.pone.0051253
– ident: bibr70-096368914X684970
  doi: 10.1038/nm1239
– ident: bibr32-096368914X684970
  doi: 10.1186/scrt159
– ident: bibr52-096368914X684970
  doi: 10.1177/0269881113494939
– ident: bibr47-096368914X684970
  doi: 10.1111/j.1471-4159.2011.07534.x
– ident: bibr48-096368914X684970
  doi: 10.1093/brain/awh531
– ident: bibr19-096368914X684970
  doi: 10.1038/cdd.2009.95
– ident: bibr34-096368914X684970
  doi: 10.1186/1476-9255-9-12
– ident: bibr20-096368914X684970
  doi: 10.1089/rej.2010.1130
– ident: bibr61-096368914X684970
  doi: 10.1186/1741-7007-9-27
– ident: bibr12-096368914X684970
  doi: 10.1007/s11095-012-0915-1
– ident: bibr59-096368914X684970
  doi: 10.5966/sctm.2012-0045
– volume: 7
  start-page: 435
  year: 2012
  ident: bibr9-096368914X684970
  publication-title: Int. J. Nanomedicine
– ident: bibr5-096368914X684970
  doi: 10.1038/78682
– ident: bibr17-096368914X684970
  doi: 10.1016/j.ejcb.2004.12.030
– ident: bibr67-096368914X684970
  doi: 10.1016/j.neuroscience.2004.05.029
– ident: bibr3-096368914X684970
  doi: 10.1016/j.jneuroim.2009.02.015
– ident: bibr21-096368914X684970
  doi: 10.1016/j.ejcb.2009.02.001
– ident: bibr30-096368914X684970
  doi: 10.1159/000105473
– ident: bibr36-096368914X684970
  doi: 10.1161/STROKEAHA.107.483008
– ident: bibr43-096368914X684970
  doi: 10.1089/scd.2007.9993
– ident: bibr6-096368914X684970
  doi: 10.1006/exnr.1996.0141
– ident: bibr11-096368914X684970
  doi: 10.1186/1742-2094-6-17
– ident: bibr45-096368914X684970
  doi: 10.1074/jbc.M109.081125
– ident: bibr25-096368914X684970
  doi: 10.1038/nm1555
– ident: bibr66-096368914X684970
  doi: 10.1371/journal.pone.0019808
– ident: bibr77-096368914X684970
  doi: 10.3727/096368910X508762
– ident: bibr2-096368914X684970
  doi: 10.1097/nen.0b013e3180517b28
– volume: 3
  start-page: 268
  year: 1995
  ident: bibr8-096368914X684970
  publication-title: Clin. Neurosci.
– ident: bibr60-096368914X684970
  doi: 10.3233/JAD-131160
– volume: 68
  start-page: 419
  year: 2010
  ident: bibr71-096368914X684970
  publication-title: Pediatr. Res.
  doi: 10.1203/00006450-201011001-00834
– ident: bibr56-096368914X684970
  doi: 10.1161/STROKEAHA.109.575993
– ident: bibr72-096368914X684970
  doi: 10.1007/s12015-009-9081-1
– ident: bibr75-096368914X684970
  doi: 10.4172/2155-9899.1000142
– ident: bibr79-096368914X684970
  doi: 10.1007/s00401-008-0481-0
– ident: bibr74-096368914X684970
  doi: 10.3727/096368912X657251
– ident: bibr78-096368914X684970
  doi: 10.1161/STROKEAHA.111.000821
– ident: bibr33-096368914X684970
  doi: 10.1073/pnas.0805453106
– ident: bibr27-096368914X684970
  doi: 10.1016/0165-5728(91)90008-U
– ident: bibr28-096368914X684970
  doi: 10.1186/1742-2094-9-112
– ident: bibr49-096368914X684970
  doi: 10.1016/j.addr.2011.11.002
– ident: bibr22-096368914X684970
  doi: 10.1002/jps.21924
– ident: bibr69-096368914X684970
  doi: 10.1073/pnas.92.10.4621
– ident: bibr73-096368914X684970
  doi: 10.1371/journal.pone.0054296
– ident: bibr18-096368914X684970
  doi: 10.1016/j.ejcb.2005.07.001
– ident: bibr62-096368914X684970
  doi: 10.1016/j.neuron.2006.01.022
SSID ssj0007325
Score 2.4233096
Snippet In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and...
SourceID doaj
proquest
pubmed
crossref
sage
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123
SubjectTerms Administration, Intranasal
Alzheimer Disease - therapy
Animals
Biomarkers - metabolism
Bone Marrow Cells - cytology
Brain - pathology
Cell Differentiation
Cell Lineage
Disease Models, Animal
Female
Flow Cytometry
Green Fluorescent Proteins - metabolism
Macrophages - transplantation
Male
Mesenchymal Stem Cell Transplantation
Mesenchymal Stromal Cells - cytology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia - transplantation
Parkinson Disease - therapy
SummonAdditionalLinks – databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGJiR4QLDxkfEhI6EhJMLS2ImTJ9SuVAOpPMAm-hbZsb1OysfUpEjlv-E_5c5JKoYGQupDY11sJ_bFP5_v7kfIK251rCKG-bTT3OewYPgSYIHPtNGBVCzIXbjY_HN8es4_LaLFDqmGWJj-DTbv0K0KeuQ-1qjdaI1GFWew4B4D7mZxko74Ik54KoL367bMOmv3QKqBJXg8vS7xZDtHf8iNP0S33SJ7oYgjUOS98ezLt7Ptt1swR9OK9fvQgOgONm9s89pC5vL93wRSrzmIuTVrdp_c68EmHXez4wHZMdU-ORhXsNEuN_SIOvdPZ1ffJ7cnw7-7v-UoPCA_P6L5t5INVDQ1BbpxbGht6aSuDJ27FI7-FGS_G03nGMqULzclyH5tTUlPTFE0b0EMicKW0EO4kBUIohvgRXEpaVtTgKB0gkwVFH7zet1AvcjP02Az4-LH0lyWZvW6cXdilLYLWIPraXe49JCczz6cnZz6Pa-DnwP4an2NFCcSoIPlSEwBG6bECAlFmusQCbQEzBGljLRSMCm1AhiBcSzSyFQwrdgjslvBQz4hNFWhVTqIAThaLjRXoYpsGCXSsjxgKvXI8TBIWd4nPUfujSKDzQ8Oa_bnsHrkzfaOqy7hxz9kJzjuWzlM1e0K6tVF1mt-ZhPAqEJiPKbgoRQpFMSJdVk6hR0Jj7wcZk0Gqo3nNbIy8LKzEaJHARvO2COPu-m0bSpEtqckCD1yhPMrG_Tmr309_F_Bp-QOgELemZmekd12tTbPAXi16kWvLb8Aj4MkpA
  priority: 102
  providerName: SAGE Publications
Title Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease
URI https://journals.sagepub.com/doi/full/10.3727/096368914X684970
https://www.ncbi.nlm.nih.gov/pubmed/25302802
https://www.proquest.com/docview/1639972606
https://doaj.org/article/f84567a1037742a79f8468f047227f17
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9Gx2B7GFu7D69b0WB0DGbiWIplPyZNQzfIHraW5c1IltQUHGfUbiH9b_qf7k52Qjr28TLwg32cbdk6-34n6e4H8E44k-gBp3raWREKdBihQlgQcmNNpDSPCp8uNv2SnJyJz7PBbIvqi9aEteWB2xfXcym6eKkonQ2jOCUzFCSp80UOpev7PHL0eetgqvsHS-7pVhGf8zBJM9lOUHJ01j2SoagvZkkqMiIp3nJIvm7_78DmnYVe3vdMnsDjDjSyYdvYp3DPVruwN6wwYF6s2CHzyzj9-PguPBit9x5t1Rrcg9tPNIxbqRovNLYlLcdYsaVjo2Vl2dSXYgzHqHttDZtSSlIxXy1Q91tjF-zIlmX9EdWI8GuOLcQDVaEiLec7Ly8Ua5YMoSQbEeMEw226vKrxusSzU9NthuXN3F4s7OX72p9J2dY-8QyPx-0k0TM4mxyfHp2EHT9DWCCIakJDVCUKIYATRDCBgU9qpUKRESYmIiyJfa21VU5JrpTRCAcoH0VZlUluNH8OOxU-5EtgmY6dNlGCANAJaYSO9cDFg1Q5XkRcZwH01p2UF13xcuLQKHMMYqhb81-7NYAPmzN-tIU7_qI7on7f6FHJbS9AQ8w7Q8z_ZYgBvF1bTY6fKM27qMriy877hAIlBo5JAC9ac9rcKibWpjSKAzgk-8q7P0j9x7a--h9t3YeHCPxEO5T0Gnaayyv7BsFVow_g_nDy9fvpgf-efgLbfBkk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJwQ8INj4CJ9GQkNIZEtjN04e25Wqg2UP0Im-RXZsr5PSBDUZUvlv-E-5c9JqQwMh9aGxzo6T88U_23f3I-QttzpSA4b5tJPc5zBh-BJggc-00YFULMhduFh6Gk3P-Kf5YH6F6qt7g_UBulVBj9zHurNuBnPtIUBuFsVJn8-jmCcCVus7HCetHtkZTr58m20_w4I5xlWU96GCaM8ob2zj2pzkUvffhDev-Xq56WfygNzvcCMdtop-SG6ZcpfsDUtYMy_XdJ86T063Rb5Lbo82_-5dSTe4R34d405uKWtoaGwK9MhY08rSUVUamrpsjP4YZH8YTVOMSsoX6yXIfm3Mkh6Zoqg_gBhyfi2gh3AhSxBEj77z4kLSpqKAJukISSco_NLqsoZ2kWqnxtsMi58Lc7E0q3e1q4kB1y72DK7H7TnRI3I2-Tg7mvodRYOfA45qfI1sJRJQgOXIMQFrn9gICUWa6xC5sASoWykjrRRMSq0AEWBIijQyEUwr9pj0SnjIp4QmKrRKBxFgQMuF5ipUAxsOYmlZHjCVeORwo6Qs7_KXI41GkcE6BtWa_alWj7zf1vje5u74h-wI9b6Vw6zbrqBanWedEWc2BrgpJIZWCh5KkUBBFFuXcFPYvvDIm82oycBK8ehFlgZedtZHIChg7Rh55Ek7nLa3CpG4KQ5Cj-zj-Mo2JvDXvj77X8HX5M50lp5kJ8enn5-Tu4D1eLt79IL0mtWleQl4qlGvOsv5DRXZEg0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQJxA8INj4CJ9GQkNIZEtjN04e25VqAzoh2ETfLDu210lpMjUZUvlv-E-5c9KKoYGQ-tBYZ8fJ-XK_s--DkNfcmUQPGObTzvKQg8IIFcCCkBlrIqVZlPtwselxcnjKP8wGs843B2NhujdY76FbFczIf6xRui-MQwlnoG_3AXazJM36fJakPBNgsW9xDqqxR7aGky_fTjafYsF81VWkD6GDaM8prx3jil7y6fuvw5xX_L28CprcI3c77EiHLbPvkxu23CY7wxLs5sWK7lLvzem3ybfJzdH6353fUg7ukJ9HuJtbqhoGGtsCvTJWtHJ0VJWWTn1GxnAMtN-toVOMTMrnqwXQfm3sgh7YoqjfARnW_ZrDDOFClUCIXn1nxbmiTUUBUdIRFp6g8JtWlzWMi-V2arzNsPgxt-cLu3xT-54YdO3jz-B63J4VPSCnk_cnB4dhV6YhzAFLNaHBiiUKkIDjWGcC7J_UCgVNhpsY62EJYLnWVjklmFJGAyrAsBRlVSaY0ewh6ZXwkI8JzXTstIkSwIGOC8N1rAcuHqTKsTxiOgvI_ppJMu9ymGMpjUKCLYNslX-yNSBvNz0u2vwd_6AdId83dJh52zdUyzPZCbJ0KUBOoTC8UvBYiQwaktT5pJvC9UVAXq1XjQRJxeMXVVp42bKPYFCA_ZgE5FG7nDa3irF4UxrFAdnF9SXXYvDXuT75X8KX5Nbn8UR-Ojr--JTcBrjH2w2kZ6TXLC_tc4BUjX7RCc4vNEQTHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intranasal+delivery+of+bone+marrow-derived+mesenchymal+stem+cells%2C+macrophages%2C+and+microglia+to+the+brain+in+mouse+models+of+Alzheimer%27s+and+Parkinson%27s+disease&rft.jtitle=Cell+transplantation&rft.au=Danielyan%2C+Lusine&rft.au=Beer-Hammer%2C+Sandra&rft.au=Stolzing%2C+Alexandra&rft.au=Sch%C3%A4fer%2C+Richard&rft.date=2014&rft.eissn=1555-3892&rft.volume=23+Suppl+1&rft.spage=S123&rft_id=info:doi/10.3727%2F096368914X684970&rft_id=info%3Apmid%2F25302802&rft.externalDocID=25302802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0963-6897&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0963-6897&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0963-6897&client=summon