Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery

This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 153; pp. 134 - 143
Main Authors Giagnorio, Mattia, Ricceri, Francesco, Tiraferri, Alberto
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. [Display omitted] •Forward osmosis coupled with nanofiltration confirms potential for upscaling.•The system allows wastewater reuse and desalination of brackish groundwater.•Relatively low water flux in forward osmosis is one of the limiting factors.•Loss of draw solute and composition change should be addressed for reconcentration.•Preliminary fouling experiments suggest low irreversible flux decline.
AbstractList This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m-2h-1 with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m-2h-1 with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.
This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.
This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl2 had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na2SO4 was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m−2h−1 with an initial bulk draw osmotic pressure in the range of 12–15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system. [Display omitted] •Forward osmosis coupled with nanofiltration confirms potential for upscaling.•The system allows wastewater reuse and desalination of brackish groundwater.•Relatively low water flux in forward osmosis is one of the limiting factors.•Loss of draw solute and composition change should be addressed for reconcentration.•Preliminary fouling experiments suggest low irreversible flux decline.
This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The groundwater had salinity of 4 g/L, while the wastewater sample consisted of a secondary effluent. These feed solutions were treated first in a FO step, achieving a recovery of >60%. Subsequently, the diluted draw solutions were subject to a nanofiltration (NF) step to regenerate their original osmotic pressure and to simultaneously collect a final permeate product. Magnesium chloride and sodium sulfate were both suitable draw solutes for this application. MgCl had a larger specific reverse salt flux and induced a more pronounced fouling-related flux decline with groundwater samples. Na SO was re-concentrated with a higher permeability NF membrane but may require the use of anti-scalants. The average fluxes obtained in high-recovery batch FO were between 5 and 11 L m h with an initial bulk draw osmotic pressure in the range of 12-15 bar. Relatively low flux decline was observed in fouling experiments with both samples, while physical cleaning proved promising to recover the related loss in productivity. The final product waters were all of very high quality, suggesting the potential of this coupled system for water reuse and desalination. Some challenges related to the relatively low water flux in the FO step, as well as the loss of draw solutes and the gradual change in composition of the draw solution, need further analysis to establish the technical and economic feasibility of the system.
Author Ricceri, Francesco
Tiraferri, Alberto
Giagnorio, Mattia
Author_xml – sequence: 1
  givenname: Mattia
  surname: Giagnorio
  fullname: Giagnorio, Mattia
  organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
– sequence: 2
  givenname: Francesco
  surname: Ricceri
  fullname: Ricceri, Francesco
  organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
– sequence: 3
  givenname: Alberto
  orcidid: 0000-0001-9859-1328
  surname: Tiraferri
  fullname: Tiraferri, Alberto
  email: alberto.tiraferri@polito.it
  organization: Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30708192$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1q3DAURkVJaSZp36AULbvx9MrS2FYXhZL-BQLZpGshS9eNph5pKskx8wJ97mriZNNFU7gguJzvE5x7Rk588EjIawZrBqx5t13POkdM6xqYXAMrI56RFetaWdVCdCdkBSB4xfhGnJKzlLYAUNdcviCnHFromKxX5PcnTHp0XmcXPA0D7aM2P126pT9imLwtf2Ck2lsacUp4JGadMi77_kCHEGcdLQ1pF5JL1IRpP6Kls8u31GsfBjfmuNQXltqoZ5rCON1vIppwh_Hwkjwf9Jjw1cN7Tr5_-Xxz8a26uv56efHxqjJCsFyZrm-GDoQUrOm4GcBqybDfcF43Q1P3xUSroTPQcyF7BAQLhQdhW1azzvBz8nbp3cfwa8KU1c4lg-OoPYYpqQLJDW-h2fwH2krRcVm3BX3zgE79Dq3aR7fT8aAeNRfg_QKYGFKKOCjj8r2TosaNioE63lRt1XJTdbypAlZGlLD4K_zY_0TswxLD4vPOYVTJOPQGrSvWs7LB_bvgD1Gtv98
CitedBy_id crossref_primary_10_1016_j_desal_2022_116083
crossref_primary_10_2139_ssrn_4105326
crossref_primary_10_1007_s40726_019_00121_8
crossref_primary_10_1021_acsami_0c13363
crossref_primary_10_1016_j_biortech_2019_121795
crossref_primary_10_1016_j_mtsust_2023_100361
crossref_primary_10_1002_er_8607
crossref_primary_10_1016_j_cej_2023_143964
crossref_primary_10_1016_j_memsci_2020_118220
crossref_primary_10_1016_j_desal_2020_114738
crossref_primary_10_1039_D0EW00490A
crossref_primary_10_1016_j_desal_2021_115509
crossref_primary_10_3390_membranes10010012
crossref_primary_10_3390_w13243653
crossref_primary_10_1016_j_jwpe_2024_105565
crossref_primary_10_1016_j_jwpe_2020_101752
crossref_primary_10_2139_ssrn_4059822
crossref_primary_10_1016_j_desal_2020_114451
crossref_primary_10_5004_dwt_2022_28713
crossref_primary_10_1016_j_jwpe_2024_105718
crossref_primary_10_1016_j_desal_2024_117926
crossref_primary_10_1016_j_watres_2022_118768
crossref_primary_10_3390_w12010107
crossref_primary_10_1016_j_desal_2023_117009
crossref_primary_10_1016_j_seppur_2022_121558
crossref_primary_10_1016_j_desal_2021_115346
crossref_primary_10_3390_membranes10110332
crossref_primary_10_1016_j_desal_2023_117087
crossref_primary_10_1002_app_53295
crossref_primary_10_1021_acsami_0c12141
crossref_primary_10_3390_membranes9050061
crossref_primary_10_1007_s12145_021_00703_5
crossref_primary_10_1016_j_watres_2022_119524
crossref_primary_10_1016_j_seppur_2020_117568
crossref_primary_10_1007_s11356_022_20674_4
crossref_primary_10_1016_j_cherd_2022_03_053
crossref_primary_10_1016_j_heliyon_2020_e05246
crossref_primary_10_1016_j_cej_2021_133634
crossref_primary_10_2166_ws_2019_154
crossref_primary_10_1016_j_jwpe_2019_101092
crossref_primary_10_1016_j_chemosphere_2021_133113
crossref_primary_10_2166_wst_2020_331
crossref_primary_10_1016_j_desal_2022_116185
crossref_primary_10_1016_j_apenergy_2020_114699
crossref_primary_10_1016_j_envint_2021_106498
crossref_primary_10_1016_j_jconhyd_2021_103923
crossref_primary_10_1016_j_jece_2024_113968
crossref_primary_10_1016_j_memsci_2022_121013
crossref_primary_10_3390_membranes14050107
crossref_primary_10_1016_j_desal_2022_115924
crossref_primary_10_1016_j_seppur_2024_130163
crossref_primary_10_1016_j_desal_2023_116378
crossref_primary_10_1016_j_scitotenv_2019_07_351
crossref_primary_10_1016_j_coche_2023_100974
crossref_primary_10_1016_j_memsci_2020_118759
crossref_primary_10_1016_j_desal_2020_114557
crossref_primary_10_1016_j_jwpe_2022_102828
crossref_primary_10_1021_acs_est_3c00084
crossref_primary_10_1016_j_seppur_2024_127913
crossref_primary_10_1016_j_cej_2019_122514
crossref_primary_10_1016_j_jwpe_2022_103256
crossref_primary_10_1007_s11356_024_33742_8
crossref_primary_10_1007_s40726_021_00208_1
crossref_primary_10_1016_j_jece_2021_105473
crossref_primary_10_1016_j_seppur_2023_125182
crossref_primary_10_1016_j_matpr_2020_12_259
crossref_primary_10_1080_10643389_2021_1902698
crossref_primary_10_1016_j_desal_2020_114803
crossref_primary_10_1016_j_memsci_2020_118803
Cites_doi 10.1016/j.desal.2011.08.053
10.1016/j.biortech.2017.09.101
10.1016/j.watres.2015.10.017
10.1021/ez400189z
10.1016/j.cej.2015.05.080
10.1016/j.memsci.2013.05.023
10.1016/j.watres.2012.09.058
10.1039/c3cs60051c
10.1016/j.watres.2014.08.021
10.1016/j.watres.2014.03.045
10.1016/j.memsci.2013.02.022
10.1016/j.desal.2008.02.022
10.1016/j.memsci.2011.01.048
10.1080/19443994.2012.672168
10.1016/j.desal.2013.11.026
10.1016/j.desal.2012.05.037
10.1016/j.apenergy.2017.12.124
10.1016/j.memsci.2011.12.023
10.1016/j.gloenvcha.2009.08.003
10.1016/j.memsci.2011.12.006
10.1016/j.desal.2006.03.583
10.3390/membranes6030037
10.1016/j.desal.2013.11.014
10.1016/j.jwpe.2014.10.006
10.1016/j.memsci.2010.08.010
10.1016/j.memsci.2015.01.025
10.1126/sciadv.1500323
10.1021/cr00090a003
10.1038/nclimate1744
10.1016/j.jwpe.2015.12.007
10.1039/C5EW00103J
10.1016/j.cej.2012.05.070
10.1016/j.memsci.2009.11.021
10.1016/j.memsci.2014.09.026
10.1016/j.cej.2014.03.049
10.1016/j.desal.2010.12.019
10.1016/j.biortech.2012.04.089
10.1016/j.desal.2018.04.015
10.1016/j.desal.2014.10.031
10.1016/j.memsci.2014.11.055
10.1021/es404056e
10.1016/j.desal.2017.12.016
10.1016/j.memsci.2011.12.026
10.1016/j.cej.2018.01.042
10.1126/science.1200488
10.1021/es4038676
10.1016/j.memsci.2013.04.056
10.1016/j.memsci.2006.07.049
10.1016/j.desal.2014.12.011
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2019.01.014
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 143
ExternalDocumentID 30708192
10_1016_j_watres_2019_01_014
S004313541930048X
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c441t-c8b6f804941683cf0da91eb53326f62b0197a08c0b349be0e0d0f8004d71218c3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Thu Jul 10 18:14:20 EDT 2025
Sun Aug 24 03:45:49 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Tue Jul 01 01:20:55 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Feb 23 02:23:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Draw solution recovery
Nanofiltration
Forward osmosis
Water reuse
Desalination
Brackish groundwater
Wastewater
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-c8b6f804941683cf0da91eb53326f62b0197a08c0b349be0e0d0f8004d71218c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9859-1328
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S004313541930048X
PMID 30708192
PQID 2179483927
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2189537065
proquest_miscellaneous_2179483927
pubmed_primary_30708192
crossref_citationtrail_10_1016_j_watres_2019_01_014
crossref_primary_10_1016_j_watres_2019_01_014
elsevier_sciencedirect_doi_10_1016_j_watres_2019_01_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mi, Elimelech (bib32) 2010; 348
Taylor, Scanlon, Doll, Rodell, van Beek, Wada, Longuevergne, Leblanc, Famiglietti, Edmunds, Konikow, Green, Chen, Taniguchi, Bierkens, MacDonald, Fan, Maxwell, Yechieli, Gurdak, Allen, Shamsudduha, Hiscock, Yeh, Holman, Treidel (bib42) 2013; 3
Elimelech, Phillip (bib13) 2011; 333
Luo, Wang, Zhang, Tao, Zhou, Chen, Bie (bib26) 2014; 4
Blandin, Verliefde, Tang, Le-Clech (bib5) 2015; 363
Ren, McCutcheon (bib36) 2014; 343
Hu, Wang, Ngo, Sun, Yang (bib20) 2018; 247
Akther, Sodiq, Giwa, Daer, Arafat, Hasan (bib3) 2015; 281
Corzo, de la Torre, Sans, Escorihuela, Navea, Malfeito (bib12) 2018; 338
Klaysom, Cath, Depuydt, Vankelecom (bib23) 2013; 42
Linares, Li, Sarp, Bucs, Amy, Vrouwenvelder (bib24) 2014; 66
Xiao, Li, Chou, Wang, Tang (bib46) 2012; 392
Mekonnen, Hoekstra (bib31) 2016; 2
Ren, McCutcheon (bib37) 2018; 442
Walha, Ben Amar, Firdaous, Quemeneur, Jaouen (bib44) 2007; 207
Wan, Chung (bib45) 2018; 212
Blandin, Vervoort, Le-Clech, Verliefde (bib6) 2016; 9
Huang, McCutcheon (bib21) 2015; 483
Lutchmiah, Verliefde, Roest, Rietveld, Cornelissen (bib27) 2014; 58
Shaffer, Werber, Jaramillo, Lin, Elimelech (bib40) 2015; 356
Hickenbottom, Hancock, Hutchings, Appleton, Beaudry, Xu, Cath (bib18) 2013; 312
Achilli, Cath, Childress (bib1) 2010; 364
Marcus (bib29) 1988; 88
Kim, Phuntsho, Chekli, Choi, Shon (bib22) 2018; 429
Guo, Ngo, Li (bib16) 2012; 122
Chung, Zhang, Wang, Su, Ling (bib9) 2012; 287
Garcia-Castello, McCutcheon (bib14) 2011; 372
Blandin, Verliefde, Comas, Rodriguez-Roda, Le-Clech (bib4) 2016; 6
McCutcheon, Elimelech (bib30) 2006; 284
Achilli, Cath, Marchand, Childress (bib2) 2009; 239
Skouteris, Hermosilla, Lopez, Negro, Blanco (bib41) 2012; 198
Chekli, Phuntsho, Shon, Vigneswaran, Kandasamy, Chanan (bib8) 2012; 43
Tiraferri, Yip, Straub, Castrillon, Elimelech (bib43) 2013; 444
Coday, Xu, Beaudry, Herron, Lampi, Hancock, Cath (bib10) 2014; 333
Setiawan, Wang, Li, Fane (bib39) 2012; 394
Boo, Khalil, Elimelech (bib7) 2015; 473
Madsen, Bajraktari, Helix-Nielsen, Van der Bruggen, Sogaard (bib28) 2015; 476
Qu, Alvarez, Li (bib35) 2013; 47
Ridoutt, Pfister (bib38) 2010; 20
Zhao, Zou, Tang, Mulcahy (bib50) 2012; 396
Hancock, Xu, Roby, Gomez, Cath (bib17) 2013; 445
Minella, De Bellis, Gallo, Giagnorio, Minero, Bertinetti, Sethi, Tiraferri, Vione (bib33) 2018
Coday, Yaffe, Xu, Cath (bib11) 2014; 48
Giagnorio, Ruffino, Grinic, Steffenino, Meucci, Zanetti, Tiraferri (bib15) 2018
Xie, Nghiem, Price, Elimelech (bib48) 2014; 1
Holloway, Achilli, Cath (bib19) 2015; 1
Phuntsho, Hong, Elimelech, Shon (bib34) 2013; 436
Linares, Li, Yangali-Quintanilla, Ghaffour, Amy, Leiknes, Vrouwenvelder (bib25) 2016; 88
Zhao, Zou, Mulcahy (bib49) 2012; 284
Xie, Nghiem, Price, Elimelech (bib47) 2013; 47
Zhou, Lee, Chung (bib51) 2014; 249
Wan (10.1016/j.watres.2019.01.014_bib45) 2018; 212
Skouteris (10.1016/j.watres.2019.01.014_bib41) 2012; 198
Hu (10.1016/j.watres.2019.01.014_bib20) 2018; 247
Chekli (10.1016/j.watres.2019.01.014_bib8) 2012; 43
Walha (10.1016/j.watres.2019.01.014_bib44) 2007; 207
Linares (10.1016/j.watres.2019.01.014_bib24) 2014; 66
Huang (10.1016/j.watres.2019.01.014_bib21) 2015; 483
Linares (10.1016/j.watres.2019.01.014_bib25) 2016; 88
Minella (10.1016/j.watres.2019.01.014_bib33) 2018
Taylor (10.1016/j.watres.2019.01.014_bib42) 2013; 3
Setiawan (10.1016/j.watres.2019.01.014_bib39) 2012; 394
Zhao (10.1016/j.watres.2019.01.014_bib49) 2012; 284
Elimelech (10.1016/j.watres.2019.01.014_bib13) 2011; 333
Mekonnen (10.1016/j.watres.2019.01.014_bib31) 2016; 2
Madsen (10.1016/j.watres.2019.01.014_bib28) 2015; 476
Blandin (10.1016/j.watres.2019.01.014_bib6) 2016; 9
Boo (10.1016/j.watres.2019.01.014_bib7) 2015; 473
Xie (10.1016/j.watres.2019.01.014_bib47) 2013; 47
Coday (10.1016/j.watres.2019.01.014_bib10) 2014; 333
Guo (10.1016/j.watres.2019.01.014_bib16) 2012; 122
Blandin (10.1016/j.watres.2019.01.014_bib5) 2015; 363
Hickenbottom (10.1016/j.watres.2019.01.014_bib18) 2013; 312
Chung (10.1016/j.watres.2019.01.014_bib9) 2012; 287
Giagnorio (10.1016/j.watres.2019.01.014_bib15) 2018
Achilli (10.1016/j.watres.2019.01.014_bib1) 2010; 364
Garcia-Castello (10.1016/j.watres.2019.01.014_bib14) 2011; 372
Zhao (10.1016/j.watres.2019.01.014_bib50) 2012; 396
Lutchmiah (10.1016/j.watres.2019.01.014_bib27) 2014; 58
Achilli (10.1016/j.watres.2019.01.014_bib2) 2009; 239
Corzo (10.1016/j.watres.2019.01.014_bib12) 2018; 338
Kim (10.1016/j.watres.2019.01.014_bib22) 2018; 429
Marcus (10.1016/j.watres.2019.01.014_bib29) 1988; 88
Tiraferri (10.1016/j.watres.2019.01.014_bib43) 2013; 444
Xiao (10.1016/j.watres.2019.01.014_bib46) 2012; 392
Xie (10.1016/j.watres.2019.01.014_bib48) 2014; 1
Mi (10.1016/j.watres.2019.01.014_bib32) 2010; 348
Blandin (10.1016/j.watres.2019.01.014_bib4) 2016; 6
Ren (10.1016/j.watres.2019.01.014_bib37) 2018; 442
Hancock (10.1016/j.watres.2019.01.014_bib17) 2013; 445
Ridoutt (10.1016/j.watres.2019.01.014_bib38) 2010; 20
Zhou (10.1016/j.watres.2019.01.014_bib51) 2014; 249
Holloway (10.1016/j.watres.2019.01.014_bib19) 2015; 1
Phuntsho (10.1016/j.watres.2019.01.014_bib34) 2013; 436
Akther (10.1016/j.watres.2019.01.014_bib3) 2015; 281
Coday (10.1016/j.watres.2019.01.014_bib11) 2014; 48
Klaysom (10.1016/j.watres.2019.01.014_bib23) 2013; 42
Luo (10.1016/j.watres.2019.01.014_bib26) 2014; 4
McCutcheon (10.1016/j.watres.2019.01.014_bib30) 2006; 284
Shaffer (10.1016/j.watres.2019.01.014_bib40) 2015; 356
Ren (10.1016/j.watres.2019.01.014_bib36) 2014; 343
Qu (10.1016/j.watres.2019.01.014_bib35) 2013; 47
References_xml – volume: 88
  start-page: 225
  year: 2016
  end-page: 234
  ident: bib25
  article-title: Life cycle cost of a hybrid forward osmosis low pressure reverse osmosis system for seawater desalination and wastewater recovery
  publication-title: Water Res.
– volume: 47
  start-page: 13486
  year: 2013
  end-page: 13493
  ident: bib47
  article-title: A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 6959
  year: 2013
  end-page: 6989
  ident: bib23
  article-title: Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply
  publication-title: Chem. Soc. Rev.
– volume: 212
  start-page: 1038
  year: 2018
  end-page: 1050
  ident: bib45
  article-title: Techno-economic evaluation of various RO plus PRO and RO plus FO integrated processes
  publication-title: Appl. Energy
– volume: 442
  start-page: 44
  year: 2018
  end-page: 50
  ident: bib37
  article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis
  publication-title: Desalination
– volume: 2
  year: 2016
  ident: bib31
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
– volume: 281
  start-page: 502
  year: 2015
  end-page: 522
  ident: bib3
  article-title: Recent advancements in forward osmosis desalination: a review
  publication-title: Chem. Eng. J.
– volume: 445
  start-page: 34
  year: 2013
  end-page: 46
  ident: bib17
  article-title: Towards direct potable reuse with forward osmosis: technical assessment of long-term process performance at the pilot scale
  publication-title: J. Membr. Sci.
– volume: 312
  start-page: 60
  year: 2013
  end-page: 66
  ident: bib18
  article-title: Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations
  publication-title: Desalination
– volume: 207
  start-page: 95
  year: 2007
  end-page: 106
  ident: bib44
  article-title: Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison
  publication-title: Desalination
– volume: 333
  start-page: 23
  year: 2014
  end-page: 35
  ident: bib10
  article-title: The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams
  publication-title: Desalination
– start-page: 1
  year: 2018
  end-page: 12
  ident: bib15
  article-title: Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection
  publication-title: Environ. Sci. Pollut. Res.
– volume: 338
  start-page: 383
  year: 2018
  end-page: 391
  ident: bib12
  article-title: Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 3612
  year: 2014
  end-page: 3624
  ident: bib11
  article-title: Rejection of trace organic compounds by forward osmosis membranes: a literature review
  publication-title: Environ. Sci. Technol.
– volume: 249
  start-page: 236
  year: 2014
  end-page: 245
  ident: bib51
  article-title: Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction
  publication-title: Chem. Eng. J.
– volume: 429
  start-page: 96
  year: 2018
  end-page: 104
  ident: bib22
  article-title: Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water
  publication-title: Desalination
– volume: 444
  start-page: 523
  year: 2013
  end-page: 538
  ident: bib43
  article-title: A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 473
  start-page: 302
  year: 2015
  end-page: 309
  ident: bib7
  article-title: Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis
  publication-title: J. Membr. Sci.
– volume: 239
  start-page: 10
  year: 2009
  end-page: 21
  ident: bib2
  article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes
  publication-title: Desalination
– volume: 1
  start-page: 191
  year: 2014
  end-page: 195
  ident: bib48
  article-title: Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 167
  year: 2012
  end-page: 184
  ident: bib8
  article-title: A review of draw solutes in forward osmosis process and their use in modern applications
  publication-title: Desalination Water Treat.
– volume: 356
  start-page: 271
  year: 2015
  end-page: 284
  ident: bib40
  article-title: Forward osmosis: where are we now?
  publication-title: Desalination
– volume: 476
  start-page: 469
  year: 2015
  end-page: 474
  ident: bib28
  article-title: Use of biomimetic forward osmosis membrane for trace organics removal
  publication-title: J. Membr. Sci.
– volume: 1
  start-page: 581
  year: 2015
  end-page: 605
  ident: bib19
  article-title: The osmotic membrane bioreactor: a critical review
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 58
  start-page: 179
  year: 2014
  end-page: 197
  ident: bib27
  article-title: Forward osmosis for application in wastewater treatment: a review
  publication-title: Water Res.
– volume: 394
  start-page: 80
  year: 2012
  end-page: 88
  ident: bib39
  article-title: Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer
  publication-title: J. Membr. Sci.
– volume: 333
  start-page: 712
  year: 2011
  end-page: 717
  ident: bib13
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
– volume: 3
  start-page: 322
  year: 2013
  end-page: 329
  ident: bib42
  article-title: Ground water and climate change
  publication-title: Nat. Clim. Change
– volume: 436
  start-page: 1
  year: 2013
  end-page: 15
  ident: bib34
  article-title: Forward osmosis desalination of brackish groundwater: meeting water quality requirements for fertigation by integrating nanofiltration
  publication-title: J. Membr. Sci.
– volume: 284
  start-page: 175
  year: 2012
  end-page: 181
  ident: bib49
  article-title: Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute
  publication-title: Desalination
– volume: 284
  start-page: 237
  year: 2006
  end-page: 247
  ident: bib30
  article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis
  publication-title: J. Membr. Sci.
– volume: 198
  start-page: 138
  year: 2012
  end-page: 148
  ident: bib41
  article-title: Anaerobic membrane bioreactors for wastewater treatment: a review
  publication-title: Chem. Eng. J.
– volume: 343
  start-page: 187
  year: 2014
  end-page: 193
  ident: bib36
  article-title: A new commercial thin film composite membrane for forward osmosis
  publication-title: Desalination
– volume: 364
  start-page: 233
  year: 2010
  end-page: 241
  ident: bib1
  article-title: Selection of inorganic-based draw solutions for forward osmosis applications
  publication-title: J. Membr. Sci.
– volume: 88
  start-page: 1475
  year: 1988
  end-page: 1498
  ident: bib29
  article-title: Ionic radii in aqueous solutions
  publication-title: Chem. Rev.
– volume: 247
  start-page: 1107
  year: 2018
  end-page: 1118
  ident: bib20
  article-title: Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: a review
  publication-title: Bioresour. Technol.
– volume: 396
  start-page: 1
  year: 2012
  end-page: 21
  ident: bib50
  article-title: Recent developments in forward osmosis: opportunities and challenges
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 161
  year: 2016
  end-page: 169
  ident: bib6
  article-title: Fouling and cleaning of high permeability forward osmosis membranes
  publication-title: J. Water Process Eng.
– volume: 47
  start-page: 3931
  year: 2013
  end-page: 3946
  ident: bib35
  article-title: Applications of nanotechnology in water and wastewater treatment
  publication-title: Water Res.
– volume: 6
  year: 2016
  ident: bib4
  article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review
  publication-title: Membranes
– volume: 348
  start-page: 337
  year: 2010
  end-page: 345
  ident: bib32
  article-title: Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 212
  year: 2014
  end-page: 223
  ident: bib26
  article-title: A review on the recovery methods of draw solutes in forward osmosis
  publication-title: J. Water Process Eng.
– volume: 287
  start-page: 78
  year: 2012
  end-page: 81
  ident: bib9
  article-title: Forward osmosis processes: yesterday, today and tomorrow
  publication-title: Desalination
– volume: 20
  start-page: 113
  year: 2010
  end-page: 120
  ident: bib38
  article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity
  publication-title: Glob. Environ. Change-Human. Pol. Dimension.
– volume: 122
  start-page: 27
  year: 2012
  end-page: 34
  ident: bib16
  article-title: A mini-review on membrane fouling
  publication-title: Bioresour. Technol.
– volume: 392
  start-page: 76
  year: 2012
  end-page: 87
  ident: bib46
  article-title: A modeling investigation on optimizing the design of forward osmosis hollow fiber modules
  publication-title: J. Membr. Sci.
– volume: 363
  start-page: 26
  year: 2015
  end-page: 36
  ident: bib5
  article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination
  publication-title: Desalination
– year: 2018
  ident: bib33
  article-title: Coupling of Nanofiltration and Thermal Fenton Reaction for the Abatement of Carbamazepine in Wastewater
– volume: 66
  start-page: 122
  year: 2014
  end-page: 139
  ident: bib24
  article-title: Forward osmosis niches in seawater desalination and wastewater reuse
  publication-title: Water Res.
– volume: 483
  start-page: 25
  year: 2015
  end-page: 33
  ident: bib21
  article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis
  publication-title: J. Membr. Sci.
– volume: 372
  start-page: 97
  year: 2011
  end-page: 101
  ident: bib14
  article-title: Dewatering press liquor derived from orange production by forward osmosis
  publication-title: J. Membr. Sci.
– volume: 284
  start-page: 175
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib49
  article-title: Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.08.053
– volume: 247
  start-page: 1107
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib20
  article-title: Anaerobic dynamic membrane bioreactor (AnDMBR) for wastewater treatment: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.101
– volume: 88
  start-page: 225
  year: 2016
  ident: 10.1016/j.watres.2019.01.014_bib25
  article-title: Life cycle cost of a hybrid forward osmosis low pressure reverse osmosis system for seawater desalination and wastewater recovery
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.10.017
– volume: 1
  start-page: 191
  issue: 2
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib48
  article-title: Toward resource recovery from wastewater: extraction of phosphorus from digested sludge using a hybrid forward osmosis–membrane distillation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/ez400189z
– volume: 281
  start-page: 502
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib3
  article-title: Recent advancements in forward osmosis desalination: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.080
– volume: 444
  start-page: 523
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib43
  article-title: A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.05.023
– volume: 47
  start-page: 3931
  issue: 12
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib35
  article-title: Applications of nanotechnology in water and wastewater treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.09.058
– volume: 42
  start-page: 6959
  issue: 16
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib23
  article-title: Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60051c
– volume: 66
  start-page: 122
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib24
  article-title: Forward osmosis niches in seawater desalination and wastewater reuse
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.08.021
– volume: 58
  start-page: 179
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib27
  article-title: Forward osmosis for application in wastewater treatment: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.03.045
– volume: 436
  start-page: 1
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib34
  article-title: Forward osmosis desalination of brackish groundwater: meeting water quality requirements for fertigation by integrating nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.02.022
– volume: 239
  start-page: 10
  issue: 1–3
  year: 2009
  ident: 10.1016/j.watres.2019.01.014_bib2
  article-title: The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.02.022
– volume: 372
  start-page: 97
  issue: 1–2
  year: 2011
  ident: 10.1016/j.watres.2019.01.014_bib14
  article-title: Dewatering press liquor derived from orange production by forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.01.048
– volume: 43
  start-page: 167
  issue: 1–3
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib8
  article-title: A review of draw solutes in forward osmosis process and their use in modern applications
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2012.672168
– volume: 343
  start-page: 187
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib36
  article-title: A new commercial thin film composite membrane for forward osmosis
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.11.026
– volume: 312
  start-page: 60
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib18
  article-title: Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.05.037
– volume: 212
  start-page: 1038
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib45
  article-title: Techno-economic evaluation of various RO plus PRO and RO plus FO integrated processes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.124
– volume: 396
  start-page: 1
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib50
  article-title: Recent developments in forward osmosis: opportunities and challenges
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.12.023
– volume: 20
  start-page: 113
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2019.01.014_bib38
  article-title: A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity
  publication-title: Glob. Environ. Change-Human. Pol. Dimension.
  doi: 10.1016/j.gloenvcha.2009.08.003
– volume: 392
  start-page: 76
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib46
  article-title: A modeling investigation on optimizing the design of forward osmosis hollow fiber modules
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.12.006
– volume: 207
  start-page: 95
  issue: 1–3
  year: 2007
  ident: 10.1016/j.watres.2019.01.014_bib44
  article-title: Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.583
– volume: 6
  issue: 3
  year: 2016
  ident: 10.1016/j.watres.2019.01.014_bib4
  article-title: Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review
  publication-title: Membranes
  doi: 10.3390/membranes6030037
– volume: 333
  start-page: 23
  issue: 1
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib10
  article-title: The sweet spot of forward osmosis: treatment of produced water, drilling wastewater, and other complex and difficult liquid streams
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.11.014
– volume: 4
  start-page: 212
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib26
  article-title: A review on the recovery methods of draw solutes in forward osmosis
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2014.10.006
– volume: 364
  start-page: 233
  issue: 1–2
  year: 2010
  ident: 10.1016/j.watres.2019.01.014_bib1
  article-title: Selection of inorganic-based draw solutions for forward osmosis applications
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.08.010
– volume: 483
  start-page: 25
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib21
  article-title: Impact of support layer pore size on performance of thin film composite membranes for forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.01.025
– volume: 2
  issue: 2
  year: 2016
  ident: 10.1016/j.watres.2019.01.014_bib31
  article-title: Four billion people facing severe water scarcity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500323
– year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib33
– volume: 88
  start-page: 1475
  issue: 8
  year: 1988
  ident: 10.1016/j.watres.2019.01.014_bib29
  article-title: Ionic radii in aqueous solutions
  publication-title: Chem. Rev.
  doi: 10.1021/cr00090a003
– volume: 3
  start-page: 322
  issue: 4
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib42
  article-title: Ground water and climate change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1744
– volume: 9
  start-page: 161
  year: 2016
  ident: 10.1016/j.watres.2019.01.014_bib6
  article-title: Fouling and cleaning of high permeability forward osmosis membranes
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2015.12.007
– volume: 1
  start-page: 581
  issue: 5
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib19
  article-title: The osmotic membrane bioreactor: a critical review
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C5EW00103J
– volume: 198
  start-page: 138
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib41
  article-title: Anaerobic membrane bioreactors for wastewater treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.070
– volume: 348
  start-page: 337
  issue: 1–2
  year: 2010
  ident: 10.1016/j.watres.2019.01.014_bib32
  article-title: Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.021
– volume: 473
  start-page: 302
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib7
  article-title: Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.09.026
– volume: 249
  start-page: 236
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib51
  article-title: Thin film composite forward-osmosis membranes with enhanced internal osmotic pressure for internal concentration polarization reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.03.049
– volume: 287
  start-page: 78
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib9
  article-title: Forward osmosis processes: yesterday, today and tomorrow
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.12.019
– volume: 122
  start-page: 27
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib16
  article-title: A mini-review on membrane fouling
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.04.089
– volume: 442
  start-page: 44
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib37
  article-title: A new commercial biomimetic hollow fiber membrane for forward osmosis
  publication-title: Desalination
  doi: 10.1016/j.desal.2018.04.015
– volume: 356
  start-page: 271
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib40
  article-title: Forward osmosis: where are we now?
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.10.031
– volume: 476
  start-page: 469
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib28
  article-title: Use of biomimetic forward osmosis membrane for trace organics removal
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.055
– volume: 47
  start-page: 13486
  issue: 23
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib47
  article-title: A forward osmosis–membrane distillation hybrid process for direct sewer mining: system performance and limitations
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es404056e
– volume: 429
  start-page: 96
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib22
  article-title: Environmental and economic assessment of hybrid FO-RO/NF system with selected inorganic draw solutes for the treatment of mine impaired water
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.12.016
– volume: 394
  start-page: 80
  year: 2012
  ident: 10.1016/j.watres.2019.01.014_bib39
  article-title: Fabrication and characterization of forward osmosis hollow fiber membranes with antifouling NF-like selective layer
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.12.026
– volume: 338
  start-page: 383
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib12
  article-title: Long-term evaluation of a forward osmosis-nanofiltration demonstration plant for wastewater reuse in agriculture
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.042
– volume: 333
  start-page: 712
  issue: 6043
  year: 2011
  ident: 10.1016/j.watres.2019.01.014_bib13
  article-title: The future of seawater desalination: energy, technology, and the environment
  publication-title: Science
  doi: 10.1126/science.1200488
– volume: 48
  start-page: 3612
  issue: 7
  year: 2014
  ident: 10.1016/j.watres.2019.01.014_bib11
  article-title: Rejection of trace organic compounds by forward osmosis membranes: a literature review
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4038676
– volume: 445
  start-page: 34
  year: 2013
  ident: 10.1016/j.watres.2019.01.014_bib17
  article-title: Towards direct potable reuse with forward osmosis: technical assessment of long-term process performance at the pilot scale
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.04.056
– start-page: 1
  year: 2018
  ident: 10.1016/j.watres.2019.01.014_bib15
  article-title: Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection
  publication-title: Environ. Sci. Pollut. Res.
– volume: 284
  start-page: 237
  issue: 1–2
  year: 2006
  ident: 10.1016/j.watres.2019.01.014_bib30
  article-title: Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.07.049
– volume: 363
  start-page: 26
  year: 2015
  ident: 10.1016/j.watres.2019.01.014_bib5
  article-title: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.12.011
SSID ssj0002239
Score 2.5283575
Snippet This study evaluates a treatment system centered on forward osmosis (FO) to extract high-quality water from real brackish groundwater and wastewater. The...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134
SubjectTerms Brackish groundwater
cleaning
Desalination
Draw solution recovery
economic feasibility
Forward osmosis
fouling
groundwater
magnesium chloride
Nanofiltration
osmosis
osmotic pressure
permeability
salinity
sodium sulfate
solutes
Wastewater
Water reuse
Title Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery
URI https://dx.doi.org/10.1016/j.watres.2019.01.014
https://www.ncbi.nlm.nih.gov/pubmed/30708192
https://www.proquest.com/docview/2179483927
https://www.proquest.com/docview/2189537065
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQ39YXEbyu7jbJbvYoYqmKnhR6W5JsgpW6W7otpReP_m5n9lH1oAVhLxsmEJLJzJfMzBdCzoWUyAESeoDOlceFZp6WRnngnSyTxsqgpC9-eAx7z_yuL_otct3UwmBaZW37K5teWuu65bKezcvRYIA1vuD8mOAAQVAP-1jBziPU8ov3rzQPcH9xE2VG6aZ8rszxmiksyMAEr7gk7wz4b-7pN_hZuqHuJtmo8SO9qoa4RVo22ybr31gFd8gHnCUV1tninNPcUTgQG8CJLxRLOLIUhmPHVGUpHdtpYVFipgq8RMN2PaeAYzGXlubFW14MCmry6WhoU4p3tjRTGb7yXbPtoixNx2pGGx2meMSG_THfJc_dm6frnlc_t-AZwEQTz0gdOol8MUEomXF-quLAasCDndCFHQ2TFClfGl8zHmvrWz_1Qd7naRQAUDBsj6xkeWYPCDVaGCVYzFwouIMToGIidjySjlknI9kmrJnlxNRc5PgkxjBpks5ek2ptElybxA_g423iLXqNKi6OJfJRs4DJD51KwF0s6XnWrHcC2w1jKCqz-RSE0IAhqIz-kpGxYBg_bpP9SlkW40UTixx0h_8e2xFZwz-MaAXimKxMxlN7AsBook9LzT8lq1e3973HT50jD4s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROJQeUCmPbh9gJK4pCbYT54hQ0ZbXCaS9WbZji0WQrDa7WnHpsb-7M3lQOABSpZycsTSyPTOf7ZnPAPtSKeIASSNE5yYS0vLIKmcijE6eK-dV0tAXX1ymw2txOpKjJTjua2EorbLz_a1Pb7x113LQjebBZDymGl8MflwKhCC0DkfvYEWg-dIzBj9-_8vzwPiX99fMJN7XzzVJXgtDFRmU4ZU37J2JeCk-vYQ_mzh08hHWOgDJjlod12HJl5_gwxNawQ34g5tJQ4W2NOisCgx3xA6B4g2jGo6yQHX8lJmyYFM_rz1JLExNp2jUbh8YAllKpmVVfV_V45q5aj658wWjQ1tWmpKe-e7odkmWFVOzYP0iZrTHRgN52ITrk59Xx8Ooe28hcgiKZpFTNg2KCGOSVHEX4sLkibcICA_TkB5aHKTMxMrFlovc-tjHRYzysSiyBJGC41uwXFal_wzMWemM5DkPqRQBt4CGyzyITAXug8rUAHg_ytp1ZOT0Jsad7rPObnU7N5rmRscJfmIA0WOvSUvG8YZ81k-gfraoNMaLN3ru9fOt0d7oEsWUvpqjEHkwQpXZazIql5wukAew3S6WR33JxxIJ3Zf_1m0X3g-vLs71-a_Ls6-wSn_oeiuR32B5Np3774iSZnansYK_rFsRGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Desalination+of+brackish+groundwater+and+reuse+of+wastewater+by+forward+osmosis+coupled+with+nanofiltration+for+draw+solution+recovery&rft.jtitle=Water+research+%28Oxford%29&rft.au=Giagnorio%2C+Mattia&rft.au=Ricceri%2C+Francesco&rft.au=Tiraferri%2C+Alberto&rft.date=2019-04-15&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=153&rft.spage=134&rft_id=info:doi/10.1016%2Fj.watres.2019.01.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon