Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage
The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been...
Saved in:
Published in | Chemical Society reviews Vol. 45; no. 18; pp. 4873 - 4891 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
21.09.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis (
e.g.
the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications.
The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. |
---|---|
AbstractList | The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis (e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications. The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis ( e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications. The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered metal hydroxides (LMHs) are increasingly being recognized as an important category in 2D nanomaterials, and the corresponding research has been experiencing a significant renaissance. Due to the flexible tunability of metal ions, their naturally positively charged plane and 2D anisotropy with nanometre thickness, ultrathin LMHs and their derived hybrids have shown exciting perspectives in many fields, such as catalysis, and energy storage and conversion. As for practical application, ultrathin 2D LMHs have exhibited high performances in electrocatalysis ( e.g. the hydrogen and oxygen evolution reactions), photocatalysis and supercapacitors. In particular, hybrid materials based on ultrathin LMHs have proven to further improve the catalytic performance by synergistic effects derived from the hybrid interfaces. Nevertheless, studies on ultrathin LMHs are still in the infant stage and lag far behind other important 2D nanomaterials. Hence, it is essential to update the reported work in this emerging research area. In this tutorial review, we aim to summarize recent developments in ultrathin LMHs and their derived hybrids. The quite dispersed literature regarding ultrathin LMH-based materials is classified under the framework of catalysis- and energy-related properties and applications. The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. |
Author | Tang, Zhiyong Yin, Huajie |
AuthorAffiliation | National Center for Nanoscience and Technology CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience |
AuthorAffiliation_xml | – sequence: 0 name: CAS Center for Excellence in Nanoscience – sequence: 0 name: National Center for Nanoscience and Technology – sequence: 0 name: CAS Key Laboratory of Nanosystem and Hierarchical Fabrication |
Author_xml | – sequence: 1 givenname: Huajie surname: Yin fullname: Yin, Huajie – sequence: 2 givenname: Zhiyong surname: Tang fullname: Tang, Zhiyong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27373467$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFDEYh4NU7LZ68a7kKOJovjYz05ss1RYKHqzn4d3kzTYyk6xJtjoX_3ZTtx8ggl7yJvA8v0N-7xE5CDEgIc85e8uZ7N8ZbTJjUkl8RBZcadaoVqkDsmCS6YYxLg7JUc5f6423Wjwhh6KVrVS6XZCfX8aSoFz5QMv32Fg_Ycg-BhjpCDMmtHTCUl9Xs03xh7eYTygEihOmjQ8buh2huJgmWg8K9hqCqY6B6szZ5zcUQyVnamK4xnQTXXVLc4kJNviUPHYwZnx2O4_J5YfTy9VZc_Hp4_nq_UVjlOKlMVZI51RnWG8EdM4gWNczywGc4sBNr8HZtbP9cqmk0WuOy7Vy3DLgrVDymLzax25T_LbDXIbJZ4PjCAHjLg9CdLrnbdf9G-WdWnZM8479B8p7Jfq27Sr68hbdrSe0wzb5CdI83BVRAbYHTIo5J3SD8QVK_a5ajx8HzoabroeVXn3-3fVpVV7_odyl_hV-sYdTNvfcw-LIX28dtdM |
CitedBy_id | crossref_primary_10_1002_smll_201804640 crossref_primary_10_1039_D0SE01908A crossref_primary_10_1088_2053_1583_ab1165 crossref_primary_10_1002_adma_201801712 crossref_primary_10_1016_j_nanoen_2019_104296 crossref_primary_10_1016_j_rser_2022_113110 crossref_primary_10_1002_aenm_201902535 crossref_primary_10_1016_j_micromeso_2017_06_054 crossref_primary_10_1039_C8CS00396C crossref_primary_10_1016_j_jpowsour_2023_232870 crossref_primary_10_1002_ejic_201800873 crossref_primary_10_1016_j_jallcom_2020_154921 crossref_primary_10_1002_asia_202000963 crossref_primary_10_1039_D2CC02633C crossref_primary_10_1016_j_seppur_2022_121518 crossref_primary_10_1039_C7TA04001F crossref_primary_10_1039_D2TA04062J crossref_primary_10_1002_ente_202201203 crossref_primary_10_1016_j_electacta_2019_135554 crossref_primary_10_1016_j_jcis_2017_03_096 crossref_primary_10_1039_D4RA01120A crossref_primary_10_1002_chem_201801912 crossref_primary_10_1016_j_ensm_2018_12_011 crossref_primary_10_1039_C8TA07508E crossref_primary_10_1021_acsaem_9b01901 crossref_primary_10_1039_C7RA08744F crossref_primary_10_1088_1361_6528_ad0f53 crossref_primary_10_1039_C6SC03356C crossref_primary_10_1016_j_ensm_2021_03_001 crossref_primary_10_1016_j_cej_2020_124713 crossref_primary_10_1039_C7GC02543B crossref_primary_10_1002_smll_201800291 crossref_primary_10_1039_C7SC04256F crossref_primary_10_1002_adma_201807001 crossref_primary_10_1039_D0EE02113J crossref_primary_10_1039_D0NR07157A crossref_primary_10_1016_j_electacta_2019_135544 crossref_primary_10_1016_j_jallcom_2018_06_377 crossref_primary_10_1002_sstr_202200085 crossref_primary_10_1039_C6SC05532J crossref_primary_10_1002_cctc_202301689 crossref_primary_10_1016_j_jelechem_2020_114955 crossref_primary_10_1016_j_jpowsour_2023_232649 crossref_primary_10_1021_acs_est_1c07811 crossref_primary_10_1002_aenm_202003159 crossref_primary_10_1007_s11581_019_02845_5 crossref_primary_10_1016_j_apcatb_2019_118240 crossref_primary_10_1016_j_cclet_2020_06_041 crossref_primary_10_1002_cssc_201701358 crossref_primary_10_1007_s10800_024_02214_9 crossref_primary_10_1016_j_ccr_2022_215008 crossref_primary_10_1039_D2QI00869F crossref_primary_10_1007_s12274_023_6271_0 crossref_primary_10_1016_j_gee_2021_01_019 crossref_primary_10_1021_acs_langmuir_4c02876 crossref_primary_10_1016_j_jcat_2020_01_007 crossref_primary_10_1007_s40843_017_9154_2 crossref_primary_10_1039_D0CC06992B crossref_primary_10_1016_j_ccr_2024_216256 crossref_primary_10_1002_adma_201801171 crossref_primary_10_1016_j_apsusc_2017_11_164 crossref_primary_10_1016_j_cclet_2021_07_013 crossref_primary_10_1016_j_seppur_2021_118607 crossref_primary_10_1002_cey2_375 crossref_primary_10_1016_j_jare_2022_10_009 crossref_primary_10_1070_RCR4920 crossref_primary_10_1002_adma_201800400 crossref_primary_10_1002_asia_202300440 crossref_primary_10_1007_s12274_020_2955_x crossref_primary_10_1246_cl_190437 crossref_primary_10_1016_j_ceramint_2019_07_068 crossref_primary_10_1002_EXP_20210052 crossref_primary_10_1016_j_seppur_2024_126505 crossref_primary_10_1039_D1TA03895H crossref_primary_10_1002_chem_201700408 crossref_primary_10_1016_j_colsurfa_2022_128499 crossref_primary_10_1016_j_pmatsci_2020_100637 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1021_acsomega_8b01414 crossref_primary_10_1016_j_inoche_2024_113574 crossref_primary_10_1515_revic_2024_0107 crossref_primary_10_1021_acs_jpcc_3c00277 crossref_primary_10_1016_j_apcatb_2017_02_075 crossref_primary_10_1039_D2NR02568J crossref_primary_10_1002_aenm_201901312 crossref_primary_10_1007_s11705_020_1947_4 crossref_primary_10_1016_j_jcis_2021_08_065 crossref_primary_10_1016_j_jiec_2019_11_002 crossref_primary_10_1021_acscatal_8b00820 crossref_primary_10_1002_smll_201800759 crossref_primary_10_1016_j_jphotochem_2024_116042 crossref_primary_10_1039_C8SC01710G crossref_primary_10_1039_C7TA10665C crossref_primary_10_1002_smll_201703257 crossref_primary_10_1016_j_jallcom_2021_160603 crossref_primary_10_1016_j_jallcom_2017_08_005 crossref_primary_10_1039_C7QI00167C crossref_primary_10_1039_C8EE00611C crossref_primary_10_1002_advs_201901837 crossref_primary_10_1039_D1RA04279C crossref_primary_10_1021_acsomega_0c05619 crossref_primary_10_1039_C8TA03159B crossref_primary_10_20964_2021_09_15 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1039_C9RA07061C crossref_primary_10_1007_s12274_021_4068_6 crossref_primary_10_1007_s00128_020_02868_z crossref_primary_10_1002_ange_201703871 crossref_primary_10_1021_acs_inorgchem_4c03201 crossref_primary_10_1039_C7CS00318H crossref_primary_10_1016_j_mtchem_2019_100239 crossref_primary_10_1016_j_mattod_2021_08_008 crossref_primary_10_1002_admi_201800688 crossref_primary_10_1002_aenm_201901130 crossref_primary_10_1039_C6TA10609A crossref_primary_10_1557_jmr_2019_207 crossref_primary_10_1002_smtd_202100834 crossref_primary_10_1002_smll_201700806 crossref_primary_10_1002_aenm_201702704 crossref_primary_10_1016_j_apcatb_2020_118884 crossref_primary_10_1016_j_cej_2017_08_024 crossref_primary_10_1016_j_ijhydene_2024_11_475 crossref_primary_10_1039_C7CY00274B crossref_primary_10_1016_j_nantod_2018_08_006 crossref_primary_10_2139_ssrn_3977364 crossref_primary_10_1002_aenm_201700536 crossref_primary_10_1088_1361_6528_acc743 crossref_primary_10_1016_j_ijhydene_2024_09_138 crossref_primary_10_1002_admi_202102077 crossref_primary_10_1016_j_apmt_2019_100517 crossref_primary_10_1039_C7CS00864C crossref_primary_10_1002_chin_201644192 crossref_primary_10_1039_C7NR04752E crossref_primary_10_1016_j_apsusc_2018_09_180 crossref_primary_10_1016_j_mtener_2019_01_006 crossref_primary_10_1039_C9NR10565D crossref_primary_10_1002_chem_202000294 crossref_primary_10_1016_j_jma_2023_08_021 crossref_primary_10_1038_ncomms14580 crossref_primary_10_1016_j_cplett_2025_141931 crossref_primary_10_3390_chemosensors5030021 crossref_primary_10_1002_adfm_202100367 crossref_primary_10_1021_acsaem_8b00691 crossref_primary_10_1038_s41467_023_39791_w crossref_primary_10_1002_batt_201800093 crossref_primary_10_1007_s12274_023_6388_1 crossref_primary_10_1016_j_jallcom_2022_165391 crossref_primary_10_1016_j_ijhydene_2024_09_104 crossref_primary_10_1016_j_mtener_2023_101482 crossref_primary_10_1016_j_cclet_2021_04_001 crossref_primary_10_1016_j_colsurfa_2024_134766 crossref_primary_10_1088_1361_6528_ab0642 crossref_primary_10_1002_admi_202102161 crossref_primary_10_1016_j_matt_2020_03_012 crossref_primary_10_1016_j_apsusc_2022_153612 crossref_primary_10_1039_C8NJ00769A crossref_primary_10_1002_chem_201803093 crossref_primary_10_1016_j_apsusc_2022_155912 crossref_primary_10_1021_acsaem_8b02067 crossref_primary_10_1039_C6CS00937A crossref_primary_10_1039_D1CC01640G crossref_primary_10_1016_j_cej_2020_125744 crossref_primary_10_1002_smll_202300509 crossref_primary_10_1021_acsaem_0c00159 crossref_primary_10_1016_j_molliq_2024_125525 crossref_primary_10_1016_j_nanoen_2018_03_080 crossref_primary_10_1016_j_matchemphys_2024_128977 crossref_primary_10_1002_adfm_201909832 crossref_primary_10_1016_j_jscs_2020_01_006 crossref_primary_10_1002_sstr_202300036 crossref_primary_10_1016_j_nanoen_2017_05_044 crossref_primary_10_1021_acs_nanolett_3c00067 crossref_primary_10_1002_smtd_201700156 crossref_primary_10_1039_C8NH00112J crossref_primary_10_1021_acsami_1c06596 crossref_primary_10_1021_acsami_8b09247 crossref_primary_10_1021_acscatal_3c03933 crossref_primary_10_1039_D1CE00277E crossref_primary_10_1007_s10876_022_02237_2 crossref_primary_10_1021_acsanm_9b00441 crossref_primary_10_1016_j_jwpe_2022_103340 crossref_primary_10_1002_adma_201703455 crossref_primary_10_1002_aenm_201803060 crossref_primary_10_1002_adma_201704548 crossref_primary_10_1016_j_electacta_2019_04_046 crossref_primary_10_1002_adfm_201801983 crossref_primary_10_1016_j_jcis_2017_12_054 crossref_primary_10_1021_jacs_4c04292 crossref_primary_10_1039_C7TA00075H crossref_primary_10_1039_D2CP02148J crossref_primary_10_1039_D0TA09538A crossref_primary_10_1007_s11426_020_9809_x crossref_primary_10_1007_s10854_021_05458_9 crossref_primary_10_1016_j_jconrel_2018_12_012 crossref_primary_10_1002_adma_202303072 crossref_primary_10_1039_C7TA10351D crossref_primary_10_1039_D0NR04458J crossref_primary_10_1016_j_checat_2022_02_015 crossref_primary_10_1039_D0SE00466A crossref_primary_10_1016_j_nanoen_2023_108681 crossref_primary_10_1002_smll_202207236 crossref_primary_10_1021_acsnano_7b08691 crossref_primary_10_1002_slct_201901709 crossref_primary_10_1016_j_electacta_2021_138040 crossref_primary_10_1039_C8QI00134K crossref_primary_10_1002_eom2_12266 crossref_primary_10_1021_acsaem_4c00246 crossref_primary_10_1088_1361_6528_ad0c73 crossref_primary_10_1039_D0CC07214A crossref_primary_10_1002_adma_201700286 crossref_primary_10_1002_aenm_201800584 crossref_primary_10_1021_acsami_4c07344 crossref_primary_10_1002_anie_201703871 crossref_primary_10_34133_2019_4029516 crossref_primary_10_1039_C7SC03018E crossref_primary_10_1039_D3DT04379G crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1021_acs_chemmater_0c04527 crossref_primary_10_1039_C7SE00344G crossref_primary_10_1016_j_cclet_2019_11_001 crossref_primary_10_1002_asia_202100506 crossref_primary_10_1021_acsami_1c06771 crossref_primary_10_1038_s41467_022_28918_0 crossref_primary_10_1016_j_matpr_2022_10_244 crossref_primary_10_1039_D1CS00186H crossref_primary_10_1002_adma_201605448 crossref_primary_10_1002_cctc_201900697 crossref_primary_10_1016_j_mcat_2023_113287 crossref_primary_10_1021_acs_chemrev_7b00689 crossref_primary_10_1038_s42004_018_0088_x crossref_primary_10_1002_eom2_12254 crossref_primary_10_1002_adma_201704561 crossref_primary_10_1002_tcr_202000052 crossref_primary_10_1016_j_isci_2024_109841 crossref_primary_10_1016_j_mtcomm_2021_102851 crossref_primary_10_1039_C9TA01438A crossref_primary_10_1039_D0TA05866A crossref_primary_10_1002_celc_202400101 crossref_primary_10_1016_j_cej_2024_151241 crossref_primary_10_1002_elsa_202100052 crossref_primary_10_1016_j_electacta_2017_12_175 crossref_primary_10_1039_D1RA03289E crossref_primary_10_1016_j_nanoen_2021_105943 crossref_primary_10_1016_j_jmrt_2023_04_002 crossref_primary_10_1016_j_jlumin_2018_06_039 crossref_primary_10_1016_j_bioactmat_2021_01_002 crossref_primary_10_1016_S1872_2067_21_63987_6 crossref_primary_10_3390_catal7090260 crossref_primary_10_1039_C7QI00780A crossref_primary_10_1039_C7TA06626K crossref_primary_10_12677_japc_2024_132028 crossref_primary_10_1002_adfm_202214307 crossref_primary_10_1021_acs_cgd_2c00028 crossref_primary_10_1039_C9NR05919A crossref_primary_10_1039_D0SC06601J crossref_primary_10_1021_jacs_0c10285 crossref_primary_10_1002_smll_201800474 crossref_primary_10_1002_smll_201802895 crossref_primary_10_1016_j_apcatb_2019_03_083 crossref_primary_10_1016_j_jcis_2020_12_045 crossref_primary_10_1016_j_jpowsour_2017_11_028 crossref_primary_10_1016_j_nantod_2019_02_006 crossref_primary_10_1039_D2SC00308B crossref_primary_10_1039_C8QI01196F crossref_primary_10_1016_j_ensm_2022_03_005 crossref_primary_10_1016_j_mtener_2018_09_003 crossref_primary_10_1016_j_ccr_2022_214666 crossref_primary_10_1016_j_jcis_2022_10_139 crossref_primary_10_1016_j_mtener_2018_09_004 crossref_primary_10_1039_C9NA00535H crossref_primary_10_1016_j_jechem_2021_04_050 crossref_primary_10_1016_j_cclet_2024_109686 crossref_primary_10_3390_molecules26082349 crossref_primary_10_1039_D4TA02468K crossref_primary_10_1002_cssc_201901424 crossref_primary_10_1002_smll_201901024 crossref_primary_10_1039_C9TA04972J crossref_primary_10_1016_j_nanoen_2020_104689 crossref_primary_10_1021_jacs_7b06808 crossref_primary_10_1073_pnas_2009180117 crossref_primary_10_1007_s11426_024_2262_8 crossref_primary_10_1016_j_apcatb_2023_123187 crossref_primary_10_1016_j_cej_2021_131953 crossref_primary_10_1021_acsaem_8b01613 crossref_primary_10_1016_j_mtchem_2021_100513 crossref_primary_10_1039_D0CY01644F crossref_primary_10_1016_j_apcatb_2018_01_069 crossref_primary_10_1016_j_est_2020_102030 crossref_primary_10_1007_s40820_018_0236_y crossref_primary_10_1016_j_cej_2025_159591 crossref_primary_10_7498_aps_73_20231979 crossref_primary_10_1021_acscatal_7b00007 crossref_primary_10_1039_D0NR00005A crossref_primary_10_1016_j_mtener_2018_05_014 crossref_primary_10_1016_j_ijhydene_2019_04_258 crossref_primary_10_1016_j_jechem_2023_04_049 crossref_primary_10_1016_j_mtener_2018_05_015 crossref_primary_10_1002_chem_201804434 crossref_primary_10_1039_D2CC02424A crossref_primary_10_1016_j_apcatb_2020_119563 crossref_primary_10_1149_1945_7111_ab6c54 crossref_primary_10_1016_j_apsusc_2019_144999 crossref_primary_10_1002_cctc_202101242 crossref_primary_10_1039_C7SC00069C crossref_primary_10_1007_s40242_021_1358_1 crossref_primary_10_1002_cctc_201800023 crossref_primary_10_1016_j_jechem_2021_03_002 crossref_primary_10_1039_C7CS00358G crossref_primary_10_1039_D1NJ03094A crossref_primary_10_1016_j_cis_2023_102865 crossref_primary_10_1016_j_ensm_2019_03_028 crossref_primary_10_1016_j_jhazmat_2022_130300 crossref_primary_10_1007_s10904_020_01585_8 crossref_primary_10_1016_j_snb_2018_02_187 crossref_primary_10_1039_C9SE01312A crossref_primary_10_1002_adfm_202306291 crossref_primary_10_1039_D0NR08415H crossref_primary_10_1039_C7RA01202K crossref_primary_10_1016_j_est_2025_116212 crossref_primary_10_1016_j_energy_2018_09_195 crossref_primary_10_1016_j_cclet_2021_10_075 crossref_primary_10_1016_j_ijhydene_2022_06_306 crossref_primary_10_1016_j_matchemphys_2022_126812 crossref_primary_10_1002_slct_202202059 crossref_primary_10_1016_j_mcat_2017_12_029 crossref_primary_10_1039_D3QM00566F crossref_primary_10_1038_s44160_023_00281_y crossref_primary_10_1021_acssuschemeng_8b04000 crossref_primary_10_1016_j_mtnano_2019_100038 crossref_primary_10_1016_S1872_2067_19_63458_3 crossref_primary_10_1016_j_colsurfa_2020_126100 crossref_primary_10_1021_acs_nanolett_0c00717 crossref_primary_10_1039_C7TA00816C crossref_primary_10_3390_nano13081338 crossref_primary_10_1021_acssuschemeng_8b01093 crossref_primary_10_1039_C8CS00268A crossref_primary_10_1016_j_chphma_2023_07_001 crossref_primary_10_1002_adfm_202002528 crossref_primary_10_1002_adma_201606805 crossref_primary_10_1021_acsami_7b04667 crossref_primary_10_1002_celc_201700439 crossref_primary_10_1021_acs_chemrev_3c00402 crossref_primary_10_1002_ece2_16 crossref_primary_10_1016_j_jhazmat_2021_127988 crossref_primary_10_1016_j_scib_2017_05_019 crossref_primary_10_1039_D0SC04196C crossref_primary_10_1016_j_nanoen_2018_10_004 crossref_primary_10_3390_catal9060558 crossref_primary_10_1016_j_joule_2018_02_018 crossref_primary_10_1039_C7TA11078B crossref_primary_10_1515_revce_2017_0053 crossref_primary_10_1007_s12274_022_5075_y crossref_primary_10_1039_C9NR07277B crossref_primary_10_1016_j_electacta_2023_142412 crossref_primary_10_1016_j_seppur_2021_118369 crossref_primary_10_1002_ejic_202100054 crossref_primary_10_1103_PhysRevMaterials_3_095402 crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1039_D0QM00729C crossref_primary_10_1039_C9TA12297D crossref_primary_10_1007_s41918_020_00079_y crossref_primary_10_1016_j_jpowsour_2019_227659 crossref_primary_10_1039_C9NR02304F crossref_primary_10_1021_acsanm_4c04729 crossref_primary_10_1016_j_jcis_2021_04_029 crossref_primary_10_1002_celc_201801859 crossref_primary_10_1016_j_jcis_2022_03_095 crossref_primary_10_1039_D0NA00912A crossref_primary_10_3390_catal13040698 crossref_primary_10_1016_j_materresbull_2023_112408 crossref_primary_10_1016_j_colsurfa_2021_126896 crossref_primary_10_1039_C8QI00172C crossref_primary_10_1007_s40843_022_2316_y crossref_primary_10_1007_s10853_018_2961_5 crossref_primary_10_1016_j_molliq_2024_124033 crossref_primary_10_1002_smll_202312215 crossref_primary_10_1016_j_ccr_2022_214738 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_progsolidstchem_2020_100294 crossref_primary_10_1021_acscatal_7b03190 crossref_primary_10_1007_s12274_017_1516_4 crossref_primary_10_1016_j_cej_2017_05_101 crossref_primary_10_1002_smll_202300597 crossref_primary_10_1039_D1QM00059D |
Cites_doi | 10.1002/adma.201001722 10.1021/cr200434v 10.1002/chem.201403991 10.1002/anie.201402822 10.1021/ja3089923 10.1021/ja0584471 10.1021/cm049579g 10.1021/cm902787u 10.1021/acs.accounts.5b00033 10.1039/a908251d 10.1016/j.clay.2011.02.007 10.1021/ja0693035 10.1039/B514368C 10.1002/adma.201503730 10.1021/cm0510460 10.1002/anie.201201847 10.1021/ar500164g 10.1021/nn500386u 10.1039/c0cs00159g 10.1038/nature12385 10.1038/ncomms5477 10.1021/cm047813x 10.1039/b416913a 10.1021/ja0719172 10.1038/nmat3313 10.1021/ja905467v 10.1021/nn5069836 10.1021/la062345m 10.1002/anie.200703941 10.1002/anie.201502836 10.1002/aenm.201501974 10.1021/cm048842a 10.1002/anie.201103713 10.1021/ja203388r 10.1021/ja5096733 10.1002/anie.201407836 10.1021/ja804397n 10.1002/adma.201400054 10.1126/science.1252553 10.1021/ja4027715 10.1201/9780203021354 10.1126/science.1211934 10.1039/c0jm01447h 10.1038/ncomms7430 10.1039/c0cc05420h 10.1039/b511184f 10.1038/nchem.898 10.1039/b605422f 10.1038/srep05787 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/c6cs00343e |
DatabaseName | CrossRef PubMed MEDLINE - Academic Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed Materials Research Database AGRICOLA CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1460-4744 |
EndPage | 4891 |
ExternalDocumentID | 27373467 10_1039_C6CS00343E c6cs00343e |
Genre | Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 29B 2WC 4.4 53G 5GY 6J9 705 70~ 7~J 85S AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K COF CS3 DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B R7D RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 ~02 0UZ 186 1TJ 3EH 6TJ 71~ 8WZ 9M8 A6W AAUTI AAYXX ABDPE ACHDF ACKIV ACPVT ACRPL ADNMO ADXHL AETEA AFFDN AFFNX AFRZK AGQPQ AHGXI AI. AIDUJ AKMSF ALSGL ALUYA ANLMG AQHUZ ASPBG AVWKF BBWZM CAG CITATION EEHRC FA8 FEDTE HF~ HVGLF H~9 IDY J3G J3H L-8 MVM NDZJH R56 RCLXC RIG RRXOS SC5 UQL VH1 WHG XJT XOL ZCG ZKB NPM 7X8 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-cd23ff48c09c2a8fceadf90d1aaf41a1c96afdbfd95543c6b1e5b4f1d0a17243 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Fri Jul 11 15:46:35 EDT 2025 Fri Jul 11 00:10:04 EDT 2025 Thu Jul 10 16:44:00 EDT 2025 Thu Apr 03 07:09:13 EDT 2025 Tue Jul 01 04:18:38 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Dec 17 21:00:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-cd23ff48c09c2a8fceadf90d1aaf41a1c96afdbfd95543c6b1e5b4f1d0a17243 |
Notes | Huajie Yin obtained his PhD degree from the National Center for Nanoscience and Technology and Tsinghua University in 2015 under the direction of Prof. Zhiyong Tang. He is now working as a postdoctoral research fellow at Griffith University. His main research interests are focused on two-dimensional materials and related applications in electrocatalysis, energy storage and conversion. Dr Zhiyong Tang obtained his PhD degree from the Chinese Academy of Sciences in 2000 under the direction of Prof. Erkang Wang. After finishing his postdoctoral training at both the Swiss Federal Institute of Technology, Zurich, and the University of Michigan, he returned to China and took a position as a professor at the National Center for Nanoscience and Technology at the end of 2006. His main research interests are focused on the preparation, assembly and application of functional inorganic nanomaterials in the field of energy. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27373467 |
PQID | 1819429778 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmed_primary_27373467 proquest_miscellaneous_2286917884 proquest_miscellaneous_1819429778 crossref_citationtrail_10_1039_C6CS00343E proquest_miscellaneous_1845806180 crossref_primary_10_1039_C6CS00343E rsc_primary_c6cs00343e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-09-21 |
PublicationDateYYYYMMDD | 2016-09-21 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2016 |
References | Ma (C6CS00343E-(cit41)/*[position()=1]) 2015; 9 Gong (C6CS00343E-(cit47)/*[position()=1]) 2013; 135 Liang (C6CS00343E-(cit24)/*[position()=1]) 2010; 22 Auerbach (C6CS00343E-(cit1)/*[position()=1]) 2004 Long (C6CS00343E-(cit48)/*[position()=1]) 2014; 53 Liang (C6CS00343E-(cit46)/*[position()=1]) 2013; 135 Allada (C6CS00343E-(cit25)/*[position()=1]) 2005; 17 Huang (C6CS00343E-(cit43)/*[position()=1]) 2015; 54 Song (C6CS00343E-(cit45)/*[position()=1]) 2014; 136 Hibino (C6CS00343E-(cit12)/*[position()=1]) 2004; 16 Iyi (C6CS00343E-(cit26)/*[position()=1]) 2004; 16 Song (C6CS00343E-(cit44)/*[position()=1]) 2014; 5 Zhao (C6CS00343E-(cit49)/*[position()=1]) 2015; 27 Sun (C6CS00343E-(cit10)/*[position()=1]) 2015; 48 Wang (C6CS00343E-(cit42)/*[position()=1]) 2014; 8 Rogez (C6CS00343E-(cit4)/*[position()=1]) 2011; 40 Abellán (C6CS00343E-(cit23)/*[position()=1]) 2010; 20 Adachi-Pagano (C6CS00343E-(cit11)/*[position()=1]) 2000 Ida (C6CS00343E-(cit21)/*[position()=1]) 2008; 130 Li (C6CS00343E-(cit16)/*[position()=1]) 2005; 17 Liu (C6CS00343E-(cit19)/*[position()=1]) 2007; 23 Ma (C6CS00343E-(cit22)/*[position()=1]) 2008; 47 Zhao (C6CS00343E-(cit7)/*[position()=1]) 2015; 6 Ma (C6CS00343E-(cit40)/*[position()=1]) 2014; 26 Hu (C6CS00343E-(cit29)/*[position()=1]) 2006 Sim (C6CS00343E-(cit30)/*[position()=1]) 2014; 20 Zhu (C6CS00343E-(cit32)/*[position()=1]) 2014; 4 Liu (C6CS00343E-(cit18)/*[position()=1]) 2006; 128 Ma (C6CS00343E-(cit3)/*[position()=1]) 2006; 16 Wang (C6CS00343E-(cit35)/*[position()=1]) 2011; 50 Wang (C6CS00343E-(cit5)/*[position()=1]) 2012; 112 Silva (C6CS00343E-(cit27)/*[position()=1]) 2009; 131 Subbaraman (C6CS00343E-(cit34)/*[position()=1]) 2012; 11 Wang (C6CS00343E-(cit50)/*[position()=1]) 2011; 47 Bravo-Suárez (C6CS00343E-(cit2)/*[position()=1]) 2004; 27 Abellan (C6CS00343E-(cit6)/*[position()=1]) 2015; 48 Subbaraman (C6CS00343E-(cit33)/*[position()=1]) 2011; 334 Ma (C6CS00343E-(cit20)/*[position()=1]) 2007; 129 Gunjakar (C6CS00343E-(cit39)/*[position()=1]) 2011; 133 Coronado (C6CS00343E-(cit14)/*[position()=1]) 2010; 2 Ma (C6CS00343E-(cit8)/*[position()=1]) 2010; 22 Gao (C6CS00343E-(cit31)/*[position()=1]) 2014; 53 Li (C6CS00343E-(cit38)/*[position()=1]) 2007; 129 Yin (C6CS00343E-(cit37)/*[position()=1]) 2015; 6 Chen (C6CS00343E-(cit36)/*[position()=1]) 2014; 344 Geim (C6CS00343E-(cit9)/*[position()=1]) 2013; 499 Teramura (C6CS00343E-(cit28)/*[position()=1]) 2012; 51 Wu (C6CS00343E-(cit17)/*[position()=1]) 2005; 15 Hibino (C6CS00343E-(cit15)/*[position()=1]) 2005; 15 Xu (C6CS00343E-(cit13)/*[position()=1]) 2011; 53 |
References_xml | – issn: 2004 publication-title: Handbook of Layered Materials doi: Auerbach Carrado Dutta – volume: 22 start-page: 5082 year: 2010 ident: C6CS00343E-(cit8)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201001722 – volume: 112 start-page: 4124 year: 2012 ident: C6CS00343E-(cit5)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr200434v – volume: 20 start-page: 14880 year: 2014 ident: C6CS00343E-(cit30)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201403991 – volume: 53 start-page: 7584 year: 2014 ident: C6CS00343E-(cit48)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201402822 – volume: 135 start-page: 2013 year: 2013 ident: C6CS00343E-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3089923 – volume: 128 start-page: 4872 year: 2006 ident: C6CS00343E-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0584471 – volume: 16 start-page: 2926 year: 2004 ident: C6CS00343E-(cit26)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm049579g – volume: 27 start-page: 601 year: 2004 ident: C6CS00343E-(cit2)/*[position()=1] publication-title: Quim. Nova – volume: 22 start-page: 371 year: 2010 ident: C6CS00343E-(cit24)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm902787u – volume: 48 start-page: 1601 year: 2015 ident: C6CS00343E-(cit6)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00033 – start-page: 91 year: 2000 ident: C6CS00343E-(cit11)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/a908251d – volume: 53 start-page: 139 year: 2011 ident: C6CS00343E-(cit13)/*[position()=1] publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2011.02.007 – volume: 129 start-page: 5257 year: 2007 ident: C6CS00343E-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0693035 – start-page: 287 year: 2006 ident: C6CS00343E-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/B514368C – volume: 27 start-page: 7824 year: 2015 ident: C6CS00343E-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503730 – volume: 17 start-page: 4386 year: 2005 ident: C6CS00343E-(cit16)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm0510460 – volume: 51 start-page: 8008 year: 2012 ident: C6CS00343E-(cit28)/*[position()=1] publication-title: Angew. Chem. doi: 10.1002/anie.201201847 – volume: 48 start-page: 3 year: 2015 ident: C6CS00343E-(cit10)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar500164g – volume: 8 start-page: 3724 year: 2014 ident: C6CS00343E-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn500386u – volume: 40 start-page: 1031 year: 2011 ident: C6CS00343E-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00159g – volume: 499 start-page: 419 year: 2013 ident: C6CS00343E-(cit9)/*[position()=1] publication-title: Nature doi: 10.1038/nature12385 – volume: 5 start-page: 4477 year: 2014 ident: C6CS00343E-(cit44)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 17 start-page: 2455 year: 2005 ident: C6CS00343E-(cit25)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm047813x – volume: 15 start-page: 653 year: 2005 ident: C6CS00343E-(cit15)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b416913a – volume: 129 start-page: 8000 year: 2007 ident: C6CS00343E-(cit38)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0719172 – volume: 11 start-page: 550 year: 2012 ident: C6CS00343E-(cit34)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3313 – volume: 131 start-page: 13833 year: 2009 ident: C6CS00343E-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja905467v – volume: 9 start-page: 1977 year: 2015 ident: C6CS00343E-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5069836 – volume: 23 start-page: 861 year: 2007 ident: C6CS00343E-(cit19)/*[position()=1] publication-title: Langmuir doi: 10.1021/la062345m – volume: 47 start-page: 86 year: 2008 ident: C6CS00343E-(cit22)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200703941 – volume: 54 start-page: 8722 year: 2015 ident: C6CS00343E-(cit43)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502836 – volume: 6 start-page: 1501974 year: 2015 ident: C6CS00343E-(cit7)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501974 – volume: 16 start-page: 5482 year: 2004 ident: C6CS00343E-(cit12)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm048842a – volume: 50 start-page: 9171 year: 2011 ident: C6CS00343E-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103713 – volume: 133 start-page: 14998 year: 2011 ident: C6CS00343E-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203388r – volume: 136 start-page: 16481 year: 2014 ident: C6CS00343E-(cit45)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 53 start-page: 12789 year: 2014 ident: C6CS00343E-(cit31)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407836 – volume: 130 start-page: 14038 year: 2008 ident: C6CS00343E-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804397n – volume: 26 start-page: 4173 year: 2014 ident: C6CS00343E-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400054 – volume: 344 start-page: 495 year: 2014 ident: C6CS00343E-(cit36)/*[position()=1] publication-title: Science doi: 10.1126/science.1252553 – volume: 135 start-page: 8452 year: 2013 ident: C6CS00343E-(cit47)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume-title: Handbook of Layered Materials year: 2004 ident: C6CS00343E-(cit1)/*[position()=1] doi: 10.1201/9780203021354 – volume: 334 start-page: 1256 year: 2011 ident: C6CS00343E-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1211934 – volume: 20 start-page: 7451 year: 2010 ident: C6CS00343E-(cit23)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm01447h – volume: 6 start-page: 6430 year: 2015 ident: C6CS00343E-(cit37)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7430 – volume: 47 start-page: 3556 year: 2011 ident: C6CS00343E-(cit50)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc05420h – volume: 15 start-page: 4695 year: 2005 ident: C6CS00343E-(cit17)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b511184f – volume: 2 start-page: 1031 year: 2010 ident: C6CS00343E-(cit14)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.898 – volume: 16 start-page: 3809 year: 2006 ident: C6CS00343E-(cit3)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b605422f – volume: 4 start-page: 5787 year: 2014 ident: C6CS00343E-(cit32)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep05787 |
SSID | ssj0011762 |
Score | 2.6426082 |
SecondaryResourceType | review_article |
Snippet | The unique properties of graphene are triggering a great deal of attention toward the family of ultrathin two-dimensional (2D) structures. Ultrathin layered... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4873 |
SubjectTerms | anisotropy Catalysis Categories energy conversion Graphene hydrogen hydroxides Infants Metal hydroxides metal ions Nanomaterials Nanostructure oxygen production photocatalysis synergism Two dimensional |
Title | Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27373467 https://www.proquest.com/docview/1819429778 https://www.proquest.com/docview/1845806180 https://www.proquest.com/docview/2286917884 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKd4AL4mtQvmQEFzQ8kthJHG5T1alMZRxIpYpL5MSJGKrSqmu1jQN_O8-f6dhAg0tUua6V5v388rP93u8h9AY4ASyOZUw45ZIwRiURoi5JUMeCS5iajKvk5E_HyXjKjmbxrNc72opa2qzL_erHtXkl_2NVaAO7qizZf7CsHxQa4DPYF65gYbjeyMbTudKW_aZCFc8WRCqhfiOysTcXF6oIpyoQrZIdL-RqcX4iTfwbzGiVFayrEy3nYq1oqwmmdPEAek9HSZUoA9QmO1CHp-u9NX3eoIIqxeU4Iq894CJBrdKpdyxGrmC8Ed9PPJxyu1_9dXv7IUxUrITJabYekyUBYakRcXQu1ShEOujwveU-rIsoYdxU5rLOUrVtvXjdt1ecekCVJmqVVKdKTYfW3avLHdcffy4Op5NJkY9m-S20E8GSIeqjnYNR_nHiz5TCVJeX9TfsxGpp9r4b-zI9ubLmAAaycpVhNAPJ76G7dumADwwO7qNe3T5At4euYt9D9NPjAf-GB2zxgDUecIeHD1i02KEBOzRguGCHBuzR8A4bLOAOC_BziS0WHqH8cJQPx8TW1yAVkOA1qWREmwYmY5BVkeBNBV6lyQIZCtGwUIRVlohGlo3MgHPSKinDOi5ZE8pAAO1ldBf120VbP0E4aCIB1FNmEhhuGQLrVAnXKXDrkpZRmQ7QW_dUi8pqz6sSKPNCx0DQrBgmwy_aAqMBeu37Lo3iyrW9XjnjFPCU1SmXaOvF5rQAypoByUpT_rc-LObAZHnw5z5RxJMM_gpnA_TYWN_fD3D-lALFGKBdgINv7mD09AbDPkN3ugn1HPXXq039AhjuunxpofsL5VGr_g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+two-dimensional+layered+metal+hydroxides%3A+an+emerging+platform+for+advanced+catalysis%2C+energy+conversion+and+storage&rft.jtitle=Chemical+Society+reviews&rft.au=Yin%2C+Huajie&rft.au=Tang%2C+Z&rft.date=2016-09-21&rft.issn=1460-4744&rft.volume=45&rft.issue=18+p.4873-4891&rft.spage=4873&rft.epage=4891&rft_id=info:doi/10.1039%2Fc6cs00343e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |