Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery
This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO...
Saved in:
Published in | Water research (Oxford) Vol. 153; pp. 134 - 143 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.
[Display omitted]
•Forward osmosis coupled with nanofiltration confirms potential for upscaling.•The system allows wastewater reuse and desalination of brackish groundwater.•Relatively low water flux in forward osmosis is one of the limiting factors.•Loss of draw solute and composition change should be addressed for reconcentration.•Preliminary fouling experiments suggest low irreversible flux decline. |
---|---|
AbstractList | This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m-2h-1 with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m-2h-1 with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. [Display omitted] •Forward osmosis coupled with nanofiltration confirms potential for upscaling.•The system allows wastewater reuse and desalination of brackish groundwater.•Relatively low water flux in forward osmosis is one of the limiting factors.•Loss of draw solute and composition change should be addressed for reconcentration.•Preliminary fouling experiments suggest low irreversible flux decline. This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na SO was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m h with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. |
Author | Ricceri, Francesco Tiraferri, Alberto Giagnorio, Mattia |
Author_xml | – sequence: 1 givenname: Mattia surname: Giagnorio fullname: Giagnorio, Mattia organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy – sequence: 2 givenname: Francesco surname: Ricceri fullname: Ricceri, Francesco organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy – sequence: 3 givenname: Alberto orcidid: 0000-0001-9859-1328 surname: Tiraferri fullname: Tiraferri, Alberto email: alberto.tiraferri@polito.it organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30708192$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1q3DAURkVJaSZp36AULbvx9MrS2FYXhZL-BQLZpGshS9eNph5pKskx8wJ97mriZNNFU7gguJzvE5x7Rk588EjIawZrBqx5t13POkdM6xqYXAMrI56RFetaWdVCdCdkBSB4xfhGnJKzlLYAUNdcviCnHFromKxX5PcnTHp0XmcXPA0D7aM2P126pT9imLwtf2Ck2lsacUp4JGadMi77_kCHEGcdLQ1pF5JL1IRpP6Kls8u31GsfBjfmuNQXltqoZ5rCON1vIppwh_Hwkjwf9Jjw1cN7Tr5_-Xxz8a26uv56efHxqjJCsFyZrm-GDoQUrOm4GcBqybDfcF43Q1P3xUSroTPQcyF7BAQLhQdhW1azzvBz8nbp3cfwa8KU1c4lg-OoPYYpqQLJDW-h2fwH2krRcVm3BX3zgE79Dq3aR7fT8aAeNRfg_QKYGFKKOCjj8r2TosaNioE63lRt1XJTdbypAlZGlLD4K_zY_0TswxLD4vPOYVTJOPQGrSvWs7LB_bvgD1Gtv98 |
CitedBy_id | crossref_primary_10_1016_j_desal_2022_116083 crossref_primary_10_2139_ssrn_4105326 crossref_primary_10_1007_s40726_019_00121_8 crossref_primary_10_1021_acsami_0c13363 crossref_primary_10_1016_j_biortech_2019_121795 crossref_primary_10_1016_j_mtsust_2023_100361 crossref_primary_10_1002_er_8607 crossref_primary_10_1016_j_cej_2023_143964 crossref_primary_10_1016_j_memsci_2020_118220 crossref_primary_10_1016_j_desal_2020_114738 crossref_primary_10_1039_D0EW00490A crossref_primary_10_1016_j_desal_2021_115509 crossref_primary_10_3390_membranes10010012 crossref_primary_10_3390_w13243653 crossref_primary_10_1016_j_jwpe_2024_105565 crossref_primary_10_1016_j_jwpe_2020_101752 crossref_primary_10_2139_ssrn_4059822 crossref_primary_10_1016_j_desal_2020_114451 crossref_primary_10_5004_dwt_2022_28713 crossref_primary_10_1016_j_jwpe_2024_105718 crossref_primary_10_1016_j_desal_2024_117926 crossref_primary_10_1016_j_watres_2022_118768 crossref_primary_10_3390_w12010107 crossref_primary_10_1016_j_desal_2023_117009 crossref_primary_10_1016_j_seppur_2022_121558 crossref_primary_10_1016_j_desal_2021_115346 crossref_primary_10_3390_membranes10110332 crossref_primary_10_1016_j_desal_2023_117087 crossref_primary_10_1002_app_53295 crossref_primary_10_1021_acsami_0c12141 crossref_primary_10_3390_membranes9050061 crossref_primary_10_1007_s12145_021_00703_5 crossref_primary_10_1016_j_watres_2022_119524 crossref_primary_10_1016_j_seppur_2020_117568 crossref_primary_10_1007_s11356_022_20674_4 crossref_primary_10_1016_j_cherd_2022_03_053 crossref_primary_10_1016_j_heliyon_2020_e05246 crossref_primary_10_1016_j_cej_2021_133634 crossref_primary_10_2166_ws_2019_154 crossref_primary_10_1016_j_jwpe_2019_101092 crossref_primary_10_1016_j_chemosphere_2021_133113 crossref_primary_10_2166_wst_2020_331 crossref_primary_10_1016_j_desal_2022_116185 crossref_primary_10_1016_j_apenergy_2020_114699 crossref_primary_10_1016_j_envint_2021_106498 crossref_primary_10_1016_j_jconhyd_2021_103923 crossref_primary_10_1016_j_jece_2024_113968 crossref_primary_10_1016_j_memsci_2022_121013 crossref_primary_10_3390_membranes14050107 crossref_primary_10_1016_j_desal_2022_115924 crossref_primary_10_1016_j_seppur_2024_130163 crossref_primary_10_1016_j_desal_2023_116378 crossref_primary_10_1016_j_scitotenv_2019_07_351 crossref_primary_10_1016_j_coche_2023_100974 crossref_primary_10_1016_j_memsci_2020_118759 crossref_primary_10_1016_j_desal_2020_114557 crossref_primary_10_1016_j_jwpe_2022_102828 crossref_primary_10_1021_acs_est_3c00084 crossref_primary_10_1016_j_seppur_2024_127913 crossref_primary_10_1016_j_cej_2019_122514 crossref_primary_10_1016_j_jwpe_2022_103256 crossref_primary_10_1007_s11356_024_33742_8 crossref_primary_10_1007_s40726_021_00208_1 crossref_primary_10_1016_j_jece_2021_105473 crossref_primary_10_1016_j_seppur_2023_125182 crossref_primary_10_1016_j_matpr_2020_12_259 crossref_primary_10_1080_10643389_2021_1902698 crossref_primary_10_1016_j_desal_2020_114803 crossref_primary_10_1016_j_memsci_2020_118803 |
Cites_doi | 10.1016/j.desal.2011.08.053 10.1016/j.biortech.2017.09.101 10.1016/j.watres.2015.10.017 10.1021/ez400189z 10.1016/j.cej.2015.05.080 10.1016/j.memsci.2013.05.023 10.1016/j.watres.2012.09.058 10.1039/c3cs60051c 10.1016/j.watres.2014.08.021 10.1016/j.watres.2014.03.045 10.1016/j.memsci.2013.02.022 10.1016/j.desal.2008.02.022 10.1016/j.memsci.2011.01.048 10.1080/19443994.2012.672168 10.1016/j.desal.2013.11.026 10.1016/j.desal.2012.05.037 10.1016/j.apenergy.2017.12.124 10.1016/j.memsci.2011.12.023 10.1016/j.gloenvcha.2009.08.003 10.1016/j.memsci.2011.12.006 10.1016/j.desal.2006.03.583 10.3390/membranes6030037 10.1016/j.desal.2013.11.014 10.1016/j.jwpe.2014.10.006 10.1016/j.memsci.2010.08.010 10.1016/j.memsci.2015.01.025 10.1126/sciadv.1500323 10.1021/cr00090a003 10.1038/nclimate1744 10.1016/j.jwpe.2015.12.007 10.1039/C5EW00103J 10.1016/j.cej.2012.05.070 10.1016/j.memsci.2009.11.021 10.1016/j.memsci.2014.09.026 10.1016/j.cej.2014.03.049 10.1016/j.desal.2010.12.019 10.1016/j.biortech.2012.04.089 10.1016/j.desal.2018.04.015 10.1016/j.desal.2014.10.031 10.1016/j.memsci.2014.11.055 10.1021/es404056e 10.1016/j.desal.2017.12.016 10.1016/j.memsci.2011.12.026 10.1016/j.cej.2018.01.042 10.1126/science.1200488 10.1021/es4038676 10.1016/j.memsci.2013.04.056 10.1016/j.memsci.2006.07.049 10.1016/j.desal.2014.12.011 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2019.01.014 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 143 |
ExternalDocumentID | 30708192 10_1016_j_watres_2019_01_014 S004313541930048X |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-c8b6f804941683cf0da91eb53326f62b0197a08c0b349be0e0d0f8004d71218c3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Thu Jul 10 18:14:20 EDT 2025 Sun Aug 24 03:45:49 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Tue Jul 01 01:20:55 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Feb 23 02:23:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Draw solution recovery Nanofiltration Forward osmosis Water reuse Desalination Brackish groundwater Wastewater |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-c8b6f804941683cf0da91eb53326f62b0197a08c0b349be0e0d0f8004d71218c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9859-1328 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S004313541930048X |
PMID | 30708192 |
PQID | 2179483927 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2189537065 proquest_miscellaneous_2179483927 pubmed_primary_30708192 crossref_citationtrail_10_1016_j_watres_2019_01_014 crossref_primary_10_1016_j_watres_2019_01_014 elsevier_sciencedirect_doi_10_1016_j_watres_2019_01_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-15 |
PublicationDateYYYYMMDD | 2019-04-15 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mi, Elimelech (bib32) 2010; 348 Taylor, Scanlon, Doll, Rodell, van Beek, Wada, Longuevergne, Leblanc, Famiglietti, Edmunds, Konikow, Green, Chen, Taniguchi, Bierkens, MacDonald, Fan, Maxwell, Yechieli, Gurdak, Allen, Shamsudduha, Hiscock, Yeh, Holman, Treidel (bib42) 2013; 3 Elimelech, Phillip (bib13) 2011; 333 Luo, Wang, Zhang, Tao, Zhou, Chen, Bie (bib26) 2014; 4 Blandin, Verliefde, Tang, Le-Clech (bib5) 2015; 363 Ren, McCutcheon (bib36) 2014; 343 Hu, Wang, Ngo, Sun, Yang (bib20) 2018; 247 Akther, Sodiq, Giwa, Daer, Arafat, Hasan (bib3) 2015; 281 Corzo, de la Torre, Sans, Escorihuela, Navea, Malfeito (bib12) 2018; 338 Klaysom, Cath, Depuydt, Vankelecom (bib23) 2013; 42 Linares, Li, Sarp, Bucs, Amy, Vrouwenvelder (bib24) 2014; 66 Xiao, Li, Chou, Wang, Tang (bib46) 2012; 392 Mekonnen, Hoekstra (bib31) 2016; 2 Ren, McCutcheon (bib37) 2018; 442 Walha, Ben Amar, Firdaous, Quemeneur, Jaouen (bib44) 2007; 207 Wan, Chung (bib45) 2018; 212 Blandin, Vervoort, Le-Clech, Verliefde (bib6) 2016; 9 Huang, McCutcheon (bib21) 2015; 483 Lutchmiah, Verliefde, Roest, Rietveld, Cornelissen (bib27) 2014; 58 Shaffer, Werber, Jaramillo, Lin, Elimelech (bib40) 2015; 356 Hickenbottom, Hancock, Hutchings, Appleton, Beaudry, Xu, Cath (bib18) 2013; 312 Achilli, Cath, Childress (bib1) 2010; 364 Marcus (bib29) 1988; 88 Kim, Phuntsho, Chekli, Choi, Shon (bib22) 2018; 429 Guo, Ngo, Li (bib16) 2012; 122 Chung, Zhang, Wang, Su, Ling (bib9) 2012; 287 Garcia-Castello, McCutcheon (bib14) 2011; 372 Blandin, Verliefde, Comas, Rodriguez-Roda, Le-Clech (bib4) 2016; 6 McCutcheon, Elimelech (bib30) 2006; 284 Achilli, Cath, Marchand, Childress (bib2) 2009; 239 Skouteris, Hermosilla, Lopez, Negro, Blanco (bib41) 2012; 198 Chekli, Phuntsho, Shon, Vigneswaran, Kandasamy, Chanan (bib8) 2012; 43 Tiraferri, Yip, Straub, Castrillon, Elimelech (bib43) 2013; 444 Coday, Xu, Beaudry, Herron, Lampi, Hancock, Cath (bib10) 2014; 333 Setiawan, Wang, Li, Fane (bib39) 2012; 394 Boo, Khalil, Elimelech (bib7) 2015; 473 Madsen, Bajraktari, Helix-Nielsen, Van der Bruggen, Sogaard (bib28) 2015; 476 Qu, Alvarez, Li (bib35) 2013; 47 Ridoutt, Pfister (bib38) 2010; 20 Zhao, Zou, Tang, Mulcahy (bib50) 2012; 396 Hancock, Xu, Roby, Gomez, Cath (bib17) 2013; 445 Minella, De Bellis, Gallo, Giagnorio, Minero, Bertinetti, Sethi, Tiraferri, Vione (bib33) 2018 Coday, Yaffe, Xu, Cath (bib11) 2014; 48 Giagnorio, Ruffino, Grinic, Steffenino, Meucci, Zanetti, Tiraferri (bib15) 2018 Xie, Nghiem, Price, Elimelech (bib48) 2014; 1 Holloway, Achilli, Cath (bib19) 2015; 1 Phuntsho, Hong, Elimelech, Shon (bib34) 2013; 436 Linares, Li, Yangali-Quintanilla, Ghaffour, Amy, Leiknes, Vrouwenvelder (bib25) 2016; 88 Zhao, Zou, Mulcahy (bib49) 2012; 284 Xie, Nghiem, Price, Elimelech (bib47) 2013; 47 Zhou, Lee, Chung (bib51) 2014; 249 Wan (10.1016/j.watres.2019.01.014_bib45) 2018; 212 Skouteris (10.1016/j.watres.2019.01.014_bib41) 2012; 198 Hu (10.1016/j.watres.2019.01.014_bib20) 2018; 247 Chekli (10.1016/j.watres.2019.01.014_bib8) 2012; 43 Walha (10.1016/j.watres.2019.01.014_bib44) 2007; 207 Linares (10.1016/j.watres.2019.01.014_bib24) 2014; 66 Huang (10.1016/j.watres.2019.01.014_bib21) 2015; 483 Linares (10.1016/j.watres.2019.01.014_bib25) 2016; 88 Minella (10.1016/j.watres.2019.01.014_bib33) 2018 Taylor (10.1016/j.watres.2019.01.014_bib42) 2013; 3 Setiawan (10.1016/j.watres.2019.01.014_bib39) 2012; 394 Zhao (10.1016/j.watres.2019.01.014_bib49) 2012; 284 Elimelech (10.1016/j.watres.2019.01.014_bib13) 2011; 333 Mekonnen (10.1016/j.watres.2019.01.014_bib31) 2016; 2 Madsen (10.1016/j.watres.2019.01.014_bib28) 2015; 476 Blandin (10.1016/j.watres.2019.01.014_bib6) 2016; 9 Boo (10.1016/j.watres.2019.01.014_bib7) 2015; 473 Xie (10.1016/j.watres.2019.01.014_bib47) 2013; 47 Coday (10.1016/j.watres.2019.01.014_bib10) 2014; 333 Guo (10.1016/j.watres.2019.01.014_bib16) 2012; 122 Blandin (10.1016/j.watres.2019.01.014_bib5) 2015; 363 Hickenbottom (10.1016/j.watres.2019.01.014_bib18) 2013; 312 Chung (10.1016/j.watres.2019.01.014_bib9) 2012; 287 Giagnorio (10.1016/j.watres.2019.01.014_bib15) 2018 Achilli (10.1016/j.watres.2019.01.014_bib1) 2010; 364 Garcia-Castello (10.1016/j.watres.2019.01.014_bib14) 2011; 372 Zhao (10.1016/j.watres.2019.01.014_bib50) 2012; 396 Lutchmiah (10.1016/j.watres.2019.01.014_bib27) 2014; 58 Achilli (10.1016/j.watres.2019.01.014_bib2) 2009; 239 Corzo (10.1016/j.watres.2019.01.014_bib12) 2018; 338 Kim (10.1016/j.watres.2019.01.014_bib22) 2018; 429 Marcus (10.1016/j.watres.2019.01.014_bib29) 1988; 88 Tiraferri (10.1016/j.watres.2019.01.014_bib43) 2013; 444 Xiao (10.1016/j.watres.2019.01.014_bib46) 2012; 392 Xie (10.1016/j.watres.2019.01.014_bib48) 2014; 1 Mi (10.1016/j.watres.2019.01.014_bib32) 2010; 348 Blandin (10.1016/j.watres.2019.01.014_bib4) 2016; 6 Ren (10.1016/j.watres.2019.01.014_bib37) 2018; 442 Hancock (10.1016/j.watres.2019.01.014_bib17) 2013; 445 Ridoutt (10.1016/j.watres.2019.01.014_bib38) 2010; 20 Zhou (10.1016/j.watres.2019.01.014_bib51) 2014; 249 Holloway (10.1016/j.watres.2019.01.014_bib19) 2015; 1 Phuntsho (10.1016/j.watres.2019.01.014_bib34) 2013; 436 Akther (10.1016/j.watres.2019.01.014_bib3) 2015; 281 Coday (10.1016/j.watres.2019.01.014_bib11) 2014; 48 Klaysom (10.1016/j.watres.2019.01.014_bib23) 2013; 42 Luo (10.1016/j.watres.2019.01.014_bib26) 2014; 4 McCutcheon (10.1016/j.watres.2019.01.014_bib30) 2006; 284 Shaffer (10.1016/j.watres.2019.01.014_bib40) 2015; 356 Ren (10.1016/j.watres.2019.01.014_bib36) 2014; 343 Qu (10.1016/j.watres.2019.01.014_bib35) 2013; 47 |
References_xml | – volume: 88 start-page: 225 year: 2016 end-page: 234 ident: bib25 article-title: Life cycle cost of a hybrid forward osmosis low pressure reverse osmosis system for seawater desalination and wastewater recovery publication-title: Water Res. – volume: 47 start-page: 13486 year: 2013 end-page: 13493 ident: bib47 article-title: A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations publication-title: Environ. Sci. Technol. – volume: 42 start-page: 6959 year: 2013 end-page: 6989 ident: bib23 article-title: Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply publication-title: Chem. Soc. Rev. – volume: 212 start-page: 1038 year: 2018 end-page: 1050 ident: bib45 article-title: Techno-economic evaluation of various RO plus PRO and RO plus FO integrated processes publication-title: Appl. Energy – volume: 442 start-page: 44 year: 2018 end-page: 50 ident: bib37 article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis publication-title: Desalination – volume: 2 year: 2016 ident: bib31 article-title: Four billion people facing severe water scarcity publication-title: Sci. Adv. – volume: 281 start-page: 502 year: 2015 end-page: 522 ident: bib3 article-title: Recent advancements in forward osmosis desalination: a review publication-title: Chem. Eng. J. – volume: 445 start-page: 34 year: 2013 end-page: 46 ident: bib17 article-title: Towards direct potable reuse with forward osmosis: technical assessment of long-term process performance at the pilot scale publication-title: J. Membr. Sci. – volume: 312 start-page: 60 year: 2013 end-page: 66 ident: bib18 article-title: Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations publication-title: Desalination – volume: 207 start-page: 95 year: 2007 end-page: 106 ident: bib44 article-title: Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison publication-title: Desalination – volume: 333 start-page: 23 year: 2014 end-page: 35 ident: bib10 article-title: The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams publication-title: Desalination – start-page: 1 year: 2018 end-page: 12 ident: bib15 article-title: Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection publication-title: Environ. Sci. Pollut. Res. – volume: 338 start-page: 383 year: 2018 end-page: 391 ident: bib12 article-title: Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture publication-title: Chem. Eng. J. – volume: 48 start-page: 3612 year: 2014 end-page: 3624 ident: bib11 article-title: Rejection of trace organic compounds by forward osmosis membranes: a literature review publication-title: Environ. Sci. Technol. – volume: 249 start-page: 236 year: 2014 end-page: 245 ident: bib51 article-title: Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction publication-title: Chem. Eng. J. – volume: 429 start-page: 96 year: 2018 end-page: 104 ident: bib22 article-title: Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water publication-title: Desalination – volume: 444 start-page: 523 year: 2013 end-page: 538 ident: bib43 article-title: A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes publication-title: J. Membr. Sci. – volume: 473 start-page: 302 year: 2015 end-page: 309 ident: bib7 article-title: Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis publication-title: J. Membr. Sci. – volume: 239 start-page: 10 year: 2009 end-page: 21 ident: bib2 article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes publication-title: Desalination – volume: 1 start-page: 191 year: 2014 end-page: 195 ident: bib48 article-title: Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process publication-title: Environ. Sci. Technol. – volume: 43 start-page: 167 year: 2012 end-page: 184 ident: bib8 article-title: A review of draw solutes in forward osmosis process and their use in modern applications publication-title: Desalination Water Treat. – volume: 356 start-page: 271 year: 2015 end-page: 284 ident: bib40 article-title: Forward osmosis: where are we now? publication-title: Desalination – volume: 476 start-page: 469 year: 2015 end-page: 474 ident: bib28 article-title: Use of biomimetic forward osmosis membrane for trace organics removal publication-title: J. Membr. Sci. – volume: 1 start-page: 581 year: 2015 end-page: 605 ident: bib19 article-title: The osmotic membrane bioreactor: a critical review publication-title: Environ. Sci. Water Res. Technol. – volume: 58 start-page: 179 year: 2014 end-page: 197 ident: bib27 article-title: Forward osmosis for application in wastewater treatment: a review publication-title: Water Res. – volume: 394 start-page: 80 year: 2012 end-page: 88 ident: bib39 article-title: Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer publication-title: J. Membr. Sci. – volume: 333 start-page: 712 year: 2011 end-page: 717 ident: bib13 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science – volume: 3 start-page: 322 year: 2013 end-page: 329 ident: bib42 article-title: Ground water and climate change publication-title: Nat. Clim. Change – volume: 436 start-page: 1 year: 2013 end-page: 15 ident: bib34 article-title: Forward osmosis desalination of brackish groundwater: meeting water quality requirements for fertigation by integrating nanofiltration publication-title: J. Membr. Sci. – volume: 284 start-page: 175 year: 2012 end-page: 181 ident: bib49 article-title: Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute publication-title: Desalination – volume: 284 start-page: 237 year: 2006 end-page: 247 ident: bib30 article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis publication-title: J. Membr. Sci. – volume: 198 start-page: 138 year: 2012 end-page: 148 ident: bib41 article-title: Anaerobic membrane bioreactors for wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 343 start-page: 187 year: 2014 end-page: 193 ident: bib36 article-title: A new commercial thin film composite membrane for forward osmosis publication-title: Desalination – volume: 364 start-page: 233 year: 2010 end-page: 241 ident: bib1 article-title: Selection of inorganic-based draw solutions for forward osmosis applications publication-title: J. Membr. Sci. – volume: 88 start-page: 1475 year: 1988 end-page: 1498 ident: bib29 article-title: Ionic radii in aqueous solutions publication-title: Chem. Rev. – volume: 247 start-page: 1107 year: 2018 end-page: 1118 ident: bib20 article-title: Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: a review publication-title: Bioresour. Technol. – volume: 396 start-page: 1 year: 2012 end-page: 21 ident: bib50 article-title: Recent developments in forward osmosis: opportunities and challenges publication-title: J. Membr. Sci. – volume: 9 start-page: 161 year: 2016 end-page: 169 ident: bib6 article-title: Fouling and cleaning of high permeability forward osmosis membranes publication-title: J. Water Process Eng. – volume: 47 start-page: 3931 year: 2013 end-page: 3946 ident: bib35 article-title: Applications of nanotechnology in water and wastewater treatment publication-title: Water Res. – volume: 6 year: 2016 ident: bib4 article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review publication-title: Membranes – volume: 348 start-page: 337 year: 2010 end-page: 345 ident: bib32 article-title: Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents publication-title: J. Membr. Sci. – volume: 4 start-page: 212 year: 2014 end-page: 223 ident: bib26 article-title: A review on the recovery methods of draw solutes in forward osmosis publication-title: J. Water Process Eng. – volume: 287 start-page: 78 year: 2012 end-page: 81 ident: bib9 article-title: Forward osmosis processes: yesterday, today and tomorrow publication-title: Desalination – volume: 20 start-page: 113 year: 2010 end-page: 120 ident: bib38 article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity publication-title: Glob. Environ. Change-Human. Pol. Dimension. – volume: 122 start-page: 27 year: 2012 end-page: 34 ident: bib16 article-title: A mini-review on membrane fouling publication-title: Bioresour. Technol. – volume: 392 start-page: 76 year: 2012 end-page: 87 ident: bib46 article-title: A modeling investigation on optimizing the design of forward osmosis hollow fiber modules publication-title: J. Membr. Sci. – volume: 363 start-page: 26 year: 2015 end-page: 36 ident: bib5 article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination publication-title: Desalination – year: 2018 ident: bib33 article-title: Coupling of Nanofiltration and Thermal Fenton Reaction for the Abatement of Carbamazepine in Wastewater – volume: 66 start-page: 122 year: 2014 end-page: 139 ident: bib24 article-title: Forward osmosis niches in seawater desalination and wastewater reuse publication-title: Water Res. – volume: 483 start-page: 25 year: 2015 end-page: 33 ident: bib21 article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis publication-title: J. Membr. Sci. – volume: 372 start-page: 97 year: 2011 end-page: 101 ident: bib14 article-title: Dewatering press liquor derived from orange production by forward osmosis publication-title: J. Membr. Sci. – volume: 284 start-page: 175 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib49 article-title: Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute publication-title: Desalination doi: 10.1016/j.desal.2011.08.053 – volume: 247 start-page: 1107 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib20 article-title: Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.101 – volume: 88 start-page: 225 year: 2016 ident: 10.1016/j.watres.2019.01.014_bib25 article-title: Life cycle cost of a hybrid forward osmosis low pressure reverse osmosis system for seawater desalination and wastewater recovery publication-title: Water Res. doi: 10.1016/j.watres.2015.10.017 – volume: 1 start-page: 191 issue: 2 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib48 article-title: Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process publication-title: Environ. Sci. Technol. doi: 10.1021/ez400189z – volume: 281 start-page: 502 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib3 article-title: Recent advancements in forward osmosis desalination: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.080 – volume: 444 start-page: 523 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib43 article-title: A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.05.023 – volume: 47 start-page: 3931 issue: 12 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib35 article-title: Applications of nanotechnology in water and wastewater treatment publication-title: Water Res. doi: 10.1016/j.watres.2012.09.058 – volume: 42 start-page: 6959 issue: 16 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib23 article-title: Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60051c – volume: 66 start-page: 122 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib24 article-title: Forward osmosis niches in seawater desalination and wastewater reuse publication-title: Water Res. doi: 10.1016/j.watres.2014.08.021 – volume: 58 start-page: 179 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib27 article-title: Forward osmosis for application in wastewater treatment: a review publication-title: Water Res. doi: 10.1016/j.watres.2014.03.045 – volume: 436 start-page: 1 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib34 article-title: Forward osmosis desalination of brackish groundwater: meeting water quality requirements for fertigation by integrating nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.02.022 – volume: 239 start-page: 10 issue: 1–3 year: 2009 ident: 10.1016/j.watres.2019.01.014_bib2 article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes publication-title: Desalination doi: 10.1016/j.desal.2008.02.022 – volume: 372 start-page: 97 issue: 1–2 year: 2011 ident: 10.1016/j.watres.2019.01.014_bib14 article-title: Dewatering press liquor derived from orange production by forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.01.048 – volume: 43 start-page: 167 issue: 1–3 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib8 article-title: A review of draw solutes in forward osmosis process and their use in modern applications publication-title: Desalination Water Treat. doi: 10.1080/19443994.2012.672168 – volume: 343 start-page: 187 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib36 article-title: A new commercial thin film composite membrane for forward osmosis publication-title: Desalination doi: 10.1016/j.desal.2013.11.026 – volume: 312 start-page: 60 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib18 article-title: Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations publication-title: Desalination doi: 10.1016/j.desal.2012.05.037 – volume: 212 start-page: 1038 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib45 article-title: Techno-economic evaluation of various RO plus PRO and RO plus FO integrated processes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.12.124 – volume: 396 start-page: 1 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib50 article-title: Recent developments in forward osmosis: opportunities and challenges publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.023 – volume: 20 start-page: 113 issue: 1 year: 2010 ident: 10.1016/j.watres.2019.01.014_bib38 article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity publication-title: Glob. Environ. Change-Human. Pol. Dimension. doi: 10.1016/j.gloenvcha.2009.08.003 – volume: 392 start-page: 76 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib46 article-title: A modeling investigation on optimizing the design of forward osmosis hollow fiber modules publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.006 – volume: 207 start-page: 95 issue: 1–3 year: 2007 ident: 10.1016/j.watres.2019.01.014_bib44 article-title: Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison publication-title: Desalination doi: 10.1016/j.desal.2006.03.583 – volume: 6 issue: 3 year: 2016 ident: 10.1016/j.watres.2019.01.014_bib4 article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review publication-title: Membranes doi: 10.3390/membranes6030037 – volume: 333 start-page: 23 issue: 1 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib10 article-title: The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams publication-title: Desalination doi: 10.1016/j.desal.2013.11.014 – volume: 4 start-page: 212 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib26 article-title: A review on the recovery methods of draw solutes in forward osmosis publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2014.10.006 – volume: 364 start-page: 233 issue: 1–2 year: 2010 ident: 10.1016/j.watres.2019.01.014_bib1 article-title: Selection of inorganic-based draw solutions for forward osmosis applications publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.08.010 – volume: 483 start-page: 25 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib21 article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.01.025 – volume: 2 issue: 2 year: 2016 ident: 10.1016/j.watres.2019.01.014_bib31 article-title: Four billion people facing severe water scarcity publication-title: Sci. Adv. doi: 10.1126/sciadv.1500323 – year: 2018 ident: 10.1016/j.watres.2019.01.014_bib33 – volume: 88 start-page: 1475 issue: 8 year: 1988 ident: 10.1016/j.watres.2019.01.014_bib29 article-title: Ionic radii in aqueous solutions publication-title: Chem. Rev. doi: 10.1021/cr00090a003 – volume: 3 start-page: 322 issue: 4 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib42 article-title: Ground water and climate change publication-title: Nat. Clim. Change doi: 10.1038/nclimate1744 – volume: 9 start-page: 161 year: 2016 ident: 10.1016/j.watres.2019.01.014_bib6 article-title: Fouling and cleaning of high permeability forward osmosis membranes publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2015.12.007 – volume: 1 start-page: 581 issue: 5 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib19 article-title: The osmotic membrane bioreactor: a critical review publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C5EW00103J – volume: 198 start-page: 138 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib41 article-title: Anaerobic membrane bioreactors for wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.070 – volume: 348 start-page: 337 issue: 1–2 year: 2010 ident: 10.1016/j.watres.2019.01.014_bib32 article-title: Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.021 – volume: 473 start-page: 302 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib7 article-title: Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.026 – volume: 249 start-page: 236 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib51 article-title: Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.049 – volume: 287 start-page: 78 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib9 article-title: Forward osmosis processes: yesterday, today and tomorrow publication-title: Desalination doi: 10.1016/j.desal.2010.12.019 – volume: 122 start-page: 27 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib16 article-title: A mini-review on membrane fouling publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.04.089 – volume: 442 start-page: 44 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib37 article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis publication-title: Desalination doi: 10.1016/j.desal.2018.04.015 – volume: 356 start-page: 271 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib40 article-title: Forward osmosis: where are we now? publication-title: Desalination doi: 10.1016/j.desal.2014.10.031 – volume: 476 start-page: 469 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib28 article-title: Use of biomimetic forward osmosis membrane for trace organics removal publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.11.055 – volume: 47 start-page: 13486 issue: 23 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib47 article-title: A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations publication-title: Environ. Sci. Technol. doi: 10.1021/es404056e – volume: 429 start-page: 96 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib22 article-title: Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water publication-title: Desalination doi: 10.1016/j.desal.2017.12.016 – volume: 394 start-page: 80 year: 2012 ident: 10.1016/j.watres.2019.01.014_bib39 article-title: Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.026 – volume: 338 start-page: 383 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib12 article-title: Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.042 – volume: 333 start-page: 712 issue: 6043 year: 2011 ident: 10.1016/j.watres.2019.01.014_bib13 article-title: The future of seawater desalination: energy, technology, and the environment publication-title: Science doi: 10.1126/science.1200488 – volume: 48 start-page: 3612 issue: 7 year: 2014 ident: 10.1016/j.watres.2019.01.014_bib11 article-title: Rejection of trace organic compounds by forward osmosis membranes: a literature review publication-title: Environ. Sci. Technol. doi: 10.1021/es4038676 – volume: 445 start-page: 34 year: 2013 ident: 10.1016/j.watres.2019.01.014_bib17 article-title: Towards direct potable reuse with forward osmosis: technical assessment of long-term process performance at the pilot scale publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.056 – start-page: 1 year: 2018 ident: 10.1016/j.watres.2019.01.014_bib15 article-title: Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection publication-title: Environ. Sci. Pollut. Res. – volume: 284 start-page: 237 issue: 1–2 year: 2006 ident: 10.1016/j.watres.2019.01.014_bib30 article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.07.049 – volume: 363 start-page: 26 year: 2015 ident: 10.1016/j.watres.2019.01.014_bib5 article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination publication-title: Desalination doi: 10.1016/j.desal.2014.12.011 |
SSID | ssj0002239 |
Score | 2.5283575 |
Snippet | This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134 |
SubjectTerms | Brackish groundwater cleaning Desalination Draw solution recovery economic feasibility Forward osmosis fouling groundwater magnesium chloride Nanofiltration osmosis osmotic pressure permeability salinity sodium sulfate solutes Wastewater Water reuse |
Title | Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery |
URI | https://dx.doi.org/10.1016/j.watres.2019.01.014 https://www.ncbi.nlm.nih.gov/pubmed/30708192 https://www.proquest.com/docview/2179483927 https://www.proquest.com/docview/2189537065 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQ39YXEbyu7jbJbvYoYqmKnhR6W5JsgpW6W7otpReP_m5n9lH1oAVhLxsmEJLJzJfMzBdCzoWUyAESeoDOlceFZp6WRnngnSyTxsqgpC9-eAx7z_yuL_otct3UwmBaZW37K5teWuu65bKezcvRYIA1vuD8mOAAQVAP-1jBziPU8ov3rzQPcH9xE2VG6aZ8rszxmiksyMAEr7gk7wz4b-7pN_hZuqHuJtmo8SO9qoa4RVo22ybr31gFd8gHnCUV1tninNPcUTgQG8CJLxRLOLIUhmPHVGUpHdtpYVFipgq8RMN2PaeAYzGXlubFW14MCmry6WhoU4p3tjRTGb7yXbPtoixNx2pGGx2meMSG_THfJc_dm6frnlc_t-AZwEQTz0gdOol8MUEomXF-quLAasCDndCFHQ2TFClfGl8zHmvrWz_1Qd7naRQAUDBsj6xkeWYPCDVaGCVYzFwouIMToGIidjySjlknI9kmrJnlxNRc5PgkxjBpks5ek2ptElybxA_g423iLXqNKi6OJfJRs4DJD51KwF0s6XnWrHcC2w1jKCqz-RSE0IAhqIz-kpGxYBg_bpP9SlkW40UTixx0h_8e2xFZwz-MaAXimKxMxlN7AsBook9LzT8lq1e3973HT50jD4s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROJQeUCmPbh9gJK4pCbYT54hQ0ZbXCaS9WbZji0WQrDa7WnHpsb-7M3lQOABSpZycsTSyPTOf7ZnPAPtSKeIASSNE5yYS0vLIKmcijE6eK-dV0tAXX1ymw2txOpKjJTjua2EorbLz_a1Pb7x113LQjebBZDymGl8MflwKhCC0DkfvYEWg-dIzBj9-_8vzwPiX99fMJN7XzzVJXgtDFRmU4ZU37J2JeCk-vYQ_mzh08hHWOgDJjlod12HJl5_gwxNawQ34g5tJQ4W2NOisCgx3xA6B4g2jGo6yQHX8lJmyYFM_rz1JLExNp2jUbh8YAllKpmVVfV_V45q5aj658wWjQ1tWmpKe-e7odkmWFVOzYP0iZrTHRgN52ITrk59Xx8Ooe28hcgiKZpFTNg2KCGOSVHEX4sLkibcICA_TkB5aHKTMxMrFlovc-tjHRYzysSiyBJGC41uwXFal_wzMWemM5DkPqRQBt4CGyzyITAXug8rUAHg_ytp1ZOT0Jsad7rPObnU7N5rmRscJfmIA0WOvSUvG8YZ81k-gfraoNMaLN3ru9fOt0d7oEsWUvpqjEHkwQpXZazIql5wukAew3S6WR33JxxIJ3Zf_1m0X3g-vLs71-a_Ls6-wSn_oeiuR32B5Np3774iSZnansYK_rFsRGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desalination+of+brackish+groundwater+and+reuse+of+wastewater+by+forward+osmosis+coupled+with+nanofiltration+for+draw+solution+recovery&rft.jtitle=Water+research+%28Oxford%29&rft.au=Giagnorio%2C+Mattia&rft.au=Ricceri%2C+Francesco&rft.au=Tiraferri%2C+Alberto&rft.date=2019-04-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=153&rft.spage=134&rft_id=info:doi/10.1016%2Fj.watres.2019.01.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |