A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries

Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, effici...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 410; p. 124610
Main Authors Fan, Xiaoping, Tan, Chunlei, Li, Yu, Chen, Zhiqiang, Li, Yahao, Huang, Youguo, Pan, Qichang, Zheng, Fenghua, Wang, Hongqiang, Li, Qingyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43− polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g−1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling. [Display omitted] •A direct regeneration technology is proposed to reconstruct NCM523 cathode materials from spent LIBs.•The failure behaviors of the LiNi0.5Co0.2Mn0.3O2 of spent LIBs were analyzed in depth.•The specific discharge capacity of the reconstructed RNCMP-2 material is as high as 189.8 mAh g−1 at 0.1 C rate.
AbstractList Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43− polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g−1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling. [Display omitted] •A direct regeneration technology is proposed to reconstruct NCM523 cathode materials from spent LIBs.•The failure behaviors of the LiNi0.5Co0.2Mn0.3O2 of spent LIBs were analyzed in depth.•The specific discharge capacity of the reconstructed RNCMP-2 material is as high as 189.8 mAh g−1 at 0.1 C rate.
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi₀.₅Co₀.₂Mn₀.₃O₂ (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO₄³⁻ polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g⁻¹ at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi₁/₃Co₁/₃Mn₁/₃O₂, LiNi₀.₅Co₀.₂Mn₀.₃O₂, LiNi₀.₆Co₀.₂Mn₀.₂O₂ and LiNi₀.₈Co₀.₁Mn₀.₁O₂) and accelerates the industrialization of spent lithium ion battery recycling.
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
ArticleNumber 124610
Author Li, Yahao
Pan, Qichang
Li, Yu
Wang, Hongqiang
Li, Qingyu
Huang, Youguo
Zheng, Fenghua
Fan, Xiaoping
Tan, Chunlei
Chen, Zhiqiang
Author_xml – sequence: 1
  givenname: Xiaoping
  surname: Fan
  fullname: Fan, Xiaoping
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 2
  givenname: Chunlei
  surname: Tan
  fullname: Tan, Chunlei
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 3
  givenname: Yu
  surname: Li
  fullname: Li, Yu
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 4
  givenname: Zhiqiang
  surname: Chen
  fullname: Chen, Zhiqiang
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 5
  givenname: Yahao
  surname: Li
  fullname: Li, Yahao
  email: liyahao66@126.com
  organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 6
  givenname: Youguo
  surname: Huang
  fullname: Huang, Youguo
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 7
  givenname: Qichang
  surname: Pan
  fullname: Pan, Qichang
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 8
  givenname: Fenghua
  surname: Zheng
  fullname: Zheng, Fenghua
  email: zhengfh870627@163.com
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 9
  givenname: Hongqiang
  surname: Wang
  fullname: Wang, Hongqiang
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
– sequence: 10
  givenname: Qingyu
  surname: Li
  fullname: Li, Qingyu
  organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China
BookMark eNqFkU1v1DAQhi3USmxbfgKSjxya4M98iAOqVrQgLfTSni3HGW-8SuzF9iKVH8NvJSE9cdnTSDPvO-9onit04YMHhN5TUlJCq4-H8jDo35POJSNs7jFRUfIGbWhT84JzXl2gDeFEFLxpxVt0ldKBEEJrKTbozx3eRwB_i8FaZxz4fIvNGBL0xRjCEfcugsk4wh48RJ1d8DiDGXwYw_4F2xDnmQk-5Xgy2fk9DhbnAfDO_XCklNtASvbdk5I_Mmx0HkIPeL4VotMjtjFMOB3nVDy6PLjTVCwBnc6LANINurR6TPDutV6j5_svT9uvxe7x4dv2blcYIWguOsOJtLUGK6tey06SpoaGNg21WmhpZK07KdtO1y0RrCM117anrW1aYrnoKn6NPqx7jzH8PEHKanLJwDhqD-GUFJNMME6oZOelopKCz9GL9NMqNTGkFMEq4_K_F-ao3agoUQtAdVCvANUCUK0AZ7f8z32MbtLx5azv8-qD-WG_HESVFq4GVpSqD-7Mhr_G2bu8
CitedBy_id crossref_primary_10_1016_j_ensm_2022_10_033
crossref_primary_10_1016_j_jenvman_2024_120729
crossref_primary_10_1039_D1GC02628C
crossref_primary_10_1016_j_jpowsour_2023_233563
crossref_primary_10_1016_j_nanoen_2022_107626
crossref_primary_10_1039_D1SE01114F
crossref_primary_10_1016_j_jpowsour_2023_233728
crossref_primary_10_1021_jacs_4c10107
crossref_primary_10_1016_j_jclepro_2023_138511
crossref_primary_10_1016_j_scp_2024_101694
crossref_primary_10_1016_j_jece_2024_114740
crossref_primary_10_1002_batt_202200418
crossref_primary_10_1016_j_ensm_2024_103964
crossref_primary_10_1016_j_gee_2024_10_006
crossref_primary_10_1016_j_jallcom_2022_164691
crossref_primary_10_1016_j_jcis_2022_06_112
crossref_primary_10_1002_adma_202313273
crossref_primary_10_1002_chem_202400566
crossref_primary_10_1016_j_wasman_2024_12_030
crossref_primary_10_1039_D3EE00746D
crossref_primary_10_3390_batteries10010038
crossref_primary_10_1002_adma_202403818
crossref_primary_10_1016_j_jpowsour_2023_234025
crossref_primary_10_1021_jacs_2c13151
crossref_primary_10_1039_D4TA05089D
crossref_primary_10_3390_batteries10030101
crossref_primary_10_1016_j_jhazmat_2022_128664
crossref_primary_10_1016_j_nanoen_2023_109145
crossref_primary_10_1016_j_nxener_2024_100234
crossref_primary_10_1016_j_cej_2023_146733
crossref_primary_10_1002_sus2_126
crossref_primary_10_1016_j_cej_2023_142534
crossref_primary_10_1016_j_hydromet_2023_106168
crossref_primary_10_1016_j_est_2022_104470
crossref_primary_10_1016_j_jechem_2024_12_028
crossref_primary_10_3390_en15051611
crossref_primary_10_1016_j_seppur_2024_129574
crossref_primary_10_1016_j_wasman_2024_12_025
crossref_primary_10_1039_D2TA03295C
crossref_primary_10_1016_j_resconrec_2022_106782
crossref_primary_10_1016_j_jclepro_2024_140775
crossref_primary_10_1039_D2NR00993E
crossref_primary_10_1016_j_nanoen_2025_110741
crossref_primary_10_1007_s42461_022_00660_7
crossref_primary_10_1016_j_ensm_2024_103304
crossref_primary_10_1002_adma_202203218
crossref_primary_10_1016_j_jclepro_2022_134503
crossref_primary_10_1016_j_jclepro_2022_134748
crossref_primary_10_1016_j_seppur_2023_123684
crossref_primary_10_1016_j_jallcom_2023_171130
crossref_primary_10_1016_j_jpowsour_2025_236827
crossref_primary_10_1016_j_ensm_2023_102840
crossref_primary_10_1039_D2GC01007K
crossref_primary_10_1016_S1003_6326_24_66706_3
crossref_primary_10_1016_j_coelec_2021_100875
crossref_primary_10_1007_s40820_024_01434_0
crossref_primary_10_1149_1945_7111_ac60ee
crossref_primary_10_1002_aenm_202201526
crossref_primary_10_1007_s11581_021_04296_3
crossref_primary_10_1007_s41918_024_00231_y
crossref_primary_10_1016_j_jclepro_2023_137628
crossref_primary_10_1039_D3CS00254C
crossref_primary_10_1016_j_jallcom_2021_163308
crossref_primary_10_1016_j_seppur_2024_127777
crossref_primary_10_1016_j_jclepro_2023_139645
crossref_primary_10_1016_j_jiec_2024_12_074
crossref_primary_10_1016_j_resconrec_2024_107772
crossref_primary_10_54227_mlab_20220036
crossref_primary_10_1002_smtd_202100672
crossref_primary_10_1007_s41918_022_00154_6
crossref_primary_10_1016_j_jallcom_2022_166678
crossref_primary_10_1016_j_resconrec_2024_107700
crossref_primary_10_1007_s12613_022_2430_7
crossref_primary_10_1016_j_actamat_2024_119969
crossref_primary_10_1021_acs_est_3c01369
crossref_primary_10_1016_j_jpowsour_2024_235142
crossref_primary_10_1016_j_seppur_2025_132327
crossref_primary_10_1016_j_ceramint_2021_04_191
crossref_primary_10_1016_j_seppur_2024_130251
crossref_primary_10_1016_j_ensm_2024_103636
crossref_primary_10_1039_D2EE03257K
crossref_primary_10_1016_j_jclepro_2022_131373
crossref_primary_10_1039_D1GC01639C
crossref_primary_10_1016_j_wasman_2024_03_014
crossref_primary_10_1007_s11837_023_05941_0
crossref_primary_10_1016_j_mser_2025_100976
crossref_primary_10_1002_adma_202313144
crossref_primary_10_1021_acssuschemeng_1c06885
crossref_primary_10_1038_s41893_024_01412_9
crossref_primary_10_1021_acsami_1c01979
crossref_primary_10_1016_j_scp_2022_100959
crossref_primary_10_1016_j_jcis_2025_03_010
crossref_primary_10_1016_j_jece_2024_114171
crossref_primary_10_1002_smll_202309685
crossref_primary_10_1021_acssuschemeng_1c03266
crossref_primary_10_3390_molecules28135165
crossref_primary_10_1002_adma_202413753
crossref_primary_10_1016_j_ensm_2024_103623
crossref_primary_10_1016_j_hydromet_2021_105768
crossref_primary_10_1002_eom2_12321
crossref_primary_10_1016_j_ensm_2023_102870
crossref_primary_10_1016_j_jechem_2024_11_016
crossref_primary_10_3390_electrochem5040035
crossref_primary_10_1016_j_etran_2022_100155
crossref_primary_10_1016_j_jclepro_2021_128098
crossref_primary_10_1021_acsami_2c21841
crossref_primary_10_1039_D2RA02518C
crossref_primary_10_1002_aenm_202402918
crossref_primary_10_1021_acsapm_3c00166
Cites_doi 10.1149/1945-7111/ab9187
10.1002/admi.201801764
10.1021/acsami.8b11112
10.1016/j.jpowsour.2007.11.110
10.1021/acssuschemeng.7b03880
10.1002/anie.201902359
10.1021/acsenergylett.8b01490
10.1039/C4EE01400F
10.1002/aenm.201300787
10.1021/acsenergylett.8b02499
10.1021/acsami.8b02396
10.1016/j.nanoen.2018.11.046
10.1002/anie.201409262
10.1021/acssuschemeng.8b06675
10.1016/j.nanoen.2018.09.051
10.1021/acs.est.9b03725
10.1039/C8CS00297E
10.1016/j.chemosphere.2020.126670
10.1021/acssuschemeng.0c00610
10.1016/j.jpowsour.2019.227439
10.1038/s41586-019-1682-5
10.1021/acs.chemmater.7b03002
10.1021/acsami.0c09135
10.1002/advs.201800843
10.1021/acsami.9b10310
10.1021/acsami.8b22529
10.1038/s41560-019-0368-4
10.1016/j.jpowsour.2017.01.118
10.1016/j.nanoen.2017.11.010
10.1016/j.sab.2018.07.027
10.1021/jacs.8b13798
10.1021/acssuschemeng.9b02863
10.1016/j.jclepro.2019.04.304
10.1038/natrevmats.2016.13
10.1021/acsami.9b14389
10.1021/acs.nanolett.8b01036
10.1002/aenm.202001204
10.1021/acssuschemeng.7b03811
10.1038/s41467-019-11209-6
10.1016/j.jhazmat.2019.120905
10.1016/j.cej.2019.123089
10.1038/s41467-018-05172-x
10.1016/j.jclepro.2018.12.248
10.1016/j.rser.2018.03.002
10.1021/acsami.0c03533
10.1021/acsami.7b12306
10.1039/C7EE02443F
10.1016/j.joule.2017.12.008
10.1149/1.1740781
10.1002/celc.201901991
10.1016/j.jpowsour.2017.03.093
10.1016/j.nanoen.2019.02.004
10.1039/C4TA00699B
10.1002/aenm.201900161
10.1016/j.jhazmat.2020.122740
10.1016/j.jpowsour.2016.08.099
10.1080/10643389.2020.1776053
10.1016/j.jpowsour.2018.07.116
10.1039/C8TA10513H
10.1016/j.nanoen.2018.04.077
10.1002/cssc.201903213
10.1021/acsnano.9b05960
10.1016/j.jpowsour.2017.11.020
10.1016/j.cej.2017.10.050
10.1149/2.1111702jes
10.1021/acsenergylett.8b00833
10.1002/aenm.201900454
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jhazmat.2020.124610
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Law
EISSN 1873-3336
ExternalDocumentID 10_1016_j_jhazmat_2020_124610
S0304389420326005
GroupedDBID ---
--K
--M
-~X
..I
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LX7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
XPP
ZMT
~02
~G-
.HR
29K
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HMC
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEN
SEW
SSH
T9H
TAE
VH1
WUQ
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-bc305f7aef56da5b5087e81881fa4a5c57ab559ba79042b073afd19f890f34b63
IEDL.DBID .~1
ISSN 0304-3894
1873-3336
IngestDate Fri Jul 11 07:16:09 EDT 2025
Thu Jul 10 22:50:09 EDT 2025
Tue Jul 01 00:49:37 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Fri Feb 23 02:45:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spent lithium-ion batteries
Cathode material
Reconstructing
LiNi0.5Co0.2Mn0.3O2
Regeneration technology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-bc305f7aef56da5b5087e81881fa4a5c57ab559ba79042b073afd19f890f34b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2465438812
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524230152
proquest_miscellaneous_2465438812
crossref_citationtrail_10_1016_j_jhazmat_2020_124610
crossref_primary_10_1016_j_jhazmat_2020_124610
elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_124610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of hazardous materials
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kim, Song, Son, Ono, Qi (bib22) 2019; 7
Ko, Park, Park, Ham, Ahn, Park, Han, Lee, Jeon, Jung (bib23) 2019; 56
Lin, Nordlund, Markus, Weng, Xin, Doeff (bib27) 2014; 7
Shi, Zhang, Meng, Chen (bib48) 2019; 9
Hekmatfar, Kazzazi, Eshetu, Hasa, Passerini (bib16) 2019; 11
Zou, Zhao, Liu, Jia, Zheng, Wang, Yang, Zhang, Wang (bib70) 2018; 3
Li, Zhang, Song, Song, Zhang (bib35) 2017; 345
Kim, Kuo, Kaghazchi, Yoon, Sun (bib21) 2019; 4
Zeng, Li, Abd El‐Hady, Alshitari, Al‐Bogami, Lu, Amine (bib63) 2019; 9
Meng, Cao, Hao, Ning, Xu, Sun (bib38) 2018; 6
Mu, Lin, Xu, Han, Xia, Sokaras, Steiner, Weng, Nordlund, Doeff, Liu, Zhao, Xin, Lin (bib41) 2018; 18
Yang, Wang, Qian, Li (bib62) 2019; 6
Liu, Oh, Liu, Lee, Cho, Chae, Kim, Cho (bib31) 2015; 54
Gilbert, Shkrob, Abraham (bib11) 2017; 164
Liang, Song, Zhang, Shi, Wang, Zhang (bib26) 2017; 9
Oswald, Pritzl, Wetjen, Gasteiger (bib43) 2020; 167
Meng, Cao, Zhang, Ou, Li, Zhang, Ji (bib39) 2019; 7
Zhao, Liu, Zhang, Guo (bib66) 2020; 396
Wang, Luo, Bai, Li, Belharouak, Dai (bib54) 2020; 10
Lee, Park, Jung, Ko, Park, Kim, Hong, Zhu, Kim (bib25) 2019; 6
Shukla, Ramasse, Ophus, Kepaptsoglou, Hage, Gammer, Bowling, Gallegos, Venkatachalam (bib49) 2018; 11
Hu, Zhang, Li, Chen, Wang (bib19) 2017; 351
Wang, Zhang, Cheng, Zhang, Liu, Su, Liu, Gao (bib56) 2020; 12
Lee, Muhammad, Sergey, Lee, Yoon, Kang, Yoon (bib24) 2020; 59
Xiao, Li, Xu (bib58) 2019
Esmaeili, Rastegar, Beigzadeh, Gu (bib5) 2020; 254
Evertz, Horsthemke, Kasnatscheew, Börner, Winter, Nowak (bib6) 2016; 329
Liu, Li, Xiong, Hao, Li, Kou, Yan, Li, Lu, Koo, Adair, Sun (bib30) 2018; 44
Chen, Li, Wang, Yan, Wang, Deng, Ge, Qu (bib3) 2018; 374
Guo, Li, Liu, Zhang, Guo, Hu, Meng, Jia, Sun (bib12) 2019; 380
Wang, Du, Vahabi, Zhao, Yin, Kota, Tong (bib52) 2019; 10
Zheng, Yan, Estevez, Wang, Zhang (bib69) 2018; 49
Wang, Liu, Ding, Zhan, Wang (bib53) 2019; 11
Zubi, Dufo-López, Carvalho, Pasaoglu (bib71) 2018; 89
Liu, Huang, Su, Sun, Wu, Wang, Zhang, Wu (bib28) 2020; 8
Choi, Aurbach (bib4) 2016; 1
Ryu, Park, Yoon, Sun (bib44) 2018; 14
Shen, Zhou, Chen, Yuan, Zhu, Sun, Lou (bib46) 2019; 213
Xu, Zhang, Wu, Xu, Li, Xiang, Wang, Zhong, Guo, Chen (bib60) 2019; 8
Sharafi, Kazyak, Davis, Yu, Thompson, Siegel, Dasgupta, Sakamoto (bib45) 2017; 29
Wang, Sun, Chen, Huang (bib55) 2004; 151
Wang, Zhang, Liu, Xu (bib57) 2019
Zhang, Li, Fan, Xue, Bian, Wu, Chen (bib64) 2018; 47
Yamada, Ito, Kammampata, Thangadurai (bib61) 2020; 12
Liu, Yang, Zhong, Li, Li, Yu, Kang (bib33) 2019; 13
Li, Zhuang, Li, Wu, Li, Gao, Li, Wang, Lu (bib36) 2020; 7
Cao, Qi, Hu, Wang, Gan, Li, Hu, Peng, Du (bib1) 2018; 10
Garole, Hossain, Garole, Sahajwalla, Nerkar, Dubal (bib10) 2020; 13
Zheng, Ou, Pan, Xiong, Yang, Fu, Liu (bib68) 2018; 334
Harper, Sommerville, Kendrick, Driscoll, Slater, Stolkin, Walton, Christensen, Heidrich, Lambert, Abbott, Ryder, Gaines, Anderson (bib15) 2019; 575
Zhao, Yuan, Jiang, Wen, Wang, Guan, Zhang, Zeng (bib67) 2020; 383
Huang, Liu, Qian, Zhang, Zhou, Liu, Kang, Li (bib17) 2019; 11
Shi, Chen, Liu, Yue, Chen (bib47) 2018; 3
Lv, Wang, Cao, Sun, Zhang, Sun (bib37) 2018; 6
Mo, Guo, Jin, Du, Cao, Chen, Li, Chen (bib40) 2020; 448
Zhang, Qiao, Li, Gao (bib65) 2014; 2
Han, Xu, Zhao, Lin, Feng, Chen, Ivey, Wang, Wei (bib14) 2018; 10
Jung, Gwon, Hong, Park, Seo, Kim, Hyun, Yang, Kang (bib20) 2014; 4
Liu, Lin, Cao, Zhang, Sun (bib29) 2019; 228
Xia, Mu, Xu, Wang, Wei, Liu, Pianetta, Zhao, Yu, Lin, Liu (bib59) 2018; 53
Forte, Pietrantonio, Pucciarmati, Puzone, Fontana (bib8) 2020
Guo, Yuan, Zhao, Hua, Shen, Sun, Chen, Sun, Wu, Zheng, Zhang, Li, Huo (bib13) 2019; 58
Mu, Yuan, Tian, Wei, Zhang, Liu, Pianetta, Doeff, Liu, Lin (bib42) 2018; 9
Tian, Xu, Nordlund, Lin, Liu, Sun, Liu, Doeff (bib50) 2018; 2
Chen, Kim, Bresser, Diemant, Asenbauer, Jeong, Copley, Behm, Lin, Shen, Passerini (bib2) 2018; 8
Gachot, Grugeon, Armand, Pilard, Guenot, Tarascon, Laruelle (bib9) 2008; 178
Li, Asl, Xie, Manthiram (bib34) 2019; 141
Huang, Pan, Su, An (bib18) 2018; 399
Tran, Rodrigues, Kato, Babu, Ajayan (bib51) 2019; 4
Evertz, Kröger, Winter, Nowak (bib7) 2018; 149
Liu, Peng, Porvali, Wang, Wilson, Lundström (bib32) 2019; 7
Huang (10.1016/j.jhazmat.2020.124610_bib18) 2018; 399
Kim (10.1016/j.jhazmat.2020.124610_bib21) 2019; 4
Zubi (10.1016/j.jhazmat.2020.124610_bib71) 2018; 89
Lin (10.1016/j.jhazmat.2020.124610_bib27) 2014; 7
Meng (10.1016/j.jhazmat.2020.124610_bib38) 2018; 6
Shi (10.1016/j.jhazmat.2020.124610_bib47) 2018; 3
Zhang (10.1016/j.jhazmat.2020.124610_bib65) 2014; 2
Guo (10.1016/j.jhazmat.2020.124610_bib12) 2019; 380
Liu (10.1016/j.jhazmat.2020.124610_bib32) 2019; 7
Zheng (10.1016/j.jhazmat.2020.124610_bib69) 2018; 49
Han (10.1016/j.jhazmat.2020.124610_bib14) 2018; 10
Xia (10.1016/j.jhazmat.2020.124610_bib59) 2018; 53
Zhao (10.1016/j.jhazmat.2020.124610_bib67) 2020; 383
Chen (10.1016/j.jhazmat.2020.124610_bib3) 2018; 374
Wang (10.1016/j.jhazmat.2020.124610_bib57) 2019
Kim (10.1016/j.jhazmat.2020.124610_bib22) 2019; 7
Lee (10.1016/j.jhazmat.2020.124610_bib24) 2020; 59
Xu (10.1016/j.jhazmat.2020.124610_bib60) 2019; 8
Liu (10.1016/j.jhazmat.2020.124610_bib30) 2018; 44
Tian (10.1016/j.jhazmat.2020.124610_bib50) 2018; 2
Gachot (10.1016/j.jhazmat.2020.124610_bib9) 2008; 178
Wang (10.1016/j.jhazmat.2020.124610_bib56) 2020; 12
Wang (10.1016/j.jhazmat.2020.124610_bib53) 2019; 11
Jung (10.1016/j.jhazmat.2020.124610_bib20) 2014; 4
Esmaeili (10.1016/j.jhazmat.2020.124610_bib5) 2020; 254
Liu (10.1016/j.jhazmat.2020.124610_bib31) 2015; 54
Sharafi (10.1016/j.jhazmat.2020.124610_bib45) 2017; 29
Li (10.1016/j.jhazmat.2020.124610_bib35) 2017; 345
Zheng (10.1016/j.jhazmat.2020.124610_bib68) 2018; 334
Cao (10.1016/j.jhazmat.2020.124610_bib1) 2018; 10
Harper (10.1016/j.jhazmat.2020.124610_bib15) 2019; 575
Gilbert (10.1016/j.jhazmat.2020.124610_bib11) 2017; 164
Ryu (10.1016/j.jhazmat.2020.124610_bib44) 2018; 14
Zhang (10.1016/j.jhazmat.2020.124610_bib64) 2018; 47
Tran (10.1016/j.jhazmat.2020.124610_bib51) 2019; 4
Guo (10.1016/j.jhazmat.2020.124610_bib13) 2019; 58
Li (10.1016/j.jhazmat.2020.124610_bib34) 2019; 141
Evertz (10.1016/j.jhazmat.2020.124610_bib7) 2018; 149
Liu (10.1016/j.jhazmat.2020.124610_bib33) 2019; 13
Lv (10.1016/j.jhazmat.2020.124610_bib37) 2018; 6
Meng (10.1016/j.jhazmat.2020.124610_bib39) 2019; 7
Mu (10.1016/j.jhazmat.2020.124610_bib41) 2018; 18
Mu (10.1016/j.jhazmat.2020.124610_bib42) 2018; 9
Evertz (10.1016/j.jhazmat.2020.124610_bib6) 2016; 329
Wang (10.1016/j.jhazmat.2020.124610_bib52) 2019; 10
Hu (10.1016/j.jhazmat.2020.124610_bib19) 2017; 351
Chen (10.1016/j.jhazmat.2020.124610_bib2) 2018; 8
Mo (10.1016/j.jhazmat.2020.124610_bib40) 2020; 448
Zeng (10.1016/j.jhazmat.2020.124610_bib63) 2019; 9
Shen (10.1016/j.jhazmat.2020.124610_bib46) 2019; 213
Yamada (10.1016/j.jhazmat.2020.124610_bib61) 2020; 12
Choi (10.1016/j.jhazmat.2020.124610_bib4) 2016; 1
Li (10.1016/j.jhazmat.2020.124610_bib36) 2020; 7
Liu (10.1016/j.jhazmat.2020.124610_bib28) 2020; 8
Zou (10.1016/j.jhazmat.2020.124610_bib70) 2018; 3
Lee (10.1016/j.jhazmat.2020.124610_bib25) 2019; 6
Shi (10.1016/j.jhazmat.2020.124610_bib48) 2019; 9
Oswald (10.1016/j.jhazmat.2020.124610_bib43) 2020; 167
Xiao (10.1016/j.jhazmat.2020.124610_bib58) 2019
Forte (10.1016/j.jhazmat.2020.124610_bib8) 2020
Yang (10.1016/j.jhazmat.2020.124610_bib62) 2019; 6
Ko (10.1016/j.jhazmat.2020.124610_bib23) 2019; 56
Liu (10.1016/j.jhazmat.2020.124610_bib29) 2019; 228
Garole (10.1016/j.jhazmat.2020.124610_bib10) 2020; 13
Hekmatfar (10.1016/j.jhazmat.2020.124610_bib16) 2019; 11
Wang (10.1016/j.jhazmat.2020.124610_bib54) 2020; 10
Zhao (10.1016/j.jhazmat.2020.124610_bib66) 2020; 396
Shukla (10.1016/j.jhazmat.2020.124610_bib49) 2018; 11
Huang (10.1016/j.jhazmat.2020.124610_bib17) 2019; 11
Liang (10.1016/j.jhazmat.2020.124610_bib26) 2017; 9
Wang (10.1016/j.jhazmat.2020.124610_bib55) 2004; 151
References_xml – volume: 141
  start-page: 5097
  year: 2019
  end-page: 5101
  ident: bib34
  article-title: Collapse of LiNi
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 33901
  year: 2019
  end-page: 33912
  ident: bib53
  article-title: Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– year: 2019
  ident: bib57
  article-title: A simplified process for recovery of Li and Co from spent LiCoO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 59
  start-page: 2578
  year: 2020
  end-page: 2605
  ident: bib24
  article-title: Advances in the cathode materials for lithium rechargeable batteries
  publication-title: Angew. Chem.
– year: 2019
  ident: bib58
  article-title: Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 39599
  year: 2018
  end-page: 39607
  ident: bib14
  article-title: Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1
  year: 2020
  end-page: 28
  ident: bib8
  article-title: Lithium iron phosphate batteries recycling: an assessment of current status
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 56
  start-page: 434
  year: 2019
  end-page: 442
  ident: bib23
  article-title: Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis
  publication-title: Nano Energy
– volume: 4
  start-page: 339
  year: 2019
  end-page: 345
  ident: bib51
  article-title: Deep eutectic solvents for cathode recycling of Li-ion batteries
  publication-title: Nat. Energy
– volume: 6
  year: 2019
  ident: bib62
  article-title: Investigation of interfacial changes on grain boundaries of Li(Ni
  publication-title: Adv. Mater. Interfaces
– volume: 3
  start-page: 2433
  year: 2018
  end-page: 2440
  ident: bib70
  article-title: Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials
  publication-title: ACS Energy Lett.
– volume: 151
  start-page: A914
  year: 2004
  ident: bib55
  article-title: Electrochemical characterization of positive electrode material LiNi
  publication-title: J. Electrochem. Soc.
– volume: 399
  start-page: 274
  year: 2018
  end-page: 286
  ident: bib18
  article-title: Recycling of lithium-ion batteries: recent advances and perspectives
  publication-title: J. Power Sources
– volume: 3
  start-page: 1683
  year: 2018
  end-page: 1692
  ident: bib47
  article-title: Resolving the compositional and structural defects of degraded LiNi
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 14076
  year: 2019
  end-page: 14084
  ident: bib17
  article-title: A simple method for the complete performance recovery of degraded Ni-rich LiNi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 16103
  year: 2019
  end-page: 16111
  ident: bib32
  article-title: Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 6
  start-page: 1504
  year: 2018
  end-page: 1521
  ident: bib37
  article-title: A critical review and analysis on the recycling of spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 254
  year: 2020
  ident: bib5
  article-title: Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H
  publication-title: Chemosphere
– volume: 351
  start-page: 192
  year: 2017
  end-page: 199
  ident: bib19
  article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries
  publication-title: J. Power Sources
– volume: 448
  year: 2020
  ident: bib40
  article-title: Improved cycling stability of LiNi
  publication-title: J. Power Sources
– volume: 178
  start-page: 409
  year: 2008
  end-page: 421
  ident: bib9
  article-title: Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
  publication-title: J. Power Sources
– volume: 12
  start-page: 20874
  year: 2020
  end-page: 20881
  ident: bib56
  article-title: Revealing the phase-transition dynamics and mechanism in a spinel Li
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 16013
  year: 2016
  ident: bib4
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
– volume: 575
  start-page: 75
  year: 2019
  end-page: 86
  ident: bib15
  article-title: Recycling lithium-ion batteries from electric vehicles
  publication-title: Nature
– volume: 9
  start-page: 2810
  year: 2018
  ident: bib42
  article-title: Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
  publication-title: Nat. Commun.
– volume: 58
  start-page: 673
  year: 2019
  end-page: 679
  ident: bib13
  article-title: Dual-component LixTiO
  publication-title: Nano Energy
– volume: 380
  year: 2019
  ident: bib12
  article-title: Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation
  publication-title: J. Hazard. Mater.
– volume: 9
  year: 2019
  ident: bib48
  article-title: Ambient‐pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2(0 <x< 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 830
  year: 2018
  end-page: 840
  ident: bib49
  article-title: Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 7961
  year: 2017
  end-page: 7968
  ident: bib45
  article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li
  publication-title: Chem. Mater.
– volume: 228
  start-page: 801
  year: 2019
  end-page: 813
  ident: bib29
  article-title: Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review
  publication-title: J. Clean. Prod.
– volume: 374
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib3
  article-title: The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi
  publication-title: J. Power Sources
– volume: 329
  start-page: 364
  year: 2016
  end-page: 371
  ident: bib6
  article-title: Unraveling transition metal dissolution of Li
  publication-title: J. Power Sources
– volume: 8
  start-page: 7839
  year: 2020
  end-page: 7850
  ident: bib28
  article-title: Synthesis of Ni-rich cathode material from maleic acid-leachate of spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 7
  start-page: 998
  year: 2020
  end-page: 1006
  ident: bib36
  article-title: Realizing superior cycle stability of a Ni‐rich layered LiNi
  publication-title: ChemElectroChem
– volume: 213
  start-page: 1346
  year: 2019
  end-page: 1352
  ident: bib46
  article-title: Manganese-based catalysts recovered from spent ternary lithium-ion batteries and its catalytic activity enhanced by a mechanical method
  publication-title: J. Clean. Prod.
– volume: 9
  year: 2019
  ident: bib63
  article-title: Commercialization of lithium battery technologies for electric vehicles
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 18270
  year: 2018
  end-page: 18280
  ident: bib1
  article-title: Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 54
  start-page: 4440
  year: 2015
  end-page: 4457
  ident: bib31
  article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
  publication-title: Angew. Chem.
– volume: 44
  start-page: 111
  year: 2018
  end-page: 120
  ident: bib30
  article-title: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al
  publication-title: Nano Energy
– volume: 6
  start-page: 5797
  year: 2018
  end-page: 5805
  ident: bib38
  article-title: Sustainable preparation of LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 2
  start-page: 464
  year: 2018
  end-page: 477
  ident: bib50
  article-title: Charge heterogeneity and surface chemistry in polycrystalline cathode materials
  publication-title: Joule
– volume: 7
  start-page: 7750
  year: 2019
  end-page: 7759
  ident: bib39
  article-title: Comparison of the ammoniacal leaching behavior of layered LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 167
  year: 2020
  ident: bib43
  article-title: Novel Method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. Theory and validation
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 576
  year: 2019
  end-page: 582
  ident: bib21
  article-title: Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries
  publication-title: ACS Energy Lett.
– volume: 47
  start-page: 7239
  year: 2018
  end-page: 7302
  ident: bib64
  article-title: Toward sustainable and systematic recycling of spent rechargeable batteries
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 36119
  year: 2020
  end-page: 36127
  ident: bib61
  article-title: Toward Understanding the reactivity of garnet-type solid electrolytes with H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 3220
  year: 2019
  ident: bib52
  article-title: Trade-off in membrane distillation with monolithic omniphobic membranes
  publication-title: Nat. Commun.
– volume: 9
  start-page: 38567
  year: 2017
  end-page: 38574
  ident: bib26
  article-title: Improved performances of LiNi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 43166
  year: 2019
  end-page: 43179
  ident: bib16
  article-title: Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2019
  ident: bib25
  article-title: Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation
  publication-title: Adv. Sci.
– volume: 7
  start-page: 2942
  year: 2019
  end-page: 2964
  ident: bib22
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2019
  ident: bib60
  article-title: Stabilizing the structure of nickel‐rich lithiated oxides via Cr doping as cathode with boosted high‐voltage/temperature cycling performance for Li‐ion battery
  publication-title: Energy Technol.
– volume: 396
  year: 2020
  ident: bib66
  article-title: Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries
  publication-title: J. Hazard. Mater.
– volume: 2
  start-page: 7454
  year: 2014
  end-page: 7460
  ident: bib65
  article-title: PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 334
  start-page: 497
  year: 2018
  end-page: 507
  ident: bib68
  article-title: Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries
  publication-title: Chem. Eng. J.
– volume: 89
  start-page: 292
  year: 2018
  end-page: 308
  ident: bib71
  article-title: The lithium-ion battery: state of the art and future perspectives
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 3077
  year: 2014
  ident: bib27
  article-title: Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  ident: bib2
  article-title: MnPO
  publication-title: Adv. Energy Mater.
– volume: 345
  start-page: 78
  year: 2017
  end-page: 84
  ident: bib35
  article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO
  publication-title: J. Power Sources
– volume: 383
  year: 2020
  ident: bib67
  article-title: Regeneration and reutilization of cathode materials from spent lithium-ion batteries
  publication-title: Chem. Eng. J.
– volume: 164
  start-page: A389
  year: 2017
  end-page: A399
  ident: bib11
  article-title: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells
  publication-title: J. Electrochem. Soc.
– volume: 149
  start-page: 118
  year: 2018
  end-page: 123
  ident: bib7
  article-title: Total reflection X-ray fluorescence in the field of lithium ion batteries – elemental detection in lithium containing electrolytes using nanoliter droplets
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
– volume: 49
  start-page: 538
  year: 2018
  end-page: 548
  ident: bib69
  article-title: Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi
  publication-title: Nano Energy
– volume: 4
  year: 2014
  ident: bib20
  article-title: Understanding the degradation mechanisms of LiNi
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 3079
  year: 2020
  end-page: 3100
  ident: bib10
  article-title: Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities
  publication-title: ChemSusChem
– volume: 53
  start-page: 753
  year: 2018
  end-page: 762
  ident: bib59
  article-title: Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries
  publication-title: Nano Energy
– volume: 18
  start-page: 3241
  year: 2018
  end-page: 3249
  ident: bib41
  article-title: Oxygen release induced chemomechanical breakdown of layered cathode materials
  publication-title: Nano Lett.
– volume: 14
  year: 2018
  ident: bib44
  article-title: Microstructural degradation of Ni-rich Li[Ni
  publication-title: Small
– volume: 13
  start-page: 11891
  year: 2019
  end-page: 11900
  ident: bib33
  article-title: Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance
  publication-title: ACS Nano
– volume: 10
  year: 2020
  ident: bib54
  article-title: Direct recycling of spent NCM cathodes through ionothermal lithiation
  publication-title: Adv. Energy Mater.
– volume: 167
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib43
  article-title: Novel Method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. Theory and validation
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab9187
– volume: 6
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib62
  article-title: Investigation of interfacial changes on grain boundaries of Li(Ni0.5Co0.2Mn0.3)O2 in the initial overcharge process
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801764
– volume: 10
  start-page: 39599
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib14
  article-title: Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11112
– volume: 178
  start-page: 409
  year: 2008
  ident: 10.1016/j.jhazmat.2020.124610_bib9
  article-title: Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.11.110
– volume: 6
  start-page: 5797
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib38
  article-title: Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03880
– volume: 59
  start-page: 2578
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib24
  article-title: Advances in the cathode materials for lithium rechargeable batteries
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201902359
– volume: 3
  start-page: 2433
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib70
  article-title: Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01490
– volume: 7
  start-page: 3077
  year: 2014
  ident: 10.1016/j.jhazmat.2020.124610_bib27
  article-title: Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01400F
– volume: 4
  year: 2014
  ident: 10.1016/j.jhazmat.2020.124610_bib20
  article-title: Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300787
– volume: 4
  start-page: 576
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib21
  article-title: Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02499
– volume: 10
  start-page: 18270
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib1
  article-title: Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02396
– volume: 56
  start-page: 434
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib23
  article-title: Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.046
– volume: 54
  start-page: 4440
  year: 2015
  ident: 10.1016/j.jhazmat.2020.124610_bib31
  article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201409262
– volume: 7
  start-page: 7750
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib39
  article-title: Comparison of the ammoniacal leaching behavior of layered LiNixCoyMn1-x-yO2 (x = 1/3, 0.5, 0.8) cathode materials
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06675
– volume: 53
  start-page: 753
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib59
  article-title: Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.051
– year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib58
  article-title: Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03725
– volume: 47
  start-page: 7239
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib64
  article-title: Toward sustainable and systematic recycling of spent rechargeable batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00297E
– volume: 254
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib5
  article-title: Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126670
– volume: 8
  start-page: 7839
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib28
  article-title: Synthesis of Ni-rich cathode material from maleic acid-leachate of spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c00610
– volume: 448
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib40
  article-title: Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227439
– volume: 575
  start-page: 75
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib15
  article-title: Recycling lithium-ion batteries from electric vehicles
  publication-title: Nature
  doi: 10.1038/s41586-019-1682-5
– volume: 29
  start-page: 7961
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124610_bib45
  article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03002
– volume: 12
  start-page: 36119
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib61
  article-title: Toward Understanding the reactivity of garnet-type solid electrolytes with H2O/CO2 in a glovebox using X-ray photoelectron spectroscopy and electrochemical methods
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09135
– volume: 6
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib25
  article-title: Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800843
– volume: 11
  start-page: 33901
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib53
  article-title: Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10310
– volume: 11
  start-page: 14076
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib17
  article-title: A simple method for the complete performance recovery of degraded Ni-rich LiNi0.70Co0.15Mn0.15O2 cathode via surface reconstruction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b22529
– year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib57
  article-title: A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 339
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib51
  article-title: Deep eutectic solvents for cathode recycling of Li-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0368-4
– volume: 345
  start-page: 78
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124610_bib35
  article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.118
– volume: 44
  start-page: 111
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib30
  article-title: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.010
– volume: 149
  start-page: 118
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib7
  article-title: Total reflection X-ray fluorescence in the field of lithium ion batteries – elemental detection in lithium containing electrolytes using nanoliter droplets
  publication-title: Spectrochim. Acta Part B At. Spectrosc.
  doi: 10.1016/j.sab.2018.07.027
– volume: 141
  start-page: 5097
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib34
  article-title: Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13798
– volume: 7
  start-page: 16103
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib32
  article-title: Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02863
– volume: 228
  start-page: 801
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib29
  article-title: Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.304
– volume: 1
  start-page: 16013
  year: 2016
  ident: 10.1016/j.jhazmat.2020.124610_bib4
  article-title: Promise and reality of post-lithium-ion batteries with high energy densities
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 11
  start-page: 43166
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib16
  article-title: Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14389
– volume: 18
  start-page: 3241
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib41
  article-title: Oxygen release induced chemomechanical breakdown of layered cathode materials
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01036
– volume: 10
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib54
  article-title: Direct recycling of spent NCM cathodes through ionothermal lithiation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001204
– volume: 6
  start-page: 1504
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib37
  article-title: A critical review and analysis on the recycling of spent lithium-ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03811
– volume: 10
  start-page: 3220
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib52
  article-title: Trade-off in membrane distillation with monolithic omniphobic membranes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11209-6
– volume: 380
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib12
  article-title: Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.120905
– volume: 383
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib67
  article-title: Regeneration and reutilization of cathode materials from spent lithium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123089
– volume: 9
  start-page: 2810
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib42
  article-title: Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05172-x
– volume: 8
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib2
  article-title: MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics
  publication-title: Adv. Energy Mater.
– volume: 213
  start-page: 1346
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib46
  article-title: Manganese-based catalysts recovered from spent ternary lithium-ion batteries and its catalytic activity enhanced by a mechanical method
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.248
– volume: 89
  start-page: 292
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib71
  article-title: The lithium-ion battery: state of the art and future perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.03.002
– volume: 12
  start-page: 20874
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib56
  article-title: Revealing the phase-transition dynamics and mechanism in a spinel Li4Ti5O12 anode material through in situ electron microscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03533
– volume: 9
  start-page: 38567
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124610_bib26
  article-title: Improved performances of LiNi0.8Co0.15Al0.05O2 material employing NaAlO2 as a new aluminum source
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12306
– volume: 11
  start-page: 830
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib49
  article-title: Effect of composition on the structure of lithium- and manganese-rich transition metal oxides
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02443F
– volume: 2
  start-page: 464
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib50
  article-title: Charge heterogeneity and surface chemistry in polycrystalline cathode materials
  publication-title: Joule
  doi: 10.1016/j.joule.2017.12.008
– volume: 151
  start-page: A914
  year: 2004
  ident: 10.1016/j.jhazmat.2020.124610_bib55
  article-title: Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1740781
– volume: 7
  start-page: 998
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib36
  article-title: Realizing superior cycle stability of a Ni‐rich layered LiNi 0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901991
– volume: 351
  start-page: 192
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124610_bib19
  article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.093
– volume: 58
  start-page: 673
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib13
  article-title: Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.004
– volume: 8
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib60
  article-title: Stabilizing the structure of nickel‐rich lithiated oxides via Cr doping as cathode with boosted high‐voltage/temperature cycling performance for Li‐ion battery
  publication-title: Energy Technol.
– volume: 2
  start-page: 7454
  year: 2014
  ident: 10.1016/j.jhazmat.2020.124610_bib65
  article-title: PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00699B
– volume: 9
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib63
  article-title: Commercialization of lithium battery technologies for electric vehicles
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900161
– volume: 396
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib66
  article-title: Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122740
– volume: 329
  start-page: 364
  year: 2016
  ident: 10.1016/j.jhazmat.2020.124610_bib6
  article-title: Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.099
– start-page: 1
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib8
  article-title: Lithium iron phosphate batteries recycling: an assessment of current status
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1776053
– volume: 399
  start-page: 274
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib18
  article-title: Recycling of lithium-ion batteries: recent advances and perspectives
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.07.116
– volume: 7
  start-page: 2942
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib22
  article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA10513H
– volume: 49
  start-page: 538
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib69
  article-title: Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.077
– volume: 13
  start-page: 3079
  year: 2020
  ident: 10.1016/j.jhazmat.2020.124610_bib10
  article-title: Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201903213
– volume: 13
  start-page: 11891
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib33
  article-title: Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05960
– volume: 374
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib3
  article-title: The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.020
– volume: 14
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib44
  article-title: Microstructural degradation of Ni-rich Li[NixCoyMn1-x-y]O2 cathodes during accelerated calendar aging
  publication-title: Small
– volume: 334
  start-page: 497
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib68
  article-title: Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.050
– volume: 164
  start-page: A389
  year: 2017
  ident: 10.1016/j.jhazmat.2020.124610_bib11
  article-title: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1111702jes
– volume: 3
  start-page: 1683
  year: 2018
  ident: 10.1016/j.jhazmat.2020.124610_bib47
  article-title: Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00833
– volume: 9
  year: 2019
  ident: 10.1016/j.jhazmat.2020.124610_bib48
  article-title: Ambient‐pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2(0 <x< 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900454
SSID ssj0001754
Score 2.6332326
Snippet Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124610
SubjectTerms Cathode material
cathodes
cobalt
cobalt oxide
electrochemistry
heat treatment
industrialization
LiNi0.5Co0.2Mn0.3O2
lithium
lithium batteries
manganese
manganese monoxide
nickel
pollution
Reconstructing
Regeneration technology
Spent lithium-ion batteries
Title A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
URI https://dx.doi.org/10.1016/j.jhazmat.2020.124610
https://www.proquest.com/docview/2465438812
https://www.proquest.com/docview/2524230152
Volume 410
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHtUgcWyyTmzncVytqBYoywEq9WbZsb3NaklW7FZIHPgp_FZm8mgBCSpxjWz5MeOZbzLjz4y9UiITWWV4VHEfIpkVZVRUVOQYuJBBOQK9VG2xyOZn8u25Ot9js_EuDJVVDra_t-mdtR6-TIbdnGzqevKRknrobiW9AZ71PKZS5qTl8ffrMg90jz2FFGUAsPX1LZ7JKl5dmG8IDDFMTIlngbjH_-af_rDUnfs5uc_uDbgRpv3UHrA93xywu7-wCR6wW6fm60P2YwpLqqU5Bt-xQ6BTOYZq3W69i9Ztu4F-wfDFLzvGaRIM7K5-sAOCWOii5IFZtllCGwBhIpzWi5rHatbyOH3fYBz-IQVifW2dB1xep8pA11Vgu8FRAQH-RX35OaIBbEfjiVH5I3Z28vrTbB4NjzBEFSKlXWQrtAghNz6ozBllEdDlHr18kQQjjapUbixGJdbkJZ5_ixbDBJeUoSh5ENJm4jHbb9rGP2GQOCu4E2VwJpNJoFCpdCJxzlY8MQU_ZHLcel0NDOX0UMZaj6VoKz1ITJPEdC-xQxZfddv0FB03dShGuerfdE2jG7mp68tRDzSeQ0qumMa3l1udEjGdwG1J_9FGEXpFAJY-_f8pPGN3UqqrIQZZ9ZztozL4FwiMdvao0_wjdnv65t188RN3GQ3t
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXasgAWCAqo5VEuEuyajPNwJlmwqFqqKZ0OC1qpO2PH9jSjIRmRqSpY8Cn8BD_IvXm0gASVkLqNxpPkPnzOja-PGXsloiRKcsW9nFvnxUmaeWlOTY6OR7EThkgvdVtMktFJ_O5UnK6wH_1eGGqr7Ob-dk5vZuvuyqCz5mBRFIMPtKiHcBvTGeAI231n5aH9coF1W_3mYA-d_DoM998e74687mgBL0f8X3o6xzh3Q2WdSIwSGmnK0CJ2pYFTsRK5GCqNXFurYYZRrTEPlDNB5tKMuyjWSYT_u8puxThd0LEJ_rervhLE41azipYc8PGutg0NZv7sTH1FJop1aUjCDiR2_jdA_AMaGrzbv8_udUQVdlpbPGArtlxnd3-RL1xnq2N18ZB934EpNe9sg23kKBDFtiGfV7U13ryqFtBaGD7baSNxTZEAy8sv-oCsGZqyvJOyLadQOUBeCuNiUnBf7FbcD49KLPzfh0Ays5WxgK_X5A7Q_hioF3hXwIrirDj_5NENdKMbWtj6ETu5Edc8ZmtlVdoNBoHRETdR5oxK4sBRbZaZKDBG5zxQKd9kcW96mXeS6HQyx1z2vW8z2XlMksdk67FN5l8OW7SaINcNSHu_yt-CWyJuXTf0ZR8HEhOfVnNUaavzWoakhBehWcJ__EYQXUbGFz75_0d4wW6Pjo_GcnwwOXzK7oTU1EPyteIZW8PAsM-RlS31VpMFwD7edNr9BBHySbs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+green%2C+efficient%2C+closed-loop+direct+regeneration+technology+for+reconstructing+of+the+LiNi0.5Co0.2Mn0.3O2+cathode+material+from+spent+lithium-ion+batteries&rft.jtitle=Journal+of+hazardous+materials&rft.au=Fan%2C+Xiaoping&rft.au=Tan%2C+Chunlei&rft.au=Li%2C+Yu&rft.au=Chen%2C+Zhiqiang&rft.date=2021-05-15&rft.issn=0304-3894&rft.volume=410+p.124610-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.124610&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon