A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors
We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 11; p. 3898 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
12.11.2018
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s18113898 |
Cover
Loading…
Abstract | We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. |
---|---|
AbstractList | We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic–imidazolate framework (ZIF-8) metal–organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N 2 and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction.We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect of the transduction mechanism on the sensing performance of sensing a target analyte. For this purpose, interdigitated electrode (IDE)-based capacitors and quartz crystal microbalance (QCM)-based resonators were coated with a zeolitic⁻imidazolate framework (ZIF-8) metal⁻organic framework thin films as the sensing material and applied to the sensing of the volatile organic compound acetone. Cyclic immersion in methanolic precursor solutions technique was used for depositing the ZIF-8 thin films. The sensors were exposed to various acetone concentrations ranging from 5.3 to 26.5 vol % in N₂ and characterized/compared for their sensitivity, hysteresis, long-term and short-term stability, selectivity, detection limit, and effect of temperature. Furthermore, the IDE substrates were used for resistive transduction and compared using capacitive transduction. |
Author | Tchalala, Mohamed R. Surya, Sandeep G. Salama, Khaled N. Shekhah, Osama Chappanda, Karumbaiah N. Eddaoudi, Mohamed |
AuthorAffiliation | 3 Functional Materials Design, Discovery and Development research group (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; mohamed.tchalala@kaust.edu.sa (M.R.T.); osama.Shekhah@kaust.edu.sa (O.S.); mohamed.eddaoudi@kaust.edu.sa (M.E.) 2 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India 1 Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; sandeep.surya@kaust.edu.sa (S.G.S.); khaled.salama@kaust.edu.sa (K.N.S.) |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science, Hyderabad 500078, India – name: 3 Functional Materials Design, Discovery and Development research group (FMD3), Advanced Membranes & Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; mohamed.tchalala@kaust.edu.sa (M.R.T.); osama.Shekhah@kaust.edu.sa (O.S.); mohamed.eddaoudi@kaust.edu.sa (M.E.) – name: 1 Sensors Lab, Electrical Engineering Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; sandeep.surya@kaust.edu.sa (S.G.S.); khaled.salama@kaust.edu.sa (K.N.S.) |
Author_xml | – sequence: 1 givenname: Karumbaiah N. orcidid: 0000-0003-0467-6764 surname: Chappanda fullname: Chappanda, Karumbaiah N. – sequence: 2 givenname: Mohamed R. surname: Tchalala fullname: Tchalala, Mohamed R. – sequence: 3 givenname: Osama orcidid: 0000-0003-1861-9226 surname: Shekhah fullname: Shekhah, Osama – sequence: 4 givenname: Sandeep G. surname: Surya fullname: Surya, Sandeep G. – sequence: 5 givenname: Mohamed surname: Eddaoudi fullname: Eddaoudi, Mohamed – sequence: 6 givenname: Khaled N. orcidid: 0000-0001-7742-1282 surname: Salama fullname: Salama, Khaled N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30424566$$D View this record in MEDLINE/PubMed |
BookMark | eNplUsFuEzEQXaEi2gYO_ADyEQ6h9nrj2BekErUQqVWFGs7WrD2bumzsYHuLwol_4Mjf8SU4pK1aOM1o5s17mnlzWO354LGqXjL6lnNFjxKTjHGp5JPqgDV1M5Z1Tfce5PvVYUrXlNacc_ms2ue0dCZCHFS_jsksrNYQIbsbJJd5sBsSOjL3GaN1S5choyUnPZocg0UC3pJPA8T8ncziJmXoybkzMbTQgzdIFhF8soPJLniyQHPl3dcBE-lCJOdY4L9__LyIS_DOkNMIK_wW4pfxe0hF5dhgLpuRS_QpxPS8etpBn_DFbRxVn09PFrOP47OLD_PZ8dnYNA3LY6OkEgyo5DCdCpxCIyhtmLBNDVNFVU0pWFl3Eidta0xtUFoqgVIl2g5sx0fVfMdrA1zrdXQriBsdwOm_hRCXuuzrTI-6Yc1UKAOCoWosE1KiAM5RcWEnbUlH1bsd13poV2gN-hyhf0T6uOPdlV6GGy1qwcW0KQSvbwli2B4u65VLBvtyXQxD0jXjvOGKKVqgrx5q3YvcuVsARztA8SeliJ02Wz-LM0Xa9ZpRvf0fff8_ZeLNPxN3pP9j_wA7Jsiv |
CitedBy_id | crossref_primary_10_1016_j_mtchem_2022_101273 crossref_primary_10_1016_j_matlet_2019_127150 crossref_primary_10_1039_D3TA03934J crossref_primary_10_1080_10408347_2019_1642732 crossref_primary_10_3390_s22041462 crossref_primary_10_1016_j_sna_2022_113498 crossref_primary_10_1080_03067319_2019_1689968 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_3390_nano14010073 crossref_primary_10_1002_pi_6095 crossref_primary_10_1002_slct_202101533 crossref_primary_10_1016_j_snb_2019_05_008 crossref_primary_10_1021_acs_chemrev_0c00033 crossref_primary_10_1039_D1NA00798J crossref_primary_10_1002_anie_202106259 crossref_primary_10_1016_j_mtcomm_2023_107787 crossref_primary_10_1016_j_matchemphys_2025_130465 crossref_primary_10_1016_j_microc_2023_109537 crossref_primary_10_3390_mi13101651 crossref_primary_10_3390_s19092125 crossref_primary_10_1016_j_snb_2025_137415 crossref_primary_10_3390_membranes12020159 crossref_primary_10_1021_acsami_9b20763 crossref_primary_10_1016_j_ccr_2023_215558 crossref_primary_10_1039_C9CE01323G crossref_primary_10_1002_pssr_202000086 crossref_primary_10_1021_acsami_3c06119 crossref_primary_10_1016_j_snb_2019_126688 crossref_primary_10_1021_acssensors_3c00859 crossref_primary_10_1002_smll_202311448 crossref_primary_10_1016_j_surfin_2024_104708 crossref_primary_10_1021_acs_jced_2c00443 crossref_primary_10_1088_2399_1984_ac84b5 crossref_primary_10_1016_j_chemosphere_2023_140836 crossref_primary_10_1021_acsami_0c19010 crossref_primary_10_1002_ange_202106259 crossref_primary_10_1109_JSEN_2021_3128241 crossref_primary_10_1002_adsr_202400170 crossref_primary_10_1016_j_foodchem_2020_127615 crossref_primary_10_1021_acsami_0c00803 crossref_primary_10_1021_acs_iecr_1c01266 crossref_primary_10_3390_s21124069 crossref_primary_10_1016_j_sna_2020_111984 |
Cites_doi | 10.1016/j.sna.2014.04.035 10.1021/acssensors.7b00304 10.1016/j.snb.2014.12.118 10.1016/j.matlet.2013.02.117 10.1016/j.aca.2007.06.050 10.1016/j.tsf.2009.07.120 10.1016/j.snb.2017.10.189 10.1109/JSEN.2015.2496212 10.1039/C7RA06690B 10.1016/j.snb.2017.01.194 10.1039/c0cs00147c 10.1021/ja311085e 10.1039/C7RA09441H 10.1002/anie.201608780 10.1016/j.apsusc.2011.04.028 10.1016/j.snb.2015.12.092 10.1007/BF01337937 10.1002/adma.201705189 10.1016/j.memsci.2013.10.043 10.1021/cs1000625 10.1021/acsami.6b04701 10.1021/ja101415b 10.1073/pnas.0602439103 10.1126/science.1109128 10.1021/ar000034b 10.1021/cr300014x 10.1021/ic500474j 10.1016/j.jeurceramsoc.2015.09.008 10.1109/MWSCAS.2016.7870020 10.1021/acsami.7b11055 10.1039/c1cc12543e 10.3390/s140712735 10.1109/ICSIMA.2015.7559021 10.1016/j.snb.2009.08.053 10.1039/c3ce41232f 10.1016/j.snb.2005.05.030 10.1021/acsami.5b12062 10.1016/j.snb.2018.07.006 10.1016/j.snb.2015.08.083 10.1016/j.snb.2004.04.001 10.1016/j.sna.2016.04.038 10.1039/c3cc45343j 10.1109/ICSENS.2011.6127243 10.1021/acssensors.5b00236 10.1016/j.snb.2005.10.024 10.1126/science.1067208 10.1016/j.snb.2009.10.053 10.1016/j.sna.2006.07.001 10.1016/j.snb.2008.04.039 10.1016/j.snb.2008.04.024 10.1039/B618320B 10.1039/C4RA10942B 10.1002/adma.201506457 10.1016/j.aca.2012.06.002 10.1002/anie.201707491 10.1016/j.snb.2004.05.054 10.1021/ja403849c 10.1039/C7TA10538J 10.3390/s17091942 10.1364/OL.29.001191 10.3390/s150101998 10.1021/acs.cgd.5b00140 10.1016/j.snb.2016.06.168 10.1016/S0925-4005(00)00592-X 10.3390/s150818153 10.1016/j.snb.2011.01.047 10.1109/TCSI.2016.2608905 10.1007/s10953-010-9538-5 10.1021/ja5083602 10.1016/j.sna.2004.01.040 10.1016/j.sna.2006.07.027 10.1016/j.snb.2018.01.015 10.1016/0925-4005(96)80090-6 10.1088/0957-0233/6/10/010 10.1016/j.snb.2010.11.003 10.1021/nl034220x 10.1039/C5CS00307E 10.1016/j.memsci.2012.05.052 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s18113898 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_414769ca61e94d1688e6a33e936d5b6a PMC6263674 30424566 10_3390_s18113898 |
Genre | Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology grantid: FCC/1/1972-05-01 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PJZUB PPXIY 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-c98961a083a776e7a4600416d42a7909200ad82f8e5bbcc2ce8d08a0096bfadf3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:19:23 EDT 2025 Thu Aug 21 18:32:03 EDT 2025 Tue Aug 05 10:53:41 EDT 2025 Wed Feb 19 02:32:12 EST 2025 Tue Jul 01 00:41:45 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | IDE capacitors QCM comparison sensors acetone metal–organic frameworks |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-c98961a083a776e7a4600416d42a7909200ad82f8e5bbcc2ce8d08a0096bfadf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1861-9226 0000-0003-0467-6764 0000-0001-7742-1282 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18113898 |
PMID | 30424566 |
PQID | 2133439190 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_414769ca61e94d1688e6a33e936d5b6a pubmedcentral_primary_oai_pubmedcentral_nih_gov_6263674 proquest_miscellaneous_2133439190 pubmed_primary_30424566 crossref_citationtrail_10_3390_s18113898 crossref_primary_10_3390_s18113898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-12 |
PublicationDateYYYYMMDD | 2018-11-12 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Matatagui (ref_30) 2015; 210 Zeinali (ref_40) 2019; 278 Shekhah (ref_51) 2011; 47 Lu (ref_53) 2010; 132 Savagatrup (ref_14) 2017; 56 Staszek (ref_32) 2017; 245 Snow (ref_19) 2005; 307 Amrani (ref_20) 1995; 6 Shekhah (ref_47) 2011; 40 Shi (ref_54) 2016; 227 Igreja (ref_71) 2004; 112 Yassine (ref_25) 2016; 55 Yao (ref_2) 2016; 28 Rezlescu (ref_11) 2006; 114 Park (ref_52) 2006; 103 Yang (ref_17) 2014; 14 Zhao (ref_42) 2018; 30 Kimura (ref_31) 1996; 33 ref_24 ref_23 Zhu (ref_74) 2010; 144 Chen (ref_57) 2014; 53 Huang (ref_62) 2014; 136 Zhang (ref_4) 2015; 5 Huang (ref_39) 2004; 101 Robinson (ref_18) 2007; 135 Koshets (ref_38) 2005; 106 Omran (ref_68) 2017; 64 Eddaoudi (ref_43) 2002; 295 Drobek (ref_56) 2016; 8 ref_28 ref_27 Penzag (ref_35) 2016; 222 Chernikova (ref_50) 2016; 8 Tran (ref_63) 2011; 1 Hromadka (ref_29) 2018; 260 (ref_70) 2015; 15 Zhou (ref_75) 2007; 135 Kwon (ref_61) 2013; 135 (ref_44) 2008; 37 Sorribas (ref_64) 2014; 452 Chappanda (ref_34) 2018; 257 Omran (ref_66) 2014; 216 Li (ref_80) 2003; 3 Rydosz (ref_3) 2016; 16 Alhoshany (ref_67) 2016; 245 Tian (ref_58) 2016; 1 Zouaoui (ref_79) 2016; 36 Mondloch (ref_78) 2013; 15 ref_77 Xia (ref_59) 2017; 7 Silva (ref_41) 2015; 44 Righettoni (ref_6) 2012; 738 Zhan (ref_55) 2013; 135 Bamsaoud (ref_7) 2011; 153 Minh (ref_15) 2017; 7 Lee (ref_1) 2017; 9 Assen (ref_22) 2017; 2 Shekhah (ref_48) 2013; 49 Qi (ref_10) 2008; 134 ref_81 Zeng (ref_9) 2009; 143 Shia (ref_60) 2012; 415–416 Eddaoudi (ref_45) 2001; 34 Xu (ref_26) 2004; 29 Bene (ref_13) 2000; 71 Chen (ref_76) 2016; 16 Yao (ref_73) 2011; 257 Amiri (ref_72) 2010; 39 Sapsanis (ref_16) 2015; 15 Zhou (ref_46) 2012; 112 Buchan (ref_65) 2015; 15 Chernikova (ref_21) 2018; 6 Xu (ref_36) 2008; 134 Zhao (ref_12) 2006; 115 Sauerbrey (ref_69) 1959; 155 Azzama (ref_49) 2009; 518 Rydosz (ref_33) 2016; 237 Li (ref_5) 2013; 100 Liu (ref_8) 2011; 155 Si (ref_37) 2007; 597 26161830 - Chem Soc Rev. 2015 Oct 7;44(19):6774-803 28832523 - Sensors (Basel). 2017 Aug 23;17(9) 26213943 - Sensors (Basel). 2015 Jul 24;15(8):18153-66 23339400 - J Am Chem Soc. 2013 Feb 6;135(5):1926-33 24813234 - Inorg Chem. 2014 Jun 2;53(11):5411-3 22790702 - Anal Chim Acta. 2012 Aug 13;738:69-75 24056617 - Chem Commun (Camb). 2013 Oct 3;49(86):10079-81 28809112 - ACS Sens. 2017 Sep 22;2(9):1294-1301 25290574 - J Am Chem Soc. 2014 Oct 22;136(42):14686-9 27153113 - Adv Mater. 2016 Jul;28(26):5229-34 28952172 - Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14066-14070 25036331 - Sensors (Basel). 2014 Jul 17;14(7):12735-47 17683733 - Anal Chim Acta. 2007 Aug 6;597(2):223-30 15790850 - Science. 2005 Mar 25;307(5717):1942-5 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4 20486704 - J Am Chem Soc. 2010 Jun 16;132(23):7832-3 16798880 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-10191 27415640 - ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20459-64 11308306 - Acc Chem Res. 2001 Apr;34(4):319-30 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106 11799235 - Science. 2002 Jan 18;295(5554):469-72 27797152 - Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15879-15883 15209243 - Opt Lett. 2004 Jun 1;29(11):1191-3 23758578 - J Am Chem Soc. 2013 Jul 24;135(29):10763-8 25602271 - Sensors (Basel). 2015 Jan 16;15(1):1998-2005 21927763 - Chem Commun (Camb). 2011 Oct 28;47(40):11210-2 28953355 - ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37184-37190 27003470 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8323-8 29582482 - Adv Mater. 2018 Sep;30(37):e1705189 18197340 - Chem Soc Rev. 2008 Jan;37(1):191-214 |
References_xml | – volume: 216 start-page: 43 year: 2014 ident: ref_66 article-title: An integrated energy-efficient capacitive sensor digital interface circuit publication-title: Sens. Actuators A doi: 10.1016/j.sna.2014.04.035 – volume: 2 start-page: 1294 year: 2017 ident: ref_22 article-title: MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors publication-title: ACS Sens. doi: 10.1021/acssensors.7b00304 – volume: 210 start-page: 297 year: 2015 ident: ref_30 article-title: A novel ultra-high frequency humidity sensor based on a magnetostatic spin wave oscillator publication-title: Sens. Actuators B doi: 10.1016/j.snb.2014.12.118 – volume: 100 start-page: 119 year: 2013 ident: ref_5 article-title: Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.02.117 – volume: 597 start-page: 223 year: 2007 ident: ref_37 article-title: Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.06.050 – volume: 518 start-page: 387 year: 2009 ident: ref_49 article-title: Fabrication of a surface plasmon resonance biosensor based on gold nanoparticles chemisorbed onto a 1, 10-decanedithiol self-assembled monolayer publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.07.120 – volume: 257 start-page: 609 year: 2018 ident: ref_34 article-title: The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.10.189 – volume: 16 start-page: 1004 year: 2016 ident: ref_3 article-title: Performance of Si-Doped WO3 Thin Films for Acetone Sensing Prepared by Glancing Angle DC Magnetron Sputtering publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2496212 – volume: 7 start-page: 38444 year: 2017 ident: ref_59 article-title: Porous Au/ZnO nanoparticles synthesised through a metal organic framework (MOF) route for enhanced acetone gas-sensing publication-title: RSC Adv. doi: 10.1039/C7RA06690B – volume: 245 start-page: 882 year: 2017 ident: ref_32 article-title: Six-port microwave system for volatile organic compounds detection publication-title: Sens. Actuators B doi: 10.1016/j.snb.2017.01.194 – volume: 16 start-page: 8874 year: 2016 ident: ref_76 article-title: A QCM Humidity Sensors Based on GO/Nafion Composite Films with Enhanced Sensitivity publication-title: IEEE Sens. – volume: 40 start-page: 1081 year: 2011 ident: ref_47 article-title: MOF thin films: Existing and future applications publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00147c – volume: 135 start-page: 1926 year: 2013 ident: ref_55 article-title: Semiconductor@ metal–organic framework core–shell heterostructures: A case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311085e – volume: 7 start-page: 50279 year: 2017 ident: ref_15 article-title: Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration publication-title: RSC Adv. doi: 10.1039/C7RA09441H – ident: ref_23 – volume: 55 start-page: 15879 year: 2016 ident: ref_25 article-title: H2S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201608780 – volume: 257 start-page: 7778 year: 2011 ident: ref_73 article-title: Graphene oxide thin film coated quartz crystal microbalance for humidity detection publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.04.028 – volume: 227 start-page: 583 year: 2016 ident: ref_54 article-title: Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.12.092 – volume: 155 start-page: 206 year: 1959 ident: ref_69 article-title: The use of quartz oscillators for weighing thin layers and for microweighing applications publication-title: Z. Phys. doi: 10.1007/BF01337937 – volume: 30 start-page: 1705189 year: 2018 ident: ref_42 article-title: Metal–Organic Frameworks for Separation publication-title: Adv. Mater. doi: 10.1002/adma.201705189 – volume: 452 start-page: 184 year: 2014 ident: ref_64 article-title: Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural-and bio-gas upgrading publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.043 – volume: 1 start-page: 120 year: 2011 ident: ref_63 article-title: Expanding applications of metal−organic frameworks: Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction publication-title: ACS Catal. doi: 10.1021/cs1000625 – volume: 8 start-page: 20459 year: 2016 ident: ref_50 article-title: Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04701 – volume: 132 start-page: 7832 year: 2010 ident: ref_53 article-title: Metal–organic frameworks as sensors: A ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101415b – volume: 103 start-page: 10186 year: 2006 ident: ref_52 article-title: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602439103 – volume: 307 start-page: 1942 year: 2005 ident: ref_19 article-title: Chemical detection with a single-walled carbon nanotube capacitor publication-title: Science doi: 10.1126/science.1109128 – volume: 34 start-page: 319 year: 2001 ident: ref_45 article-title: Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal–organic carboxylate frameworks publication-title: Acc. Chem. Res. doi: 10.1021/ar000034b – volume: 112 start-page: 673 year: 2012 ident: ref_46 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 53 start-page: 5411 year: 2014 ident: ref_57 article-title: Zeolitic imidazolate framework as formaldehyde gas sensor publication-title: Inorg. Chem. doi: 10.1021/ic500474j – volume: 36 start-page: 163 year: 2016 ident: ref_79 article-title: Effect of humidity on the dielectric constant and electrical impedance of mesoporous zirconia ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2015.09.008 – ident: ref_81 doi: 10.1109/MWSCAS.2016.7870020 – volume: 9 start-page: 37184 year: 2017 ident: ref_1 article-title: Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene) publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11055 – volume: 47 start-page: 11210 year: 2011 ident: ref_51 article-title: Post-synthetic modification of epitaxially grown, highly oriented functionalized MOF thin films publication-title: Chem. Commun. doi: 10.1039/c1cc12543e – volume: 14 start-page: 12735 year: 2014 ident: ref_17 article-title: An Acetone Microsensor with a Ring Oscillator Circuit Fabricated Using the Commercial 0.18 μm CMOS Process publication-title: Sensors doi: 10.3390/s140712735 – ident: ref_77 doi: 10.1109/ICSIMA.2015.7559021 – volume: 143 start-page: 93 year: 2009 ident: ref_9 article-title: Growth and selective acetone detection based on ZnO nanorod arrays publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.08.053 – ident: ref_28 – volume: 15 start-page: 9258 year: 2013 ident: ref_78 article-title: Activation of metal–organic framework materials publication-title: CrystEngComm doi: 10.1039/c3ce41232f – volume: 114 start-page: 427 year: 2006 ident: ref_11 article-title: Semiconducting gas sensor for acetone based on the fine grained nickel ferrite publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.05.030 – volume: 8 start-page: 8323 year: 2016 ident: ref_56 article-title: MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12062 – volume: 278 start-page: 153 year: 2019 ident: ref_40 article-title: Comparative investigation of interdigitated and Parallel-plate capacitive gas sensors based on Cu-BTC nanoparticles for selective detection of polar and apolar VOCs indoors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.07.006 – volume: 222 start-page: 280 year: 2016 ident: ref_35 article-title: Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2015.08.083 – volume: 101 start-page: 316 year: 2004 ident: ref_39 article-title: A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.04.001 – volume: 245 start-page: 10 year: 2016 ident: ref_67 article-title: A 45.8fJ/Step, Energy-Efficient, Differential SAR Capacitance-to-Digital Converter for Capacitive Pressure Sensing publication-title: Sens. Actuators A doi: 10.1016/j.sna.2016.04.038 – volume: 49 start-page: 10079 year: 2013 ident: ref_48 article-title: The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces publication-title: Chem. Commun. doi: 10.1039/c3cc45343j – ident: ref_27 doi: 10.1109/ICSENS.2011.6127243 – volume: 1 start-page: 243 year: 2016 ident: ref_58 article-title: Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor publication-title: ACS Sens. doi: 10.1021/acssensors.5b00236 – volume: 115 start-page: 460 year: 2006 ident: ref_12 article-title: Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating publication-title: Sens. Actuators B doi: 10.1016/j.snb.2005.10.024 – volume: 295 start-page: 469 year: 2002 ident: ref_43 article-title: Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage publication-title: Science doi: 10.1126/science.1067208 – volume: 144 start-page: 164 year: 2010 ident: ref_74 article-title: Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.10.053 – volume: 135 start-page: 209 year: 2007 ident: ref_75 article-title: Humidity detection by nanostructured ZnO: A wireless quartz crystal microbalance investigation publication-title: Sens. Actuators A doi: 10.1016/j.sna.2006.07.001 – volume: 134 start-page: 258 year: 2008 ident: ref_36 article-title: Ionic liquids used as QCM coating materials for the detection of alcohols publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.04.039 – volume: 134 start-page: 166 year: 2008 ident: ref_10 article-title: Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.04.024 – volume: 37 start-page: 191 year: 2008 ident: ref_44 article-title: Hybrid porous solids: Past, present, future publication-title: Chem. Soc. Rev. doi: 10.1039/B618320B – volume: 5 start-page: 3016 year: 2015 ident: ref_4 article-title: Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite publication-title: RSC Adv. doi: 10.1039/C4RA10942B – volume: 28 start-page: 5229 year: 2016 ident: ref_2 article-title: MOF Thin Film-Coated Metal Oxide Nanowire Array: Significantly Improved Chemiresistor Sensor Performance publication-title: Adv. Mater. doi: 10.1002/adma.201506457 – volume: 738 start-page: 69 year: 2012 ident: ref_6 article-title: Breath acetone monitoring by portable Si: WO3 gas sensors publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.06.002 – volume: 56 start-page: 14066 year: 2017 ident: ref_14 article-title: Bio-Inspired Carbon Monoxide Sensors with Voltage-Activated Sensitivity publication-title: Angew. Chem. doi: 10.1002/anie.201707491 – volume: 106 start-page: 177 year: 2005 ident: ref_38 article-title: Calixarene films as sensitive coatings for QCM-based gas sensors publication-title: Sens. Actuators B doi: 10.1016/j.snb.2004.05.054 – volume: 135 start-page: 10763 year: 2013 ident: ref_61 article-title: In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403849c – volume: 6 start-page: 5550 year: 2018 ident: ref_21 article-title: Highly sensitive and selective SO2 MOF sensor: The integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10538J – ident: ref_24 doi: 10.3390/s17091942 – volume: 29 start-page: 1191 year: 2004 ident: ref_26 article-title: Optical fiber humidity sensor based on evanescent-wave scattering publication-title: Opt. Lett. doi: 10.1364/OL.29.001191 – volume: 15 start-page: 1998 year: 2015 ident: ref_70 article-title: Design and fabrication of interdigital nanocapacitors coated with HfO2 publication-title: Sensors doi: 10.3390/s150101998 – volume: 15 start-page: 1991 year: 2015 ident: ref_65 article-title: Micromechanical behavior of polycrystalline metal–organic framework thin films synthesized by electrochemical reaction publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b00140 – volume: 237 start-page: 876 year: 2016 ident: ref_33 article-title: Microwave-based sensors with phthalocyanine films for acetone, ethanol and methanol detection publication-title: Sens. Actuators B doi: 10.1016/j.snb.2016.06.168 – volume: 71 start-page: 36 year: 2000 ident: ref_13 article-title: Chemical reactions in the detection of acetone and NO by a CeO2 thin film publication-title: Sens. Actuators B doi: 10.1016/S0925-4005(00)00592-X – volume: 15 start-page: 18153 year: 2015 ident: ref_16 article-title: Insights on Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study publication-title: Sensors doi: 10.3390/s150818153 – volume: 155 start-page: 782 year: 2011 ident: ref_8 article-title: Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning publication-title: Sens. Actuators B doi: 10.1016/j.snb.2011.01.047 – volume: 64 start-page: 310 year: 2017 ident: ref_68 article-title: A 33fJ/Step SAR Capacitance-to-Digital Converter Using a Chain of Inverter-Based Amplifiers publication-title: IEEE Trans. Circuits Syst. I doi: 10.1109/TCSI.2016.2608905 – volume: 39 start-page: 701 year: 2010 ident: ref_72 article-title: Dielectric constants of water, methanol, ethanol, butanol and acetone: Measurement and computational study publication-title: J. Solut. Chem. doi: 10.1007/s10953-010-9538-5 – volume: 136 start-page: 14686 year: 2014 ident: ref_62 article-title: Bicontinuous zeolitic imidazolate framework ZIF-8@ GO membrane with enhanced hydrogen selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5083602 – volume: 112 start-page: 291 year: 2004 ident: ref_71 article-title: Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure publication-title: Sens. Actuators A doi: 10.1016/j.sna.2004.01.040 – volume: 135 start-page: 309 year: 2007 ident: ref_18 article-title: Improved chemical detection using single-walled carbon nanotube network capacitors publication-title: Sens. Actuators A doi: 10.1016/j.sna.2006.07.027 – volume: 260 start-page: 685 year: 2018 ident: ref_29 article-title: Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.01.015 – volume: 33 start-page: 156 year: 1996 ident: ref_31 article-title: A new method to measure absolute humidity independently of the ambient temperature publication-title: Sens. Actuators B doi: 10.1016/0925-4005(96)80090-6 – volume: 6 start-page: 1500 year: 1995 ident: ref_20 article-title: High-frequency measurements of conducting polymers: Development of a new technique for sensing volatile chemicals publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/6/10/010 – volume: 153 start-page: 382 year: 2011 ident: ref_7 article-title: Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.11.003 – volume: 3 start-page: 929 year: 2003 ident: ref_80 article-title: Carbon nanotube sensors for gas and organic vapor detection publication-title: Nano Lett. doi: 10.1021/nl034220x – volume: 44 start-page: 6774 year: 2015 ident: ref_41 article-title: Multifunctional metal–organic frameworks: From academia to industrial applications publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00307E – volume: 415–416 start-page: 577 year: 2012 ident: ref_60 article-title: Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.052 – reference: 18197340 - Chem Soc Rev. 2008 Jan;37(1):191-214 – reference: 27153113 - Adv Mater. 2016 Jul;28(26):5229-34 – reference: 16798880 - Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10186-10191 – reference: 25602271 - Sensors (Basel). 2015 Jan 16;15(1):1998-2005 – reference: 23339400 - J Am Chem Soc. 2013 Feb 6;135(5):1926-33 – reference: 11799235 - Science. 2002 Jan 18;295(5554):469-72 – reference: 25290574 - J Am Chem Soc. 2014 Oct 22;136(42):14686-9 – reference: 29582482 - Adv Mater. 2018 Sep;30(37):e1705189 – reference: 27797152 - Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15879-15883 – reference: 15209243 - Opt Lett. 2004 Jun 1;29(11):1191-3 – reference: 20486704 - J Am Chem Soc. 2010 Jun 16;132(23):7832-3 – reference: 17683733 - Anal Chim Acta. 2007 Aug 6;597(2):223-30 – reference: 21927763 - Chem Commun (Camb). 2011 Oct 28;47(40):11210-2 – reference: 24056617 - Chem Commun (Camb). 2013 Oct 3;49(86):10079-81 – reference: 28953355 - ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37184-37190 – reference: 27003470 - ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8323-8 – reference: 22790702 - Anal Chim Acta. 2012 Aug 13;738:69-75 – reference: 26161830 - Chem Soc Rev. 2015 Oct 7;44(19):6774-803 – reference: 28809112 - ACS Sens. 2017 Sep 22;2(9):1294-1301 – reference: 15790850 - Science. 2005 Mar 25;307(5717):1942-5 – reference: 26213943 - Sensors (Basel). 2015 Jul 24;15(8):18153-66 – reference: 21225034 - Chem Soc Rev. 2011 Feb;40(2):1081-106 – reference: 28952172 - Angew Chem Int Ed Engl. 2017 Nov 6;56(45):14066-14070 – reference: 23758578 - J Am Chem Soc. 2013 Jul 24;135(29):10763-8 – reference: 22280456 - Chem Rev. 2012 Feb 8;112(2):673-4 – reference: 27415640 - ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20459-64 – reference: 24813234 - Inorg Chem. 2014 Jun 2;53(11):5411-3 – reference: 25036331 - Sensors (Basel). 2014 Jul 17;14(7):12735-47 – reference: 28832523 - Sensors (Basel). 2017 Aug 23;17(9): – reference: 11308306 - Acc Chem Res. 2001 Apr;34(4):319-30 |
SSID | ssj0023338 |
Score | 2.4445548 |
Snippet | We present a comparative study of two types of sensor with different transduction techniques but coated with the same sensing material to determine the effect... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3898 |
SubjectTerms | acetone comparison IDE capacitors metal–organic frameworks QCM sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_RQ-q77CNPSQy8mliXL0nGzZAmF7aUJ5Gb0GLeB4A27m0N66n_osf-uv6Qjy97shkAvvdoDEp4R833WzDeMfXQctSJckEthiaB4r3MXbJUrI0tuTcvRxgbn-Rd1ciY_n1fnW6O-Yk1YkgdOH-5Qclkr463iaGTgSmtUVgg0QoXKqR4aUc4bydRAtQQxr6QjJIjUH64oj8UbOb2TfXqR_vuQ5d0Cya2MM3vMHg1QESZpi0_YA-yesodbAoLP2O8JTG_luyEWBd7AooX-P1-4-BYbyDDAcZp1ExBsF6Cv4_wB0-UNIcNLmMeSPBcrHD1Cn7pCUpSF01HfdQUEbWGOZP7n56_UvulhNtZ15UeUCgNMPEZlb_hKzHixXD1nZ7Pj0-lJPoxbyD1honXujTaKW8Jktq4V1laqqMalgixtbQpD58kGXbYaK-e8Lz3qUGgbSZBrbWjFC7bX0TKvGAjusS1lVTjUUghPX587ssKycMGLkLFPoxsaP2iRx5EYlw1xkuixZuOxjH3YmF4lAY77jI6iLzcGUTO7f0CR1AyR1PwrkjL2foyEhs5YvDixHS6uV01JRD52KJsiYy9TZGyWEunuWGWs3omZnb3svukuvvc63lEISNXy9f_Y_Bu2T1BOxy5JXr5le-vlNb4juLR2B_3J-AuHHxgU priority: 102 providerName: Directory of Open Access Journals |
Title | A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30424566 https://www.proquest.com/docview/2133439190 https://pubmed.ncbi.nlm.nih.gov/PMC6263674 https://doaj.org/article/414769ca61e94d1688e6a33e936d5b6a |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB71IaFyQDyLeUQL4sDFYHs36_UBoSRKqJBSIWik3Kx9uVSKHGqnUsOJ_8CRf8cvYdYvapQTFx_ssWx5djTf5535BuCVCq3giAt8RiUSFK2Fr4wc-jxhUSiTLLTSNTjPT_nJgn1cDpd70M7YbD5guZPauXlSi2L15vpy-x4D_p1jnEjZ35aYpdx-m9iHQ0xIsYvPOes2EyKKNKwWFeqbH8EtWu_88V5WqsT7dyHOfwsnb2Si2V2400BIMqp9fg_2bH4fbt8QFnwAv0Zk8lfWm7hiwS1ZZ6T6_2cuzl1jmTVkWs_AMZbI3JCqvvM7mRRbRIwrMnelespVPmpLqpRmaqVZctbqvpYEIS-ZWzT__eNn3dapyayt9_LHmCINGWnrFL_JF2TM66J8CIvZ9Gxy4jdjGHyNWGnj60QkPJSI1WQccxtLxp1KFzcsknESJBhn0ogoE3aolNaRtsIEQjpypDJpMvoIDnJ8zGMgNNQ2ww8eKCsYpRodESq0slGgjKbGg9etG1LdaJS7URmrFLmKc17aOc-Dl53pt1qYY5fR2PmyM3Ba2tWJdXGeNqGZspDFPNGShzZhJuRCWC4ptQnlZqi49OBFuxJSjD23oSJzu74q0wgJvutcTgIPjuuV0T2qXVkexL0103uX_pX84mul7-0EgnjMnvz3nU_hCHGdcC2TYfQMDjbFlX2O2GmjBrAfL2M8itmHARyOp6efPg-q_xCDKmb-APToIz0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Interdigitated+Electrode+and+Quartz+Crystal+Microbalance+Transduction+Techniques+for+Metal%E2%80%93Organic+Framework-Based+Acetone+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chappanda%2C+Karumbaiah+N.&rft.au=Tchalala%2C+Mohamed+R.&rft.au=Shekhah%2C+Osama&rft.au=Surya%2C+Sandeep+G.&rft.date=2018-11-12&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fs18113898&rft_id=info%3Apmid%2F30424566&rft.externalDocID=PMC6263674 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |