Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles
Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the p...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1866; no. 4; p. 130078 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.
Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.
In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.
Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
[Display omitted]
•Iron(III)-Dp44mT complexes suppress lipid peroxidation.•Ascorbate reduces iron(III)-Dp44mT to the redox-active iron(II)-Dp44mT complex.•Iron(II)-Dp44mT complexes enhance lipid peroxidation.•Ascorbate drives redox cycling of iron in the presence of Dp44mT and Emodin.•Ascorbate enhances the in vitro anti-proliferative efficacy of Dp44mT and Emodin |
---|---|
AbstractList | Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.
Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H
O
) and the absence or presence of ascorbate.
In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H
O
demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H
O
. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H
O
. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.
Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.BACKGROUNDIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.METHODSHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.RESULTSIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.CONCLUSIONS AND GENERAL SIGNIFICANCEAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H₂O₂) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H₂O₂ demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H₂O₂. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H₂O₂. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. [Display omitted] •Iron(III)-Dp44mT complexes suppress lipid peroxidation.•Ascorbate reduces iron(III)-Dp44mT to the redox-active iron(II)-Dp44mT complex.•Iron(II)-Dp44mT complexes enhance lipid peroxidation.•Ascorbate drives redox cycling of iron in the presence of Dp44mT and Emodin.•Ascorbate enhances the in vitro anti-proliferative efficacy of Dp44mT and Emodin |
ArticleNumber | 130078 |
Author | Richardson, D.R. Dharmasivam, M. Shelepova, E.A. Selyutina, O.Yu Kononova, P.A. Koshman, V.E. Bernhardt, Paul V. Afroz, R. Azad, M. Gholam Polyakov, N.E. |
Author_xml | – sequence: 1 givenname: O.Yu surname: Selyutina fullname: Selyutina, O.Yu email: olga.gluschenko@gmail.com organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia – sequence: 2 givenname: P.A. surname: Kononova fullname: Kononova, P.A. organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia – sequence: 3 givenname: V.E. surname: Koshman fullname: Koshman, V.E. organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia – sequence: 4 givenname: E.A. surname: Shelepova fullname: Shelepova, E.A. organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia – sequence: 5 givenname: M. Gholam surname: Azad fullname: Azad, M. Gholam organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia – sequence: 6 givenname: R. surname: Afroz fullname: Afroz, R. organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia – sequence: 7 givenname: M. surname: Dharmasivam fullname: Dharmasivam, M. organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia – sequence: 8 givenname: Paul V. surname: Bernhardt fullname: Bernhardt, Paul V. organization: School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia – sequence: 9 givenname: N.E. surname: Polyakov fullname: Polyakov, N.E. organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia – sequence: 10 givenname: D.R. surname: Richardson fullname: Richardson, D.R. email: d.richardson@griffith.edu.au organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34974127$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtP3DAUha2KqgzQf1BVWXaTwa_4waISohSQkLqBtWU7TuVRYg-2ZwT_HkcZNixo78a68neOrs45AUchBgfANwTXCCJ2vlkbo_-6sMYQozUiEHLxCayQ4LgVELIjsIIE0pYi1h2Dk5w3sE4nuy_gmFDJKcJ8BeJltjEZXVyrQ9_4FEPbJ793oUmuj8-NtsXvfXlp4tD82lI6PTQzeD3F3odm0NaPvlR5brYuxWff6-JjmOnJWzeO9WPmzWE5A58HPWb39fCegsff1w9Xt-39n5u7q8v71lKKSmuxYB3HlkskjO0MN2xgVhCK2WC45lYbK6WWBEFtiTRGyG4gBhmBO86wIKfgx-K7TfFp53JRk8_zCTq4uMsKM8IElJX9DxQxzCWUrKLfD-jOTK5X2-QnnV7UW54VuFgAm2LOyQ3KzunURErSflQIqrk8tVFLeWouTy3lVTF9J37z_4fs5yJzNc-9d0ll612wrvfJ2aL66D82eAVr2rSL |
CitedBy_id | crossref_primary_10_3390_ph17121717 crossref_primary_10_1021_acs_jmedchem_2c01600 crossref_primary_10_3389_fchem_2022_967337 crossref_primary_10_3390_ijms25063194 crossref_primary_10_3390_membranes12050460 crossref_primary_10_3390_membranes13010061 crossref_primary_10_1016_j_molstruc_2024_140511 crossref_primary_10_3390_antiox11020376 crossref_primary_10_1021_acsomega_3c08890 crossref_primary_10_1016_j_abb_2025_110390 |
Cites_doi | 10.1006/bbrc.1993.2017 10.1016/j.chemphys.2014.06.009 10.1039/c0sm00136h 10.1529/biophysj.107.112565 10.1021/tx500377b 10.1007/s00723-009-0099-y 10.3390/cells10092382 10.1182/blood-2004-03-0868 10.1021/jm0606342 10.1158/0008-5472.CAN-11-1218 10.1021/jm301691s 10.1016/j.canlet.2006.12.026 10.1016/j.freeradbiomed.2011.04.046 10.1002/ejlt.201900209 10.1016/j.bpj.2009.10.046 10.1002/jat.2838 10.1016/0167-4889(90)90018-9 10.1016/j.ejmech.2011.03.034 10.1002/hlca.200490272 10.1074/jbc.M113.514828 10.1039/C5CC01519G 10.3390/medicines7080045 10.1021/tx700039c 10.1006/abbi.1996.0003 10.1021/tx00031a001 10.2307/3579271 10.1089/ars.2017.7406 10.1089/152308604773934279 10.1021/acs.jctc.8b00768 10.1039/c1ob05083d 10.1063/1.470117 10.1016/S0014-2999(03)01976-9 10.1073/pnas.0604979103 10.1089/ars.2011.4273 10.1021/bi00323a007 10.1021/cr040077w 10.1290/1071-2690(2002)038<0079:CPAFDO>2.0.CO;2 10.3390/ijms21113967 10.3109/10715762.2011.616199 10.1063/1.328693 10.1002/mnfr.200800131 10.1023/B:RUCO.0000026007.04814.ad 10.1515/zpch-2016-0831 10.1111/j.1476-5381.2011.01526.x 10.1002/med.20095 10.1016/j.electacta.2006.03.082 10.1080/02772249809358568 10.1016/S0009-3084(98)00091-7 10.1039/C7RA06696A 10.1080/09168451.2017.1365592 10.1002/jcc.21396 10.1021/acs.jmedchem.6b01050 10.1093/molehr/8.3.271 10.1021/jp031339l 10.1016/0005-2760(93)90052-B 10.1016/j.phrs.2021.105889 10.1042/cs1000237 10.1124/mol.111.073627 10.1182/blood-2004-05-1866 10.1016/j.tiv.2021.105142 10.1016/j.redox.2013.06.004 10.1002/ejic.201600908 10.1096/fj.202002279R 10.1089/ars.2019.7903 10.1016/S0020-1693(00)80471-5 10.1159/000319951 10.1182/blood.V86.11.4295.bloodjournal86114295 10.1016/j.jcp.2011.01.048 10.1103/PhysRevA.31.1695 10.1016/j.ccell.2020.06.001 10.1074/jbc.RA118.006279 10.1021/acs.jmedchem.6b00238 10.1021/es301834r 10.1021/jm200924c 10.1021/jm801585u 10.1016/S0304-4157(96)00014-7 10.2174/187152011795255902 10.1002/mrc.1260300414 10.1074/jbc.M114.631283 10.1007/s12551-017-0323-1 10.3390/molecules26165064 10.1016/j.fsi.2014.02.018 10.1016/j.bbagen.2008.04.003 10.1080/13880200490519613 10.1016/0014-5793(95)01125-X 10.1039/C5SC02311D 10.1039/C9DT03557E 10.1038/s12276-020-0384-2 10.1021/jm900552r 10.1124/mol.107.041335 10.1016/0891-5849(89)90162-7 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2021.130078 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 34974127 10_1016_j_bbagen_2021_130078 S0304416521002373 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c441t-c286572c7918bc5b7b6f6c83426fb7a7cabc99a9310ac39bb895f3b1b82576283 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Tue Aug 05 11:21:35 EDT 2025 Fri Jul 11 16:17:49 EDT 2025 Thu Apr 03 07:09:20 EDT 2025 Tue Jul 01 00:22:16 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Fri Feb 23 02:41:52 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Iron chelators Iron Ascorbate Dp44mT |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-c286572c7918bc5b7b6f6c83426fb7a7cabc99a9310ac39bb895f3b1b82576283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0304416521002373?via%3Dihub |
PMID | 34974127 |
PQID | 2616279096 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636809762 proquest_miscellaneous_2616279096 pubmed_primary_34974127 crossref_citationtrail_10_1016_j_bbagen_2021_130078 crossref_primary_10_1016_j_bbagen_2021_130078 elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_130078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dix, Aikens (bb0055) 1993; 6 Le, Richardson (bb0270) 2004; 104 Yang, Tan, Wang, Zhu (bb0205) 2014; 12 Wijesinghe, Dharmasivam, Dai, Richardson (bb0045) 2021; 173 Srinivas, Anto, Srinivas, Vidhyalakshmi, Senan, Karunagaran (bb0475) 2003; 473 Adam, Bounds, Kissner, Koppenol (bb0110) 2015; 28 Yoshida, Furuta, Niki (bb0170) 1993; 1210 Chekmarev, Azad, Richardson (bb0290) 2021; 10 da Cunha, Duarte, Stassen, Lamy, Coutinho (bb0455) 2017; 9 Yuan, Lovejoy, Richardson (bb0070) 2004; 104 Spiteller (bb0085) 1998; 95 Tóth, Kukor, Valent (bb0420) 2002; 8 Schneider (bb0080) 2009; 53 Richardson, Sharpe, Lovejoy, Senaratne, Kalinowski, Islam, Bernhardt (bb0295) 2006; 49 Verrax, Beck, Dejeans, Glorieux, Sid, Pedrosa, Benites, Vásquez, Valderrama, Calderon (bb0430) 2011; 11 Hayes, Dinkova-Kostova, Tew (bb0035) 2020; 38 Powis (bb0190) 1989; 6 Li, Zhu, Zhao, Xu (bb0435) 2012; 46 Richardson, Kalinowski, Lau, Jansson, Lovejoy (bb0075) 2009; 1790 Beraldo, Garnier-Suillerot, Tosi, Lavelle (bb0230) 1985; 24 da Cunha, Duarte, Lamy, Coutinho (bb0480) 2014; 440 Tuli, Aggarwal, Tuorkey, Aggarwal, Parashar, Varol, Savla, Kaur, Mittal, Sak (bb0065) 2021; 73 Fain, Zaitsev, Ryabov (bb0220) 2004; 30 Geleta, Park, Jansson, Sahni, Maleki, Xu, Murakami, Pajic, Apte, Richardson, Kovacevic (bb0285) 2021; 35 Laguerre, Tenon, Bily, Birtić (bb0390) 2020; 122 Buettner, Jurkiewicz (bb0095) 1996; 145 Mihaljević, Tartaro, Ferreri, Chatgilialoglu (bb0385) 2011; 9 Richardson, Dean (bb0010) 2001; 100 Zhong, Yan, Webber, Oberley (bb0140) 2004; 6 Tian, Peehl, Knox (bb0135) 2010; 25 Ye, Wang, Zhang (bb0440) 2006; 2 Cheng, Li (bb0060) 2007; 107 Stacy, Palanimuthu, Bernhardt, Kalinowski, Jansson, Richardson (bb0325) 2016; 59 Cui, Liu, Xie, Xu, Habte-Tsion, Zhang (bb0255) 2014; 38 Mandal, Singha, Dey, Mazumdar, Kumar, Karmakar, Das (bb0215) 2017; 66 Rahimipour, Gescheidt, Bilkis, Fridkin, Weiner (bb0450) 2010; 37 Bae, Gholam Azad, Kalinowski, Lane, Jansson, Richardson (bb0105) 2020; 33 Stroet, Caron, Visscher, Geerke, Malde, Mark (bb0340) 2018; 14 Timoshnikov, Kichigina, Selyutina, Polyakov, Kontoghiorghes (bb0395) 2021; 26 Merkofer, Kissner, Hider, Koppenol (bb0115) 2004; 87 Alegría, Santiago (bb0175) 1998; 65 Stacy, Palanimuthu, Bernhardt, Kalinowski, Jansson, Richardson (bb0330) 2016; 59 Kovacevic, Chikhani, Lui, Sivagurunathan, Richardson (bb0275) 2013; 18 Masaldan, Iyer (bb0260) 2014; 34 Silveira-Dorta, Monzón, Crisóstomo, Martín, Martín, Carrillo (bb0425) 2015; 51 Perez-Benito (bb0400) 2004; 108 Xu, Sutak, Richardson (bb0235) 2008; 73 Zhao, Lu, Qi, Li, Zhou (bb0240) 2017; 81 Ye, Fels, Tovmasyan, Aird, Dedeugd, Allensworth, Kos, Park, Spasojevic, Devi, Dewhirst, Leong, Batinic-Haberle (bb0155) 2011; 45 Richardson, Tran, Ponka (bb0380) 1995; 86 Zhang, Sadler (bb0510) 2017; 2017 Gonzálvez, Algarra, Basallote, Bernhardt, Fernández-Trujillo, Martínez (bb0415) 2019; 48 Jurkiewicz, Olżyńska, Cwiklik, Conte, Jungwirth, Megli, Hof (bb0015) 1818; 2012 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (bb0365) 1995; 103 Richardson, Wis Vitolo, Hefter, May, Clare, Webb, Wilairat (bb0360) 1990; 170 Levine, Stone, Kohlmeyer (bb0495) 2011; 230 Orsi, Essex (bb0485) 2010; 6 Srinivas, Babykutty, Sathiadevan, Srinivas (bb0245) 2007; 27 Hadi, Ullah, Shamim, Bhatt, Azmi (bb0500) 2010; 56 Tan, Wang, Yang, Zhu (bb0210) 2014 Barrera (bb0050) 2012; 2012 Wong-ekkabut, Xu, Triampo, Tang, Tieleman, Monticelli (bb0020) 2007; 93 Hoover (bb0355) 1985; 31 Yu, Kalinowski, Kovacevic, Siafakas, Jansson, Stefani, Lovejoy, Sharpe, Bernhardt, Richardson (bb0265) 2009; 52 Richardson, Kalinowski, Richardson, Sharpe, Lovejoy, Islam, Bernhardt (bb0305) 2009; 52 Grillet, Ouerdane, Flis, Hoang, Isaure, Lobinski, Curie, Mari (bb0120) 2014; 289 Gardner, Nguyen, White (bb0145) 1996; 325 Björnerås, Nilsson, Mäler (bb0410) 1848; 2015 Jansson, Yamagishi, Arvind, Seebacher, Gutierrez, Stacy, Maleki, Sharp, Sahni, Richardson (bb0515) 2015; 290 Markova, Polyakov, Selyutina, Fedenok, Fedotov, Slepneva, Leshina, Pokrovsky, Vasilieva, Weiner (bb0180) 2017; 231 Lovejoy, Jansson, Brunk, Wong, Ponka, Richardson (bb0300) 2011; 71 Timoshnikov, Kobzeva, Polyakov, Kontoghiorghes (bb0125) 2020; 21 Kalinowski, Richardson (bb0040) 2007; 20 Vargas, Díaz, Carbonell (bb0250) 2004; 42 Boggara, Krishnamoorti (bb0490) 2010; 98 Batinic-Haberle, Rajic, Tovmasyan, Reboucas, Ye, Leong, Dewhirst, Vujaskovic, Benov, Spasojevic (bb0150) 2011; 51 Richardson, Ponka (bb0005) 1997; 1331 Cotticelli, Crabbe, Wilson, Shchepinov (bb0090) 2013; 1 Stefani, Jansson, Gutierrez, Bernhardt, Richardson, Kalinowski (bb0460) 2013; 56 Wang, Zhang, Ye (bb0445) 2006; 51 Barbusiński (bb0405) 2009; 16 Perillo, Di Donato, Pezone, Di Zazzo, Giovannelli, Galasso, Castoria, Migliaccio (bb0030) 2020; 52 Whitnall, Howard, Ponka, Richardson (bb0310) 2006; 103 Kovacevic, Chikhani, Lovejoy, Richardson (bb0315) 2011; 80 Rozanova (Torshina), Zhang, Heck (bb0505) 2007; 252 Gholivand, Kashanian, Peyman, Roshanfekr (bb0200) 2011; 46 Jabłońska-Trypuć, Świderski, Krętowski, Lewandowski (bb0225) 2017; 22 Sato-Watanabe, Itoh, Mogi, Matsuura, Miyoshi, Anraku (bb0335) 1995; 374 Kontoghiorghes, Kolnagou, Kontoghiorghe, Mourouzidis, Timoshnikov, Polyakov (bb0130) 2020; 7 Dikalov, Alov, Rangelova (bb0160) 1993; 195 Stefani, Punnia-Moorthy, Lovejoy, Jansson, Kalinowski, Sharpe, Bernhardt, Richardson (bb0465) 2011; 54 Zhang, Chang, Bacus, Hung (bb0470) 1995; 55 Polyakov, Leshina, Fedenok, Slepneva, Kirilyuk, Furso, Olchawa, Sarna, Elas, Bilkis, Weiner (bb0185) 2018; 28 Richardson, Baker (bb0370) 1990; 1053 Poger, Gunsteren, Mark (bb0345) 2010; 31 Du, Cullen, Buettner (bb0100) 1826; 2012 Chen, Chiang, Lin, Yang, Ma, Liao, Lai, Tang, Chung (bb0195) 2010; 30 Parrinello, Rahman (bb0350) 1981; 52 Menasché, Antebi, Alcindor, Teiger, Perez, Giudicelli, Nordmann, Piwnica (bb0165) 1990; 82 Van der Paal, Neyts, Verlackt, Bogaerts (bb0025) 2016; 7 Yu, Suryo Rahmanto, Richardson (bb0320) 2012; 165 Menezes, Kovacevic, Richardson (bb0280) 2019; 294 Uphoff, Drexler (bb0375) 2002; 38 Danielsen, Aksnes, Francis (bb0520) 1992; 30 Merkofer (10.1016/j.bbagen.2021.130078_bb0115) 2004; 87 Menasché (10.1016/j.bbagen.2021.130078_bb0165) 1990; 82 Le (10.1016/j.bbagen.2021.130078_bb0270) 2004; 104 Boggara (10.1016/j.bbagen.2021.130078_bb0490) 2010; 98 Gonzálvez (10.1016/j.bbagen.2021.130078_bb0415) 2019; 48 Wang (10.1016/j.bbagen.2021.130078_bb0445) 2006; 51 Levine (10.1016/j.bbagen.2021.130078_bb0495) 2011; 230 Barrera (10.1016/j.bbagen.2021.130078_bb0050) 2012; 2012 Yoshida (10.1016/j.bbagen.2021.130078_bb0170) 1993; 1210 Mandal (10.1016/j.bbagen.2021.130078_bb0215) 2017; 66 Cheng (10.1016/j.bbagen.2021.130078_bb0060) 2007; 107 Jansson (10.1016/j.bbagen.2021.130078_bb0515) 2015; 290 Tan (10.1016/j.bbagen.2021.130078_bb0210) 2014 Richardson (10.1016/j.bbagen.2021.130078_bb0305) 2009; 52 Hayes (10.1016/j.bbagen.2021.130078_bb0035) 2020; 38 Jurkiewicz (10.1016/j.bbagen.2021.130078_bb0015) 1818; 2012 Kovacevic (10.1016/j.bbagen.2021.130078_bb0315) 2011; 80 Hoover (10.1016/j.bbagen.2021.130078_bb0355) 1985; 31 Tóth (10.1016/j.bbagen.2021.130078_bb0420) 2002; 8 Cotticelli (10.1016/j.bbagen.2021.130078_bb0090) 2013; 1 Geleta (10.1016/j.bbagen.2021.130078_bb0285) 2021; 35 Li (10.1016/j.bbagen.2021.130078_bb0435) 2012; 46 Richardson (10.1016/j.bbagen.2021.130078_bb0005) 1997; 1331 Stefani (10.1016/j.bbagen.2021.130078_bb0465) 2011; 54 Whitnall (10.1016/j.bbagen.2021.130078_bb0310) 2006; 103 Orsi (10.1016/j.bbagen.2021.130078_bb0485) 2010; 6 Laguerre (10.1016/j.bbagen.2021.130078_bb0390) 2020; 122 Zhang (10.1016/j.bbagen.2021.130078_bb0510) 2017; 2017 Menezes (10.1016/j.bbagen.2021.130078_bb0280) 2019; 294 Spiteller (10.1016/j.bbagen.2021.130078_bb0085) 1998; 95 Srinivas (10.1016/j.bbagen.2021.130078_bb0245) 2007; 27 Beraldo (10.1016/j.bbagen.2021.130078_bb0230) 1985; 24 Timoshnikov (10.1016/j.bbagen.2021.130078_bb0125) 2020; 21 Vargas (10.1016/j.bbagen.2021.130078_bb0250) 2004; 42 Chen (10.1016/j.bbagen.2021.130078_bb0195) 2010; 30 Perez-Benito (10.1016/j.bbagen.2021.130078_bb0400) 2004; 108 Fain (10.1016/j.bbagen.2021.130078_bb0220) 2004; 30 Yang (10.1016/j.bbagen.2021.130078_bb0205) 2014; 12 Jabłońska-Trypuć (10.1016/j.bbagen.2021.130078_bb0225) 2017; 22 Batinic-Haberle (10.1016/j.bbagen.2021.130078_bb0150) 2011; 51 Parrinello (10.1016/j.bbagen.2021.130078_bb0350) 1981; 52 Yuan (10.1016/j.bbagen.2021.130078_bb0070) 2004; 104 Lovejoy (10.1016/j.bbagen.2021.130078_bb0300) 2011; 71 Richardson (10.1016/j.bbagen.2021.130078_bb0370) 1990; 1053 Dix (10.1016/j.bbagen.2021.130078_bb0055) 1993; 6 Kontoghiorghes (10.1016/j.bbagen.2021.130078_bb0130) 2020; 7 Perillo (10.1016/j.bbagen.2021.130078_bb0030) 2020; 52 Sato-Watanabe (10.1016/j.bbagen.2021.130078_bb0335) 1995; 374 Tuli (10.1016/j.bbagen.2021.130078_bb0065) 2021; 73 Danielsen (10.1016/j.bbagen.2021.130078_bb0520) 1992; 30 Richardson (10.1016/j.bbagen.2021.130078_bb0075) 2009; 1790 Bae (10.1016/j.bbagen.2021.130078_bb0105) 2020; 33 Richardson (10.1016/j.bbagen.2021.130078_bb0295) 2006; 49 Essmann (10.1016/j.bbagen.2021.130078_bb0365) 1995; 103 Richardson (10.1016/j.bbagen.2021.130078_bb0010) 2001; 100 Kalinowski (10.1016/j.bbagen.2021.130078_bb0040) 2007; 20 Du (10.1016/j.bbagen.2021.130078_bb0100) 1826; 2012 Powis (10.1016/j.bbagen.2021.130078_bb0190) 1989; 6 Kovacevic (10.1016/j.bbagen.2021.130078_bb0275) 2013; 18 Silveira-Dorta (10.1016/j.bbagen.2021.130078_bb0425) 2015; 51 Zhang (10.1016/j.bbagen.2021.130078_bb0470) 1995; 55 Timoshnikov (10.1016/j.bbagen.2021.130078_bb0395) 2021; 26 Xu (10.1016/j.bbagen.2021.130078_bb0235) 2008; 73 Hadi (10.1016/j.bbagen.2021.130078_bb0500) 2010; 56 Buettner (10.1016/j.bbagen.2021.130078_bb0095) 1996; 145 Ye (10.1016/j.bbagen.2021.130078_bb0155) 2011; 45 da Cunha (10.1016/j.bbagen.2021.130078_bb0480) 2014; 440 Richardson (10.1016/j.bbagen.2021.130078_bb0360) 1990; 170 Schneider (10.1016/j.bbagen.2021.130078_bb0080) 2009; 53 Poger (10.1016/j.bbagen.2021.130078_bb0345) 2010; 31 Yu (10.1016/j.bbagen.2021.130078_bb0320) 2012; 165 Stacy (10.1016/j.bbagen.2021.130078_bb0325) 2016; 59 Stefani (10.1016/j.bbagen.2021.130078_bb0460) 2013; 56 Mihaljević (10.1016/j.bbagen.2021.130078_bb0385) 2011; 9 Gholivand (10.1016/j.bbagen.2021.130078_bb0200) 2011; 46 Rozanova (Torshina) (10.1016/j.bbagen.2021.130078_bb0505) 2007; 252 Alegría (10.1016/j.bbagen.2021.130078_bb0175) 1998; 65 Verrax (10.1016/j.bbagen.2021.130078_bb0430) 2011; 11 Stroet (10.1016/j.bbagen.2021.130078_bb0340) 2018; 14 Dikalov (10.1016/j.bbagen.2021.130078_bb0160) 1993; 195 Masaldan (10.1016/j.bbagen.2021.130078_bb0260) 2014; 34 Zhong (10.1016/j.bbagen.2021.130078_bb0140) 2004; 6 Björnerås (10.1016/j.bbagen.2021.130078_bb0410) 1848; 2015 Tian (10.1016/j.bbagen.2021.130078_bb0135) 2010; 25 Grillet (10.1016/j.bbagen.2021.130078_bb0120) 2014; 289 Srinivas (10.1016/j.bbagen.2021.130078_bb0475) 2003; 473 Uphoff (10.1016/j.bbagen.2021.130078_bb0375) 2002; 38 da Cunha (10.1016/j.bbagen.2021.130078_bb0455) 2017; 9 Van der Paal (10.1016/j.bbagen.2021.130078_bb0025) 2016; 7 Richardson (10.1016/j.bbagen.2021.130078_bb0380) 1995; 86 Wijesinghe (10.1016/j.bbagen.2021.130078_bb0045) 2021; 173 Zhao (10.1016/j.bbagen.2021.130078_bb0240) 2017; 81 Cui (10.1016/j.bbagen.2021.130078_bb0255) 2014; 38 Barbusiński (10.1016/j.bbagen.2021.130078_bb0405) 2009; 16 Polyakov (10.1016/j.bbagen.2021.130078_bb0185) 2018; 28 Yu (10.1016/j.bbagen.2021.130078_bb0265) 2009; 52 Wong-ekkabut (10.1016/j.bbagen.2021.130078_bb0020) 2007; 93 Markova (10.1016/j.bbagen.2021.130078_bb0180) 2017; 231 Stacy (10.1016/j.bbagen.2021.130078_bb0330) 2016; 59 Rahimipour (10.1016/j.bbagen.2021.130078_bb0450) 2010; 37 Gardner (10.1016/j.bbagen.2021.130078_bb0145) 1996; 325 Chekmarev (10.1016/j.bbagen.2021.130078_bb0290) 2021; 10 Adam (10.1016/j.bbagen.2021.130078_bb0110) 2015; 28 Ye (10.1016/j.bbagen.2021.130078_bb0440) 2006; 2 |
References_xml | – volume: 59 start-page: 4965 year: 2016 end-page: 4984 ident: bb0330 article-title: Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity publication-title: J. Med. Chem. – volume: 46 start-page: 10302 year: 2012 end-page: 10309 ident: bb0435 article-title: Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling publication-title: Environ. Sci. Technol. – volume: 9 start-page: 729 year: 2017 end-page: 745 ident: bb0455 article-title: Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC publication-title: Biophys. Rev. – volume: 1053 start-page: 1 year: 1990 end-page: 12 ident: bb0370 article-title: The uptake of iron and transferrin by the human malignant melanoma cell publication-title: Biochim. Biophys. Acta – volume: 6 start-page: 513 year: 2004 end-page: 522 ident: bb0140 article-title: Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells publication-title: Antioxid. Redox Signal. – volume: 16 start-page: 347 year: 2009 end-page: 358 ident: bb0405 article-title: Fenton reaction - controversy concerning the chemistry publication-title: Ecol. Chem. Eng. – volume: 2 year: 2006 ident: bb0440 article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin publication-title: Anal. Chem. Indian J. – volume: 93 start-page: 4225 year: 2007 end-page: 4236 ident: bb0020 article-title: Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study publication-title: Biophys. J. – volume: 289 start-page: 2515 year: 2014 end-page: 2525 ident: bb0120 article-title: Ascorbate efflux as a new strategy for iron reduction and transport in plants publication-title: J. Biol. Chem. – volume: 49 start-page: 6510 year: 2006 end-page: 6521 ident: bb0295 article-title: Dipyridyl thiosemicarbazone chelators with potent and selective anti-tumor activity form iron complexes with redox activity publication-title: J. Med. Chem. – volume: 82 start-page: IV390-6 year: 1990 ident: bb0165 article-title: Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans publication-title: Circulation – volume: 22 year: 2017 ident: bb0225 article-title: Newly synthesized doxorubicin complexes with selected metals-synthesis, structure and anti-breast cancer activity publication-title: Mol. Basel Switz. – volume: 6 start-page: 3797 year: 2010 end-page: 3808 ident: bb0485 article-title: Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics publication-title: Soft Matter. – volume: 9 start-page: 3541 year: 2011 end-page: 3548 ident: bb0385 article-title: Linoleic acid peroxidation vs. isomerization: a biomimetic model of free radical reactivity in the presence of thiols publication-title: Org. Biomol. Chem. – volume: 51 start-page: 5961 year: 2006 end-page: 5965 ident: bb0445 article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin publication-title: Electrochim. Acta – volume: 38 start-page: 74 year: 2014 end-page: 79 ident: bb0255 article-title: The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus) publication-title: Fish Shellfish Immunol. – volume: 2012 start-page: 443 year: 1826 end-page: 457 ident: bb0100 article-title: Ascorbic acid: chemistry, biology and the treatment of cancer publication-title: Biochim. Biophys. Acta – volume: 122 start-page: 1900209 year: 2020 ident: bb0390 article-title: Toward a spatiotemporal model of oxidation in lipid dispersions: a hypothesis-driven review publication-title: Eur. J. Lipid Sci. Technol. – volume: 7 start-page: 489 year: 2016 end-page: 498 ident: bb0025 article-title: Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress publication-title: Chem. Sci. – volume: 100 start-page: 237 year: 2001 end-page: 238 ident: bb0010 article-title: Does free extracellular iron exist in haemochromatosis and other pathologies, and is it redox active? publication-title: Clin. Sci. – volume: 46 start-page: 2630 year: 2011 end-page: 2638 ident: bb0200 article-title: DNA-binding study of anthraquinone derivatives using chemometrics methods publication-title: Eur. J. Med. Chem. – volume: 6 start-page: 2 year: 1993 end-page: 18 ident: bb0055 article-title: Mechanisms and biological relevance of lipid peroxidation initiation publication-title: Chem. Res. Toxicol. – volume: 24 start-page: 284 year: 1985 end-page: 289 ident: bb0230 article-title: Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and anti-tumor activity publication-title: Biochemistry – volume: 2015 start-page: 2910 year: 1848 end-page: 2917 ident: bb0410 article-title: Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition publication-title: Biochim. Biophys. Acta – volume: 51 start-page: 7027 year: 2015 end-page: 7030 ident: bb0425 article-title: Oxidation with air by ascorbate-driven quinone redox cycling publication-title: Chem. Commun. – volume: 27 start-page: 591 year: 2007 end-page: 608 ident: bb0245 article-title: Molecular mechanism of emodin action: transition from laxative ingredient to an anti-tumor agent publication-title: Med. Res. Rev. – volume: 48 start-page: 16578 year: 2019 end-page: 16587 ident: bb0415 article-title: Proton-assisted air oxidation mechanisms of iron(II) bis-thiosemicarbazone complexes at physiological pH: a kinetico-mechanistic study publication-title: Dalton Trans. – volume: 108 start-page: 4853 year: 2004 end-page: 4858 ident: bb0400 article-title: Iron(III)−hydrogen peroxide reaction: kinetic evidence of a hydroxyl-mediated chain mechanism publication-title: J. Phys. Chem. A – volume: 11 start-page: 213 year: 2011 end-page: 221 ident: bb0430 article-title: Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress publication-title: Anti Cancer Agents Med. Chem. – volume: 473 start-page: 117 year: 2003 end-page: 125 ident: bb0475 article-title: Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9 publication-title: Eur. J. Pharmacol. – volume: 7 start-page: 45 year: 2020 ident: bb0130 article-title: Trying to solve the puzzle of the interaction of ascorbic acid and iron: redox, chelation and therapeutic implications publication-title: Medicines – volume: 1210 start-page: 81 year: 1993 end-page: 88 ident: bb0170 article-title: Effects of metal chelating agents on the oxidation of lipids induced by copper and iron publication-title: Biochim. Biophys. Acta – volume: 30 start-page: 945 year: 2010 end-page: 951 ident: bb0195 article-title: Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells publication-title: Anticancer Res. – volume: 231 year: 2017 ident: bb0180 article-title: Light-stimulated generation of free radicals by quinones-chelators publication-title: Z. Phys. Chem. – volume: 53 start-page: 315 year: 2009 end-page: 321 ident: bb0080 article-title: An update on products and mechanisms of lipid peroxidation publication-title: Mol. Nutr. Food Res. – volume: 86 start-page: 4295 year: 1995 end-page: 4306 ident: bb0380 article-title: The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents publication-title: Blood – volume: 1331 start-page: 1 year: 1997 end-page: 40 ident: bb0005 article-title: The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells publication-title: Biochim. Biophys. Acta – volume: 104 start-page: 1450 year: 2004 end-page: 1458 ident: bb0070 article-title: Novel di-2-pyridyl-derived iron chelators with marked and selective anti-tumor activity: in vitro and in vivo assessment publication-title: Blood – volume: 173 year: 2021 ident: bb0045 article-title: Innovative therapies for neuroblastoma: the surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc publication-title: Pharmacol. Res. – volume: 6 start-page: 63 year: 1989 end-page: 101 ident: bb0190 article-title: Free radical formation by anti-tumor quinones publication-title: Free Radic. Biol. Med. – volume: 45 start-page: 1289 year: 2011 end-page: 1306 ident: bb0155 article-title: Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate publication-title: Free Radic. Res. – volume: 38 start-page: 79 year: 2002 end-page: 85 ident: bb0375 article-title: Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines publication-title: In Vitro Cell. Dev. Biol. Anim. – volume: 28 start-page: 1394 year: 2018 end-page: 1403 ident: bb0185 article-title: Redox-active quinone chelators: properties, mechanisms of action, cell delivery, and cell toxicity publication-title: Antioxid. Redox Signal. – volume: 65 start-page: 185 year: 1998 end-page: 202 ident: bb0175 article-title: Structural and hydrophilicity requirements in quinone-induced lipid peroxidation of phosphatidylcholine vesicles publication-title: Toxicol. Environ. Chem. – volume: 52 start-page: 1459 year: 2009 end-page: 1470 ident: bb0305 article-title: 2-acetylpyridine thiosemicarbazones are potent iron chelators and anti-proliferative agents: redox activity, iron complexation and characterization of their anti-tumor activity publication-title: J. Med. Chem. – volume: 54 start-page: 6936 year: 2011 end-page: 6948 ident: bb0465 article-title: Halogenated 2′-benzoylpyridine thiosemicarbazone (XBpT) chelators with potent and selective anti-neoplastic activity: relationship to intracellular redox activity publication-title: J. Med. Chem. – volume: 12 start-page: 937 year: 2014 end-page: 942 ident: bb0205 article-title: Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex publication-title: Chin. J. Nat. Med. – volume: 30 start-page: 360 year: 2004 end-page: 364 ident: bb0220 article-title: Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: electronic absorption spectra and structure of ligands publication-title: Russ. J. Coord. Chem. – volume: 56 start-page: 357 year: 2013 end-page: 370 ident: bb0460 article-title: Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: novel ligands that limit methemoglobin formation publication-title: J. Med. Chem. – volume: 1790 start-page: 702 year: 2009 end-page: 717 ident: bb0075 article-title: Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents publication-title: Biochim. Biophys. Acta – volume: 30 start-page: 359 year: 1992 end-page: 360 ident: bb0520 article-title: NMR study of some anthraquinones from rhubarb publication-title: Magn. Reson. Chem. – volume: 34 start-page: 95 year: 2014 end-page: 104 ident: bb0260 article-title: Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions publication-title: J. Appl. Toxicol. – volume: 81 start-page: 1908 year: 2017 end-page: 1916 ident: bb0240 article-title: Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1 publication-title: Biosci. Biotechnol. Biochem. – year: 2014 ident: bb0210 article-title: Emodin Transition Metal Complex With Anti-tumor Activity, Preparation Method of Emodin Transition Metal Complex and Application of Emodin Transition Metal Complex, CN104058946A – volume: 33 start-page: 816 year: 2020 end-page: 838 ident: bb0105 article-title: Ascorbate and tumor cell iron metabolism: the evolving story and its link to pathology publication-title: Antioxid. Redox Signal. – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bb0355 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A – volume: 8 start-page: 271 year: 2002 end-page: 280 ident: bb0420 article-title: Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity publication-title: Mol. Hum. Reprod. – volume: 230 start-page: 3556 year: 2011 end-page: 3569 ident: bb0495 article-title: Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming publication-title: J. Comput. Phys. – volume: 252 start-page: 216 year: 2007 end-page: 224 ident: bb0505 article-title: Catalytic therapy of cancer with porphyrins and ascorbate publication-title: Cancer Lett. – volume: 165 start-page: 148 year: 2012 end-page: 166 ident: bb0320 article-title: Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy publication-title: Br. J. Pharmacol. – volume: 28 start-page: 604 year: 2015 end-page: 614 ident: bb0110 article-title: Redox properties and activity of iron-citrate complexes: evidence for redox cycling publication-title: Chem. Res. Toxicol. – volume: 56 start-page: 280 year: 2010 end-page: 284 ident: bb0500 article-title: Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species publication-title: Chemotherapy – volume: 42 start-page: 342 year: 2004 end-page: 348 ident: bb0250 article-title: Antioxidant and scavenging activity of emodin, aloe-emodin, and rhein on free-radical and reactive oxygen species publication-title: Pharm. Biol. – volume: 103 start-page: 14901 year: 2006 end-page: 14906 ident: bb0310 article-title: A class of iron chelators with a wide spectrum of potent anti-tumor activity that overcomes resistance to chemotherapeutics publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 1035 year: 2011 end-page: 1053 ident: bb0150 article-title: Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics publication-title: Free Radic. Biol. Med. – volume: 107 start-page: 748 year: 2007 end-page: 766 ident: bb0060 article-title: What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update publication-title: Chem. Rev. – volume: 145 start-page: 532 year: 1996 end-page: 541 ident: bb0095 article-title: Catalytic metals, ascorbate and free radicals: combinations to avoid publication-title: Radiat. Res. – volume: 38 start-page: 167 year: 2020 end-page: 197 ident: bb0035 article-title: Oxidative stress in cancer publication-title: Cancer Cell. – volume: 325 start-page: 20 year: 1996 end-page: 28 ident: bb0145 article-title: Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells publication-title: Arch. Biochem. Biophys. – volume: 37 start-page: 629 year: 2010 end-page: 648 ident: bb0450 article-title: Towards the efficiency of pharmacologically active quinoid compounds: electron transfer and formation of reactive oxygen species publication-title: Appl. Magn. Reson. – volume: 14 start-page: 5834 year: 2018 end-page: 5845 ident: bb0340 article-title: Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane publication-title: J. Chem. Theory Comput. – volume: 2012 year: 2012 ident: bb0050 article-title: Oxidative stress and lipid peroxidation products in cancer progression and therapy publication-title: ISRN Oncol. – volume: 104 start-page: 2967 year: 2004 end-page: 2975 ident: bb0270 article-title: Iron chelators with high anti-proliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation publication-title: Blood – volume: 10 start-page: 2382 year: 2021 ident: bb0290 article-title: The oncogenic signaling disruptor, NDRG1: molecular and cellular mechanisms of activity publication-title: Cells – volume: 95 start-page: 105 year: 1998 end-page: 162 ident: bb0085 article-title: Linoleic acid peroxidation—the dominant lipid peroxidation process in low density lipoprotein—and its relationship to chronic diseases publication-title: Chem. Phys. Lipids – volume: 1 start-page: 398 year: 2013 end-page: 404 ident: bb0090 article-title: Insights into the role of oxidative stress in the pathology of friedreich ataxia using peroxidation resistant polyunsaturated fatty acids publication-title: Redox Biol. – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bb0350 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. – volume: 73 start-page: 833 year: 2008 end-page: 844 ident: bb0235 article-title: Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking publication-title: Mol. Pharmacol. – volume: 20 start-page: 715 year: 2007 end-page: 720 ident: bb0040 article-title: Future of toxicology of iron chelators and differing modes of action and toxicity: the changing face of iron chelation therapy publication-title: Chem. Res. Toxicol. – volume: 25 start-page: 439 year: 2010 end-page: 448 ident: bb0135 article-title: Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through Fenton chemistry publication-title: Cancer Biother. Radiopharm. – volume: 59 start-page: 8601 year: 2016 end-page: 8620 ident: bb0325 article-title: Structure–activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance publication-title: J. Med. Chem. – volume: 52 start-page: 192 year: 2020 end-page: 203 ident: bb0030 article-title: ROS in cancer therapy: the bright side of the moon publication-title: Exp. Mol. Med. – volume: 170 start-page: 165 year: 1990 end-page: 170 ident: bb0360 article-title: Iron chelators of the pyridoxal isonicotinoyl hydrazone class part I. Ionisation characteristics of the ligands and their relevance to biological properties publication-title: Inorg. Chim. Acta – volume: 31 start-page: 1117 year: 2010 end-page: 1125 ident: bb0345 article-title: A new force field for simulating phosphatidylcholine bilayers publication-title: J. Comput. Chem. – volume: 195 start-page: 113 year: 1993 end-page: 119 ident: bb0160 article-title: Role of iron ion chelation by quinones in their reduction, OH-radical generation, and lipid peroxidation publication-title: Biochem. Biophys. Res. Commun. – volume: 80 start-page: 598 year: 2011 end-page: 609 ident: bb0315 article-title: Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer publication-title: Mol. Pharmacol. – volume: 55 start-page: 3890 year: 1995 end-page: 3896 ident: bb0470 article-title: Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin publication-title: Cancer Res. – volume: 66 start-page: 41403 year: 2017 end-page: 41418 ident: bb0215 article-title: Cu(II) complex of emodin with improved anti-cancer activity as demonstrated by its performance on HeLa and Hep G2 cells - RSC advances (RSC Publishing) publication-title: RSC Adv. – volume: 2017 start-page: 1541 year: 2017 end-page: 1548 ident: bb0510 article-title: Redox-active metal complexes for anti-cancer therapy publication-title: Eur. J. Inorg. Chem. – volume: 87 start-page: 3021 year: 2004 end-page: 3034 ident: bb0115 article-title: Redox properties of the iron complexes of orally active iron chelators CP20, CP502, CP509, and ICL670 publication-title: Helv. Chim. Acta. – volume: 440 start-page: 69 year: 2014 end-page: 79 ident: bb0480 article-title: Protonation/deprotonation process of emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations publication-title: Chem. Phys. – volume: 374 start-page: 265 year: 1995 end-page: 269 ident: bb0335 article-title: Stabilization of a semiquinone radical at the high-affinity quinone-binding site (QH) of the Escherichia coli Bo-type ubiquinol oxidase publication-title: FEBS Lett. – volume: 2012 start-page: 2388 year: 1818 end-page: 2402 ident: bb0015 article-title: Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations publication-title: Biochim. Biophys. Acta – volume: 21 start-page: 3967 year: 2020 ident: bb0125 article-title: Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone publication-title: Int. J. Mol. Sci. – volume: 35 year: 2021 ident: bb0285 article-title: Breaking the cycle: targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma publication-title: FASEB J. – volume: 73 year: 2021 ident: bb0065 article-title: Emodin: a metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets publication-title: Toxicol. In Vitro – volume: 26 start-page: 5064 year: 2021 ident: bb0395 article-title: Antioxidant activity of deferasirox and its metal complexes in model systems of oxidative damage: comparison with deferiprone publication-title: Molecules – volume: 71 start-page: 5871 year: 2011 end-page: 5880 ident: bb0300 article-title: Anti-tumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes publication-title: Cancer Res. – volume: 290 start-page: 9588 year: 2015 end-page: 9603 ident: bb0515 article-title: Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp) publication-title: J. Biol. Chem. – volume: 52 start-page: 5271 year: 2009 end-page: 5294 ident: bb0265 article-title: Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors publication-title: J. Med. Chem. – volume: 18 start-page: 874 year: 2013 end-page: 887 ident: bb0275 article-title: The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways publication-title: Antioxid. Redox Signal. – volume: 294 start-page: 4045 year: 2019 end-page: 4064 ident: bb0280 article-title: The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6 publication-title: J. Biol. Chem. – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: bb0365 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. – volume: 98 start-page: 586 year: 2010 end-page: 595 ident: bb0490 article-title: Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study publication-title: Biophys. J. – volume: 195 start-page: 113 year: 1993 ident: 10.1016/j.bbagen.2021.130078_bb0160 article-title: Role of iron ion chelation by quinones in their reduction, OH-radical generation, and lipid peroxidation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.1993.2017 – volume: 440 start-page: 69 year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0480 article-title: Protonation/deprotonation process of emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2014.06.009 – volume: 25 start-page: 439 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0135 article-title: Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through Fenton chemistry publication-title: Cancer Biother. Radiopharm. – volume: 6 start-page: 3797 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0485 article-title: Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics publication-title: Soft Matter. doi: 10.1039/c0sm00136h – volume: 93 start-page: 4225 year: 2007 ident: 10.1016/j.bbagen.2021.130078_bb0020 article-title: Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study publication-title: Biophys. J. doi: 10.1529/biophysj.107.112565 – volume: 28 start-page: 604 year: 2015 ident: 10.1016/j.bbagen.2021.130078_bb0110 article-title: Redox properties and activity of iron-citrate complexes: evidence for redox cycling publication-title: Chem. Res. Toxicol. doi: 10.1021/tx500377b – volume: 37 start-page: 629 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0450 article-title: Towards the efficiency of pharmacologically active quinoid compounds: electron transfer and formation of reactive oxygen species publication-title: Appl. Magn. Reson. doi: 10.1007/s00723-009-0099-y – volume: 10 start-page: 2382 year: 2021 ident: 10.1016/j.bbagen.2021.130078_bb0290 article-title: The oncogenic signaling disruptor, NDRG1: molecular and cellular mechanisms of activity publication-title: Cells doi: 10.3390/cells10092382 – volume: 2012 start-page: 443 year: 1826 ident: 10.1016/j.bbagen.2021.130078_bb0100 article-title: Ascorbic acid: chemistry, biology and the treatment of cancer publication-title: Biochim. Biophys. Acta – volume: 104 start-page: 1450 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0070 article-title: Novel di-2-pyridyl-derived iron chelators with marked and selective anti-tumor activity: in vitro and in vivo assessment publication-title: Blood doi: 10.1182/blood-2004-03-0868 – volume: 49 start-page: 6510 year: 2006 ident: 10.1016/j.bbagen.2021.130078_bb0295 article-title: Dipyridyl thiosemicarbazone chelators with potent and selective anti-tumor activity form iron complexes with redox activity publication-title: J. Med. Chem. doi: 10.1021/jm0606342 – volume: 71 start-page: 5871 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0300 article-title: Anti-tumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-1218 – volume: 56 start-page: 357 year: 2013 ident: 10.1016/j.bbagen.2021.130078_bb0460 article-title: Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: novel ligands that limit methemoglobin formation publication-title: J. Med. Chem. doi: 10.1021/jm301691s – volume: 252 start-page: 216 year: 2007 ident: 10.1016/j.bbagen.2021.130078_bb0505 article-title: Catalytic therapy of cancer with porphyrins and ascorbate publication-title: Cancer Lett. doi: 10.1016/j.canlet.2006.12.026 – volume: 51 start-page: 1035 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0150 article-title: Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.04.046 – volume: 122 start-page: 1900209 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0390 article-title: Toward a spatiotemporal model of oxidation in lipid dispersions: a hypothesis-driven review publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.201900209 – volume: 12 start-page: 937 year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0205 article-title: Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex publication-title: Chin. J. Nat. Med. – volume: 98 start-page: 586 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0490 article-title: Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.10.046 – volume: 34 start-page: 95 year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0260 article-title: Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions publication-title: J. Appl. Toxicol. doi: 10.1002/jat.2838 – volume: 1053 start-page: 1 year: 1990 ident: 10.1016/j.bbagen.2021.130078_bb0370 article-title: The uptake of iron and transferrin by the human malignant melanoma cell publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4889(90)90018-9 – volume: 46 start-page: 2630 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0200 article-title: DNA-binding study of anthraquinone derivatives using chemometrics methods publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2011.03.034 – volume: 87 start-page: 3021 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0115 article-title: Redox properties of the iron complexes of orally active iron chelators CP20, CP502, CP509, and ICL670 publication-title: Helv. Chim. Acta. doi: 10.1002/hlca.200490272 – volume: 2015 start-page: 2910 year: 1848 ident: 10.1016/j.bbagen.2021.130078_bb0410 article-title: Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition publication-title: Biochim. Biophys. Acta – volume: 2 year: 2006 ident: 10.1016/j.bbagen.2021.130078_bb0440 article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin publication-title: Anal. Chem. Indian J. – volume: 289 start-page: 2515 year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0120 article-title: Ascorbate efflux as a new strategy for iron reduction and transport in plants publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.514828 – volume: 51 start-page: 7027 year: 2015 ident: 10.1016/j.bbagen.2021.130078_bb0425 article-title: Oxidation with air by ascorbate-driven quinone redox cycling publication-title: Chem. Commun. doi: 10.1039/C5CC01519G – volume: 7 start-page: 45 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0130 article-title: Trying to solve the puzzle of the interaction of ascorbic acid and iron: redox, chelation and therapeutic implications publication-title: Medicines doi: 10.3390/medicines7080045 – volume: 16 start-page: 347 year: 2009 ident: 10.1016/j.bbagen.2021.130078_bb0405 article-title: Fenton reaction - controversy concerning the chemistry publication-title: Ecol. Chem. Eng. – volume: 20 start-page: 715 year: 2007 ident: 10.1016/j.bbagen.2021.130078_bb0040 article-title: Future of toxicology of iron chelators and differing modes of action and toxicity: the changing face of iron chelation therapy publication-title: Chem. Res. Toxicol. doi: 10.1021/tx700039c – volume: 325 start-page: 20 year: 1996 ident: 10.1016/j.bbagen.2021.130078_bb0145 article-title: Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1996.0003 – volume: 6 start-page: 2 year: 1993 ident: 10.1016/j.bbagen.2021.130078_bb0055 article-title: Mechanisms and biological relevance of lipid peroxidation initiation publication-title: Chem. Res. Toxicol. doi: 10.1021/tx00031a001 – volume: 145 start-page: 532 year: 1996 ident: 10.1016/j.bbagen.2021.130078_bb0095 article-title: Catalytic metals, ascorbate and free radicals: combinations to avoid publication-title: Radiat. Res. doi: 10.2307/3579271 – volume: 28 start-page: 1394 year: 2018 ident: 10.1016/j.bbagen.2021.130078_bb0185 article-title: Redox-active quinone chelators: properties, mechanisms of action, cell delivery, and cell toxicity publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7406 – volume: 6 start-page: 513 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0140 article-title: Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells publication-title: Antioxid. Redox Signal. doi: 10.1089/152308604773934279 – volume: 14 start-page: 5834 year: 2018 ident: 10.1016/j.bbagen.2021.130078_bb0340 article-title: Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00768 – volume: 9 start-page: 3541 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0385 article-title: Linoleic acid peroxidation vs. isomerization: a biomimetic model of free radical reactivity in the presence of thiols publication-title: Org. Biomol. Chem. doi: 10.1039/c1ob05083d – volume: 103 start-page: 8577 year: 1995 ident: 10.1016/j.bbagen.2021.130078_bb0365 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 473 start-page: 117 year: 2003 ident: 10.1016/j.bbagen.2021.130078_bb0475 article-title: Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9 publication-title: Eur. J. Pharmacol. doi: 10.1016/S0014-2999(03)01976-9 – volume: 103 start-page: 14901 year: 2006 ident: 10.1016/j.bbagen.2021.130078_bb0310 article-title: A class of iron chelators with a wide spectrum of potent anti-tumor activity that overcomes resistance to chemotherapeutics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604979103 – volume: 18 start-page: 874 year: 2013 ident: 10.1016/j.bbagen.2021.130078_bb0275 article-title: The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2011.4273 – volume: 24 start-page: 284 year: 1985 ident: 10.1016/j.bbagen.2021.130078_bb0230 article-title: Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and anti-tumor activity publication-title: Biochemistry doi: 10.1021/bi00323a007 – year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0210 – volume: 30 start-page: 945 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0195 article-title: Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells publication-title: Anticancer Res. – volume: 107 start-page: 748 year: 2007 ident: 10.1016/j.bbagen.2021.130078_bb0060 article-title: What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update publication-title: Chem. Rev. doi: 10.1021/cr040077w – volume: 38 start-page: 79 year: 2002 ident: 10.1016/j.bbagen.2021.130078_bb0375 article-title: Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines publication-title: In Vitro Cell. Dev. Biol. Anim. doi: 10.1290/1071-2690(2002)038<0079:CPAFDO>2.0.CO;2 – volume: 21 start-page: 3967 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0125 article-title: Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21113967 – volume: 45 start-page: 1289 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0155 article-title: Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate publication-title: Free Radic. Res. doi: 10.3109/10715762.2011.616199 – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.bbagen.2021.130078_bb0350 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 2012 start-page: 2388 year: 1818 ident: 10.1016/j.bbagen.2021.130078_bb0015 article-title: Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations publication-title: Biochim. Biophys. Acta – volume: 53 start-page: 315 year: 2009 ident: 10.1016/j.bbagen.2021.130078_bb0080 article-title: An update on products and mechanisms of lipid peroxidation publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200800131 – volume: 30 start-page: 360 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0220 article-title: Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: electronic absorption spectra and structure of ligands publication-title: Russ. J. Coord. Chem. doi: 10.1023/B:RUCO.0000026007.04814.ad – volume: 231 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0180 article-title: Light-stimulated generation of free radicals by quinones-chelators publication-title: Z. Phys. Chem. doi: 10.1515/zpch-2016-0831 – volume: 165 start-page: 148 year: 2012 ident: 10.1016/j.bbagen.2021.130078_bb0320 article-title: Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2011.01526.x – volume: 27 start-page: 591 year: 2007 ident: 10.1016/j.bbagen.2021.130078_bb0245 article-title: Molecular mechanism of emodin action: transition from laxative ingredient to an anti-tumor agent publication-title: Med. Res. Rev. doi: 10.1002/med.20095 – volume: 51 start-page: 5961 year: 2006 ident: 10.1016/j.bbagen.2021.130078_bb0445 article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2006.03.082 – volume: 65 start-page: 185 year: 1998 ident: 10.1016/j.bbagen.2021.130078_bb0175 article-title: Structural and hydrophilicity requirements in quinone-induced lipid peroxidation of phosphatidylcholine vesicles publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772249809358568 – volume: 95 start-page: 105 year: 1998 ident: 10.1016/j.bbagen.2021.130078_bb0085 article-title: Linoleic acid peroxidation—the dominant lipid peroxidation process in low density lipoprotein—and its relationship to chronic diseases publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(98)00091-7 – volume: 66 start-page: 41403 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0215 article-title: Cu(II) complex of emodin with improved anti-cancer activity as demonstrated by its performance on HeLa and Hep G2 cells - RSC advances (RSC Publishing) publication-title: RSC Adv. doi: 10.1039/C7RA06696A – volume: 81 start-page: 1908 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0240 article-title: Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2017.1365592 – volume: 31 start-page: 1117 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0345 article-title: A new force field for simulating phosphatidylcholine bilayers publication-title: J. Comput. Chem. doi: 10.1002/jcc.21396 – volume: 59 start-page: 8601 year: 2016 ident: 10.1016/j.bbagen.2021.130078_bb0325 article-title: Structure–activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01050 – volume: 8 start-page: 271 year: 2002 ident: 10.1016/j.bbagen.2021.130078_bb0420 article-title: Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/8.3.271 – volume: 108 start-page: 4853 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0400 article-title: Iron(III)−hydrogen peroxide reaction: kinetic evidence of a hydroxyl-mediated chain mechanism publication-title: J. Phys. Chem. A doi: 10.1021/jp031339l – volume: 1210 start-page: 81 year: 1993 ident: 10.1016/j.bbagen.2021.130078_bb0170 article-title: Effects of metal chelating agents on the oxidation of lipids induced by copper and iron publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(93)90052-B – volume: 173 year: 2021 ident: 10.1016/j.bbagen.2021.130078_bb0045 article-title: Innovative therapies for neuroblastoma: the surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2021.105889 – volume: 100 start-page: 237 year: 2001 ident: 10.1016/j.bbagen.2021.130078_bb0010 article-title: Does free extracellular iron exist in haemochromatosis and other pathologies, and is it redox active? publication-title: Clin. Sci. doi: 10.1042/cs1000237 – volume: 80 start-page: 598 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0315 article-title: Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer publication-title: Mol. Pharmacol. doi: 10.1124/mol.111.073627 – volume: 104 start-page: 2967 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0270 article-title: Iron chelators with high anti-proliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation publication-title: Blood doi: 10.1182/blood-2004-05-1866 – volume: 73 year: 2021 ident: 10.1016/j.bbagen.2021.130078_bb0065 article-title: Emodin: a metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets publication-title: Toxicol. In Vitro doi: 10.1016/j.tiv.2021.105142 – volume: 1 start-page: 398 year: 2013 ident: 10.1016/j.bbagen.2021.130078_bb0090 article-title: Insights into the role of oxidative stress in the pathology of friedreich ataxia using peroxidation resistant polyunsaturated fatty acids publication-title: Redox Biol. doi: 10.1016/j.redox.2013.06.004 – volume: 2017 start-page: 1541 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0510 article-title: Redox-active metal complexes for anti-cancer therapy publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600908 – volume: 35 year: 2021 ident: 10.1016/j.bbagen.2021.130078_bb0285 article-title: Breaking the cycle: targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma publication-title: FASEB J. doi: 10.1096/fj.202002279R – volume: 33 start-page: 816 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0105 article-title: Ascorbate and tumor cell iron metabolism: the evolving story and its link to pathology publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2019.7903 – volume: 170 start-page: 165 year: 1990 ident: 10.1016/j.bbagen.2021.130078_bb0360 article-title: Iron chelators of the pyridoxal isonicotinoyl hydrazone class part I. Ionisation characteristics of the ligands and their relevance to biological properties publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)80471-5 – volume: 56 start-page: 280 year: 2010 ident: 10.1016/j.bbagen.2021.130078_bb0500 article-title: Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species publication-title: Chemotherapy doi: 10.1159/000319951 – volume: 86 start-page: 4295 year: 1995 ident: 10.1016/j.bbagen.2021.130078_bb0380 article-title: The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents publication-title: Blood doi: 10.1182/blood.V86.11.4295.bloodjournal86114295 – volume: 230 start-page: 3556 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0495 article-title: Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.048 – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.bbagen.2021.130078_bb0355 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 38 start-page: 167 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0035 article-title: Oxidative stress in cancer publication-title: Cancer Cell. doi: 10.1016/j.ccell.2020.06.001 – volume: 55 start-page: 3890 year: 1995 ident: 10.1016/j.bbagen.2021.130078_bb0470 article-title: Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin publication-title: Cancer Res. – volume: 294 start-page: 4045 year: 2019 ident: 10.1016/j.bbagen.2021.130078_bb0280 article-title: The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.006279 – volume: 59 start-page: 4965 year: 2016 ident: 10.1016/j.bbagen.2021.130078_bb0330 article-title: Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00238 – volume: 22 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0225 article-title: Newly synthesized doxorubicin complexes with selected metals-synthesis, structure and anti-breast cancer activity publication-title: Mol. Basel Switz. – volume: 46 start-page: 10302 year: 2012 ident: 10.1016/j.bbagen.2021.130078_bb0435 article-title: Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling publication-title: Environ. Sci. Technol. doi: 10.1021/es301834r – volume: 54 start-page: 6936 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0465 article-title: Halogenated 2′-benzoylpyridine thiosemicarbazone (XBpT) chelators with potent and selective anti-neoplastic activity: relationship to intracellular redox activity publication-title: J. Med. Chem. doi: 10.1021/jm200924c – volume: 52 start-page: 1459 year: 2009 ident: 10.1016/j.bbagen.2021.130078_bb0305 article-title: 2-acetylpyridine thiosemicarbazones are potent iron chelators and anti-proliferative agents: redox activity, iron complexation and characterization of their anti-tumor activity publication-title: J. Med. Chem. doi: 10.1021/jm801585u – volume: 1331 start-page: 1 year: 1997 ident: 10.1016/j.bbagen.2021.130078_bb0005 article-title: The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(96)00014-7 – volume: 11 start-page: 213 year: 2011 ident: 10.1016/j.bbagen.2021.130078_bb0430 article-title: Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress publication-title: Anti Cancer Agents Med. Chem. doi: 10.2174/187152011795255902 – volume: 30 start-page: 359 year: 1992 ident: 10.1016/j.bbagen.2021.130078_bb0520 article-title: NMR study of some anthraquinones from rhubarb publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1260300414 – volume: 2012 year: 2012 ident: 10.1016/j.bbagen.2021.130078_bb0050 article-title: Oxidative stress and lipid peroxidation products in cancer progression and therapy publication-title: ISRN Oncol. – volume: 290 start-page: 9588 year: 2015 ident: 10.1016/j.bbagen.2021.130078_bb0515 article-title: Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.631283 – volume: 9 start-page: 729 year: 2017 ident: 10.1016/j.bbagen.2021.130078_bb0455 article-title: Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0323-1 – volume: 26 start-page: 5064 year: 2021 ident: 10.1016/j.bbagen.2021.130078_bb0395 article-title: Antioxidant activity of deferasirox and its metal complexes in model systems of oxidative damage: comparison with deferiprone publication-title: Molecules doi: 10.3390/molecules26165064 – volume: 38 start-page: 74 year: 2014 ident: 10.1016/j.bbagen.2021.130078_bb0255 article-title: The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus) publication-title: Fish Shellfish Immunol. doi: 10.1016/j.fsi.2014.02.018 – volume: 1790 start-page: 702 year: 2009 ident: 10.1016/j.bbagen.2021.130078_bb0075 article-title: Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2008.04.003 – volume: 82 start-page: IV390-6 year: 1990 ident: 10.1016/j.bbagen.2021.130078_bb0165 article-title: Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans publication-title: Circulation – volume: 42 start-page: 342 year: 2004 ident: 10.1016/j.bbagen.2021.130078_bb0250 article-title: Antioxidant and scavenging activity of emodin, aloe-emodin, and rhein on free-radical and reactive oxygen species publication-title: Pharm. Biol. doi: 10.1080/13880200490519613 – volume: 374 start-page: 265 year: 1995 ident: 10.1016/j.bbagen.2021.130078_bb0335 article-title: Stabilization of a semiquinone radical at the high-affinity quinone-binding site (QH) of the Escherichia coli Bo-type ubiquinol oxidase publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)01125-X – volume: 7 start-page: 489 year: 2016 ident: 10.1016/j.bbagen.2021.130078_bb0025 article-title: Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress publication-title: Chem. Sci. doi: 10.1039/C5SC02311D – volume: 48 start-page: 16578 year: 2019 ident: 10.1016/j.bbagen.2021.130078_bb0415 article-title: Proton-assisted air oxidation mechanisms of iron(II) bis-thiosemicarbazone complexes at physiological pH: a kinetico-mechanistic study publication-title: Dalton Trans. doi: 10.1039/C9DT03557E – volume: 52 start-page: 192 year: 2020 ident: 10.1016/j.bbagen.2021.130078_bb0030 article-title: ROS in cancer therapy: the bright side of the moon publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-0384-2 – volume: 52 start-page: 5271 year: 2009 ident: 10.1016/j.bbagen.2021.130078_bb0265 article-title: Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm900552r – volume: 73 start-page: 833 year: 2008 ident: 10.1016/j.bbagen.2021.130078_bb0235 article-title: Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking publication-title: Mol. Pharmacol. doi: 10.1124/mol.107.041335 – volume: 6 start-page: 63 year: 1989 ident: 10.1016/j.bbagen.2021.130078_bb0190 article-title: Free radical formation by anti-tumor quinones publication-title: Free Radic. Biol. Med. doi: 10.1016/0891-5849(89)90162-7 |
SSID | ssj0000595 |
Score | 2.4318488 |
Snippet | Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130078 |
SubjectTerms | antioxidant activity Ascorbate Ascorbic Acid - chemistry cell membranes Dp44mT drug therapy electron paramagnetic resonance spectroscopy emodin Emodin - pharmacology Ferrous Compounds Hydrogen Peroxide Iron Iron - metabolism Iron chelators Ligands lipid peroxidation melanoma Micelles Oxidation-Reduction oxidative stress Reactive Oxygen Species Thiosemicarbazones - pharmacology |
Title | Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles |
URI | https://dx.doi.org/10.1016/j.bbagen.2021.130078 https://www.ncbi.nlm.nih.gov/pubmed/34974127 https://www.proquest.com/docview/2616279096 https://www.proquest.com/docview/2636809762 |
Volume | 1866 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9wwDBalY2wvY-t-9NqueLBX7y6xE8WPx7XltrG-rIW-GdvnwI1rcvSu0L3sb58UJx2DbYU9JpHBWIr0CUv6AN5TxoAYjZOqpkxH15WWLhRKopvwKGiX-Ywbhb-cl_NL_emquNqB2dALw2WVve9PPr3z1v2bcX-a4_VyOf7Kl3oEJyj-cOBBnvipNbKVf_jxq8yD4EORbhK0ZOmhfa6r8fKeflqegppnHS0yk639OTz9DX52YejsOTzr8aOYpi2-gJ3Y7MHjxCj5fQ-ezAYCt5fQTjeUWnoCk9I1C8H9bHJxw95N8JTQO8E9DUwdIdpanKy1vr4QLHh63VJAE7ULaYJ33AieJn63TPRLLM0c9qsVfWB53z-8gsuz04vZXPb8CjLQwW1l4K5UzAOarPKh8OjLugyVoqBde3QYnA_GOEMI0AVlvK9MUSuf-YqzFMIlr2G3aZu4D2KyUAvCChEjlto7NHnQZR5RU0KkJ9GMQA3HakM_fJw5MFZ2qDL7ZpMyLCvDJmWMQN6vWqfhGw_I46Ax-5sRWYoPD6x8NyjYkpb42FwT29uNpQyzzNFQpvcvGVVWEwJ2-QjeJOu436_SlLFlOR78994O4WnOPRddudAR7G5vbuNbQkJbf9yZ-jE8mn78PD__CVdoBiU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFaKXquXV7QsjcTW7iZ04PqItaFseFxaJm2V7HWnRkqzYRaKX_vbOxAkIiRapxyRjyZqxZ75RZuYDOMCMQamgLRclZjqyLCS3PhNc2QGNgraJS6hR-PwiH13Jn9fZ9QoMu14YKqtsfX_06Y23bt_0W23259Np_5J-6iGcwPhDgUeJVXgj8foSjcHh76c6D8QPWfyVIDmJd_1zTZGXc3hraQxqmjS8yMS29nJ8-hv-bOLQyXt41wJIdhT3-AFWQrUJ65FS8tcmbAw7BrctqI8WmFs6RJPcVhNGDW18ckfujdGY0AdGTQ3EHcHqkn2fS3k7ZiR4fFtjRGOl9XGEd1gwGif-MI38SyRNJPazGX4gedc-bMPVyfF4OOItwQL3qLkl99SWqlKvdFI4nznl8jL3hcCoXTpllbfOa201QkDrhXau0FkpXOIKSlMQmOzAWlVX4SOwwURMECwEFVQunVU69TJPg5KYEclB0D0QnVqNb6ePEwnGzHRlZjcmGsOQMUw0Rg_446p5nL7xirzqLGaenSKDAeKVlfudgQ1aidRmq1DfLwymmHmqNKZ6_5IReTFAZJf2YDeejsf9CokpW5KqT_-9tz3YGI3Pz8zZj4vTz_A2pQaMpnboC6wt7-7DV4RFS_etOfZ_AD8uB7M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascorbate-and+iron-driven+redox+activity+of+Dp44mT+and+Emodin+facilitates+peroxidation+of+micelles+and+bicelles&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Selyutina%2C+O+Yu&rft.au=Kononova%2C+P+A&rft.au=Koshman%2C+V+E&rft.au=Shelepova%2C+E+A&rft.date=2022-04-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1866&rft.issue=4&rft.spage=130078&rft_id=info:doi/10.1016%2Fj.bbagen.2021.130078&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |