Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage

The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 45; no. 18; pp. 4873 - 4891
Main Authors Yin, Huajie, Tang, Zhiyong
Format Journal Article
LanguageEnglish
Published England 21.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis ( e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications. The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures.
AbstractList The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis (e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications.
The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis ( e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications.
The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis ( e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications. The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures.
Author Tang, Zhiyong
Yin, Huajie
AuthorAffiliation National Center for Nanoscience and Technology
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
CAS Center for Excellence in Nanoscience
AuthorAffiliation_xml – sequence: 0
  name: CAS Center for Excellence in Nanoscience
– sequence: 0
  name: National Center for Nanoscience and Technology
– sequence: 0
  name: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication
Author_xml – sequence: 1
  givenname: Huajie
  surname: Yin
  fullname: Yin, Huajie
– sequence: 2
  givenname: Zhiyong
  surname: Tang
  fullname: Tang, Zhiyong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27373467$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFDEYh4NU7LZ68a7kKOJovjYz05ss1RYKHqzn4d3kzTYyk6xJtjoX_3ZTtx8ggl7yJvA8v0N-7xE5CDEgIc85e8uZ7N8ZbTJjUkl8RBZcadaoVqkDsmCS6YYxLg7JUc5f6423Wjwhh6KVrVS6XZCfX8aSoFz5QMv32Fg_Ycg-BhjpCDMmtHTCUl9Xs03xh7eYTygEihOmjQ8buh2huJgmWg8K9hqCqY6B6szZ5zcUQyVnamK4xnQTXXVLc4kJNviUPHYwZnx2O4_J5YfTy9VZc_Hp4_nq_UVjlOKlMVZI51RnWG8EdM4gWNczywGc4sBNr8HZtbP9cqmk0WuOy7Vy3DLgrVDymLzax25T_LbDXIbJZ4PjCAHjLg9CdLrnbdf9G-WdWnZM8479B8p7Jfq27Sr68hbdrSe0wzb5CdI83BVRAbYHTIo5J3SD8QVK_a5ajx8HzoabroeVXn3-3fVpVV7_odyl_hV-sYdTNvfcw-LIX28dtdM
CitedBy_id crossref_primary_10_1002_smll_201804640
crossref_primary_10_1039_D0SE01908A
crossref_primary_10_1088_2053_1583_ab1165
crossref_primary_10_1002_adma_201801712
crossref_primary_10_1016_j_nanoen_2019_104296
crossref_primary_10_1016_j_rser_2022_113110
crossref_primary_10_1002_aenm_201902535
crossref_primary_10_1016_j_micromeso_2017_06_054
crossref_primary_10_1039_C8CS00396C
crossref_primary_10_1016_j_jpowsour_2023_232870
crossref_primary_10_1002_ejic_201800873
crossref_primary_10_1016_j_jallcom_2020_154921
crossref_primary_10_1002_asia_202000963
crossref_primary_10_1039_D2CC02633C
crossref_primary_10_1016_j_seppur_2022_121518
crossref_primary_10_1039_C7TA04001F
crossref_primary_10_1039_D2TA04062J
crossref_primary_10_1002_ente_202201203
crossref_primary_10_1016_j_electacta_2019_135554
crossref_primary_10_1016_j_jcis_2017_03_096
crossref_primary_10_1039_D4RA01120A
crossref_primary_10_1002_chem_201801912
crossref_primary_10_1016_j_ensm_2018_12_011
crossref_primary_10_1039_C8TA07508E
crossref_primary_10_1021_acsaem_9b01901
crossref_primary_10_1039_C7RA08744F
crossref_primary_10_1088_1361_6528_ad0f53
crossref_primary_10_1039_C6SC03356C
crossref_primary_10_1016_j_ensm_2021_03_001
crossref_primary_10_1016_j_cej_2020_124713
crossref_primary_10_1039_C7GC02543B
crossref_primary_10_1002_smll_201800291
crossref_primary_10_1039_C7SC04256F
crossref_primary_10_1002_adma_201807001
crossref_primary_10_1039_D0EE02113J
crossref_primary_10_1039_D0NR07157A
crossref_primary_10_1016_j_electacta_2019_135544
crossref_primary_10_1016_j_jallcom_2018_06_377
crossref_primary_10_1002_sstr_202200085
crossref_primary_10_1039_C6SC05532J
crossref_primary_10_1002_cctc_202301689
crossref_primary_10_1016_j_jelechem_2020_114955
crossref_primary_10_1016_j_jpowsour_2023_232649
crossref_primary_10_1021_acs_est_1c07811
crossref_primary_10_1002_aenm_202003159
crossref_primary_10_1007_s11581_019_02845_5
crossref_primary_10_1016_j_apcatb_2019_118240
crossref_primary_10_1016_j_cclet_2020_06_041
crossref_primary_10_1002_cssc_201701358
crossref_primary_10_1007_s10800_024_02214_9
crossref_primary_10_1016_j_ccr_2022_215008
crossref_primary_10_1039_D2QI00869F
crossref_primary_10_1007_s12274_023_6271_0
crossref_primary_10_1016_j_gee_2021_01_019
crossref_primary_10_1021_acs_langmuir_4c02876
crossref_primary_10_1016_j_jcat_2020_01_007
crossref_primary_10_1007_s40843_017_9154_2
crossref_primary_10_1039_D0CC06992B
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_1002_adma_201801171
crossref_primary_10_1016_j_apsusc_2017_11_164
crossref_primary_10_1016_j_cclet_2021_07_013
crossref_primary_10_1016_j_seppur_2021_118607
crossref_primary_10_1002_cey2_375
crossref_primary_10_1016_j_jare_2022_10_009
crossref_primary_10_1070_RCR4920
crossref_primary_10_1002_adma_201800400
crossref_primary_10_1002_asia_202300440
crossref_primary_10_1007_s12274_020_2955_x
crossref_primary_10_1246_cl_190437
crossref_primary_10_1016_j_ceramint_2019_07_068
crossref_primary_10_1002_EXP_20210052
crossref_primary_10_1016_j_seppur_2024_126505
crossref_primary_10_1039_D1TA03895H
crossref_primary_10_1002_chem_201700408
crossref_primary_10_1016_j_colsurfa_2022_128499
crossref_primary_10_1016_j_pmatsci_2020_100637
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1021_acsomega_8b01414
crossref_primary_10_1016_j_inoche_2024_113574
crossref_primary_10_1515_revic_2024_0107
crossref_primary_10_1021_acs_jpcc_3c00277
crossref_primary_10_1016_j_apcatb_2017_02_075
crossref_primary_10_1039_D2NR02568J
crossref_primary_10_1002_aenm_201901312
crossref_primary_10_1007_s11705_020_1947_4
crossref_primary_10_1016_j_jcis_2021_08_065
crossref_primary_10_1016_j_jiec_2019_11_002
crossref_primary_10_1021_acscatal_8b00820
crossref_primary_10_1002_smll_201800759
crossref_primary_10_1016_j_jphotochem_2024_116042
crossref_primary_10_1039_C8SC01710G
crossref_primary_10_1039_C7TA10665C
crossref_primary_10_1002_smll_201703257
crossref_primary_10_1016_j_jallcom_2021_160603
crossref_primary_10_1016_j_jallcom_2017_08_005
crossref_primary_10_1039_C7QI00167C
crossref_primary_10_1039_C8EE00611C
crossref_primary_10_1002_advs_201901837
crossref_primary_10_1039_D1RA04279C
crossref_primary_10_1021_acsomega_0c05619
crossref_primary_10_1039_C8TA03159B
crossref_primary_10_20964_2021_09_15
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1039_C9RA07061C
crossref_primary_10_1007_s12274_021_4068_6
crossref_primary_10_1007_s00128_020_02868_z
crossref_primary_10_1002_ange_201703871
crossref_primary_10_1021_acs_inorgchem_4c03201
crossref_primary_10_1039_C7CS00318H
crossref_primary_10_1016_j_mtchem_2019_100239
crossref_primary_10_1016_j_mattod_2021_08_008
crossref_primary_10_1002_admi_201800688
crossref_primary_10_1002_aenm_201901130
crossref_primary_10_1039_C6TA10609A
crossref_primary_10_1557_jmr_2019_207
crossref_primary_10_1002_smtd_202100834
crossref_primary_10_1002_smll_201700806
crossref_primary_10_1002_aenm_201702704
crossref_primary_10_1016_j_apcatb_2020_118884
crossref_primary_10_1016_j_cej_2017_08_024
crossref_primary_10_1016_j_ijhydene_2024_11_475
crossref_primary_10_1039_C7CY00274B
crossref_primary_10_1016_j_nantod_2018_08_006
crossref_primary_10_2139_ssrn_3977364
crossref_primary_10_1002_aenm_201700536
crossref_primary_10_1088_1361_6528_acc743
crossref_primary_10_1016_j_ijhydene_2024_09_138
crossref_primary_10_1002_admi_202102077
crossref_primary_10_1016_j_apmt_2019_100517
crossref_primary_10_1039_C7CS00864C
crossref_primary_10_1002_chin_201644192
crossref_primary_10_1039_C7NR04752E
crossref_primary_10_1016_j_apsusc_2018_09_180
crossref_primary_10_1016_j_mtener_2019_01_006
crossref_primary_10_1039_C9NR10565D
crossref_primary_10_1002_chem_202000294
crossref_primary_10_1016_j_jma_2023_08_021
crossref_primary_10_1038_ncomms14580
crossref_primary_10_1016_j_cplett_2025_141931
crossref_primary_10_3390_chemosensors5030021
crossref_primary_10_1002_adfm_202100367
crossref_primary_10_1021_acsaem_8b00691
crossref_primary_10_1038_s41467_023_39791_w
crossref_primary_10_1002_batt_201800093
crossref_primary_10_1007_s12274_023_6388_1
crossref_primary_10_1016_j_jallcom_2022_165391
crossref_primary_10_1016_j_ijhydene_2024_09_104
crossref_primary_10_1016_j_mtener_2023_101482
crossref_primary_10_1016_j_cclet_2021_04_001
crossref_primary_10_1016_j_colsurfa_2024_134766
crossref_primary_10_1088_1361_6528_ab0642
crossref_primary_10_1002_admi_202102161
crossref_primary_10_1016_j_matt_2020_03_012
crossref_primary_10_1016_j_apsusc_2022_153612
crossref_primary_10_1039_C8NJ00769A
crossref_primary_10_1002_chem_201803093
crossref_primary_10_1016_j_apsusc_2022_155912
crossref_primary_10_1021_acsaem_8b02067
crossref_primary_10_1039_C6CS00937A
crossref_primary_10_1039_D1CC01640G
crossref_primary_10_1016_j_cej_2020_125744
crossref_primary_10_1002_smll_202300509
crossref_primary_10_1021_acsaem_0c00159
crossref_primary_10_1016_j_molliq_2024_125525
crossref_primary_10_1016_j_nanoen_2018_03_080
crossref_primary_10_1016_j_matchemphys_2024_128977
crossref_primary_10_1002_adfm_201909832
crossref_primary_10_1016_j_jscs_2020_01_006
crossref_primary_10_1002_sstr_202300036
crossref_primary_10_1016_j_nanoen_2017_05_044
crossref_primary_10_1021_acs_nanolett_3c00067
crossref_primary_10_1002_smtd_201700156
crossref_primary_10_1039_C8NH00112J
crossref_primary_10_1021_acsami_1c06596
crossref_primary_10_1021_acsami_8b09247
crossref_primary_10_1021_acscatal_3c03933
crossref_primary_10_1039_D1CE00277E
crossref_primary_10_1007_s10876_022_02237_2
crossref_primary_10_1021_acsanm_9b00441
crossref_primary_10_1016_j_jwpe_2022_103340
crossref_primary_10_1002_adma_201703455
crossref_primary_10_1002_aenm_201803060
crossref_primary_10_1002_adma_201704548
crossref_primary_10_1016_j_electacta_2019_04_046
crossref_primary_10_1002_adfm_201801983
crossref_primary_10_1016_j_jcis_2017_12_054
crossref_primary_10_1021_jacs_4c04292
crossref_primary_10_1039_C7TA00075H
crossref_primary_10_1039_D2CP02148J
crossref_primary_10_1039_D0TA09538A
crossref_primary_10_1007_s11426_020_9809_x
crossref_primary_10_1007_s10854_021_05458_9
crossref_primary_10_1016_j_jconrel_2018_12_012
crossref_primary_10_1002_adma_202303072
crossref_primary_10_1039_C7TA10351D
crossref_primary_10_1039_D0NR04458J
crossref_primary_10_1016_j_checat_2022_02_015
crossref_primary_10_1039_D0SE00466A
crossref_primary_10_1016_j_nanoen_2023_108681
crossref_primary_10_1002_smll_202207236
crossref_primary_10_1021_acsnano_7b08691
crossref_primary_10_1002_slct_201901709
crossref_primary_10_1016_j_electacta_2021_138040
crossref_primary_10_1039_C8QI00134K
crossref_primary_10_1002_eom2_12266
crossref_primary_10_1021_acsaem_4c00246
crossref_primary_10_1088_1361_6528_ad0c73
crossref_primary_10_1039_D0CC07214A
crossref_primary_10_1002_adma_201700286
crossref_primary_10_1002_aenm_201800584
crossref_primary_10_1021_acsami_4c07344
crossref_primary_10_1002_anie_201703871
crossref_primary_10_34133_2019_4029516
crossref_primary_10_1039_C7SC03018E
crossref_primary_10_1039_D3DT04379G
crossref_primary_10_1016_j_mtener_2022_101036
crossref_primary_10_1021_acs_chemmater_0c04527
crossref_primary_10_1039_C7SE00344G
crossref_primary_10_1016_j_cclet_2019_11_001
crossref_primary_10_1002_asia_202100506
crossref_primary_10_1021_acsami_1c06771
crossref_primary_10_1038_s41467_022_28918_0
crossref_primary_10_1016_j_matpr_2022_10_244
crossref_primary_10_1039_D1CS00186H
crossref_primary_10_1002_adma_201605448
crossref_primary_10_1002_cctc_201900697
crossref_primary_10_1016_j_mcat_2023_113287
crossref_primary_10_1021_acs_chemrev_7b00689
crossref_primary_10_1038_s42004_018_0088_x
crossref_primary_10_1002_eom2_12254
crossref_primary_10_1002_adma_201704561
crossref_primary_10_1002_tcr_202000052
crossref_primary_10_1016_j_isci_2024_109841
crossref_primary_10_1016_j_mtcomm_2021_102851
crossref_primary_10_1039_C9TA01438A
crossref_primary_10_1039_D0TA05866A
crossref_primary_10_1002_celc_202400101
crossref_primary_10_1016_j_cej_2024_151241
crossref_primary_10_1002_elsa_202100052
crossref_primary_10_1016_j_electacta_2017_12_175
crossref_primary_10_1039_D1RA03289E
crossref_primary_10_1016_j_nanoen_2021_105943
crossref_primary_10_1016_j_jmrt_2023_04_002
crossref_primary_10_1016_j_jlumin_2018_06_039
crossref_primary_10_1016_j_bioactmat_2021_01_002
crossref_primary_10_1016_S1872_2067_21_63987_6
crossref_primary_10_3390_catal7090260
crossref_primary_10_1039_C7QI00780A
crossref_primary_10_1039_C7TA06626K
crossref_primary_10_12677_japc_2024_132028
crossref_primary_10_1002_adfm_202214307
crossref_primary_10_1021_acs_cgd_2c00028
crossref_primary_10_1039_C9NR05919A
crossref_primary_10_1039_D0SC06601J
crossref_primary_10_1021_jacs_0c10285
crossref_primary_10_1002_smll_201800474
crossref_primary_10_1002_smll_201802895
crossref_primary_10_1016_j_apcatb_2019_03_083
crossref_primary_10_1016_j_jcis_2020_12_045
crossref_primary_10_1016_j_jpowsour_2017_11_028
crossref_primary_10_1016_j_nantod_2019_02_006
crossref_primary_10_1039_D2SC00308B
crossref_primary_10_1039_C8QI01196F
crossref_primary_10_1016_j_ensm_2022_03_005
crossref_primary_10_1016_j_mtener_2018_09_003
crossref_primary_10_1016_j_ccr_2022_214666
crossref_primary_10_1016_j_jcis_2022_10_139
crossref_primary_10_1016_j_mtener_2018_09_004
crossref_primary_10_1039_C9NA00535H
crossref_primary_10_1016_j_jechem_2021_04_050
crossref_primary_10_1016_j_cclet_2024_109686
crossref_primary_10_3390_molecules26082349
crossref_primary_10_1039_D4TA02468K
crossref_primary_10_1002_cssc_201901424
crossref_primary_10_1002_smll_201901024
crossref_primary_10_1039_C9TA04972J
crossref_primary_10_1016_j_nanoen_2020_104689
crossref_primary_10_1021_jacs_7b06808
crossref_primary_10_1073_pnas_2009180117
crossref_primary_10_1007_s11426_024_2262_8
crossref_primary_10_1016_j_apcatb_2023_123187
crossref_primary_10_1016_j_cej_2021_131953
crossref_primary_10_1021_acsaem_8b01613
crossref_primary_10_1016_j_mtchem_2021_100513
crossref_primary_10_1039_D0CY01644F
crossref_primary_10_1016_j_apcatb_2018_01_069
crossref_primary_10_1016_j_est_2020_102030
crossref_primary_10_1007_s40820_018_0236_y
crossref_primary_10_1016_j_cej_2025_159591
crossref_primary_10_7498_aps_73_20231979
crossref_primary_10_1021_acscatal_7b00007
crossref_primary_10_1039_D0NR00005A
crossref_primary_10_1016_j_mtener_2018_05_014
crossref_primary_10_1016_j_ijhydene_2019_04_258
crossref_primary_10_1016_j_jechem_2023_04_049
crossref_primary_10_1016_j_mtener_2018_05_015
crossref_primary_10_1002_chem_201804434
crossref_primary_10_1039_D2CC02424A
crossref_primary_10_1016_j_apcatb_2020_119563
crossref_primary_10_1149_1945_7111_ab6c54
crossref_primary_10_1016_j_apsusc_2019_144999
crossref_primary_10_1002_cctc_202101242
crossref_primary_10_1039_C7SC00069C
crossref_primary_10_1007_s40242_021_1358_1
crossref_primary_10_1002_cctc_201800023
crossref_primary_10_1016_j_jechem_2021_03_002
crossref_primary_10_1039_C7CS00358G
crossref_primary_10_1039_D1NJ03094A
crossref_primary_10_1016_j_cis_2023_102865
crossref_primary_10_1016_j_ensm_2019_03_028
crossref_primary_10_1016_j_jhazmat_2022_130300
crossref_primary_10_1007_s10904_020_01585_8
crossref_primary_10_1016_j_snb_2018_02_187
crossref_primary_10_1039_C9SE01312A
crossref_primary_10_1002_adfm_202306291
crossref_primary_10_1039_D0NR08415H
crossref_primary_10_1039_C7RA01202K
crossref_primary_10_1016_j_est_2025_116212
crossref_primary_10_1016_j_energy_2018_09_195
crossref_primary_10_1016_j_cclet_2021_10_075
crossref_primary_10_1016_j_ijhydene_2022_06_306
crossref_primary_10_1016_j_matchemphys_2022_126812
crossref_primary_10_1002_slct_202202059
crossref_primary_10_1016_j_mcat_2017_12_029
crossref_primary_10_1039_D3QM00566F
crossref_primary_10_1038_s44160_023_00281_y
crossref_primary_10_1021_acssuschemeng_8b04000
crossref_primary_10_1016_j_mtnano_2019_100038
crossref_primary_10_1016_S1872_2067_19_63458_3
crossref_primary_10_1016_j_colsurfa_2020_126100
crossref_primary_10_1021_acs_nanolett_0c00717
crossref_primary_10_1039_C7TA00816C
crossref_primary_10_3390_nano13081338
crossref_primary_10_1021_acssuschemeng_8b01093
crossref_primary_10_1039_C8CS00268A
crossref_primary_10_1016_j_chphma_2023_07_001
crossref_primary_10_1002_adfm_202002528
crossref_primary_10_1002_adma_201606805
crossref_primary_10_1021_acsami_7b04667
crossref_primary_10_1002_celc_201700439
crossref_primary_10_1021_acs_chemrev_3c00402
crossref_primary_10_1002_ece2_16
crossref_primary_10_1016_j_jhazmat_2021_127988
crossref_primary_10_1016_j_scib_2017_05_019
crossref_primary_10_1039_D0SC04196C
crossref_primary_10_1016_j_nanoen_2018_10_004
crossref_primary_10_3390_catal9060558
crossref_primary_10_1016_j_joule_2018_02_018
crossref_primary_10_1039_C7TA11078B
crossref_primary_10_1515_revce_2017_0053
crossref_primary_10_1007_s12274_022_5075_y
crossref_primary_10_1039_C9NR07277B
crossref_primary_10_1016_j_electacta_2023_142412
crossref_primary_10_1016_j_seppur_2021_118369
crossref_primary_10_1002_ejic_202100054
crossref_primary_10_1103_PhysRevMaterials_3_095402
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1039_D0QM00729C
crossref_primary_10_1039_C9TA12297D
crossref_primary_10_1007_s41918_020_00079_y
crossref_primary_10_1016_j_jpowsour_2019_227659
crossref_primary_10_1039_C9NR02304F
crossref_primary_10_1021_acsanm_4c04729
crossref_primary_10_1016_j_jcis_2021_04_029
crossref_primary_10_1002_celc_201801859
crossref_primary_10_1016_j_jcis_2022_03_095
crossref_primary_10_1039_D0NA00912A
crossref_primary_10_3390_catal13040698
crossref_primary_10_1016_j_materresbull_2023_112408
crossref_primary_10_1016_j_colsurfa_2021_126896
crossref_primary_10_1039_C8QI00172C
crossref_primary_10_1007_s40843_022_2316_y
crossref_primary_10_1007_s10853_018_2961_5
crossref_primary_10_1016_j_molliq_2024_124033
crossref_primary_10_1002_smll_202312215
crossref_primary_10_1016_j_ccr_2022_214738
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_progsolidstchem_2020_100294
crossref_primary_10_1021_acscatal_7b03190
crossref_primary_10_1007_s12274_017_1516_4
crossref_primary_10_1016_j_cej_2017_05_101
crossref_primary_10_1002_smll_202300597
crossref_primary_10_1039_D1QM00059D
Cites_doi 10.1002/adma.201001722
10.1021/cr200434v
10.1002/chem.201403991
10.1002/anie.201402822
10.1021/ja3089923
10.1021/ja0584471
10.1021/cm049579g
10.1021/cm902787u
10.1021/acs.accounts.5b00033
10.1039/a908251d
10.1016/j.clay.2011.02.007
10.1021/ja0693035
10.1039/B514368C
10.1002/adma.201503730
10.1021/cm0510460
10.1002/anie.201201847
10.1021/ar500164g
10.1021/nn500386u
10.1039/c0cs00159g
10.1038/nature12385
10.1038/ncomms5477
10.1021/cm047813x
10.1039/b416913a
10.1021/ja0719172
10.1038/nmat3313
10.1021/ja905467v
10.1021/nn5069836
10.1021/la062345m
10.1002/anie.200703941
10.1002/anie.201502836
10.1002/aenm.201501974
10.1021/cm048842a
10.1002/anie.201103713
10.1021/ja203388r
10.1021/ja5096733
10.1002/anie.201407836
10.1021/ja804397n
10.1002/adma.201400054
10.1126/science.1252553
10.1021/ja4027715
10.1201/9780203021354
10.1126/science.1211934
10.1039/c0jm01447h
10.1038/ncomms7430
10.1039/c0cc05420h
10.1039/b511184f
10.1038/nchem.898
10.1039/b605422f
10.1038/srep05787
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/c6cs00343e
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
Materials Research Database
AGRICOLA
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1460-4744
EndPage 4891
ExternalDocumentID 27373467
10_1039_C6CS00343E
c6cs00343e
Genre Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29B
2WC
4.4
53G
5GY
6J9
705
70~
7~J
85S
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
COF
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
~02
0UZ
186
1TJ
3EH
6TJ
71~
8WZ
9M8
A6W
AAUTI
AAYXX
ABDPE
ACHDF
ACKIV
ACPVT
ACRPL
ADNMO
ADXHL
AETEA
AFFDN
AFFNX
AFRZK
AGQPQ
AHGXI
AI.
AIDUJ
AKMSF
ALSGL
ALUYA
ANLMG
AQHUZ
ASPBG
AVWKF
BBWZM
CAG
CITATION
EEHRC
FA8
FEDTE
HF~
HVGLF
H~9
IDY
J3G
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
RRXOS
SC5
UQL
VH1
WHG
XJT
XOL
ZCG
ZKB
NPM
7X8
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c441t-cd23ff48c09c2a8fceadf90d1aaf41a1c96afdbfd95543c6b1e5b4f1d0a17243
ISSN 0306-0012
1460-4744
IngestDate Fri Jul 11 15:46:35 EDT 2025
Fri Jul 11 00:10:04 EDT 2025
Thu Jul 10 16:44:00 EDT 2025
Thu Apr 03 07:09:13 EDT 2025
Tue Jul 01 04:18:38 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Dec 17 21:00:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-cd23ff48c09c2a8fceadf90d1aaf41a1c96afdbfd95543c6b1e5b4f1d0a17243
Notes Huajie Yin obtained his PhD degree from the National Center for Nanoscience and Technology and Tsinghua University in 2015 under the direction of Prof. Zhiyong Tang. He is now working as a postdoctoral research fellow at Griffith University. His main research interests are focused on two-dimensional materials and related applications in electrocatalysis, energy storage and conversion.
Dr Zhiyong Tang obtained his PhD degree from the Chinese Academy of Sciences in 2000 under the direction of Prof. Erkang Wang. After finishing his postdoctoral training at both the Swiss Federal Institute of Technology, Zurich, and the University of Michigan, he returned to China and took a position as a professor at the National Center for Nanoscience and Technology at the end of 2006. His main research interests are focused on the preparation, assembly and application of functional inorganic nanomaterials in the field of energy.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27373467
PQID 1819429778
PQPubID 23479
PageCount 19
ParticipantIDs pubmed_primary_27373467
proquest_miscellaneous_2286917884
proquest_miscellaneous_1819429778
crossref_citationtrail_10_1039_C6CS00343E
proquest_miscellaneous_1845806180
crossref_primary_10_1039_C6CS00343E
rsc_primary_c6cs00343e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-21
PublicationDateYYYYMMDD 2016-09-21
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2016
References Ma (C6CS00343E-(cit41)/*[position()=1]) 2015; 9
Gong (C6CS00343E-(cit47)/*[position()=1]) 2013; 135
Liang (C6CS00343E-(cit24)/*[position()=1]) 2010; 22
Auerbach (C6CS00343E-(cit1)/*[position()=1]) 2004
Long (C6CS00343E-(cit48)/*[position()=1]) 2014; 53
Liang (C6CS00343E-(cit46)/*[position()=1]) 2013; 135
Allada (C6CS00343E-(cit25)/*[position()=1]) 2005; 17
Huang (C6CS00343E-(cit43)/*[position()=1]) 2015; 54
Song (C6CS00343E-(cit45)/*[position()=1]) 2014; 136
Hibino (C6CS00343E-(cit12)/*[position()=1]) 2004; 16
Iyi (C6CS00343E-(cit26)/*[position()=1]) 2004; 16
Song (C6CS00343E-(cit44)/*[position()=1]) 2014; 5
Zhao (C6CS00343E-(cit49)/*[position()=1]) 2015; 27
Sun (C6CS00343E-(cit10)/*[position()=1]) 2015; 48
Wang (C6CS00343E-(cit42)/*[position()=1]) 2014; 8
Rogez (C6CS00343E-(cit4)/*[position()=1]) 2011; 40
Abellán (C6CS00343E-(cit23)/*[position()=1]) 2010; 20
Adachi-Pagano (C6CS00343E-(cit11)/*[position()=1]) 2000
Ida (C6CS00343E-(cit21)/*[position()=1]) 2008; 130
Li (C6CS00343E-(cit16)/*[position()=1]) 2005; 17
Liu (C6CS00343E-(cit19)/*[position()=1]) 2007; 23
Ma (C6CS00343E-(cit22)/*[position()=1]) 2008; 47
Zhao (C6CS00343E-(cit7)/*[position()=1]) 2015; 6
Ma (C6CS00343E-(cit40)/*[position()=1]) 2014; 26
Hu (C6CS00343E-(cit29)/*[position()=1]) 2006
Sim (C6CS00343E-(cit30)/*[position()=1]) 2014; 20
Zhu (C6CS00343E-(cit32)/*[position()=1]) 2014; 4
Liu (C6CS00343E-(cit18)/*[position()=1]) 2006; 128
Ma (C6CS00343E-(cit3)/*[position()=1]) 2006; 16
Wang (C6CS00343E-(cit35)/*[position()=1]) 2011; 50
Wang (C6CS00343E-(cit5)/*[position()=1]) 2012; 112
Silva (C6CS00343E-(cit27)/*[position()=1]) 2009; 131
Subbaraman (C6CS00343E-(cit34)/*[position()=1]) 2012; 11
Wang (C6CS00343E-(cit50)/*[position()=1]) 2011; 47
Bravo-Suárez (C6CS00343E-(cit2)/*[position()=1]) 2004; 27
Abellan (C6CS00343E-(cit6)/*[position()=1]) 2015; 48
Subbaraman (C6CS00343E-(cit33)/*[position()=1]) 2011; 334
Ma (C6CS00343E-(cit20)/*[position()=1]) 2007; 129
Gunjakar (C6CS00343E-(cit39)/*[position()=1]) 2011; 133
Coronado (C6CS00343E-(cit14)/*[position()=1]) 2010; 2
Ma (C6CS00343E-(cit8)/*[position()=1]) 2010; 22
Gao (C6CS00343E-(cit31)/*[position()=1]) 2014; 53
Li (C6CS00343E-(cit38)/*[position()=1]) 2007; 129
Yin (C6CS00343E-(cit37)/*[position()=1]) 2015; 6
Chen (C6CS00343E-(cit36)/*[position()=1]) 2014; 344
Geim (C6CS00343E-(cit9)/*[position()=1]) 2013; 499
Teramura (C6CS00343E-(cit28)/*[position()=1]) 2012; 51
Wu (C6CS00343E-(cit17)/*[position()=1]) 2005; 15
Hibino (C6CS00343E-(cit15)/*[position()=1]) 2005; 15
Xu (C6CS00343E-(cit13)/*[position()=1]) 2011; 53
References_xml – issn: 2004
  publication-title: Handbook of Layered Materials
  doi: Auerbach Carrado Dutta
– volume: 22
  start-page: 5082
  year: 2010
  ident: C6CS00343E-(cit8)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001722
– volume: 112
  start-page: 4124
  year: 2012
  ident: C6CS00343E-(cit5)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200434v
– volume: 20
  start-page: 14880
  year: 2014
  ident: C6CS00343E-(cit30)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201403991
– volume: 53
  start-page: 7584
  year: 2014
  ident: C6CS00343E-(cit48)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402822
– volume: 135
  start-page: 2013
  year: 2013
  ident: C6CS00343E-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3089923
– volume: 128
  start-page: 4872
  year: 2006
  ident: C6CS00343E-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0584471
– volume: 16
  start-page: 2926
  year: 2004
  ident: C6CS00343E-(cit26)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm049579g
– volume: 27
  start-page: 601
  year: 2004
  ident: C6CS00343E-(cit2)/*[position()=1]
  publication-title: Quim. Nova
– volume: 22
  start-page: 371
  year: 2010
  ident: C6CS00343E-(cit24)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm902787u
– volume: 48
  start-page: 1601
  year: 2015
  ident: C6CS00343E-(cit6)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00033
– start-page: 91
  year: 2000
  ident: C6CS00343E-(cit11)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/a908251d
– volume: 53
  start-page: 139
  year: 2011
  ident: C6CS00343E-(cit13)/*[position()=1]
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2011.02.007
– volume: 129
  start-page: 5257
  year: 2007
  ident: C6CS00343E-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0693035
– start-page: 287
  year: 2006
  ident: C6CS00343E-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/B514368C
– volume: 27
  start-page: 7824
  year: 2015
  ident: C6CS00343E-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503730
– volume: 17
  start-page: 4386
  year: 2005
  ident: C6CS00343E-(cit16)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0510460
– volume: 51
  start-page: 8008
  year: 2012
  ident: C6CS00343E-(cit28)/*[position()=1]
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201201847
– volume: 48
  start-page: 3
  year: 2015
  ident: C6CS00343E-(cit10)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500164g
– volume: 8
  start-page: 3724
  year: 2014
  ident: C6CS00343E-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn500386u
– volume: 40
  start-page: 1031
  year: 2011
  ident: C6CS00343E-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00159g
– volume: 499
  start-page: 419
  year: 2013
  ident: C6CS00343E-(cit9)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 5
  start-page: 4477
  year: 2014
  ident: C6CS00343E-(cit44)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 17
  start-page: 2455
  year: 2005
  ident: C6CS00343E-(cit25)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm047813x
– volume: 15
  start-page: 653
  year: 2005
  ident: C6CS00343E-(cit15)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b416913a
– volume: 129
  start-page: 8000
  year: 2007
  ident: C6CS00343E-(cit38)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0719172
– volume: 11
  start-page: 550
  year: 2012
  ident: C6CS00343E-(cit34)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3313
– volume: 131
  start-page: 13833
  year: 2009
  ident: C6CS00343E-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja905467v
– volume: 9
  start-page: 1977
  year: 2015
  ident: C6CS00343E-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5069836
– volume: 23
  start-page: 861
  year: 2007
  ident: C6CS00343E-(cit19)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la062345m
– volume: 47
  start-page: 86
  year: 2008
  ident: C6CS00343E-(cit22)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200703941
– volume: 54
  start-page: 8722
  year: 2015
  ident: C6CS00343E-(cit43)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502836
– volume: 6
  start-page: 1501974
  year: 2015
  ident: C6CS00343E-(cit7)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501974
– volume: 16
  start-page: 5482
  year: 2004
  ident: C6CS00343E-(cit12)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm048842a
– volume: 50
  start-page: 9171
  year: 2011
  ident: C6CS00343E-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103713
– volume: 133
  start-page: 14998
  year: 2011
  ident: C6CS00343E-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203388r
– volume: 136
  start-page: 16481
  year: 2014
  ident: C6CS00343E-(cit45)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 53
  start-page: 12789
  year: 2014
  ident: C6CS00343E-(cit31)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201407836
– volume: 130
  start-page: 14038
  year: 2008
  ident: C6CS00343E-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804397n
– volume: 26
  start-page: 4173
  year: 2014
  ident: C6CS00343E-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400054
– volume: 344
  start-page: 495
  year: 2014
  ident: C6CS00343E-(cit36)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1252553
– volume: 135
  start-page: 8452
  year: 2013
  ident: C6CS00343E-(cit47)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume-title: Handbook of Layered Materials
  year: 2004
  ident: C6CS00343E-(cit1)/*[position()=1]
  doi: 10.1201/9780203021354
– volume: 334
  start-page: 1256
  year: 2011
  ident: C6CS00343E-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 20
  start-page: 7451
  year: 2010
  ident: C6CS00343E-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm01447h
– volume: 6
  start-page: 6430
  year: 2015
  ident: C6CS00343E-(cit37)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7430
– volume: 47
  start-page: 3556
  year: 2011
  ident: C6CS00343E-(cit50)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc05420h
– volume: 15
  start-page: 4695
  year: 2005
  ident: C6CS00343E-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b511184f
– volume: 2
  start-page: 1031
  year: 2010
  ident: C6CS00343E-(cit14)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.898
– volume: 16
  start-page: 3809
  year: 2006
  ident: C6CS00343E-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b605422f
– volume: 4
  start-page: 5787
  year: 2014
  ident: C6CS00343E-(cit32)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep05787
SSID ssj0011762
Score 2.6426082
SecondaryResourceType review_article
Snippet The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4873
SubjectTerms anisotropy
Catalysis
Categories
energy conversion
Graphene
hydrogen
hydroxides
Infants
Metal hydroxides
metal ions
Nanomaterials
Nanostructure
oxygen production
photocatalysis
synergism
Two dimensional
Title Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage
URI https://www.ncbi.nlm.nih.gov/pubmed/27373467
https://www.proquest.com/docview/1819429778
https://www.proquest.com/docview/1845806180
https://www.proquest.com/docview/2286917884
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4mtQvmQEFzQ8kthJHG5T1alMZRxIpYpL5MSJGKrSqmu1jQN_O8-f6dhAg0tUua6V5v388rP93u8h9AY4ASyOZUw45ZIwRiURoi5JUMeCS5iajKvk5E_HyXjKjmbxrNc72opa2qzL_erHtXkl_2NVaAO7qizZf7CsHxQa4DPYF65gYbjeyMbTudKW_aZCFc8WRCqhfiOysTcXF6oIpyoQrZIdL-RqcX4iTfwbzGiVFayrEy3nYq1oqwmmdPEAek9HSZUoA9QmO1CHp-u9NX3eoIIqxeU4Iq894CJBrdKpdyxGrmC8Ed9PPJxyu1_9dXv7IUxUrITJabYekyUBYakRcXQu1ShEOujwveU-rIsoYdxU5rLOUrVtvXjdt1ecekCVJmqVVKdKTYfW3avLHdcffy4Op5NJkY9m-S20E8GSIeqjnYNR_nHiz5TCVJeX9TfsxGpp9r4b-zI9ubLmAAaycpVhNAPJ76G7dumADwwO7qNe3T5At4euYt9D9NPjAf-GB2zxgDUecIeHD1i02KEBOzRguGCHBuzR8A4bLOAOC_BziS0WHqH8cJQPx8TW1yAVkOA1qWREmwYmY5BVkeBNBV6lyQIZCtGwUIRVlohGlo3MgHPSKinDOi5ZE8pAAO1ldBf120VbP0E4aCIB1FNmEhhuGQLrVAnXKXDrkpZRmQ7QW_dUi8pqz6sSKPNCx0DQrBgmwy_aAqMBeu37Lo3iyrW9XjnjFPCU1SmXaOvF5rQAypoByUpT_rc-LObAZHnw5z5RxJMM_gpnA_TYWN_fD3D-lALFGKBdgINv7mD09AbDPkN3ugn1HPXXq039AhjuunxpofsL5VGr_g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+two-dimensional+layered+metal+hydroxides%3A+an+emerging+platform+for+advanced+catalysis%2C+energy+conversion+and+storage&rft.jtitle=Chemical+Society+reviews&rft.au=Yin%2C+Huajie&rft.au=Tang%2C+Z&rft.date=2016-09-21&rft.issn=1460-4744&rft.volume=45&rft.issue=18+p.4873-4891&rft.spage=4873&rft.epage=4891&rft_id=info:doi/10.1039%2Fc6cs00343e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon