A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors

We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 11; p. 3898
Main Authors Chappanda, Karumbaiah N., Tchalala, Mohamed R., Shekhah, Osama, Surya, Sandeep G., Eddaoudi, Mohamed, Salama, Khaled N.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 12.11.2018
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s18113898

Cover

Loading…
Abstract We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
AbstractList We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N 2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.
Author Tchalala, Mohamed R.
Surya, Sandeep G.
Salama, Khaled N.
Shekhah, Osama
Chappanda, Karumbaiah N.
Eddaoudi, Mohamed
AuthorAffiliation 3 Functional Materials Design, Discovery and Development research group (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; mohamed.tchalala@kaust.edu.sa (M.R.T.); osama.Shekhah@kaust.edu.sa (O.S.); mohamed.eddaoudi@kaust.edu.sa (M.E.)
2 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India
1 Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; sandeep.surya@kaust.edu.sa (S.G.S.); khaled.salama@kaust.edu.sa (K.N.S.)
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India
– name: 3 Functional Materials Design, Discovery and Development research group (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; mohamed.tchalala@kaust.edu.sa (M.R.T.); osama.Shekhah@kaust.edu.sa (O.S.); mohamed.eddaoudi@kaust.edu.sa (M.E.)
– name: 1 Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; sandeep.surya@kaust.edu.sa (S.G.S.); khaled.salama@kaust.edu.sa (K.N.S.)
Author_xml – sequence: 1
  givenname: Karumbaiah N.
  orcidid: 0000-0003-0467-6764
  surname: Chappanda
  fullname: Chappanda, Karumbaiah N.
– sequence: 2
  givenname: Mohamed R.
  surname: Tchalala
  fullname: Tchalala, Mohamed R.
– sequence: 3
  givenname: Osama
  orcidid: 0000-0003-1861-9226
  surname: Shekhah
  fullname: Shekhah, Osama
– sequence: 4
  givenname: Sandeep G.
  surname: Surya
  fullname: Surya, Sandeep G.
– sequence: 5
  givenname: Mohamed
  surname: Eddaoudi
  fullname: Eddaoudi, Mohamed
– sequence: 6
  givenname: Khaled N.
  orcidid: 0000-0001-7742-1282
  surname: Salama
  fullname: Salama, Khaled N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30424566$$D View this record in MEDLINE/PubMed
BookMark eNplUsFuEzEQXaEi2gYO_ADyEQ6h9nrj2BekErUQqVWFGs7WrD2bumzsYHuLwol_4Mjf8SU4pK1aOM1o5s17mnlzWO354LGqXjL6lnNFjxKTjHGp5JPqgDV1M5Z1Tfce5PvVYUrXlNacc_ms2ue0dCZCHFS_jsksrNYQIbsbJJd5sBsSOjL3GaN1S5choyUnPZocg0UC3pJPA8T8ncziJmXoybkzMbTQgzdIFhF8soPJLniyQHPl3dcBE-lCJOdY4L9__LyIS_DOkNMIK_wW4pfxe0hF5dhgLpuRS_QpxPS8etpBn_DFbRxVn09PFrOP47OLD_PZ8dnYNA3LY6OkEgyo5DCdCpxCIyhtmLBNDVNFVU0pWFl3Eidta0xtUFoqgVIl2g5sx0fVfMdrA1zrdXQriBsdwOm_hRCXuuzrTI-6Yc1UKAOCoWosE1KiAM5RcWEnbUlH1bsd13poV2gN-hyhf0T6uOPdlV6GGy1qwcW0KQSvbwli2B4u65VLBvtyXQxD0jXjvOGKKVqgrx5q3YvcuVsARztA8SeliJ02Wz-LM0Xa9ZpRvf0fff8_ZeLNPxN3pP9j_wA7Jsiv
CitedBy_id crossref_primary_10_1016_j_mtchem_2022_101273
crossref_primary_10_1016_j_matlet_2019_127150
crossref_primary_10_1039_D3TA03934J
crossref_primary_10_1080_10408347_2019_1642732
crossref_primary_10_3390_s22041462
crossref_primary_10_1016_j_sna_2022_113498
crossref_primary_10_1080_03067319_2019_1689968
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_3390_nano14010073
crossref_primary_10_1002_pi_6095
crossref_primary_10_1002_slct_202101533
crossref_primary_10_1016_j_snb_2019_05_008
crossref_primary_10_1021_acs_chemrev_0c00033
crossref_primary_10_1039_D1NA00798J
crossref_primary_10_1002_anie_202106259
crossref_primary_10_1016_j_mtcomm_2023_107787
crossref_primary_10_1016_j_matchemphys_2025_130465
crossref_primary_10_1016_j_microc_2023_109537
crossref_primary_10_3390_mi13101651
crossref_primary_10_3390_s19092125
crossref_primary_10_1016_j_snb_2025_137415
crossref_primary_10_3390_membranes12020159
crossref_primary_10_1021_acsami_9b20763
crossref_primary_10_1016_j_ccr_2023_215558
crossref_primary_10_1039_C9CE01323G
crossref_primary_10_1002_pssr_202000086
crossref_primary_10_1021_acsami_3c06119
crossref_primary_10_1016_j_snb_2019_126688
crossref_primary_10_1021_acssensors_3c00859
crossref_primary_10_1002_smll_202311448
crossref_primary_10_1016_j_surfin_2024_104708
crossref_primary_10_1021_acs_jced_2c00443
crossref_primary_10_1088_2399_1984_ac84b5
crossref_primary_10_1016_j_chemosphere_2023_140836
crossref_primary_10_1021_acsami_0c19010
crossref_primary_10_1002_ange_202106259
crossref_primary_10_1109_JSEN_2021_3128241
crossref_primary_10_1002_adsr_202400170
crossref_primary_10_1016_j_foodchem_2020_127615
crossref_primary_10_1021_acsami_0c00803
crossref_primary_10_1021_acs_iecr_1c01266
crossref_primary_10_3390_s21124069
crossref_primary_10_1016_j_sna_2020_111984
Cites_doi 10.1016/j.sna.2014.04.035
10.1021/acssensors.7b00304
10.1016/j.snb.2014.12.118
10.1016/j.matlet.2013.02.117
10.1016/j.aca.2007.06.050
10.1016/j.tsf.2009.07.120
10.1016/j.snb.2017.10.189
10.1109/JSEN.2015.2496212
10.1039/C7RA06690B
10.1016/j.snb.2017.01.194
10.1039/c0cs00147c
10.1021/ja311085e
10.1039/C7RA09441H
10.1002/anie.201608780
10.1016/j.apsusc.2011.04.028
10.1016/j.snb.2015.12.092
10.1007/BF01337937
10.1002/adma.201705189
10.1016/j.memsci.2013.10.043
10.1021/cs1000625
10.1021/acsami.6b04701
10.1021/ja101415b
10.1073/pnas.0602439103
10.1126/science.1109128
10.1021/ar000034b
10.1021/cr300014x
10.1021/ic500474j
10.1016/j.jeurceramsoc.2015.09.008
10.1109/MWSCAS.2016.7870020
10.1021/acsami.7b11055
10.1039/c1cc12543e
10.3390/s140712735
10.1109/ICSIMA.2015.7559021
10.1016/j.snb.2009.08.053
10.1039/c3ce41232f
10.1016/j.snb.2005.05.030
10.1021/acsami.5b12062
10.1016/j.snb.2018.07.006
10.1016/j.snb.2015.08.083
10.1016/j.snb.2004.04.001
10.1016/j.sna.2016.04.038
10.1039/c3cc45343j
10.1109/ICSENS.2011.6127243
10.1021/acssensors.5b00236
10.1016/j.snb.2005.10.024
10.1126/science.1067208
10.1016/j.snb.2009.10.053
10.1016/j.sna.2006.07.001
10.1016/j.snb.2008.04.039
10.1016/j.snb.2008.04.024
10.1039/B618320B
10.1039/C4RA10942B
10.1002/adma.201506457
10.1016/j.aca.2012.06.002
10.1002/anie.201707491
10.1016/j.snb.2004.05.054
10.1021/ja403849c
10.1039/C7TA10538J
10.3390/s17091942
10.1364/OL.29.001191
10.3390/s150101998
10.1021/acs.cgd.5b00140
10.1016/j.snb.2016.06.168
10.1016/S0925-4005(00)00592-X
10.3390/s150818153
10.1016/j.snb.2011.01.047
10.1109/TCSI.2016.2608905
10.1007/s10953-010-9538-5
10.1021/ja5083602
10.1016/j.sna.2004.01.040
10.1016/j.sna.2006.07.027
10.1016/j.snb.2018.01.015
10.1016/0925-4005(96)80090-6
10.1088/0957-0233/6/10/010
10.1016/j.snb.2010.11.003
10.1021/nl034220x
10.1039/C5CS00307E
10.1016/j.memsci.2012.05.052
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s18113898
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_414769ca61e94d1688e6a33e936d5b6a
PMC6263674
30424566
10_3390_s18113898
Genre Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  grantid: FCC/1/1972-05-01
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
5PM
PUEGO
ID FETCH-LOGICAL-c441t-c98961a083a776e7a4600416d42a7909200ad82f8e5bbcc2ce8d08a0096bfadf3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:19:23 EDT 2025
Thu Aug 21 18:32:03 EDT 2025
Tue Aug 05 10:53:41 EDT 2025
Wed Feb 19 02:32:12 EST 2025
Tue Jul 01 00:41:45 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords IDE capacitors
QCM
comparison
sensors
acetone
metal–organic frameworks
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-c98961a083a776e7a4600416d42a7909200ad82f8e5bbcc2ce8d08a0096bfadf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1861-9226
0000-0003-0467-6764
0000-0001-7742-1282
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18113898
PMID 30424566
PQID 2133439190
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_414769ca61e94d1688e6a33e936d5b6a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6263674
proquest_miscellaneous_2133439190
pubmed_primary_30424566
crossref_citationtrail_10_3390_s18113898
crossref_primary_10_3390_s18113898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-12
PublicationDateYYYYMMDD 2018-11-12
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Matatagui (ref_30) 2015; 210
Zeinali (ref_40) 2019; 278
Shekhah (ref_51) 2011; 47
Lu (ref_53) 2010; 132
Savagatrup (ref_14) 2017; 56
Staszek (ref_32) 2017; 245
Snow (ref_19) 2005; 307
Amrani (ref_20) 1995; 6
Shekhah (ref_47) 2011; 40
Shi (ref_54) 2016; 227
Igreja (ref_71) 2004; 112
Yassine (ref_25) 2016; 55
Yao (ref_2) 2016; 28
Rezlescu (ref_11) 2006; 114
Park (ref_52) 2006; 103
Yang (ref_17) 2014; 14
Zhao (ref_42) 2018; 30
Kimura (ref_31) 1996; 33
ref_24
ref_23
Zhu (ref_74) 2010; 144
Chen (ref_57) 2014; 53
Huang (ref_62) 2014; 136
Zhang (ref_4) 2015; 5
Huang (ref_39) 2004; 101
Robinson (ref_18) 2007; 135
Koshets (ref_38) 2005; 106
Omran (ref_68) 2017; 64
Eddaoudi (ref_43) 2002; 295
Drobek (ref_56) 2016; 8
ref_28
ref_27
Penzag (ref_35) 2016; 222
Chernikova (ref_50) 2016; 8
Tran (ref_63) 2011; 1
Hromadka (ref_29) 2018; 260
(ref_70) 2015; 15
Zhou (ref_75) 2007; 135
Kwon (ref_61) 2013; 135
(ref_44) 2008; 37
Sorribas (ref_64) 2014; 452
Chappanda (ref_34) 2018; 257
Omran (ref_66) 2014; 216
Li (ref_80) 2003; 3
Rydosz (ref_3) 2016; 16
Alhoshany (ref_67) 2016; 245
Tian (ref_58) 2016; 1
Zouaoui (ref_79) 2016; 36
Mondloch (ref_78) 2013; 15
ref_77
Xia (ref_59) 2017; 7
Silva (ref_41) 2015; 44
Righettoni (ref_6) 2012; 738
Zhan (ref_55) 2013; 135
Bamsaoud (ref_7) 2011; 153
Minh (ref_15) 2017; 7
Lee (ref_1) 2017; 9
Assen (ref_22) 2017; 2
Shekhah (ref_48) 2013; 49
Qi (ref_10) 2008; 134
ref_81
Zeng (ref_9) 2009; 143
Shia (ref_60) 2012; 415–416
Eddaoudi (ref_45) 2001; 34
Xu (ref_26) 2004; 29
Bene (ref_13) 2000; 71
Chen (ref_76) 2016; 16
Yao (ref_73) 2011; 257
Amiri (ref_72) 2010; 39
Sapsanis (ref_16) 2015; 15
Zhou (ref_46) 2012; 112
Buchan (ref_65) 2015; 15
Chernikova (ref_21) 2018; 6
Xu (ref_36) 2008; 134
Zhao (ref_12) 2006; 115
Sauerbrey (ref_69) 1959; 155
Azzama (ref_49) 2009; 518
Rydosz (ref_33) 2016; 237
Li (ref_5) 2013; 100
Liu (ref_8) 2011; 155
Si (ref_37) 2007; 597
26161830 - Chem Soc Rev. 2015 Oct 7;44(19):6774-803
28832523 - Sensors (Basel). 2017 Aug 23;17(9)
26213943 - Sensors (Basel). 2015 Jul 24;15(8):18153-66
23339400 - J Am Chem Soc. 2013 Feb 6;135(5):1926-33
24813234 - Inorg Chem. 2014 Jun 2;53(11):5411-3
22790702 - Anal Chim Acta. 2012 Aug 13;738:69-75
24056617 - Chem Commun (Camb). 2013 Oct 3;49(86):10079-81
28809112 - ACS Sens. 2017 Sep 22;2(9):1294-1301
25290574 - J Am Chem Soc. 2014 Oct 22;136(42):14686-9
27153113 - Adv Mater. 2016 Jul;28(26):5229-34
28952172 - Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14066-14070
25036331 - Sensors (Basel). 2014 Jul 17;14(7):12735-47
17683733 - Anal Chim Acta. 2007 Aug 6;597(2):223-30
15790850 - Science. 2005 Mar 25;307(5717):1942-5
22280456 - Chem Rev. 2012 Feb 8;112(2):673-4
20486704 - J Am Chem Soc. 2010 Jun 16;132(23):7832-3
16798880 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-10191
27415640 - ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20459-64
11308306 - Acc Chem Res. 2001 Apr;34(4):319-30
21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106
11799235 - Science. 2002 Jan 18;295(5554):469-72
27797152 - Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15879-15883
15209243 - Opt Lett. 2004 Jun 1;29(11):1191-3
23758578 - J Am Chem Soc. 2013 Jul 24;135(29):10763-8
25602271 - Sensors (Basel). 2015 Jan 16;15(1):1998-2005
21927763 - Chem Commun (Camb). 2011 Oct 28;47(40):11210-2
28953355 - ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37184-37190
27003470 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8323-8
29582482 - Adv Mater. 2018 Sep;30(37):e1705189
18197340 - Chem Soc Rev. 2008 Jan;37(1):191-214
References_xml – volume: 216
  start-page: 43
  year: 2014
  ident: ref_66
  article-title: An integrated energy-efficient capacitive sensor digital interface circuit
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2014.04.035
– volume: 2
  start-page: 1294
  year: 2017
  ident: ref_22
  article-title: MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00304
– volume: 210
  start-page: 297
  year: 2015
  ident: ref_30
  article-title: A novel ultra-high frequency humidity sensor based on a magnetostatic spin wave oscillator
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.12.118
– volume: 100
  start-page: 119
  year: 2013
  ident: ref_5
  article-title: Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.02.117
– volume: 597
  start-page: 223
  year: 2007
  ident: ref_37
  article-title: Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2007.06.050
– volume: 518
  start-page: 387
  year: 2009
  ident: ref_49
  article-title: Fabrication of a surface plasmon resonance biosensor based on gold nanoparticles chemisorbed onto a 1, 10-decanedithiol self-assembled monolayer
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.07.120
– volume: 257
  start-page: 609
  year: 2018
  ident: ref_34
  article-title: The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.10.189
– volume: 16
  start-page: 1004
  year: 2016
  ident: ref_3
  article-title: Performance of Si-Doped WO3 Thin Films for Acetone Sensing Prepared by Glancing Angle DC Magnetron Sputtering
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2496212
– volume: 7
  start-page: 38444
  year: 2017
  ident: ref_59
  article-title: Porous Au/ZnO nanoparticles synthesised through a metal organic framework (MOF) route for enhanced acetone gas-sensing
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06690B
– volume: 245
  start-page: 882
  year: 2017
  ident: ref_32
  article-title: Six-port microwave system for volatile organic compounds detection
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2017.01.194
– volume: 16
  start-page: 8874
  year: 2016
  ident: ref_76
  article-title: A QCM Humidity Sensors Based on GO/Nafion Composite Films with Enhanced Sensitivity
  publication-title: IEEE Sens.
– volume: 40
  start-page: 1081
  year: 2011
  ident: ref_47
  article-title: MOF thin films: Existing and future applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00147c
– volume: 135
  start-page: 1926
  year: 2013
  ident: ref_55
  article-title: Semiconductor@ metal–organic framework core–shell heterostructures: A case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311085e
– volume: 7
  start-page: 50279
  year: 2017
  ident: ref_15
  article-title: Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration
  publication-title: RSC Adv.
  doi: 10.1039/C7RA09441H
– ident: ref_23
– volume: 55
  start-page: 15879
  year: 2016
  ident: ref_25
  article-title: H2S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201608780
– volume: 257
  start-page: 7778
  year: 2011
  ident: ref_73
  article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.04.028
– volume: 227
  start-page: 583
  year: 2016
  ident: ref_54
  article-title: Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.12.092
– volume: 155
  start-page: 206
  year: 1959
  ident: ref_69
  article-title: The use of quartz oscillators for weighing thin layers and for microweighing applications
  publication-title: Z. Phys.
  doi: 10.1007/BF01337937
– volume: 30
  start-page: 1705189
  year: 2018
  ident: ref_42
  article-title: Metal–Organic Frameworks for Separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705189
– volume: 452
  start-page: 184
  year: 2014
  ident: ref_64
  article-title: Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural-and bio-gas upgrading
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.043
– volume: 1
  start-page: 120
  year: 2011
  ident: ref_63
  article-title: Expanding applications of metal−organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs1000625
– volume: 8
  start-page: 20459
  year: 2016
  ident: ref_50
  article-title: Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04701
– volume: 132
  start-page: 7832
  year: 2010
  ident: ref_53
  article-title: Metal–organic frameworks as sensors: A ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101415b
– volume: 103
  start-page: 10186
  year: 2006
  ident: ref_52
  article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0602439103
– volume: 307
  start-page: 1942
  year: 2005
  ident: ref_19
  article-title: Chemical detection with a single-walled carbon nanotube capacitor
  publication-title: Science
  doi: 10.1126/science.1109128
– volume: 34
  start-page: 319
  year: 2001
  ident: ref_45
  article-title: Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000034b
– volume: 112
  start-page: 673
  year: 2012
  ident: ref_46
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 53
  start-page: 5411
  year: 2014
  ident: ref_57
  article-title: Zeolitic imidazolate framework as formaldehyde gas sensor
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500474j
– volume: 36
  start-page: 163
  year: 2016
  ident: ref_79
  article-title: Effect of humidity on the dielectric constant and electrical impedance of mesoporous zirconia ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2015.09.008
– ident: ref_81
  doi: 10.1109/MWSCAS.2016.7870020
– volume: 9
  start-page: 37184
  year: 2017
  ident: ref_1
  article-title: Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene)
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11055
– volume: 47
  start-page: 11210
  year: 2011
  ident: ref_51
  article-title: Post-synthetic modification of epitaxially grown, highly oriented functionalized MOF thin films
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc12543e
– volume: 14
  start-page: 12735
  year: 2014
  ident: ref_17
  article-title: An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process
  publication-title: Sensors
  doi: 10.3390/s140712735
– ident: ref_77
  doi: 10.1109/ICSIMA.2015.7559021
– volume: 143
  start-page: 93
  year: 2009
  ident: ref_9
  article-title: Growth and selective acetone detection based on ZnO nanorod arrays
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2009.08.053
– ident: ref_28
– volume: 15
  start-page: 9258
  year: 2013
  ident: ref_78
  article-title: Activation of metal–organic framework materials
  publication-title: CrystEngComm
  doi: 10.1039/c3ce41232f
– volume: 114
  start-page: 427
  year: 2006
  ident: ref_11
  article-title: Semiconducting gas sensor for acetone based on the fine grained nickel ferrite
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2005.05.030
– volume: 8
  start-page: 8323
  year: 2016
  ident: ref_56
  article-title: MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12062
– volume: 278
  start-page: 153
  year: 2019
  ident: ref_40
  article-title: Comparative investigation of interdigitated and Parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.07.006
– volume: 222
  start-page: 280
  year: 2016
  ident: ref_35
  article-title: Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2015.08.083
– volume: 101
  start-page: 316
  year: 2004
  ident: ref_39
  article-title: A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.04.001
– volume: 245
  start-page: 10
  year: 2016
  ident: ref_67
  article-title: A 45.8fJ/Step, Energy-Efficient, Differential SAR Capacitance-to-Digital Converter for Capacitive Pressure Sensing
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2016.04.038
– volume: 49
  start-page: 10079
  year: 2013
  ident: ref_48
  article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc45343j
– ident: ref_27
  doi: 10.1109/ICSENS.2011.6127243
– volume: 1
  start-page: 243
  year: 2016
  ident: ref_58
  article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.5b00236
– volume: 115
  start-page: 460
  year: 2006
  ident: ref_12
  article-title: Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2005.10.024
– volume: 295
  start-page: 469
  year: 2002
  ident: ref_43
  article-title: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage
  publication-title: Science
  doi: 10.1126/science.1067208
– volume: 144
  start-page: 164
  year: 2010
  ident: ref_74
  article-title: Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2009.10.053
– volume: 135
  start-page: 209
  year: 2007
  ident: ref_75
  article-title: Humidity detection by nanostructured ZnO: A wireless quartz crystal microbalance investigation
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2006.07.001
– volume: 134
  start-page: 258
  year: 2008
  ident: ref_36
  article-title: Ionic liquids used as QCM coating materials for the detection of alcohols
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.04.039
– volume: 134
  start-page: 166
  year: 2008
  ident: ref_10
  article-title: Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.04.024
– volume: 37
  start-page: 191
  year: 2008
  ident: ref_44
  article-title: Hybrid porous solids: Past, present, future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B618320B
– volume: 5
  start-page: 3016
  year: 2015
  ident: ref_4
  article-title: Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite
  publication-title: RSC Adv.
  doi: 10.1039/C4RA10942B
– volume: 28
  start-page: 5229
  year: 2016
  ident: ref_2
  article-title: MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506457
– volume: 738
  start-page: 69
  year: 2012
  ident: ref_6
  article-title: Breath acetone monitoring by portable Si: WO3 gas sensors
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.06.002
– volume: 56
  start-page: 14066
  year: 2017
  ident: ref_14
  article-title: Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201707491
– volume: 106
  start-page: 177
  year: 2005
  ident: ref_38
  article-title: Calixarene films as sensitive coatings for QCM-based gas sensors
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2004.05.054
– volume: 135
  start-page: 10763
  year: 2013
  ident: ref_61
  article-title: In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403849c
– volume: 6
  start-page: 5550
  year: 2018
  ident: ref_21
  article-title: Highly sensitive and selective SO2 MOF sensor: The integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10538J
– ident: ref_24
  doi: 10.3390/s17091942
– volume: 29
  start-page: 1191
  year: 2004
  ident: ref_26
  article-title: Optical fiber humidity sensor based on evanescent-wave scattering
  publication-title: Opt. Lett.
  doi: 10.1364/OL.29.001191
– volume: 15
  start-page: 1998
  year: 2015
  ident: ref_70
  article-title: Design and fabrication of interdigital nanocapacitors coated with HfO2
  publication-title: Sensors
  doi: 10.3390/s150101998
– volume: 15
  start-page: 1991
  year: 2015
  ident: ref_65
  article-title: Micromechanical behavior of polycrystalline metal–organic framework thin films synthesized by electrochemical reaction
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b00140
– volume: 237
  start-page: 876
  year: 2016
  ident: ref_33
  article-title: Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2016.06.168
– volume: 71
  start-page: 36
  year: 2000
  ident: ref_13
  article-title: Chemical reactions in the detection of acetone and NO by a CeO2 thin film
  publication-title: Sens. Actuators B
  doi: 10.1016/S0925-4005(00)00592-X
– volume: 15
  start-page: 18153
  year: 2015
  ident: ref_16
  article-title: Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study
  publication-title: Sensors
  doi: 10.3390/s150818153
– volume: 155
  start-page: 782
  year: 2011
  ident: ref_8
  article-title: Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2011.01.047
– volume: 64
  start-page: 310
  year: 2017
  ident: ref_68
  article-title: A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/TCSI.2016.2608905
– volume: 39
  start-page: 701
  year: 2010
  ident: ref_72
  article-title: Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study
  publication-title: J. Solut. Chem.
  doi: 10.1007/s10953-010-9538-5
– volume: 136
  start-page: 14686
  year: 2014
  ident: ref_62
  article-title: Bicontinuous zeolitic imidazolate framework ZIF-8@ GO membrane with enhanced hydrogen selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5083602
– volume: 112
  start-page: 291
  year: 2004
  ident: ref_71
  article-title: Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2004.01.040
– volume: 135
  start-page: 309
  year: 2007
  ident: ref_18
  article-title: Improved chemical detection using single-walled carbon nanotube network capacitors
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2006.07.027
– volume: 260
  start-page: 685
  year: 2018
  ident: ref_29
  article-title: Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.01.015
– volume: 33
  start-page: 156
  year: 1996
  ident: ref_31
  article-title: A new method to measure absolute humidity independently of the ambient temperature
  publication-title: Sens. Actuators B
  doi: 10.1016/0925-4005(96)80090-6
– volume: 6
  start-page: 1500
  year: 1995
  ident: ref_20
  article-title: High-frequency measurements of conducting polymers: Development of a new technique for sensing volatile chemicals
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/6/10/010
– volume: 153
  start-page: 382
  year: 2011
  ident: ref_7
  article-title: Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.11.003
– volume: 3
  start-page: 929
  year: 2003
  ident: ref_80
  article-title: Carbon nanotube sensors for gas and organic vapor detection
  publication-title: Nano Lett.
  doi: 10.1021/nl034220x
– volume: 44
  start-page: 6774
  year: 2015
  ident: ref_41
  article-title: Multifunctional metal–organic frameworks: From academia to industrial applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00307E
– volume: 415–416
  start-page: 577
  year: 2012
  ident: ref_60
  article-title: Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.05.052
– reference: 18197340 - Chem Soc Rev. 2008 Jan;37(1):191-214
– reference: 27153113 - Adv Mater. 2016 Jul;28(26):5229-34
– reference: 16798880 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-10191
– reference: 25602271 - Sensors (Basel). 2015 Jan 16;15(1):1998-2005
– reference: 23339400 - J Am Chem Soc. 2013 Feb 6;135(5):1926-33
– reference: 11799235 - Science. 2002 Jan 18;295(5554):469-72
– reference: 25290574 - J Am Chem Soc. 2014 Oct 22;136(42):14686-9
– reference: 29582482 - Adv Mater. 2018 Sep;30(37):e1705189
– reference: 27797152 - Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15879-15883
– reference: 15209243 - Opt Lett. 2004 Jun 1;29(11):1191-3
– reference: 20486704 - J Am Chem Soc. 2010 Jun 16;132(23):7832-3
– reference: 17683733 - Anal Chim Acta. 2007 Aug 6;597(2):223-30
– reference: 21927763 - Chem Commun (Camb). 2011 Oct 28;47(40):11210-2
– reference: 24056617 - Chem Commun (Camb). 2013 Oct 3;49(86):10079-81
– reference: 28953355 - ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37184-37190
– reference: 27003470 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8323-8
– reference: 22790702 - Anal Chim Acta. 2012 Aug 13;738:69-75
– reference: 26161830 - Chem Soc Rev. 2015 Oct 7;44(19):6774-803
– reference: 28809112 - ACS Sens. 2017 Sep 22;2(9):1294-1301
– reference: 15790850 - Science. 2005 Mar 25;307(5717):1942-5
– reference: 26213943 - Sensors (Basel). 2015 Jul 24;15(8):18153-66
– reference: 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106
– reference: 28952172 - Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14066-14070
– reference: 23758578 - J Am Chem Soc. 2013 Jul 24;135(29):10763-8
– reference: 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4
– reference: 27415640 - ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20459-64
– reference: 24813234 - Inorg Chem. 2014 Jun 2;53(11):5411-3
– reference: 25036331 - Sensors (Basel). 2014 Jul 17;14(7):12735-47
– reference: 28832523 - Sensors (Basel). 2017 Aug 23;17(9):
– reference: 11308306 - Acc Chem Res. 2001 Apr;34(4):319-30
SSID ssj0023338
Score 2.4445548
Snippet We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3898
SubjectTerms acetone
comparison
IDE capacitors
metal–organic frameworks
QCM
sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQ-q77CNPSQy8mliXL0nGzZAmF7aUJ5Gb0GLeB4A27m0N66n_osf-uv6Qjy97shkAvvdoDEp4R833WzDeMfXQctSJckEthiaB4r3MXbJUrI0tuTcvRxgbn-Rd1ciY_n1fnW6O-Yk1YkgdOH-5Qclkr463iaGTgSmtUVgg0QoXKqR4aUc4bydRAtQQxr6QjJIjUH64oj8UbOb2TfXqR_vuQ5d0Cya2MM3vMHg1QESZpi0_YA-yesodbAoLP2O8JTG_luyEWBd7AooX-P1-4-BYbyDDAcZp1ExBsF6Cv4_wB0-UNIcNLmMeSPBcrHD1Cn7pCUpSF01HfdQUEbWGOZP7n56_UvulhNtZ15UeUCgNMPEZlb_hKzHixXD1nZ7Pj0-lJPoxbyD1honXujTaKW8Jktq4V1laqqMalgixtbQpD58kGXbYaK-e8Lz3qUGgbSZBrbWjFC7bX0TKvGAjusS1lVTjUUghPX587ssKycMGLkLFPoxsaP2iRx5EYlw1xkuixZuOxjH3YmF4lAY77jI6iLzcGUTO7f0CR1AyR1PwrkjL2foyEhs5YvDixHS6uV01JRD52KJsiYy9TZGyWEunuWGWs3omZnb3svukuvvc63lEISNXy9f_Y_Bu2T1BOxy5JXr5le-vlNb4juLR2B_3J-AuHHxgU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/30424566
https://www.proquest.com/docview/2133439190
https://pubmed.ncbi.nlm.nih.gov/PMC6263674
https://doaj.org/article/414769ca61e94d1688e6a33e936d5b6a
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IaFyQDyLeUQL4sDFYHs36_UBoSRKqJBSIWik3Kx9uVSKHGqnUsOJ_8CRf8cvYdYvapQTFx_ssWx5djTf5535BuCVCq3giAt8RiUSFK2Fr4wc-jxhUSiTLLTSNTjPT_nJgn1cDpd70M7YbD5guZPauXlSi2L15vpy-x4D_p1jnEjZ35aYpdx-m9iHQ0xIsYvPOes2EyKKNKwWFeqbH8EtWu_88V5WqsT7dyHOfwsnb2Si2V2400BIMqp9fg_2bH4fbt8QFnwAv0Zk8lfWm7hiwS1ZZ6T6_2cuzl1jmTVkWs_AMZbI3JCqvvM7mRRbRIwrMnelespVPmpLqpRmaqVZctbqvpYEIS-ZWzT__eNn3dapyayt9_LHmCINGWnrFL_JF2TM66J8CIvZ9Gxy4jdjGHyNWGnj60QkPJSI1WQccxtLxp1KFzcsknESJBhn0ogoE3aolNaRtsIEQjpypDJpMvoIDnJ8zGMgNNQ2ww8eKCsYpRodESq0slGgjKbGg9etG1LdaJS7URmrFLmKc17aOc-Dl53pt1qYY5fR2PmyM3Ba2tWJdXGeNqGZspDFPNGShzZhJuRCWC4ptQnlZqi49OBFuxJSjD23oSJzu74q0wgJvutcTgIPjuuV0T2qXVkexL0103uX_pX84mul7-0EgnjMnvz3nU_hCHGdcC2TYfQMDjbFlX2O2GmjBrAfL2M8itmHARyOp6efPg-q_xCDKmb-APToIz0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Interdigitated+Electrode+and+Quartz+Crystal+Microbalance+Transduction+Techniques+for+Metal%E2%80%93Organic+Framework-Based+Acetone+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chappanda%2C+Karumbaiah+N.&rft.au=Tchalala%2C+Mohamed+R.&rft.au=Shekhah%2C+Osama&rft.au=Surya%2C+Sandeep+G.&rft.date=2018-11-12&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fs18113898&rft_id=info%3Apmid%2F30424566&rft.externalDocID=PMC6263674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon