Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles

Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the p...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1866; no. 4; p. 130078
Main Authors Selyutina, O.Yu, Kononova, P.A., Koshman, V.E., Shelepova, E.A., Azad, M. Gholam, Afroz, R., Dharmasivam, M., Bernhardt, Paul V., Polyakov, N.E., Richardson, D.R.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. [Display omitted] •Iron(III)-Dp44mT complexes suppress lipid peroxidation.•Ascorbate reduces iron(III)-Dp44mT to the redox-active iron(II)-Dp44mT complex.•Iron(II)-Dp44mT complexes enhance lipid peroxidation.•Ascorbate drives redox cycling of iron in the presence of Dp44mT and Emodin.•Ascorbate enhances the in vitro anti-proliferative efficacy of Dp44mT and Emodin
AbstractList Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H O ) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H O demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H O . The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H O . This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.BACKGROUNDIron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics.Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.METHODSHerein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate.In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.RESULTSIn the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin.Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.CONCLUSIONS AND GENERAL SIGNIFICANCEAscorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H₂O₂) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H₂O₂ demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H₂O₂. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H₂O₂. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. Herein, we compared the effect of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on Fe-catalyzed lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity. [Display omitted] •Iron(III)-Dp44mT complexes suppress lipid peroxidation.•Ascorbate reduces iron(III)-Dp44mT to the redox-active iron(II)-Dp44mT complex.•Iron(II)-Dp44mT complexes enhance lipid peroxidation.•Ascorbate drives redox cycling of iron in the presence of Dp44mT and Emodin.•Ascorbate enhances the in vitro anti-proliferative efficacy of Dp44mT and Emodin
ArticleNumber 130078
Author Richardson, D.R.
Dharmasivam, M.
Shelepova, E.A.
Selyutina, O.Yu
Kononova, P.A.
Koshman, V.E.
Bernhardt, Paul V.
Afroz, R.
Azad, M. Gholam
Polyakov, N.E.
Author_xml – sequence: 1
  givenname: O.Yu
  surname: Selyutina
  fullname: Selyutina, O.Yu
  email: olga.gluschenko@gmail.com
  organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
– sequence: 2
  givenname: P.A.
  surname: Kononova
  fullname: Kononova, P.A.
  organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
– sequence: 3
  givenname: V.E.
  surname: Koshman
  fullname: Koshman, V.E.
  organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
– sequence: 4
  givenname: E.A.
  surname: Shelepova
  fullname: Shelepova, E.A.
  organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
– sequence: 5
  givenname: M. Gholam
  surname: Azad
  fullname: Azad, M. Gholam
  organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
– sequence: 6
  givenname: R.
  surname: Afroz
  fullname: Afroz, R.
  organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
– sequence: 7
  givenname: M.
  surname: Dharmasivam
  fullname: Dharmasivam, M.
  organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
– sequence: 8
  givenname: Paul V.
  surname: Bernhardt
  fullname: Bernhardt, Paul V.
  organization: School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
– sequence: 9
  givenname: N.E.
  surname: Polyakov
  fullname: Polyakov, N.E.
  organization: Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
– sequence: 10
  givenname: D.R.
  surname: Richardson
  fullname: Richardson, D.R.
  email: d.richardson@griffith.edu.au
  organization: Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34974127$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtP3DAUha2KqgzQf1BVWXaTwa_4waISohSQkLqBtWU7TuVRYg-2ZwT_HkcZNixo78a68neOrs45AUchBgfANwTXCCJ2vlkbo_-6sMYQozUiEHLxCayQ4LgVELIjsIIE0pYi1h2Dk5w3sE4nuy_gmFDJKcJ8BeJltjEZXVyrQ9_4FEPbJ793oUmuj8-NtsXvfXlp4tD82lI6PTQzeD3F3odm0NaPvlR5brYuxWff6-JjmOnJWzeO9WPmzWE5A58HPWb39fCegsff1w9Xt-39n5u7q8v71lKKSmuxYB3HlkskjO0MN2xgVhCK2WC45lYbK6WWBEFtiTRGyG4gBhmBO86wIKfgx-K7TfFp53JRk8_zCTq4uMsKM8IElJX9DxQxzCWUrKLfD-jOTK5X2-QnnV7UW54VuFgAm2LOyQ3KzunURErSflQIqrk8tVFLeWouTy3lVTF9J37z_4fs5yJzNc-9d0ll612wrvfJ2aL66D82eAVr2rSL
CitedBy_id crossref_primary_10_3390_ph17121717
crossref_primary_10_1021_acs_jmedchem_2c01600
crossref_primary_10_3389_fchem_2022_967337
crossref_primary_10_3390_ijms25063194
crossref_primary_10_3390_membranes12050460
crossref_primary_10_3390_membranes13010061
crossref_primary_10_1016_j_molstruc_2024_140511
crossref_primary_10_3390_antiox11020376
crossref_primary_10_1021_acsomega_3c08890
crossref_primary_10_1016_j_abb_2025_110390
Cites_doi 10.1006/bbrc.1993.2017
10.1016/j.chemphys.2014.06.009
10.1039/c0sm00136h
10.1529/biophysj.107.112565
10.1021/tx500377b
10.1007/s00723-009-0099-y
10.3390/cells10092382
10.1182/blood-2004-03-0868
10.1021/jm0606342
10.1158/0008-5472.CAN-11-1218
10.1021/jm301691s
10.1016/j.canlet.2006.12.026
10.1016/j.freeradbiomed.2011.04.046
10.1002/ejlt.201900209
10.1016/j.bpj.2009.10.046
10.1002/jat.2838
10.1016/0167-4889(90)90018-9
10.1016/j.ejmech.2011.03.034
10.1002/hlca.200490272
10.1074/jbc.M113.514828
10.1039/C5CC01519G
10.3390/medicines7080045
10.1021/tx700039c
10.1006/abbi.1996.0003
10.1021/tx00031a001
10.2307/3579271
10.1089/ars.2017.7406
10.1089/152308604773934279
10.1021/acs.jctc.8b00768
10.1039/c1ob05083d
10.1063/1.470117
10.1016/S0014-2999(03)01976-9
10.1073/pnas.0604979103
10.1089/ars.2011.4273
10.1021/bi00323a007
10.1021/cr040077w
10.1290/1071-2690(2002)038<0079:CPAFDO>2.0.CO;2
10.3390/ijms21113967
10.3109/10715762.2011.616199
10.1063/1.328693
10.1002/mnfr.200800131
10.1023/B:RUCO.0000026007.04814.ad
10.1515/zpch-2016-0831
10.1111/j.1476-5381.2011.01526.x
10.1002/med.20095
10.1016/j.electacta.2006.03.082
10.1080/02772249809358568
10.1016/S0009-3084(98)00091-7
10.1039/C7RA06696A
10.1080/09168451.2017.1365592
10.1002/jcc.21396
10.1021/acs.jmedchem.6b01050
10.1093/molehr/8.3.271
10.1021/jp031339l
10.1016/0005-2760(93)90052-B
10.1016/j.phrs.2021.105889
10.1042/cs1000237
10.1124/mol.111.073627
10.1182/blood-2004-05-1866
10.1016/j.tiv.2021.105142
10.1016/j.redox.2013.06.004
10.1002/ejic.201600908
10.1096/fj.202002279R
10.1089/ars.2019.7903
10.1016/S0020-1693(00)80471-5
10.1159/000319951
10.1182/blood.V86.11.4295.bloodjournal86114295
10.1016/j.jcp.2011.01.048
10.1103/PhysRevA.31.1695
10.1016/j.ccell.2020.06.001
10.1074/jbc.RA118.006279
10.1021/acs.jmedchem.6b00238
10.1021/es301834r
10.1021/jm200924c
10.1021/jm801585u
10.1016/S0304-4157(96)00014-7
10.2174/187152011795255902
10.1002/mrc.1260300414
10.1074/jbc.M114.631283
10.1007/s12551-017-0323-1
10.3390/molecules26165064
10.1016/j.fsi.2014.02.018
10.1016/j.bbagen.2008.04.003
10.1080/13880200490519613
10.1016/0014-5793(95)01125-X
10.1039/C5SC02311D
10.1039/C9DT03557E
10.1038/s12276-020-0384-2
10.1021/jm900552r
10.1124/mol.107.041335
10.1016/0891-5849(89)90162-7
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2021.130078
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 34974127
10_1016_j_bbagen_2021_130078
S0304416521002373
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c441t-c286572c7918bc5b7b6f6c83426fb7a7cabc99a9310ac39bb895f3b1b82576283
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Tue Aug 05 11:21:35 EDT 2025
Fri Jul 11 16:17:49 EDT 2025
Thu Apr 03 07:09:20 EDT 2025
Tue Jul 01 00:22:16 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Fri Feb 23 02:41:52 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Iron chelators
Iron
Ascorbate
Dp44mT
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-c286572c7918bc5b7b6f6c83426fb7a7cabc99a9310ac39bb895f3b1b82576283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0304416521002373?via%3Dihub
PMID 34974127
PQID 2616279096
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636809762
proquest_miscellaneous_2616279096
pubmed_primary_34974127
crossref_citationtrail_10_1016_j_bbagen_2021_130078
crossref_primary_10_1016_j_bbagen_2021_130078
elsevier_sciencedirect_doi_10_1016_j_bbagen_2021_130078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dix, Aikens (bb0055) 1993; 6
Le, Richardson (bb0270) 2004; 104
Yang, Tan, Wang, Zhu (bb0205) 2014; 12
Wijesinghe, Dharmasivam, Dai, Richardson (bb0045) 2021; 173
Srinivas, Anto, Srinivas, Vidhyalakshmi, Senan, Karunagaran (bb0475) 2003; 473
Adam, Bounds, Kissner, Koppenol (bb0110) 2015; 28
Yoshida, Furuta, Niki (bb0170) 1993; 1210
Chekmarev, Azad, Richardson (bb0290) 2021; 10
da Cunha, Duarte, Stassen, Lamy, Coutinho (bb0455) 2017; 9
Yuan, Lovejoy, Richardson (bb0070) 2004; 104
Spiteller (bb0085) 1998; 95
Tóth, Kukor, Valent (bb0420) 2002; 8
Schneider (bb0080) 2009; 53
Richardson, Sharpe, Lovejoy, Senaratne, Kalinowski, Islam, Bernhardt (bb0295) 2006; 49
Verrax, Beck, Dejeans, Glorieux, Sid, Pedrosa, Benites, Vásquez, Valderrama, Calderon (bb0430) 2011; 11
Hayes, Dinkova-Kostova, Tew (bb0035) 2020; 38
Powis (bb0190) 1989; 6
Li, Zhu, Zhao, Xu (bb0435) 2012; 46
Richardson, Kalinowski, Lau, Jansson, Lovejoy (bb0075) 2009; 1790
Beraldo, Garnier-Suillerot, Tosi, Lavelle (bb0230) 1985; 24
da Cunha, Duarte, Lamy, Coutinho (bb0480) 2014; 440
Tuli, Aggarwal, Tuorkey, Aggarwal, Parashar, Varol, Savla, Kaur, Mittal, Sak (bb0065) 2021; 73
Fain, Zaitsev, Ryabov (bb0220) 2004; 30
Geleta, Park, Jansson, Sahni, Maleki, Xu, Murakami, Pajic, Apte, Richardson, Kovacevic (bb0285) 2021; 35
Laguerre, Tenon, Bily, Birtić (bb0390) 2020; 122
Buettner, Jurkiewicz (bb0095) 1996; 145
Mihaljević, Tartaro, Ferreri, Chatgilialoglu (bb0385) 2011; 9
Richardson, Dean (bb0010) 2001; 100
Zhong, Yan, Webber, Oberley (bb0140) 2004; 6
Tian, Peehl, Knox (bb0135) 2010; 25
Ye, Wang, Zhang (bb0440) 2006; 2
Cheng, Li (bb0060) 2007; 107
Stacy, Palanimuthu, Bernhardt, Kalinowski, Jansson, Richardson (bb0325) 2016; 59
Cui, Liu, Xie, Xu, Habte-Tsion, Zhang (bb0255) 2014; 38
Mandal, Singha, Dey, Mazumdar, Kumar, Karmakar, Das (bb0215) 2017; 66
Rahimipour, Gescheidt, Bilkis, Fridkin, Weiner (bb0450) 2010; 37
Bae, Gholam Azad, Kalinowski, Lane, Jansson, Richardson (bb0105) 2020; 33
Stroet, Caron, Visscher, Geerke, Malde, Mark (bb0340) 2018; 14
Timoshnikov, Kichigina, Selyutina, Polyakov, Kontoghiorghes (bb0395) 2021; 26
Merkofer, Kissner, Hider, Koppenol (bb0115) 2004; 87
Alegría, Santiago (bb0175) 1998; 65
Stacy, Palanimuthu, Bernhardt, Kalinowski, Jansson, Richardson (bb0330) 2016; 59
Kovacevic, Chikhani, Lui, Sivagurunathan, Richardson (bb0275) 2013; 18
Masaldan, Iyer (bb0260) 2014; 34
Silveira-Dorta, Monzón, Crisóstomo, Martín, Martín, Carrillo (bb0425) 2015; 51
Perez-Benito (bb0400) 2004; 108
Xu, Sutak, Richardson (bb0235) 2008; 73
Zhao, Lu, Qi, Li, Zhou (bb0240) 2017; 81
Ye, Fels, Tovmasyan, Aird, Dedeugd, Allensworth, Kos, Park, Spasojevic, Devi, Dewhirst, Leong, Batinic-Haberle (bb0155) 2011; 45
Richardson, Tran, Ponka (bb0380) 1995; 86
Zhang, Sadler (bb0510) 2017; 2017
Gonzálvez, Algarra, Basallote, Bernhardt, Fernández-Trujillo, Martínez (bb0415) 2019; 48
Jurkiewicz, Olżyńska, Cwiklik, Conte, Jungwirth, Megli, Hof (bb0015) 1818; 2012
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (bb0365) 1995; 103
Richardson, Wis Vitolo, Hefter, May, Clare, Webb, Wilairat (bb0360) 1990; 170
Levine, Stone, Kohlmeyer (bb0495) 2011; 230
Orsi, Essex (bb0485) 2010; 6
Srinivas, Babykutty, Sathiadevan, Srinivas (bb0245) 2007; 27
Hadi, Ullah, Shamim, Bhatt, Azmi (bb0500) 2010; 56
Tan, Wang, Yang, Zhu (bb0210) 2014
Barrera (bb0050) 2012; 2012
Wong-ekkabut, Xu, Triampo, Tang, Tieleman, Monticelli (bb0020) 2007; 93
Hoover (bb0355) 1985; 31
Yu, Kalinowski, Kovacevic, Siafakas, Jansson, Stefani, Lovejoy, Sharpe, Bernhardt, Richardson (bb0265) 2009; 52
Richardson, Kalinowski, Richardson, Sharpe, Lovejoy, Islam, Bernhardt (bb0305) 2009; 52
Grillet, Ouerdane, Flis, Hoang, Isaure, Lobinski, Curie, Mari (bb0120) 2014; 289
Gardner, Nguyen, White (bb0145) 1996; 325
Björnerås, Nilsson, Mäler (bb0410) 1848; 2015
Jansson, Yamagishi, Arvind, Seebacher, Gutierrez, Stacy, Maleki, Sharp, Sahni, Richardson (bb0515) 2015; 290
Markova, Polyakov, Selyutina, Fedenok, Fedotov, Slepneva, Leshina, Pokrovsky, Vasilieva, Weiner (bb0180) 2017; 231
Lovejoy, Jansson, Brunk, Wong, Ponka, Richardson (bb0300) 2011; 71
Timoshnikov, Kobzeva, Polyakov, Kontoghiorghes (bb0125) 2020; 21
Kalinowski, Richardson (bb0040) 2007; 20
Vargas, Díaz, Carbonell (bb0250) 2004; 42
Boggara, Krishnamoorti (bb0490) 2010; 98
Batinic-Haberle, Rajic, Tovmasyan, Reboucas, Ye, Leong, Dewhirst, Vujaskovic, Benov, Spasojevic (bb0150) 2011; 51
Richardson, Ponka (bb0005) 1997; 1331
Cotticelli, Crabbe, Wilson, Shchepinov (bb0090) 2013; 1
Stefani, Jansson, Gutierrez, Bernhardt, Richardson, Kalinowski (bb0460) 2013; 56
Wang, Zhang, Ye (bb0445) 2006; 51
Barbusiński (bb0405) 2009; 16
Perillo, Di Donato, Pezone, Di Zazzo, Giovannelli, Galasso, Castoria, Migliaccio (bb0030) 2020; 52
Whitnall, Howard, Ponka, Richardson (bb0310) 2006; 103
Kovacevic, Chikhani, Lovejoy, Richardson (bb0315) 2011; 80
Rozanova (Torshina), Zhang, Heck (bb0505) 2007; 252
Gholivand, Kashanian, Peyman, Roshanfekr (bb0200) 2011; 46
Jabłońska-Trypuć, Świderski, Krętowski, Lewandowski (bb0225) 2017; 22
Sato-Watanabe, Itoh, Mogi, Matsuura, Miyoshi, Anraku (bb0335) 1995; 374
Kontoghiorghes, Kolnagou, Kontoghiorghe, Mourouzidis, Timoshnikov, Polyakov (bb0130) 2020; 7
Dikalov, Alov, Rangelova (bb0160) 1993; 195
Stefani, Punnia-Moorthy, Lovejoy, Jansson, Kalinowski, Sharpe, Bernhardt, Richardson (bb0465) 2011; 54
Zhang, Chang, Bacus, Hung (bb0470) 1995; 55
Polyakov, Leshina, Fedenok, Slepneva, Kirilyuk, Furso, Olchawa, Sarna, Elas, Bilkis, Weiner (bb0185) 2018; 28
Richardson, Baker (bb0370) 1990; 1053
Poger, Gunsteren, Mark (bb0345) 2010; 31
Du, Cullen, Buettner (bb0100) 1826; 2012
Chen, Chiang, Lin, Yang, Ma, Liao, Lai, Tang, Chung (bb0195) 2010; 30
Parrinello, Rahman (bb0350) 1981; 52
Menasché, Antebi, Alcindor, Teiger, Perez, Giudicelli, Nordmann, Piwnica (bb0165) 1990; 82
Van der Paal, Neyts, Verlackt, Bogaerts (bb0025) 2016; 7
Yu, Suryo Rahmanto, Richardson (bb0320) 2012; 165
Menezes, Kovacevic, Richardson (bb0280) 2019; 294
Uphoff, Drexler (bb0375) 2002; 38
Danielsen, Aksnes, Francis (bb0520) 1992; 30
Merkofer (10.1016/j.bbagen.2021.130078_bb0115) 2004; 87
Menasché (10.1016/j.bbagen.2021.130078_bb0165) 1990; 82
Le (10.1016/j.bbagen.2021.130078_bb0270) 2004; 104
Boggara (10.1016/j.bbagen.2021.130078_bb0490) 2010; 98
Gonzálvez (10.1016/j.bbagen.2021.130078_bb0415) 2019; 48
Wang (10.1016/j.bbagen.2021.130078_bb0445) 2006; 51
Levine (10.1016/j.bbagen.2021.130078_bb0495) 2011; 230
Barrera (10.1016/j.bbagen.2021.130078_bb0050) 2012; 2012
Yoshida (10.1016/j.bbagen.2021.130078_bb0170) 1993; 1210
Mandal (10.1016/j.bbagen.2021.130078_bb0215) 2017; 66
Cheng (10.1016/j.bbagen.2021.130078_bb0060) 2007; 107
Jansson (10.1016/j.bbagen.2021.130078_bb0515) 2015; 290
Tan (10.1016/j.bbagen.2021.130078_bb0210) 2014
Richardson (10.1016/j.bbagen.2021.130078_bb0305) 2009; 52
Hayes (10.1016/j.bbagen.2021.130078_bb0035) 2020; 38
Jurkiewicz (10.1016/j.bbagen.2021.130078_bb0015) 1818; 2012
Kovacevic (10.1016/j.bbagen.2021.130078_bb0315) 2011; 80
Hoover (10.1016/j.bbagen.2021.130078_bb0355) 1985; 31
Tóth (10.1016/j.bbagen.2021.130078_bb0420) 2002; 8
Cotticelli (10.1016/j.bbagen.2021.130078_bb0090) 2013; 1
Geleta (10.1016/j.bbagen.2021.130078_bb0285) 2021; 35
Li (10.1016/j.bbagen.2021.130078_bb0435) 2012; 46
Richardson (10.1016/j.bbagen.2021.130078_bb0005) 1997; 1331
Stefani (10.1016/j.bbagen.2021.130078_bb0465) 2011; 54
Whitnall (10.1016/j.bbagen.2021.130078_bb0310) 2006; 103
Orsi (10.1016/j.bbagen.2021.130078_bb0485) 2010; 6
Laguerre (10.1016/j.bbagen.2021.130078_bb0390) 2020; 122
Zhang (10.1016/j.bbagen.2021.130078_bb0510) 2017; 2017
Menezes (10.1016/j.bbagen.2021.130078_bb0280) 2019; 294
Spiteller (10.1016/j.bbagen.2021.130078_bb0085) 1998; 95
Srinivas (10.1016/j.bbagen.2021.130078_bb0245) 2007; 27
Beraldo (10.1016/j.bbagen.2021.130078_bb0230) 1985; 24
Timoshnikov (10.1016/j.bbagen.2021.130078_bb0125) 2020; 21
Vargas (10.1016/j.bbagen.2021.130078_bb0250) 2004; 42
Chen (10.1016/j.bbagen.2021.130078_bb0195) 2010; 30
Perez-Benito (10.1016/j.bbagen.2021.130078_bb0400) 2004; 108
Fain (10.1016/j.bbagen.2021.130078_bb0220) 2004; 30
Yang (10.1016/j.bbagen.2021.130078_bb0205) 2014; 12
Jabłońska-Trypuć (10.1016/j.bbagen.2021.130078_bb0225) 2017; 22
Batinic-Haberle (10.1016/j.bbagen.2021.130078_bb0150) 2011; 51
Parrinello (10.1016/j.bbagen.2021.130078_bb0350) 1981; 52
Yuan (10.1016/j.bbagen.2021.130078_bb0070) 2004; 104
Lovejoy (10.1016/j.bbagen.2021.130078_bb0300) 2011; 71
Richardson (10.1016/j.bbagen.2021.130078_bb0370) 1990; 1053
Dix (10.1016/j.bbagen.2021.130078_bb0055) 1993; 6
Kontoghiorghes (10.1016/j.bbagen.2021.130078_bb0130) 2020; 7
Perillo (10.1016/j.bbagen.2021.130078_bb0030) 2020; 52
Sato-Watanabe (10.1016/j.bbagen.2021.130078_bb0335) 1995; 374
Tuli (10.1016/j.bbagen.2021.130078_bb0065) 2021; 73
Danielsen (10.1016/j.bbagen.2021.130078_bb0520) 1992; 30
Richardson (10.1016/j.bbagen.2021.130078_bb0075) 2009; 1790
Bae (10.1016/j.bbagen.2021.130078_bb0105) 2020; 33
Richardson (10.1016/j.bbagen.2021.130078_bb0295) 2006; 49
Essmann (10.1016/j.bbagen.2021.130078_bb0365) 1995; 103
Richardson (10.1016/j.bbagen.2021.130078_bb0010) 2001; 100
Kalinowski (10.1016/j.bbagen.2021.130078_bb0040) 2007; 20
Du (10.1016/j.bbagen.2021.130078_bb0100) 1826; 2012
Powis (10.1016/j.bbagen.2021.130078_bb0190) 1989; 6
Kovacevic (10.1016/j.bbagen.2021.130078_bb0275) 2013; 18
Silveira-Dorta (10.1016/j.bbagen.2021.130078_bb0425) 2015; 51
Zhang (10.1016/j.bbagen.2021.130078_bb0470) 1995; 55
Timoshnikov (10.1016/j.bbagen.2021.130078_bb0395) 2021; 26
Xu (10.1016/j.bbagen.2021.130078_bb0235) 2008; 73
Hadi (10.1016/j.bbagen.2021.130078_bb0500) 2010; 56
Buettner (10.1016/j.bbagen.2021.130078_bb0095) 1996; 145
Ye (10.1016/j.bbagen.2021.130078_bb0155) 2011; 45
da Cunha (10.1016/j.bbagen.2021.130078_bb0480) 2014; 440
Richardson (10.1016/j.bbagen.2021.130078_bb0360) 1990; 170
Schneider (10.1016/j.bbagen.2021.130078_bb0080) 2009; 53
Poger (10.1016/j.bbagen.2021.130078_bb0345) 2010; 31
Yu (10.1016/j.bbagen.2021.130078_bb0320) 2012; 165
Stacy (10.1016/j.bbagen.2021.130078_bb0325) 2016; 59
Stefani (10.1016/j.bbagen.2021.130078_bb0460) 2013; 56
Mihaljević (10.1016/j.bbagen.2021.130078_bb0385) 2011; 9
Gholivand (10.1016/j.bbagen.2021.130078_bb0200) 2011; 46
Rozanova (Torshina) (10.1016/j.bbagen.2021.130078_bb0505) 2007; 252
Alegría (10.1016/j.bbagen.2021.130078_bb0175) 1998; 65
Verrax (10.1016/j.bbagen.2021.130078_bb0430) 2011; 11
Stroet (10.1016/j.bbagen.2021.130078_bb0340) 2018; 14
Dikalov (10.1016/j.bbagen.2021.130078_bb0160) 1993; 195
Masaldan (10.1016/j.bbagen.2021.130078_bb0260) 2014; 34
Zhong (10.1016/j.bbagen.2021.130078_bb0140) 2004; 6
Björnerås (10.1016/j.bbagen.2021.130078_bb0410) 1848; 2015
Tian (10.1016/j.bbagen.2021.130078_bb0135) 2010; 25
Grillet (10.1016/j.bbagen.2021.130078_bb0120) 2014; 289
Srinivas (10.1016/j.bbagen.2021.130078_bb0475) 2003; 473
Uphoff (10.1016/j.bbagen.2021.130078_bb0375) 2002; 38
da Cunha (10.1016/j.bbagen.2021.130078_bb0455) 2017; 9
Van der Paal (10.1016/j.bbagen.2021.130078_bb0025) 2016; 7
Richardson (10.1016/j.bbagen.2021.130078_bb0380) 1995; 86
Wijesinghe (10.1016/j.bbagen.2021.130078_bb0045) 2021; 173
Zhao (10.1016/j.bbagen.2021.130078_bb0240) 2017; 81
Cui (10.1016/j.bbagen.2021.130078_bb0255) 2014; 38
Barbusiński (10.1016/j.bbagen.2021.130078_bb0405) 2009; 16
Polyakov (10.1016/j.bbagen.2021.130078_bb0185) 2018; 28
Yu (10.1016/j.bbagen.2021.130078_bb0265) 2009; 52
Wong-ekkabut (10.1016/j.bbagen.2021.130078_bb0020) 2007; 93
Markova (10.1016/j.bbagen.2021.130078_bb0180) 2017; 231
Stacy (10.1016/j.bbagen.2021.130078_bb0330) 2016; 59
Rahimipour (10.1016/j.bbagen.2021.130078_bb0450) 2010; 37
Gardner (10.1016/j.bbagen.2021.130078_bb0145) 1996; 325
Chekmarev (10.1016/j.bbagen.2021.130078_bb0290) 2021; 10
Adam (10.1016/j.bbagen.2021.130078_bb0110) 2015; 28
Ye (10.1016/j.bbagen.2021.130078_bb0440) 2006; 2
References_xml – volume: 59
  start-page: 4965
  year: 2016
  end-page: 4984
  ident: bb0330
  article-title: Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity
  publication-title: J. Med. Chem.
– volume: 46
  start-page: 10302
  year: 2012
  end-page: 10309
  ident: bb0435
  article-title: Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 729
  year: 2017
  end-page: 745
  ident: bb0455
  article-title: Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC
  publication-title: Biophys. Rev.
– volume: 1053
  start-page: 1
  year: 1990
  end-page: 12
  ident: bb0370
  article-title: The uptake of iron and transferrin by the human malignant melanoma cell
  publication-title: Biochim. Biophys. Acta
– volume: 6
  start-page: 513
  year: 2004
  end-page: 522
  ident: bb0140
  article-title: Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells
  publication-title: Antioxid. Redox Signal.
– volume: 16
  start-page: 347
  year: 2009
  end-page: 358
  ident: bb0405
  article-title: Fenton reaction - controversy concerning the chemistry
  publication-title: Ecol. Chem. Eng.
– volume: 2
  year: 2006
  ident: bb0440
  article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin
  publication-title: Anal. Chem. Indian J.
– volume: 93
  start-page: 4225
  year: 2007
  end-page: 4236
  ident: bb0020
  article-title: Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study
  publication-title: Biophys. J.
– volume: 289
  start-page: 2515
  year: 2014
  end-page: 2525
  ident: bb0120
  article-title: Ascorbate efflux as a new strategy for iron reduction and transport in plants
  publication-title: J. Biol. Chem.
– volume: 49
  start-page: 6510
  year: 2006
  end-page: 6521
  ident: bb0295
  article-title: Dipyridyl thiosemicarbazone chelators with potent and selective anti-tumor activity form iron complexes with redox activity
  publication-title: J. Med. Chem.
– volume: 82
  start-page: IV390-6
  year: 1990
  ident: bb0165
  article-title: Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans
  publication-title: Circulation
– volume: 22
  year: 2017
  ident: bb0225
  article-title: Newly synthesized doxorubicin complexes with selected metals-synthesis, structure and anti-breast cancer activity
  publication-title: Mol. Basel Switz.
– volume: 6
  start-page: 3797
  year: 2010
  end-page: 3808
  ident: bb0485
  article-title: Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics
  publication-title: Soft Matter.
– volume: 9
  start-page: 3541
  year: 2011
  end-page: 3548
  ident: bb0385
  article-title: Linoleic acid peroxidation vs. isomerization: a biomimetic model of free radical reactivity in the presence of thiols
  publication-title: Org. Biomol. Chem.
– volume: 51
  start-page: 5961
  year: 2006
  end-page: 5965
  ident: bb0445
  article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin
  publication-title: Electrochim. Acta
– volume: 38
  start-page: 74
  year: 2014
  end-page: 79
  ident: bb0255
  article-title: The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus)
  publication-title: Fish Shellfish Immunol.
– volume: 2012
  start-page: 443
  year: 1826
  end-page: 457
  ident: bb0100
  article-title: Ascorbic acid: chemistry, biology and the treatment of cancer
  publication-title: Biochim. Biophys. Acta
– volume: 122
  start-page: 1900209
  year: 2020
  ident: bb0390
  article-title: Toward a spatiotemporal model of oxidation in lipid dispersions: a hypothesis-driven review
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 7
  start-page: 489
  year: 2016
  end-page: 498
  ident: bb0025
  article-title: Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress
  publication-title: Chem. Sci.
– volume: 100
  start-page: 237
  year: 2001
  end-page: 238
  ident: bb0010
  article-title: Does free extracellular iron exist in haemochromatosis and other pathologies, and is it redox active?
  publication-title: Clin. Sci.
– volume: 46
  start-page: 2630
  year: 2011
  end-page: 2638
  ident: bb0200
  article-title: DNA-binding study of anthraquinone derivatives using chemometrics methods
  publication-title: Eur. J. Med. Chem.
– volume: 6
  start-page: 2
  year: 1993
  end-page: 18
  ident: bb0055
  article-title: Mechanisms and biological relevance of lipid peroxidation initiation
  publication-title: Chem. Res. Toxicol.
– volume: 24
  start-page: 284
  year: 1985
  end-page: 289
  ident: bb0230
  article-title: Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and anti-tumor activity
  publication-title: Biochemistry
– volume: 2015
  start-page: 2910
  year: 1848
  end-page: 2917
  ident: bb0410
  article-title: Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition
  publication-title: Biochim. Biophys. Acta
– volume: 51
  start-page: 7027
  year: 2015
  end-page: 7030
  ident: bb0425
  article-title: Oxidation with air by ascorbate-driven quinone redox cycling
  publication-title: Chem. Commun.
– volume: 27
  start-page: 591
  year: 2007
  end-page: 608
  ident: bb0245
  article-title: Molecular mechanism of emodin action: transition from laxative ingredient to an anti-tumor agent
  publication-title: Med. Res. Rev.
– volume: 48
  start-page: 16578
  year: 2019
  end-page: 16587
  ident: bb0415
  article-title: Proton-assisted air oxidation mechanisms of iron(II) bis-thiosemicarbazone complexes at physiological pH: a kinetico-mechanistic study
  publication-title: Dalton Trans.
– volume: 108
  start-page: 4853
  year: 2004
  end-page: 4858
  ident: bb0400
  article-title: Iron(III)−hydrogen peroxide reaction: kinetic evidence of a hydroxyl-mediated chain mechanism
  publication-title: J. Phys. Chem. A
– volume: 11
  start-page: 213
  year: 2011
  end-page: 221
  ident: bb0430
  article-title: Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress
  publication-title: Anti Cancer Agents Med. Chem.
– volume: 473
  start-page: 117
  year: 2003
  end-page: 125
  ident: bb0475
  article-title: Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9
  publication-title: Eur. J. Pharmacol.
– volume: 7
  start-page: 45
  year: 2020
  ident: bb0130
  article-title: Trying to solve the puzzle of the interaction of ascorbic acid and iron: redox, chelation and therapeutic implications
  publication-title: Medicines
– volume: 1210
  start-page: 81
  year: 1993
  end-page: 88
  ident: bb0170
  article-title: Effects of metal chelating agents on the oxidation of lipids induced by copper and iron
  publication-title: Biochim. Biophys. Acta
– volume: 30
  start-page: 945
  year: 2010
  end-page: 951
  ident: bb0195
  article-title: Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells
  publication-title: Anticancer Res.
– volume: 231
  year: 2017
  ident: bb0180
  article-title: Light-stimulated generation of free radicals by quinones-chelators
  publication-title: Z. Phys. Chem.
– volume: 53
  start-page: 315
  year: 2009
  end-page: 321
  ident: bb0080
  article-title: An update on products and mechanisms of lipid peroxidation
  publication-title: Mol. Nutr. Food Res.
– volume: 86
  start-page: 4295
  year: 1995
  end-page: 4306
  ident: bb0380
  article-title: The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents
  publication-title: Blood
– volume: 1331
  start-page: 1
  year: 1997
  end-page: 40
  ident: bb0005
  article-title: The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells
  publication-title: Biochim. Biophys. Acta
– volume: 104
  start-page: 1450
  year: 2004
  end-page: 1458
  ident: bb0070
  article-title: Novel di-2-pyridyl-derived iron chelators with marked and selective anti-tumor activity: in vitro and in vivo assessment
  publication-title: Blood
– volume: 173
  year: 2021
  ident: bb0045
  article-title: Innovative therapies for neuroblastoma: the surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc
  publication-title: Pharmacol. Res.
– volume: 6
  start-page: 63
  year: 1989
  end-page: 101
  ident: bb0190
  article-title: Free radical formation by anti-tumor quinones
  publication-title: Free Radic. Biol. Med.
– volume: 45
  start-page: 1289
  year: 2011
  end-page: 1306
  ident: bb0155
  article-title: Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate
  publication-title: Free Radic. Res.
– volume: 38
  start-page: 79
  year: 2002
  end-page: 85
  ident: bb0375
  article-title: Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines
  publication-title: In Vitro Cell. Dev. Biol. Anim.
– volume: 28
  start-page: 1394
  year: 2018
  end-page: 1403
  ident: bb0185
  article-title: Redox-active quinone chelators: properties, mechanisms of action, cell delivery, and cell toxicity
  publication-title: Antioxid. Redox Signal.
– volume: 65
  start-page: 185
  year: 1998
  end-page: 202
  ident: bb0175
  article-title: Structural and hydrophilicity requirements in quinone-induced lipid peroxidation of phosphatidylcholine vesicles
  publication-title: Toxicol. Environ. Chem.
– volume: 52
  start-page: 1459
  year: 2009
  end-page: 1470
  ident: bb0305
  article-title: 2-acetylpyridine thiosemicarbazones are potent iron chelators and anti-proliferative agents: redox activity, iron complexation and characterization of their anti-tumor activity
  publication-title: J. Med. Chem.
– volume: 54
  start-page: 6936
  year: 2011
  end-page: 6948
  ident: bb0465
  article-title: Halogenated 2′-benzoylpyridine thiosemicarbazone (XBpT) chelators with potent and selective anti-neoplastic activity: relationship to intracellular redox activity
  publication-title: J. Med. Chem.
– volume: 12
  start-page: 937
  year: 2014
  end-page: 942
  ident: bb0205
  article-title: Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex
  publication-title: Chin. J. Nat. Med.
– volume: 30
  start-page: 360
  year: 2004
  end-page: 364
  ident: bb0220
  article-title: Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: electronic absorption spectra and structure of ligands
  publication-title: Russ. J. Coord. Chem.
– volume: 56
  start-page: 357
  year: 2013
  end-page: 370
  ident: bb0460
  article-title: Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: novel ligands that limit methemoglobin formation
  publication-title: J. Med. Chem.
– volume: 1790
  start-page: 702
  year: 2009
  end-page: 717
  ident: bb0075
  article-title: Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents
  publication-title: Biochim. Biophys. Acta
– volume: 30
  start-page: 359
  year: 1992
  end-page: 360
  ident: bb0520
  article-title: NMR study of some anthraquinones from rhubarb
  publication-title: Magn. Reson. Chem.
– volume: 34
  start-page: 95
  year: 2014
  end-page: 104
  ident: bb0260
  article-title: Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions
  publication-title: J. Appl. Toxicol.
– volume: 81
  start-page: 1908
  year: 2017
  end-page: 1916
  ident: bb0240
  article-title: Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1
  publication-title: Biosci. Biotechnol. Biochem.
– year: 2014
  ident: bb0210
  article-title: Emodin Transition Metal Complex With Anti-tumor Activity, Preparation Method of Emodin Transition Metal Complex and Application of Emodin Transition Metal Complex, CN104058946A
– volume: 33
  start-page: 816
  year: 2020
  end-page: 838
  ident: bb0105
  article-title: Ascorbate and tumor cell iron metabolism: the evolving story and its link to pathology
  publication-title: Antioxid. Redox Signal.
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bb0355
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 271
  year: 2002
  end-page: 280
  ident: bb0420
  article-title: Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity
  publication-title: Mol. Hum. Reprod.
– volume: 230
  start-page: 3556
  year: 2011
  end-page: 3569
  ident: bb0495
  article-title: Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming
  publication-title: J. Comput. Phys.
– volume: 252
  start-page: 216
  year: 2007
  end-page: 224
  ident: bb0505
  article-title: Catalytic therapy of cancer with porphyrins and ascorbate
  publication-title: Cancer Lett.
– volume: 165
  start-page: 148
  year: 2012
  end-page: 166
  ident: bb0320
  article-title: Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy
  publication-title: Br. J. Pharmacol.
– volume: 28
  start-page: 604
  year: 2015
  end-page: 614
  ident: bb0110
  article-title: Redox properties and activity of iron-citrate complexes: evidence for redox cycling
  publication-title: Chem. Res. Toxicol.
– volume: 56
  start-page: 280
  year: 2010
  end-page: 284
  ident: bb0500
  article-title: Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species
  publication-title: Chemotherapy
– volume: 42
  start-page: 342
  year: 2004
  end-page: 348
  ident: bb0250
  article-title: Antioxidant and scavenging activity of emodin, aloe-emodin, and rhein on free-radical and reactive oxygen species
  publication-title: Pharm. Biol.
– volume: 103
  start-page: 14901
  year: 2006
  end-page: 14906
  ident: bb0310
  article-title: A class of iron chelators with a wide spectrum of potent anti-tumor activity that overcomes resistance to chemotherapeutics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 1035
  year: 2011
  end-page: 1053
  ident: bb0150
  article-title: Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics
  publication-title: Free Radic. Biol. Med.
– volume: 107
  start-page: 748
  year: 2007
  end-page: 766
  ident: bb0060
  article-title: What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update
  publication-title: Chem. Rev.
– volume: 145
  start-page: 532
  year: 1996
  end-page: 541
  ident: bb0095
  article-title: Catalytic metals, ascorbate and free radicals: combinations to avoid
  publication-title: Radiat. Res.
– volume: 38
  start-page: 167
  year: 2020
  end-page: 197
  ident: bb0035
  article-title: Oxidative stress in cancer
  publication-title: Cancer Cell.
– volume: 325
  start-page: 20
  year: 1996
  end-page: 28
  ident: bb0145
  article-title: Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells
  publication-title: Arch. Biochem. Biophys.
– volume: 37
  start-page: 629
  year: 2010
  end-page: 648
  ident: bb0450
  article-title: Towards the efficiency of pharmacologically active quinoid compounds: electron transfer and formation of reactive oxygen species
  publication-title: Appl. Magn. Reson.
– volume: 14
  start-page: 5834
  year: 2018
  end-page: 5845
  ident: bb0340
  article-title: Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane
  publication-title: J. Chem. Theory Comput.
– volume: 2012
  year: 2012
  ident: bb0050
  article-title: Oxidative stress and lipid peroxidation products in cancer progression and therapy
  publication-title: ISRN Oncol.
– volume: 104
  start-page: 2967
  year: 2004
  end-page: 2975
  ident: bb0270
  article-title: Iron chelators with high anti-proliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation
  publication-title: Blood
– volume: 10
  start-page: 2382
  year: 2021
  ident: bb0290
  article-title: The oncogenic signaling disruptor, NDRG1: molecular and cellular mechanisms of activity
  publication-title: Cells
– volume: 95
  start-page: 105
  year: 1998
  end-page: 162
  ident: bb0085
  article-title: Linoleic acid peroxidation—the dominant lipid peroxidation process in low density lipoprotein—and its relationship to chronic diseases
  publication-title: Chem. Phys. Lipids
– volume: 1
  start-page: 398
  year: 2013
  end-page: 404
  ident: bb0090
  article-title: Insights into the role of oxidative stress in the pathology of friedreich ataxia using peroxidation resistant polyunsaturated fatty acids
  publication-title: Redox Biol.
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bb0350
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 73
  start-page: 833
  year: 2008
  end-page: 844
  ident: bb0235
  article-title: Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking
  publication-title: Mol. Pharmacol.
– volume: 20
  start-page: 715
  year: 2007
  end-page: 720
  ident: bb0040
  article-title: Future of toxicology of iron chelators and differing modes of action and toxicity: the changing face of iron chelation therapy
  publication-title: Chem. Res. Toxicol.
– volume: 25
  start-page: 439
  year: 2010
  end-page: 448
  ident: bb0135
  article-title: Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through Fenton chemistry
  publication-title: Cancer Biother. Radiopharm.
– volume: 59
  start-page: 8601
  year: 2016
  end-page: 8620
  ident: bb0325
  article-title: Structure–activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance
  publication-title: J. Med. Chem.
– volume: 52
  start-page: 192
  year: 2020
  end-page: 203
  ident: bb0030
  article-title: ROS in cancer therapy: the bright side of the moon
  publication-title: Exp. Mol. Med.
– volume: 170
  start-page: 165
  year: 1990
  end-page: 170
  ident: bb0360
  article-title: Iron chelators of the pyridoxal isonicotinoyl hydrazone class part I. Ionisation characteristics of the ligands and their relevance to biological properties
  publication-title: Inorg. Chim. Acta
– volume: 31
  start-page: 1117
  year: 2010
  end-page: 1125
  ident: bb0345
  article-title: A new force field for simulating phosphatidylcholine bilayers
  publication-title: J. Comput. Chem.
– volume: 195
  start-page: 113
  year: 1993
  end-page: 119
  ident: bb0160
  article-title: Role of iron ion chelation by quinones in their reduction, OH-radical generation, and lipid peroxidation
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 80
  start-page: 598
  year: 2011
  end-page: 609
  ident: bb0315
  article-title: Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer
  publication-title: Mol. Pharmacol.
– volume: 55
  start-page: 3890
  year: 1995
  end-page: 3896
  ident: bb0470
  article-title: Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin
  publication-title: Cancer Res.
– volume: 66
  start-page: 41403
  year: 2017
  end-page: 41418
  ident: bb0215
  article-title: Cu(II) complex of emodin with improved anti-cancer activity as demonstrated by its performance on HeLa and Hep G2 cells - RSC advances (RSC Publishing)
  publication-title: RSC Adv.
– volume: 2017
  start-page: 1541
  year: 2017
  end-page: 1548
  ident: bb0510
  article-title: Redox-active metal complexes for anti-cancer therapy
  publication-title: Eur. J. Inorg. Chem.
– volume: 87
  start-page: 3021
  year: 2004
  end-page: 3034
  ident: bb0115
  article-title: Redox properties of the iron complexes of orally active iron chelators CP20, CP502, CP509, and ICL670
  publication-title: Helv. Chim. Acta.
– volume: 440
  start-page: 69
  year: 2014
  end-page: 79
  ident: bb0480
  article-title: Protonation/deprotonation process of emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations
  publication-title: Chem. Phys.
– volume: 374
  start-page: 265
  year: 1995
  end-page: 269
  ident: bb0335
  article-title: Stabilization of a semiquinone radical at the high-affinity quinone-binding site (QH) of the Escherichia coli Bo-type ubiquinol oxidase
  publication-title: FEBS Lett.
– volume: 2012
  start-page: 2388
  year: 1818
  end-page: 2402
  ident: bb0015
  article-title: Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations
  publication-title: Biochim. Biophys. Acta
– volume: 21
  start-page: 3967
  year: 2020
  ident: bb0125
  article-title: Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone
  publication-title: Int. J. Mol. Sci.
– volume: 35
  year: 2021
  ident: bb0285
  article-title: Breaking the cycle: targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma
  publication-title: FASEB J.
– volume: 73
  year: 2021
  ident: bb0065
  article-title: Emodin: a metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets
  publication-title: Toxicol. In Vitro
– volume: 26
  start-page: 5064
  year: 2021
  ident: bb0395
  article-title: Antioxidant activity of deferasirox and its metal complexes in model systems of oxidative damage: comparison with deferiprone
  publication-title: Molecules
– volume: 71
  start-page: 5871
  year: 2011
  end-page: 5880
  ident: bb0300
  article-title: Anti-tumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes
  publication-title: Cancer Res.
– volume: 290
  start-page: 9588
  year: 2015
  end-page: 9603
  ident: bb0515
  article-title: Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp)
  publication-title: J. Biol. Chem.
– volume: 52
  start-page: 5271
  year: 2009
  end-page: 5294
  ident: bb0265
  article-title: Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors
  publication-title: J. Med. Chem.
– volume: 18
  start-page: 874
  year: 2013
  end-page: 887
  ident: bb0275
  article-title: The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways
  publication-title: Antioxid. Redox Signal.
– volume: 294
  start-page: 4045
  year: 2019
  end-page: 4064
  ident: bb0280
  article-title: The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6
  publication-title: J. Biol. Chem.
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: bb0365
  article-title: A smooth particle mesh ewald method
  publication-title: J. Chem. Phys.
– volume: 98
  start-page: 586
  year: 2010
  end-page: 595
  ident: bb0490
  article-title: Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study
  publication-title: Biophys. J.
– volume: 195
  start-page: 113
  year: 1993
  ident: 10.1016/j.bbagen.2021.130078_bb0160
  article-title: Role of iron ion chelation by quinones in their reduction, OH-radical generation, and lipid peroxidation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1993.2017
– volume: 440
  start-page: 69
  year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0480
  article-title: Protonation/deprotonation process of emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2014.06.009
– volume: 25
  start-page: 439
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0135
  article-title: Metalloporphyrin synergizes with ascorbic acid to inhibit cancer cell growth through Fenton chemistry
  publication-title: Cancer Biother. Radiopharm.
– volume: 6
  start-page: 3797
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0485
  article-title: Permeability of drugs and hormones through a lipid bilayer: insights from dual-resolution molecular dynamics
  publication-title: Soft Matter.
  doi: 10.1039/c0sm00136h
– volume: 93
  start-page: 4225
  year: 2007
  ident: 10.1016/j.bbagen.2021.130078_bb0020
  article-title: Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.112565
– volume: 28
  start-page: 604
  year: 2015
  ident: 10.1016/j.bbagen.2021.130078_bb0110
  article-title: Redox properties and activity of iron-citrate complexes: evidence for redox cycling
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx500377b
– volume: 37
  start-page: 629
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0450
  article-title: Towards the efficiency of pharmacologically active quinoid compounds: electron transfer and formation of reactive oxygen species
  publication-title: Appl. Magn. Reson.
  doi: 10.1007/s00723-009-0099-y
– volume: 10
  start-page: 2382
  year: 2021
  ident: 10.1016/j.bbagen.2021.130078_bb0290
  article-title: The oncogenic signaling disruptor, NDRG1: molecular and cellular mechanisms of activity
  publication-title: Cells
  doi: 10.3390/cells10092382
– volume: 2012
  start-page: 443
  year: 1826
  ident: 10.1016/j.bbagen.2021.130078_bb0100
  article-title: Ascorbic acid: chemistry, biology and the treatment of cancer
  publication-title: Biochim. Biophys. Acta
– volume: 104
  start-page: 1450
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0070
  article-title: Novel di-2-pyridyl-derived iron chelators with marked and selective anti-tumor activity: in vitro and in vivo assessment
  publication-title: Blood
  doi: 10.1182/blood-2004-03-0868
– volume: 49
  start-page: 6510
  year: 2006
  ident: 10.1016/j.bbagen.2021.130078_bb0295
  article-title: Dipyridyl thiosemicarbazone chelators with potent and selective anti-tumor activity form iron complexes with redox activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0606342
– volume: 71
  start-page: 5871
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0300
  article-title: Anti-tumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1218
– volume: 56
  start-page: 357
  year: 2013
  ident: 10.1016/j.bbagen.2021.130078_bb0460
  article-title: Alkyl substituted 2′-benzoylpyridine thiosemicarbazone chelators with potent and selective anti-neoplastic activity: novel ligands that limit methemoglobin formation
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301691s
– volume: 252
  start-page: 216
  year: 2007
  ident: 10.1016/j.bbagen.2021.130078_bb0505
  article-title: Catalytic therapy of cancer with porphyrins and ascorbate
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2006.12.026
– volume: 51
  start-page: 1035
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0150
  article-title: Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.04.046
– volume: 122
  start-page: 1900209
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0390
  article-title: Toward a spatiotemporal model of oxidation in lipid dispersions: a hypothesis-driven review
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201900209
– volume: 12
  start-page: 937
  year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0205
  article-title: Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex
  publication-title: Chin. J. Nat. Med.
– volume: 98
  start-page: 586
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0490
  article-title: Partitioning of nonsteroidal antiinflammatory drugs in lipid membranes: a molecular dynamics simulation study
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.10.046
– volume: 34
  start-page: 95
  year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0260
  article-title: Exploration of effects of emodin in selected cancer cell lines: enhanced growth inhibition by ascorbic acid and regulation of LRP1 and AR under hypoxia-like conditions
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.2838
– volume: 1053
  start-page: 1
  year: 1990
  ident: 10.1016/j.bbagen.2021.130078_bb0370
  article-title: The uptake of iron and transferrin by the human malignant melanoma cell
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0167-4889(90)90018-9
– volume: 46
  start-page: 2630
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0200
  article-title: DNA-binding study of anthraquinone derivatives using chemometrics methods
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.03.034
– volume: 87
  start-page: 3021
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0115
  article-title: Redox properties of the iron complexes of orally active iron chelators CP20, CP502, CP509, and ICL670
  publication-title: Helv. Chim. Acta.
  doi: 10.1002/hlca.200490272
– volume: 2015
  start-page: 2910
  year: 1848
  ident: 10.1016/j.bbagen.2021.130078_bb0410
  article-title: Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition
  publication-title: Biochim. Biophys. Acta
– volume: 2
  year: 2006
  ident: 10.1016/j.bbagen.2021.130078_bb0440
  article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin
  publication-title: Anal. Chem. Indian J.
– volume: 289
  start-page: 2515
  year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0120
  article-title: Ascorbate efflux as a new strategy for iron reduction and transport in plants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.514828
– volume: 51
  start-page: 7027
  year: 2015
  ident: 10.1016/j.bbagen.2021.130078_bb0425
  article-title: Oxidation with air by ascorbate-driven quinone redox cycling
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01519G
– volume: 7
  start-page: 45
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0130
  article-title: Trying to solve the puzzle of the interaction of ascorbic acid and iron: redox, chelation and therapeutic implications
  publication-title: Medicines
  doi: 10.3390/medicines7080045
– volume: 16
  start-page: 347
  year: 2009
  ident: 10.1016/j.bbagen.2021.130078_bb0405
  article-title: Fenton reaction - controversy concerning the chemistry
  publication-title: Ecol. Chem. Eng.
– volume: 20
  start-page: 715
  year: 2007
  ident: 10.1016/j.bbagen.2021.130078_bb0040
  article-title: Future of toxicology of iron chelators and differing modes of action and toxicity: the changing face of iron chelation therapy
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx700039c
– volume: 325
  start-page: 20
  year: 1996
  ident: 10.1016/j.bbagen.2021.130078_bb0145
  article-title: Superoxide scavenging by Mn(II/III) tetrakis (1-methyl-4-pyridyl) porphyrin in mammalian cells
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1996.0003
– volume: 6
  start-page: 2
  year: 1993
  ident: 10.1016/j.bbagen.2021.130078_bb0055
  article-title: Mechanisms and biological relevance of lipid peroxidation initiation
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx00031a001
– volume: 145
  start-page: 532
  year: 1996
  ident: 10.1016/j.bbagen.2021.130078_bb0095
  article-title: Catalytic metals, ascorbate and free radicals: combinations to avoid
  publication-title: Radiat. Res.
  doi: 10.2307/3579271
– volume: 28
  start-page: 1394
  year: 2018
  ident: 10.1016/j.bbagen.2021.130078_bb0185
  article-title: Redox-active quinone chelators: properties, mechanisms of action, cell delivery, and cell toxicity
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2017.7406
– volume: 6
  start-page: 513
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0140
  article-title: Alteration of cellular phenotype and responses to oxidative stress by manganese superoxide dismutase and a superoxide dismutase mimic in RWPE-2 human prostate adenocarcinoma cells
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/152308604773934279
– volume: 14
  start-page: 5834
  year: 2018
  ident: 10.1016/j.bbagen.2021.130078_bb0340
  article-title: Automated topology builder version 3.0: prediction of solvation free enthalpies in water and hexane
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00768
– volume: 9
  start-page: 3541
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0385
  article-title: Linoleic acid peroxidation vs. isomerization: a biomimetic model of free radical reactivity in the presence of thiols
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c1ob05083d
– volume: 103
  start-page: 8577
  year: 1995
  ident: 10.1016/j.bbagen.2021.130078_bb0365
  article-title: A smooth particle mesh ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 473
  start-page: 117
  year: 2003
  ident: 10.1016/j.bbagen.2021.130078_bb0475
  article-title: Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(03)01976-9
– volume: 103
  start-page: 14901
  year: 2006
  ident: 10.1016/j.bbagen.2021.130078_bb0310
  article-title: A class of iron chelators with a wide spectrum of potent anti-tumor activity that overcomes resistance to chemotherapeutics
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0604979103
– volume: 18
  start-page: 874
  year: 2013
  ident: 10.1016/j.bbagen.2021.130078_bb0275
  article-title: The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2011.4273
– volume: 24
  start-page: 284
  year: 1985
  ident: 10.1016/j.bbagen.2021.130078_bb0230
  article-title: Iron(III)-adriamycin and Iron(III)-daunorubicin complexes: physicochemical characteristics, interaction with DNA, and anti-tumor activity
  publication-title: Biochemistry
  doi: 10.1021/bi00323a007
– year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0210
– volume: 30
  start-page: 945
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0195
  article-title: Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells
  publication-title: Anticancer Res.
– volume: 107
  start-page: 748
  year: 2007
  ident: 10.1016/j.bbagen.2021.130078_bb0060
  article-title: What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update
  publication-title: Chem. Rev.
  doi: 10.1021/cr040077w
– volume: 38
  start-page: 79
  year: 2002
  ident: 10.1016/j.bbagen.2021.130078_bb0375
  article-title: Comparative PCR analysis for detection of mycoplasma infections in continuous cell lines
  publication-title: In Vitro Cell. Dev. Biol. Anim.
  doi: 10.1290/1071-2690(2002)038<0079:CPAFDO>2.0.CO;2
– volume: 21
  start-page: 3967
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0125
  article-title: Redox interactions of vitamin C and iron: inhibition of the pro-oxidant activity by deferiprone
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21113967
– volume: 45
  start-page: 1289
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0155
  article-title: Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2011.616199
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.bbagen.2021.130078_bb0350
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 2012
  start-page: 2388
  year: 1818
  ident: 10.1016/j.bbagen.2021.130078_bb0015
  article-title: Biophysics of lipid bilayers containing oxidatively modified phospholipids: insights from fluorescence and EPR experiments and from MD simulations
  publication-title: Biochim. Biophys. Acta
– volume: 53
  start-page: 315
  year: 2009
  ident: 10.1016/j.bbagen.2021.130078_bb0080
  article-title: An update on products and mechanisms of lipid peroxidation
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200800131
– volume: 30
  start-page: 360
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0220
  article-title: Metal complexes with 1,5- and 1,8-dihydroxy-9,10-anthraquinones: electronic absorption spectra and structure of ligands
  publication-title: Russ. J. Coord. Chem.
  doi: 10.1023/B:RUCO.0000026007.04814.ad
– volume: 231
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0180
  article-title: Light-stimulated generation of free radicals by quinones-chelators
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-2016-0831
– volume: 165
  start-page: 148
  year: 2012
  ident: 10.1016/j.bbagen.2021.130078_bb0320
  article-title: Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent anti-tumour efficacy
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2011.01526.x
– volume: 27
  start-page: 591
  year: 2007
  ident: 10.1016/j.bbagen.2021.130078_bb0245
  article-title: Molecular mechanism of emodin action: transition from laxative ingredient to an anti-tumor agent
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.20095
– volume: 51
  start-page: 5961
  year: 2006
  ident: 10.1016/j.bbagen.2021.130078_bb0445
  article-title: Study on the electrochemical behaviour of the anti-cancer herbal drug emodin
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2006.03.082
– volume: 65
  start-page: 185
  year: 1998
  ident: 10.1016/j.bbagen.2021.130078_bb0175
  article-title: Structural and hydrophilicity requirements in quinone-induced lipid peroxidation of phosphatidylcholine vesicles
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772249809358568
– volume: 95
  start-page: 105
  year: 1998
  ident: 10.1016/j.bbagen.2021.130078_bb0085
  article-title: Linoleic acid peroxidation—the dominant lipid peroxidation process in low density lipoprotein—and its relationship to chronic diseases
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(98)00091-7
– volume: 66
  start-page: 41403
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0215
  article-title: Cu(II) complex of emodin with improved anti-cancer activity as demonstrated by its performance on HeLa and Hep G2 cells - RSC advances (RSC Publishing)
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06696A
– volume: 81
  start-page: 1908
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0240
  article-title: Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2017.1365592
– volume: 31
  start-page: 1117
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0345
  article-title: A new force field for simulating phosphatidylcholine bilayers
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21396
– volume: 59
  start-page: 8601
  year: 2016
  ident: 10.1016/j.bbagen.2021.130078_bb0325
  article-title: Structure–activity relationships of di-2-pyridylketone, 2-benzoylpyridine, and 2-acetylpyridine thiosemicarbazones for overcoming pgp-mediated drug resistance
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01050
– volume: 8
  start-page: 271
  year: 2002
  ident: 10.1016/j.bbagen.2021.130078_bb0420
  article-title: Chemical stabilization of tetrahydrobiopterin by L-ascorbic acid: contribution to placental endothelial nitric oxide synthase activity
  publication-title: Mol. Hum. Reprod.
  doi: 10.1093/molehr/8.3.271
– volume: 108
  start-page: 4853
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0400
  article-title: Iron(III)−hydrogen peroxide reaction: kinetic evidence of a hydroxyl-mediated chain mechanism
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp031339l
– volume: 1210
  start-page: 81
  year: 1993
  ident: 10.1016/j.bbagen.2021.130078_bb0170
  article-title: Effects of metal chelating agents on the oxidation of lipids induced by copper and iron
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(93)90052-B
– volume: 173
  year: 2021
  ident: 10.1016/j.bbagen.2021.130078_bb0045
  article-title: Innovative therapies for neuroblastoma: the surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2021.105889
– volume: 100
  start-page: 237
  year: 2001
  ident: 10.1016/j.bbagen.2021.130078_bb0010
  article-title: Does free extracellular iron exist in haemochromatosis and other pathologies, and is it redox active?
  publication-title: Clin. Sci.
  doi: 10.1042/cs1000237
– volume: 80
  start-page: 598
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0315
  article-title: Novel thiosemicarbazone iron chelators induce up-regulation and phosphorylation of the metastasis suppressor N-myc down-stream regulated gene 1: a new strategy for the treatment of pancreatic cancer
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.111.073627
– volume: 104
  start-page: 2967
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0270
  article-title: Iron chelators with high anti-proliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation
  publication-title: Blood
  doi: 10.1182/blood-2004-05-1866
– volume: 73
  year: 2021
  ident: 10.1016/j.bbagen.2021.130078_bb0065
  article-title: Emodin: a metabolite that exhibits anti-neoplastic activities by modulating multiple oncogenic targets
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2021.105142
– volume: 1
  start-page: 398
  year: 2013
  ident: 10.1016/j.bbagen.2021.130078_bb0090
  article-title: Insights into the role of oxidative stress in the pathology of friedreich ataxia using peroxidation resistant polyunsaturated fatty acids
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2013.06.004
– volume: 2017
  start-page: 1541
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0510
  article-title: Redox-active metal complexes for anti-cancer therapy
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600908
– volume: 35
  year: 2021
  ident: 10.1016/j.bbagen.2021.130078_bb0285
  article-title: Breaking the cycle: targeting of NDRG1 to inhibit bi-directional oncogenic cross-talk between pancreatic cancer and stroma
  publication-title: FASEB J.
  doi: 10.1096/fj.202002279R
– volume: 33
  start-page: 816
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0105
  article-title: Ascorbate and tumor cell iron metabolism: the evolving story and its link to pathology
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2019.7903
– volume: 170
  start-page: 165
  year: 1990
  ident: 10.1016/j.bbagen.2021.130078_bb0360
  article-title: Iron chelators of the pyridoxal isonicotinoyl hydrazone class part I. Ionisation characteristics of the ligands and their relevance to biological properties
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)80471-5
– volume: 56
  start-page: 280
  year: 2010
  ident: 10.1016/j.bbagen.2021.130078_bb0500
  article-title: Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species
  publication-title: Chemotherapy
  doi: 10.1159/000319951
– volume: 86
  start-page: 4295
  year: 1995
  ident: 10.1016/j.bbagen.2021.130078_bb0380
  article-title: The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective anti-proliferative agents
  publication-title: Blood
  doi: 10.1182/blood.V86.11.4295.bloodjournal86114295
– volume: 230
  start-page: 3556
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0495
  article-title: Fast analysis of molecular dynamics trajectories with graphics processing units—Radial distribution function histogramming
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.048
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.bbagen.2021.130078_bb0355
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 38
  start-page: 167
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0035
  article-title: Oxidative stress in cancer
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2020.06.001
– volume: 55
  start-page: 3890
  year: 1995
  ident: 10.1016/j.bbagen.2021.130078_bb0470
  article-title: Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin
  publication-title: Cancer Res.
– volume: 294
  start-page: 4045
  year: 2019
  ident: 10.1016/j.bbagen.2021.130078_bb0280
  article-title: The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.006279
– volume: 59
  start-page: 4965
  year: 2016
  ident: 10.1016/j.bbagen.2021.130078_bb0330
  article-title: Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00238
– volume: 22
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0225
  article-title: Newly synthesized doxorubicin complexes with selected metals-synthesis, structure and anti-breast cancer activity
  publication-title: Mol. Basel Switz.
– volume: 46
  start-page: 10302
  year: 2012
  ident: 10.1016/j.bbagen.2021.130078_bb0435
  article-title: Interactive enhancements of ascorbic acid and iron in hydroxyl radical generation in quinone redox cycling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301834r
– volume: 54
  start-page: 6936
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0465
  article-title: Halogenated 2′-benzoylpyridine thiosemicarbazone (XBpT) chelators with potent and selective anti-neoplastic activity: relationship to intracellular redox activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm200924c
– volume: 52
  start-page: 1459
  year: 2009
  ident: 10.1016/j.bbagen.2021.130078_bb0305
  article-title: 2-acetylpyridine thiosemicarbazones are potent iron chelators and anti-proliferative agents: redox activity, iron complexation and characterization of their anti-tumor activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm801585u
– volume: 1331
  start-page: 1
  year: 1997
  ident: 10.1016/j.bbagen.2021.130078_bb0005
  article-title: The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(96)00014-7
– volume: 11
  start-page: 213
  year: 2011
  ident: 10.1016/j.bbagen.2021.130078_bb0430
  article-title: Redox-active quinones and ascorbate: an innovative cancer therapy that exploits the vulnerability of cancer cells to oxidative stress
  publication-title: Anti Cancer Agents Med. Chem.
  doi: 10.2174/187152011795255902
– volume: 30
  start-page: 359
  year: 1992
  ident: 10.1016/j.bbagen.2021.130078_bb0520
  article-title: NMR study of some anthraquinones from rhubarb
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1260300414
– volume: 2012
  year: 2012
  ident: 10.1016/j.bbagen.2021.130078_bb0050
  article-title: Oxidative stress and lipid peroxidation products in cancer progression and therapy
  publication-title: ISRN Oncol.
– volume: 290
  start-page: 9588
  year: 2015
  ident: 10.1016/j.bbagen.2021.130078_bb0515
  article-title: Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.631283
– volume: 9
  start-page: 729
  year: 2017
  ident: 10.1016/j.bbagen.2021.130078_bb0455
  article-title: Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0323-1
– volume: 26
  start-page: 5064
  year: 2021
  ident: 10.1016/j.bbagen.2021.130078_bb0395
  article-title: Antioxidant activity of deferasirox and its metal complexes in model systems of oxidative damage: comparison with deferiprone
  publication-title: Molecules
  doi: 10.3390/molecules26165064
– volume: 38
  start-page: 74
  year: 2014
  ident: 10.1016/j.bbagen.2021.130078_bb0255
  article-title: The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus)
  publication-title: Fish Shellfish Immunol.
  doi: 10.1016/j.fsi.2014.02.018
– volume: 1790
  start-page: 702
  year: 2009
  ident: 10.1016/j.bbagen.2021.130078_bb0075
  article-title: Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2008.04.003
– volume: 82
  start-page: IV390-6
  year: 1990
  ident: 10.1016/j.bbagen.2021.130078_bb0165
  article-title: Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans
  publication-title: Circulation
– volume: 42
  start-page: 342
  year: 2004
  ident: 10.1016/j.bbagen.2021.130078_bb0250
  article-title: Antioxidant and scavenging activity of emodin, aloe-emodin, and rhein on free-radical and reactive oxygen species
  publication-title: Pharm. Biol.
  doi: 10.1080/13880200490519613
– volume: 374
  start-page: 265
  year: 1995
  ident: 10.1016/j.bbagen.2021.130078_bb0335
  article-title: Stabilization of a semiquinone radical at the high-affinity quinone-binding site (QH) of the Escherichia coli Bo-type ubiquinol oxidase
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(95)01125-X
– volume: 7
  start-page: 489
  year: 2016
  ident: 10.1016/j.bbagen.2021.130078_bb0025
  article-title: Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02311D
– volume: 48
  start-page: 16578
  year: 2019
  ident: 10.1016/j.bbagen.2021.130078_bb0415
  article-title: Proton-assisted air oxidation mechanisms of iron(II) bis-thiosemicarbazone complexes at physiological pH: a kinetico-mechanistic study
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT03557E
– volume: 52
  start-page: 192
  year: 2020
  ident: 10.1016/j.bbagen.2021.130078_bb0030
  article-title: ROS in cancer therapy: the bright side of the moon
  publication-title: Exp. Mol. Med.
  doi: 10.1038/s12276-020-0384-2
– volume: 52
  start-page: 5271
  year: 2009
  ident: 10.1016/j.bbagen.2021.130078_bb0265
  article-title: Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm900552r
– volume: 73
  start-page: 833
  year: 2008
  ident: 10.1016/j.bbagen.2021.130078_bb0235
  article-title: Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.107.041335
– volume: 6
  start-page: 63
  year: 1989
  ident: 10.1016/j.bbagen.2021.130078_bb0190
  article-title: Free radical formation by anti-tumor quinones
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/0891-5849(89)90162-7
SSID ssj0000595
Score 2.4318488
Snippet Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130078
SubjectTerms antioxidant activity
Ascorbate
Ascorbic Acid - chemistry
cell membranes
Dp44mT
drug therapy
electron paramagnetic resonance spectroscopy
emodin
Emodin - pharmacology
Ferrous Compounds
Hydrogen Peroxide
Iron
Iron - metabolism
Iron chelators
Ligands
lipid peroxidation
melanoma
Micelles
Oxidation-Reduction
oxidative stress
Reactive Oxygen Species
Thiosemicarbazones - pharmacology
Title Ascorbate-and iron-driven redox activity of Dp44mT and Emodin facilitates peroxidation of micelles and bicelles
URI https://dx.doi.org/10.1016/j.bbagen.2021.130078
https://www.ncbi.nlm.nih.gov/pubmed/34974127
https://www.proquest.com/docview/2616279096
https://www.proquest.com/docview/2636809762
Volume 1866
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9wwDBalY2wvY-t-9NqueLBX7y6xE8WPx7XltrG-rIW-GdvnwI1rcvSu0L3sb58UJx2DbYU9JpHBWIr0CUv6AN5TxoAYjZOqpkxH15WWLhRKopvwKGiX-Ywbhb-cl_NL_emquNqB2dALw2WVve9PPr3z1v2bcX-a4_VyOf7Kl3oEJyj-cOBBnvipNbKVf_jxq8yD4EORbhK0ZOmhfa6r8fKeflqegppnHS0yk639OTz9DX52YejsOTzr8aOYpi2-gJ3Y7MHjxCj5fQ-ezAYCt5fQTjeUWnoCk9I1C8H9bHJxw95N8JTQO8E9DUwdIdpanKy1vr4QLHh63VJAE7ULaYJ33AieJn63TPRLLM0c9qsVfWB53z-8gsuz04vZXPb8CjLQwW1l4K5UzAOarPKh8OjLugyVoqBde3QYnA_GOEMI0AVlvK9MUSuf-YqzFMIlr2G3aZu4D2KyUAvCChEjlto7NHnQZR5RU0KkJ9GMQA3HakM_fJw5MFZ2qDL7ZpMyLCvDJmWMQN6vWqfhGw_I46Ax-5sRWYoPD6x8NyjYkpb42FwT29uNpQyzzNFQpvcvGVVWEwJ2-QjeJOu436_SlLFlOR78994O4WnOPRddudAR7G5vbuNbQkJbf9yZ-jE8mn78PD__CVdoBiU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BFaKXquXV7QsjcTW7iZ04PqItaFseFxaJm2V7HWnRkqzYRaKX_vbOxAkIiRapxyRjyZqxZ75RZuYDOMCMQamgLRclZjqyLCS3PhNc2QGNgraJS6hR-PwiH13Jn9fZ9QoMu14YKqtsfX_06Y23bt_0W23259Np_5J-6iGcwPhDgUeJVXgj8foSjcHh76c6D8QPWfyVIDmJd_1zTZGXc3hraQxqmjS8yMS29nJ8-hv-bOLQyXt41wJIdhT3-AFWQrUJ65FS8tcmbAw7BrctqI8WmFs6RJPcVhNGDW18ckfujdGY0AdGTQ3EHcHqkn2fS3k7ZiR4fFtjRGOl9XGEd1gwGif-MI38SyRNJPazGX4gedc-bMPVyfF4OOItwQL3qLkl99SWqlKvdFI4nznl8jL3hcCoXTpllbfOa201QkDrhXau0FkpXOIKSlMQmOzAWlVX4SOwwURMECwEFVQunVU69TJPg5KYEclB0D0QnVqNb6ePEwnGzHRlZjcmGsOQMUw0Rg_446p5nL7xirzqLGaenSKDAeKVlfudgQ1aidRmq1DfLwymmHmqNKZ6_5IReTFAZJf2YDeejsf9CokpW5KqT_-9tz3YGI3Pz8zZj4vTz_A2pQaMpnboC6wt7-7DV4RFS_etOfZ_AD8uB7M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascorbate-and+iron-driven+redox+activity+of+Dp44mT+and+Emodin+facilitates+peroxidation+of+micelles+and+bicelles&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Selyutina%2C+O+Yu&rft.au=Kononova%2C+P+A&rft.au=Koshman%2C+V+E&rft.au=Shelepova%2C+E+A&rft.date=2022-04-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1866&rft.issue=4&rft.spage=130078&rft_id=info:doi/10.1016%2Fj.bbagen.2021.130078&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon