A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries
Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, effici...
Saved in:
Published in | Journal of hazardous materials Vol. 410; p. 124610 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43− polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g−1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
[Display omitted]
•A direct regeneration technology is proposed to reconstruct NCM523 cathode materials from spent LIBs.•The failure behaviors of the LiNi0.5Co0.2Mn0.3O2 of spent LIBs were analyzed in depth.•The specific discharge capacity of the reconstructed RNCMP-2 material is as high as 189.8 mAh g−1 at 0.1 C rate. |
---|---|
AbstractList | Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43− polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g−1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.
[Display omitted]
•A direct regeneration technology is proposed to reconstruct NCM523 cathode materials from spent LIBs.•The failure behaviors of the LiNi0.5Co0.2Mn0.3O2 of spent LIBs were analyzed in depth.•The specific discharge capacity of the reconstructed RNCMP-2 material is as high as 189.8 mAh g−1 at 0.1 C rate. Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi₀.₅Co₀.₂Mn₀.₃O₂ (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO₄³⁻ polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g⁻¹ at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi₁/₃Co₁/₃Mn₁/₃O₂, LiNi₀.₅Co₀.₂Mn₀.₃O₂, LiNi₀.₆Co₀.₂Mn₀.₂O₂ and LiNi₀.₈Co₀.₁Mn₀.₁O₂) and accelerates the industrialization of spent lithium ion battery recycling. Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling.Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to effectively recover these valuable metals under the premise of reducing environmental pollution is still a challenge. In this work, a green, efficient, closed-loop direct regeneration technology is proposed to reconstruct LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode materials from spent LIBs. Firstly, the failure mechanism of NCM523 cathode materials in the spent LIBs is analyzed deeply. It is found that the spent NCM523 material has problems such as the dissolution of lithium and transition metals, surface interface failure and structural transformation, resulting in serious deterioration of electrochemical performance. Then NCM523 material was directly regenerated by supplementing metal ions, granulation, ion doping and heat treatment. Meanwhile, PO43- polyanions were doped into the regenerated NCM material in the recovery process, showing excellent electrochemical performance with discharge capacity of 189.8 mAh g-1 at 0.1 C. The recovery process proposed in this study puts forward a new strategy for the recovery various lithium nickel cobalt manganese oxide (e.g., LiNi1/3Co1/3Mn1/3O2, LiNi0.5Co0.2Mn0.3O2, LiNi0.6Co0.2Mn0.2O2 and LiNi0.8Co0.1Mn0.1O2) and accelerates the industrialization of spent lithium ion battery recycling. |
ArticleNumber | 124610 |
Author | Li, Yahao Pan, Qichang Li, Yu Wang, Hongqiang Li, Qingyu Huang, Youguo Zheng, Fenghua Fan, Xiaoping Tan, Chunlei Chen, Zhiqiang |
Author_xml | – sequence: 1 givenname: Xiaoping surname: Fan fullname: Fan, Xiaoping organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 2 givenname: Chunlei surname: Tan fullname: Tan, Chunlei organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 3 givenname: Yu surname: Li fullname: Li, Yu organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 4 givenname: Zhiqiang surname: Chen fullname: Chen, Zhiqiang organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 5 givenname: Yahao surname: Li fullname: Li, Yahao email: liyahao66@126.com organization: State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 6 givenname: Youguo surname: Huang fullname: Huang, Youguo organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 7 givenname: Qichang surname: Pan fullname: Pan, Qichang organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 8 givenname: Fenghua surname: Zheng fullname: Zheng, Fenghua email: zhengfh870627@163.com organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 9 givenname: Hongqiang surname: Wang fullname: Wang, Hongqiang organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China – sequence: 10 givenname: Qingyu surname: Li fullname: Li, Qingyu organization: Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemical and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, China |
BookMark | eNqFkU1v1DAQhi3USmxbfgKSjxya4M98iAOqVrQgLfTSni3HGW-8SuzF9iKVH8NvJSE9cdnTSDPvO-9onit04YMHhN5TUlJCq4-H8jDo35POJSNs7jFRUfIGbWhT84JzXl2gDeFEFLxpxVt0ldKBEEJrKTbozx3eRwB_i8FaZxz4fIvNGBL0xRjCEfcugsk4wh48RJ1d8DiDGXwYw_4F2xDnmQk-5Xgy2fk9DhbnAfDO_XCklNtASvbdk5I_Mmx0HkIPeL4VotMjtjFMOB3nVDy6PLjTVCwBnc6LANINurR6TPDutV6j5_svT9uvxe7x4dv2blcYIWguOsOJtLUGK6tey06SpoaGNg21WmhpZK07KdtO1y0RrCM117anrW1aYrnoKn6NPqx7jzH8PEHKanLJwDhqD-GUFJNMME6oZOelopKCz9GL9NMqNTGkFMEq4_K_F-ao3agoUQtAdVCvANUCUK0AZ7f8z32MbtLx5azv8-qD-WG_HESVFq4GVpSqD-7Mhr_G2bu8 |
CitedBy_id | crossref_primary_10_1016_j_ensm_2022_10_033 crossref_primary_10_1016_j_jenvman_2024_120729 crossref_primary_10_1039_D1GC02628C crossref_primary_10_1016_j_jpowsour_2023_233563 crossref_primary_10_1016_j_nanoen_2022_107626 crossref_primary_10_1039_D1SE01114F crossref_primary_10_1016_j_jpowsour_2023_233728 crossref_primary_10_1021_jacs_4c10107 crossref_primary_10_1016_j_jclepro_2023_138511 crossref_primary_10_1016_j_scp_2024_101694 crossref_primary_10_1016_j_jece_2024_114740 crossref_primary_10_1002_batt_202200418 crossref_primary_10_1016_j_ensm_2024_103964 crossref_primary_10_1016_j_gee_2024_10_006 crossref_primary_10_1016_j_jallcom_2022_164691 crossref_primary_10_1016_j_jcis_2022_06_112 crossref_primary_10_1002_adma_202313273 crossref_primary_10_1002_chem_202400566 crossref_primary_10_1016_j_wasman_2024_12_030 crossref_primary_10_1039_D3EE00746D crossref_primary_10_3390_batteries10010038 crossref_primary_10_1002_adma_202403818 crossref_primary_10_1016_j_jpowsour_2023_234025 crossref_primary_10_1021_jacs_2c13151 crossref_primary_10_1039_D4TA05089D crossref_primary_10_3390_batteries10030101 crossref_primary_10_1016_j_jhazmat_2022_128664 crossref_primary_10_1016_j_nanoen_2023_109145 crossref_primary_10_1016_j_nxener_2024_100234 crossref_primary_10_1016_j_cej_2023_146733 crossref_primary_10_1002_sus2_126 crossref_primary_10_1016_j_cej_2023_142534 crossref_primary_10_1016_j_hydromet_2023_106168 crossref_primary_10_1016_j_est_2022_104470 crossref_primary_10_1016_j_jechem_2024_12_028 crossref_primary_10_3390_en15051611 crossref_primary_10_1016_j_seppur_2024_129574 crossref_primary_10_1016_j_wasman_2024_12_025 crossref_primary_10_1039_D2TA03295C crossref_primary_10_1016_j_resconrec_2022_106782 crossref_primary_10_1016_j_jclepro_2024_140775 crossref_primary_10_1039_D2NR00993E crossref_primary_10_1016_j_nanoen_2025_110741 crossref_primary_10_1007_s42461_022_00660_7 crossref_primary_10_1016_j_ensm_2024_103304 crossref_primary_10_1002_adma_202203218 crossref_primary_10_1016_j_jclepro_2022_134503 crossref_primary_10_1016_j_jclepro_2022_134748 crossref_primary_10_1016_j_seppur_2023_123684 crossref_primary_10_1016_j_jallcom_2023_171130 crossref_primary_10_1016_j_jpowsour_2025_236827 crossref_primary_10_1016_j_ensm_2023_102840 crossref_primary_10_1039_D2GC01007K crossref_primary_10_1016_S1003_6326_24_66706_3 crossref_primary_10_1016_j_coelec_2021_100875 crossref_primary_10_1007_s40820_024_01434_0 crossref_primary_10_1149_1945_7111_ac60ee crossref_primary_10_1002_aenm_202201526 crossref_primary_10_1007_s11581_021_04296_3 crossref_primary_10_1007_s41918_024_00231_y crossref_primary_10_1016_j_jclepro_2023_137628 crossref_primary_10_1039_D3CS00254C crossref_primary_10_1016_j_jallcom_2021_163308 crossref_primary_10_1016_j_seppur_2024_127777 crossref_primary_10_1016_j_jclepro_2023_139645 crossref_primary_10_1016_j_jiec_2024_12_074 crossref_primary_10_1016_j_resconrec_2024_107772 crossref_primary_10_54227_mlab_20220036 crossref_primary_10_1002_smtd_202100672 crossref_primary_10_1007_s41918_022_00154_6 crossref_primary_10_1016_j_jallcom_2022_166678 crossref_primary_10_1016_j_resconrec_2024_107700 crossref_primary_10_1007_s12613_022_2430_7 crossref_primary_10_1016_j_actamat_2024_119969 crossref_primary_10_1021_acs_est_3c01369 crossref_primary_10_1016_j_jpowsour_2024_235142 crossref_primary_10_1016_j_seppur_2025_132327 crossref_primary_10_1016_j_ceramint_2021_04_191 crossref_primary_10_1016_j_seppur_2024_130251 crossref_primary_10_1016_j_ensm_2024_103636 crossref_primary_10_1039_D2EE03257K crossref_primary_10_1016_j_jclepro_2022_131373 crossref_primary_10_1039_D1GC01639C crossref_primary_10_1016_j_wasman_2024_03_014 crossref_primary_10_1007_s11837_023_05941_0 crossref_primary_10_1016_j_mser_2025_100976 crossref_primary_10_1002_adma_202313144 crossref_primary_10_1021_acssuschemeng_1c06885 crossref_primary_10_1038_s41893_024_01412_9 crossref_primary_10_1021_acsami_1c01979 crossref_primary_10_1016_j_scp_2022_100959 crossref_primary_10_1016_j_jcis_2025_03_010 crossref_primary_10_1016_j_jece_2024_114171 crossref_primary_10_1002_smll_202309685 crossref_primary_10_1021_acssuschemeng_1c03266 crossref_primary_10_3390_molecules28135165 crossref_primary_10_1002_adma_202413753 crossref_primary_10_1016_j_ensm_2024_103623 crossref_primary_10_1016_j_hydromet_2021_105768 crossref_primary_10_1002_eom2_12321 crossref_primary_10_1016_j_ensm_2023_102870 crossref_primary_10_1016_j_jechem_2024_11_016 crossref_primary_10_3390_electrochem5040035 crossref_primary_10_1016_j_etran_2022_100155 crossref_primary_10_1016_j_jclepro_2021_128098 crossref_primary_10_1021_acsami_2c21841 crossref_primary_10_1039_D2RA02518C crossref_primary_10_1002_aenm_202402918 crossref_primary_10_1021_acsapm_3c00166 |
Cites_doi | 10.1149/1945-7111/ab9187 10.1002/admi.201801764 10.1021/acsami.8b11112 10.1016/j.jpowsour.2007.11.110 10.1021/acssuschemeng.7b03880 10.1002/anie.201902359 10.1021/acsenergylett.8b01490 10.1039/C4EE01400F 10.1002/aenm.201300787 10.1021/acsenergylett.8b02499 10.1021/acsami.8b02396 10.1016/j.nanoen.2018.11.046 10.1002/anie.201409262 10.1021/acssuschemeng.8b06675 10.1016/j.nanoen.2018.09.051 10.1021/acs.est.9b03725 10.1039/C8CS00297E 10.1016/j.chemosphere.2020.126670 10.1021/acssuschemeng.0c00610 10.1016/j.jpowsour.2019.227439 10.1038/s41586-019-1682-5 10.1021/acs.chemmater.7b03002 10.1021/acsami.0c09135 10.1002/advs.201800843 10.1021/acsami.9b10310 10.1021/acsami.8b22529 10.1038/s41560-019-0368-4 10.1016/j.jpowsour.2017.01.118 10.1016/j.nanoen.2017.11.010 10.1016/j.sab.2018.07.027 10.1021/jacs.8b13798 10.1021/acssuschemeng.9b02863 10.1016/j.jclepro.2019.04.304 10.1038/natrevmats.2016.13 10.1021/acsami.9b14389 10.1021/acs.nanolett.8b01036 10.1002/aenm.202001204 10.1021/acssuschemeng.7b03811 10.1038/s41467-019-11209-6 10.1016/j.jhazmat.2019.120905 10.1016/j.cej.2019.123089 10.1038/s41467-018-05172-x 10.1016/j.jclepro.2018.12.248 10.1016/j.rser.2018.03.002 10.1021/acsami.0c03533 10.1021/acsami.7b12306 10.1039/C7EE02443F 10.1016/j.joule.2017.12.008 10.1149/1.1740781 10.1002/celc.201901991 10.1016/j.jpowsour.2017.03.093 10.1016/j.nanoen.2019.02.004 10.1039/C4TA00699B 10.1002/aenm.201900161 10.1016/j.jhazmat.2020.122740 10.1016/j.jpowsour.2016.08.099 10.1080/10643389.2020.1776053 10.1016/j.jpowsour.2018.07.116 10.1039/C8TA10513H 10.1016/j.nanoen.2018.04.077 10.1002/cssc.201903213 10.1021/acsnano.9b05960 10.1016/j.jpowsour.2017.11.020 10.1016/j.cej.2017.10.050 10.1149/2.1111702jes 10.1021/acsenergylett.8b00833 10.1002/aenm.201900454 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2020.124610 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2020_124610 S0304389420326005 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-bc305f7aef56da5b5087e81881fa4a5c57ab559ba79042b073afd19f890f34b63 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 07:16:09 EDT 2025 Thu Jul 10 22:50:09 EDT 2025 Tue Jul 01 00:49:37 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Fri Feb 23 02:45:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spent lithium-ion batteries Cathode material Reconstructing LiNi0.5Co0.2Mn0.3O2 Regeneration technology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-bc305f7aef56da5b5087e81881fa4a5c57ab559ba79042b073afd19f890f34b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2465438812 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524230152 proquest_miscellaneous_2465438812 crossref_citationtrail_10_1016_j_jhazmat_2020_124610 crossref_primary_10_1016_j_jhazmat_2020_124610 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_124610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kim, Song, Son, Ono, Qi (bib22) 2019; 7 Ko, Park, Park, Ham, Ahn, Park, Han, Lee, Jeon, Jung (bib23) 2019; 56 Lin, Nordlund, Markus, Weng, Xin, Doeff (bib27) 2014; 7 Shi, Zhang, Meng, Chen (bib48) 2019; 9 Hekmatfar, Kazzazi, Eshetu, Hasa, Passerini (bib16) 2019; 11 Zou, Zhao, Liu, Jia, Zheng, Wang, Yang, Zhang, Wang (bib70) 2018; 3 Li, Zhang, Song, Song, Zhang (bib35) 2017; 345 Kim, Kuo, Kaghazchi, Yoon, Sun (bib21) 2019; 4 Zeng, Li, Abd El‐Hady, Alshitari, Al‐Bogami, Lu, Amine (bib63) 2019; 9 Meng, Cao, Hao, Ning, Xu, Sun (bib38) 2018; 6 Mu, Lin, Xu, Han, Xia, Sokaras, Steiner, Weng, Nordlund, Doeff, Liu, Zhao, Xin, Lin (bib41) 2018; 18 Yang, Wang, Qian, Li (bib62) 2019; 6 Liu, Oh, Liu, Lee, Cho, Chae, Kim, Cho (bib31) 2015; 54 Gilbert, Shkrob, Abraham (bib11) 2017; 164 Liang, Song, Zhang, Shi, Wang, Zhang (bib26) 2017; 9 Oswald, Pritzl, Wetjen, Gasteiger (bib43) 2020; 167 Meng, Cao, Zhang, Ou, Li, Zhang, Ji (bib39) 2019; 7 Zhao, Liu, Zhang, Guo (bib66) 2020; 396 Wang, Luo, Bai, Li, Belharouak, Dai (bib54) 2020; 10 Lee, Park, Jung, Ko, Park, Kim, Hong, Zhu, Kim (bib25) 2019; 6 Shukla, Ramasse, Ophus, Kepaptsoglou, Hage, Gammer, Bowling, Gallegos, Venkatachalam (bib49) 2018; 11 Hu, Zhang, Li, Chen, Wang (bib19) 2017; 351 Wang, Zhang, Cheng, Zhang, Liu, Su, Liu, Gao (bib56) 2020; 12 Lee, Muhammad, Sergey, Lee, Yoon, Kang, Yoon (bib24) 2020; 59 Xiao, Li, Xu (bib58) 2019 Esmaeili, Rastegar, Beigzadeh, Gu (bib5) 2020; 254 Evertz, Horsthemke, Kasnatscheew, Börner, Winter, Nowak (bib6) 2016; 329 Liu, Li, Xiong, Hao, Li, Kou, Yan, Li, Lu, Koo, Adair, Sun (bib30) 2018; 44 Chen, Li, Wang, Yan, Wang, Deng, Ge, Qu (bib3) 2018; 374 Guo, Li, Liu, Zhang, Guo, Hu, Meng, Jia, Sun (bib12) 2019; 380 Wang, Du, Vahabi, Zhao, Yin, Kota, Tong (bib52) 2019; 10 Zheng, Yan, Estevez, Wang, Zhang (bib69) 2018; 49 Wang, Liu, Ding, Zhan, Wang (bib53) 2019; 11 Zubi, Dufo-López, Carvalho, Pasaoglu (bib71) 2018; 89 Liu, Huang, Su, Sun, Wu, Wang, Zhang, Wu (bib28) 2020; 8 Choi, Aurbach (bib4) 2016; 1 Ryu, Park, Yoon, Sun (bib44) 2018; 14 Shen, Zhou, Chen, Yuan, Zhu, Sun, Lou (bib46) 2019; 213 Xu, Zhang, Wu, Xu, Li, Xiang, Wang, Zhong, Guo, Chen (bib60) 2019; 8 Sharafi, Kazyak, Davis, Yu, Thompson, Siegel, Dasgupta, Sakamoto (bib45) 2017; 29 Wang, Sun, Chen, Huang (bib55) 2004; 151 Wang, Zhang, Liu, Xu (bib57) 2019 Zhang, Li, Fan, Xue, Bian, Wu, Chen (bib64) 2018; 47 Yamada, Ito, Kammampata, Thangadurai (bib61) 2020; 12 Liu, Yang, Zhong, Li, Li, Yu, Kang (bib33) 2019; 13 Li, Zhuang, Li, Wu, Li, Gao, Li, Wang, Lu (bib36) 2020; 7 Cao, Qi, Hu, Wang, Gan, Li, Hu, Peng, Du (bib1) 2018; 10 Garole, Hossain, Garole, Sahajwalla, Nerkar, Dubal (bib10) 2020; 13 Zheng, Ou, Pan, Xiong, Yang, Fu, Liu (bib68) 2018; 334 Harper, Sommerville, Kendrick, Driscoll, Slater, Stolkin, Walton, Christensen, Heidrich, Lambert, Abbott, Ryder, Gaines, Anderson (bib15) 2019; 575 Zhao, Yuan, Jiang, Wen, Wang, Guan, Zhang, Zeng (bib67) 2020; 383 Huang, Liu, Qian, Zhang, Zhou, Liu, Kang, Li (bib17) 2019; 11 Shi, Chen, Liu, Yue, Chen (bib47) 2018; 3 Lv, Wang, Cao, Sun, Zhang, Sun (bib37) 2018; 6 Mo, Guo, Jin, Du, Cao, Chen, Li, Chen (bib40) 2020; 448 Zhang, Qiao, Li, Gao (bib65) 2014; 2 Han, Xu, Zhao, Lin, Feng, Chen, Ivey, Wang, Wei (bib14) 2018; 10 Jung, Gwon, Hong, Park, Seo, Kim, Hyun, Yang, Kang (bib20) 2014; 4 Liu, Lin, Cao, Zhang, Sun (bib29) 2019; 228 Xia, Mu, Xu, Wang, Wei, Liu, Pianetta, Zhao, Yu, Lin, Liu (bib59) 2018; 53 Forte, Pietrantonio, Pucciarmati, Puzone, Fontana (bib8) 2020 Guo, Yuan, Zhao, Hua, Shen, Sun, Chen, Sun, Wu, Zheng, Zhang, Li, Huo (bib13) 2019; 58 Mu, Yuan, Tian, Wei, Zhang, Liu, Pianetta, Doeff, Liu, Lin (bib42) 2018; 9 Tian, Xu, Nordlund, Lin, Liu, Sun, Liu, Doeff (bib50) 2018; 2 Chen, Kim, Bresser, Diemant, Asenbauer, Jeong, Copley, Behm, Lin, Shen, Passerini (bib2) 2018; 8 Gachot, Grugeon, Armand, Pilard, Guenot, Tarascon, Laruelle (bib9) 2008; 178 Li, Asl, Xie, Manthiram (bib34) 2019; 141 Huang, Pan, Su, An (bib18) 2018; 399 Tran, Rodrigues, Kato, Babu, Ajayan (bib51) 2019; 4 Evertz, Kröger, Winter, Nowak (bib7) 2018; 149 Liu, Peng, Porvali, Wang, Wilson, Lundström (bib32) 2019; 7 Huang (10.1016/j.jhazmat.2020.124610_bib18) 2018; 399 Kim (10.1016/j.jhazmat.2020.124610_bib21) 2019; 4 Zubi (10.1016/j.jhazmat.2020.124610_bib71) 2018; 89 Lin (10.1016/j.jhazmat.2020.124610_bib27) 2014; 7 Meng (10.1016/j.jhazmat.2020.124610_bib38) 2018; 6 Shi (10.1016/j.jhazmat.2020.124610_bib47) 2018; 3 Zhang (10.1016/j.jhazmat.2020.124610_bib65) 2014; 2 Guo (10.1016/j.jhazmat.2020.124610_bib12) 2019; 380 Liu (10.1016/j.jhazmat.2020.124610_bib32) 2019; 7 Zheng (10.1016/j.jhazmat.2020.124610_bib69) 2018; 49 Han (10.1016/j.jhazmat.2020.124610_bib14) 2018; 10 Xia (10.1016/j.jhazmat.2020.124610_bib59) 2018; 53 Zhao (10.1016/j.jhazmat.2020.124610_bib67) 2020; 383 Chen (10.1016/j.jhazmat.2020.124610_bib3) 2018; 374 Wang (10.1016/j.jhazmat.2020.124610_bib57) 2019 Kim (10.1016/j.jhazmat.2020.124610_bib22) 2019; 7 Lee (10.1016/j.jhazmat.2020.124610_bib24) 2020; 59 Xu (10.1016/j.jhazmat.2020.124610_bib60) 2019; 8 Liu (10.1016/j.jhazmat.2020.124610_bib30) 2018; 44 Tian (10.1016/j.jhazmat.2020.124610_bib50) 2018; 2 Gachot (10.1016/j.jhazmat.2020.124610_bib9) 2008; 178 Wang (10.1016/j.jhazmat.2020.124610_bib56) 2020; 12 Wang (10.1016/j.jhazmat.2020.124610_bib53) 2019; 11 Jung (10.1016/j.jhazmat.2020.124610_bib20) 2014; 4 Esmaeili (10.1016/j.jhazmat.2020.124610_bib5) 2020; 254 Liu (10.1016/j.jhazmat.2020.124610_bib31) 2015; 54 Sharafi (10.1016/j.jhazmat.2020.124610_bib45) 2017; 29 Li (10.1016/j.jhazmat.2020.124610_bib35) 2017; 345 Zheng (10.1016/j.jhazmat.2020.124610_bib68) 2018; 334 Cao (10.1016/j.jhazmat.2020.124610_bib1) 2018; 10 Harper (10.1016/j.jhazmat.2020.124610_bib15) 2019; 575 Gilbert (10.1016/j.jhazmat.2020.124610_bib11) 2017; 164 Ryu (10.1016/j.jhazmat.2020.124610_bib44) 2018; 14 Zhang (10.1016/j.jhazmat.2020.124610_bib64) 2018; 47 Tran (10.1016/j.jhazmat.2020.124610_bib51) 2019; 4 Guo (10.1016/j.jhazmat.2020.124610_bib13) 2019; 58 Li (10.1016/j.jhazmat.2020.124610_bib34) 2019; 141 Evertz (10.1016/j.jhazmat.2020.124610_bib7) 2018; 149 Liu (10.1016/j.jhazmat.2020.124610_bib33) 2019; 13 Lv (10.1016/j.jhazmat.2020.124610_bib37) 2018; 6 Meng (10.1016/j.jhazmat.2020.124610_bib39) 2019; 7 Mu (10.1016/j.jhazmat.2020.124610_bib41) 2018; 18 Mu (10.1016/j.jhazmat.2020.124610_bib42) 2018; 9 Evertz (10.1016/j.jhazmat.2020.124610_bib6) 2016; 329 Wang (10.1016/j.jhazmat.2020.124610_bib52) 2019; 10 Hu (10.1016/j.jhazmat.2020.124610_bib19) 2017; 351 Chen (10.1016/j.jhazmat.2020.124610_bib2) 2018; 8 Mo (10.1016/j.jhazmat.2020.124610_bib40) 2020; 448 Zeng (10.1016/j.jhazmat.2020.124610_bib63) 2019; 9 Shen (10.1016/j.jhazmat.2020.124610_bib46) 2019; 213 Yamada (10.1016/j.jhazmat.2020.124610_bib61) 2020; 12 Choi (10.1016/j.jhazmat.2020.124610_bib4) 2016; 1 Li (10.1016/j.jhazmat.2020.124610_bib36) 2020; 7 Liu (10.1016/j.jhazmat.2020.124610_bib28) 2020; 8 Zou (10.1016/j.jhazmat.2020.124610_bib70) 2018; 3 Lee (10.1016/j.jhazmat.2020.124610_bib25) 2019; 6 Shi (10.1016/j.jhazmat.2020.124610_bib48) 2019; 9 Oswald (10.1016/j.jhazmat.2020.124610_bib43) 2020; 167 Xiao (10.1016/j.jhazmat.2020.124610_bib58) 2019 Forte (10.1016/j.jhazmat.2020.124610_bib8) 2020 Yang (10.1016/j.jhazmat.2020.124610_bib62) 2019; 6 Ko (10.1016/j.jhazmat.2020.124610_bib23) 2019; 56 Liu (10.1016/j.jhazmat.2020.124610_bib29) 2019; 228 Garole (10.1016/j.jhazmat.2020.124610_bib10) 2020; 13 Hekmatfar (10.1016/j.jhazmat.2020.124610_bib16) 2019; 11 Wang (10.1016/j.jhazmat.2020.124610_bib54) 2020; 10 Zhao (10.1016/j.jhazmat.2020.124610_bib66) 2020; 396 Shukla (10.1016/j.jhazmat.2020.124610_bib49) 2018; 11 Huang (10.1016/j.jhazmat.2020.124610_bib17) 2019; 11 Liang (10.1016/j.jhazmat.2020.124610_bib26) 2017; 9 Wang (10.1016/j.jhazmat.2020.124610_bib55) 2004; 151 |
References_xml | – volume: 141 start-page: 5097 year: 2019 end-page: 5101 ident: bib34 article-title: Collapse of LiNi publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 33901 year: 2019 end-page: 33912 ident: bib53 article-title: Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – year: 2019 ident: bib57 article-title: A simplified process for recovery of Li and Co from spent LiCoO publication-title: ACS Sustain. Chem. Eng. – volume: 59 start-page: 2578 year: 2020 end-page: 2605 ident: bib24 article-title: Advances in the cathode materials for lithium rechargeable batteries publication-title: Angew. Chem. – year: 2019 ident: bib58 article-title: Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives publication-title: Environ. Sci. Technol. – volume: 10 start-page: 39599 year: 2018 end-page: 39607 ident: bib14 article-title: Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer publication-title: ACS Appl. Mater. Interfaces – start-page: 1 year: 2020 end-page: 28 ident: bib8 article-title: Lithium iron phosphate batteries recycling: an assessment of current status publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 56 start-page: 434 year: 2019 end-page: 442 ident: bib23 article-title: Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis publication-title: Nano Energy – volume: 4 start-page: 339 year: 2019 end-page: 345 ident: bib51 article-title: Deep eutectic solvents for cathode recycling of Li-ion batteries publication-title: Nat. Energy – volume: 6 year: 2019 ident: bib62 article-title: Investigation of interfacial changes on grain boundaries of Li(Ni publication-title: Adv. Mater. Interfaces – volume: 3 start-page: 2433 year: 2018 end-page: 2440 ident: bib70 article-title: Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials publication-title: ACS Energy Lett. – volume: 151 start-page: A914 year: 2004 ident: bib55 article-title: Electrochemical characterization of positive electrode material LiNi publication-title: J. Electrochem. Soc. – volume: 399 start-page: 274 year: 2018 end-page: 286 ident: bib18 article-title: Recycling of lithium-ion batteries: recent advances and perspectives publication-title: J. Power Sources – volume: 3 start-page: 1683 year: 2018 end-page: 1692 ident: bib47 article-title: Resolving the compositional and structural defects of degraded LiNi publication-title: ACS Energy Lett. – volume: 11 start-page: 14076 year: 2019 end-page: 14084 ident: bib17 article-title: A simple method for the complete performance recovery of degraded Ni-rich LiNi publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 16103 year: 2019 end-page: 16111 ident: bib32 article-title: Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 6 start-page: 1504 year: 2018 end-page: 1521 ident: bib37 article-title: A critical review and analysis on the recycling of spent lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 254 year: 2020 ident: bib5 article-title: Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H publication-title: Chemosphere – volume: 351 start-page: 192 year: 2017 end-page: 199 ident: bib19 article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries publication-title: J. Power Sources – volume: 448 year: 2020 ident: bib40 article-title: Improved cycling stability of LiNi publication-title: J. Power Sources – volume: 178 start-page: 409 year: 2008 end-page: 421 ident: bib9 article-title: Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries publication-title: J. Power Sources – volume: 12 start-page: 20874 year: 2020 end-page: 20881 ident: bib56 article-title: Revealing the phase-transition dynamics and mechanism in a spinel Li publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 16013 year: 2016 ident: bib4 article-title: Promise and reality of post-lithium-ion batteries with high energy densities publication-title: Nat. Rev. Mater. – volume: 575 start-page: 75 year: 2019 end-page: 86 ident: bib15 article-title: Recycling lithium-ion batteries from electric vehicles publication-title: Nature – volume: 9 start-page: 2810 year: 2018 ident: bib42 article-title: Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials publication-title: Nat. Commun. – volume: 58 start-page: 673 year: 2019 end-page: 679 ident: bib13 article-title: Dual-component LixTiO publication-title: Nano Energy – volume: 380 year: 2019 ident: bib12 article-title: Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation publication-title: J. Hazard. Mater. – volume: 9 year: 2019 ident: bib48 article-title: Ambient‐pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2(0 <x< 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes publication-title: Adv. Energy Mater. – volume: 11 start-page: 830 year: 2018 end-page: 840 ident: bib49 article-title: Effect of composition on the structure of lithium- and manganese-rich transition metal oxides publication-title: Energy Environ. Sci. – volume: 29 start-page: 7961 year: 2017 end-page: 7968 ident: bib45 article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li publication-title: Chem. Mater. – volume: 228 start-page: 801 year: 2019 end-page: 813 ident: bib29 article-title: Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review publication-title: J. Clean. Prod. – volume: 374 start-page: 1 year: 2018 end-page: 11 ident: bib3 article-title: The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi publication-title: J. Power Sources – volume: 329 start-page: 364 year: 2016 end-page: 371 ident: bib6 article-title: Unraveling transition metal dissolution of Li publication-title: J. Power Sources – volume: 8 start-page: 7839 year: 2020 end-page: 7850 ident: bib28 article-title: Synthesis of Ni-rich cathode material from maleic acid-leachate of spent lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 7 start-page: 998 year: 2020 end-page: 1006 ident: bib36 article-title: Realizing superior cycle stability of a Ni‐rich layered LiNi publication-title: ChemElectroChem – volume: 213 start-page: 1346 year: 2019 end-page: 1352 ident: bib46 article-title: Manganese-based catalysts recovered from spent ternary lithium-ion batteries and its catalytic activity enhanced by a mechanical method publication-title: J. Clean. Prod. – volume: 9 year: 2019 ident: bib63 article-title: Commercialization of lithium battery technologies for electric vehicles publication-title: Adv. Energy Mater. – volume: 10 start-page: 18270 year: 2018 end-page: 18280 ident: bib1 article-title: Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 54 start-page: 4440 year: 2015 end-page: 4457 ident: bib31 article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries publication-title: Angew. Chem. – volume: 44 start-page: 111 year: 2018 end-page: 120 ident: bib30 article-title: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al publication-title: Nano Energy – volume: 6 start-page: 5797 year: 2018 end-page: 5805 ident: bib38 article-title: Sustainable preparation of LiNi publication-title: ACS Sustain. Chem. Eng. – volume: 2 start-page: 464 year: 2018 end-page: 477 ident: bib50 article-title: Charge heterogeneity and surface chemistry in polycrystalline cathode materials publication-title: Joule – volume: 7 start-page: 7750 year: 2019 end-page: 7759 ident: bib39 article-title: Comparison of the ammoniacal leaching behavior of layered LiNi publication-title: ACS Sustain. Chem. Eng. – volume: 167 year: 2020 ident: bib43 article-title: Novel Method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. Theory and validation publication-title: J. Electrochem. Soc. – volume: 4 start-page: 576 year: 2019 end-page: 582 ident: bib21 article-title: Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries publication-title: ACS Energy Lett. – volume: 47 start-page: 7239 year: 2018 end-page: 7302 ident: bib64 article-title: Toward sustainable and systematic recycling of spent rechargeable batteries publication-title: Chem. Soc. Rev. – volume: 12 start-page: 36119 year: 2020 end-page: 36127 ident: bib61 article-title: Toward Understanding the reactivity of garnet-type solid electrolytes with H publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 3220 year: 2019 ident: bib52 article-title: Trade-off in membrane distillation with monolithic omniphobic membranes publication-title: Nat. Commun. – volume: 9 start-page: 38567 year: 2017 end-page: 38574 ident: bib26 article-title: Improved performances of LiNi publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 43166 year: 2019 end-page: 43179 ident: bib16 article-title: Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2019 ident: bib25 article-title: Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation publication-title: Adv. Sci. – volume: 7 start-page: 2942 year: 2019 end-page: 2964 ident: bib22 article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies publication-title: J. Mater. Chem. A – volume: 8 year: 2019 ident: bib60 article-title: Stabilizing the structure of nickel‐rich lithiated oxides via Cr doping as cathode with boosted high‐voltage/temperature cycling performance for Li‐ion battery publication-title: Energy Technol. – volume: 396 year: 2020 ident: bib66 article-title: Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries publication-title: J. Hazard. Mater. – volume: 2 start-page: 7454 year: 2014 end-page: 7460 ident: bib65 article-title: PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries publication-title: J. Mater. Chem. A – volume: 334 start-page: 497 year: 2018 end-page: 507 ident: bib68 article-title: Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries publication-title: Chem. Eng. J. – volume: 89 start-page: 292 year: 2018 end-page: 308 ident: bib71 article-title: The lithium-ion battery: state of the art and future perspectives publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 3077 year: 2014 ident: bib27 article-title: Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries publication-title: Energy Environ. Sci. – volume: 8 year: 2018 ident: bib2 article-title: MnPO publication-title: Adv. Energy Mater. – volume: 345 start-page: 78 year: 2017 end-page: 84 ident: bib35 article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO publication-title: J. Power Sources – volume: 383 year: 2020 ident: bib67 article-title: Regeneration and reutilization of cathode materials from spent lithium-ion batteries publication-title: Chem. Eng. J. – volume: 164 start-page: A389 year: 2017 end-page: A399 ident: bib11 article-title: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells publication-title: J. Electrochem. Soc. – volume: 149 start-page: 118 year: 2018 end-page: 123 ident: bib7 article-title: Total reflection X-ray fluorescence in the field of lithium ion batteries – elemental detection in lithium containing electrolytes using nanoliter droplets publication-title: Spectrochim. Acta Part B At. Spectrosc. – volume: 49 start-page: 538 year: 2018 end-page: 548 ident: bib69 article-title: Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi publication-title: Nano Energy – volume: 4 year: 2014 ident: bib20 article-title: Understanding the degradation mechanisms of LiNi publication-title: Adv. Energy Mater. – volume: 13 start-page: 3079 year: 2020 end-page: 3100 ident: bib10 article-title: Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities publication-title: ChemSusChem – volume: 53 start-page: 753 year: 2018 end-page: 762 ident: bib59 article-title: Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries publication-title: Nano Energy – volume: 18 start-page: 3241 year: 2018 end-page: 3249 ident: bib41 article-title: Oxygen release induced chemomechanical breakdown of layered cathode materials publication-title: Nano Lett. – volume: 14 year: 2018 ident: bib44 article-title: Microstructural degradation of Ni-rich Li[Ni publication-title: Small – volume: 13 start-page: 11891 year: 2019 end-page: 11900 ident: bib33 article-title: Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance publication-title: ACS Nano – volume: 10 year: 2020 ident: bib54 article-title: Direct recycling of spent NCM cathodes through ionothermal lithiation publication-title: Adv. Energy Mater. – volume: 167 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib43 article-title: Novel Method for monitoring the electrochemical capacitance by in situ impedance spectroscopy as indicator for particle cracking of nickel-rich NCMs: Part I. Theory and validation publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab9187 – volume: 6 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib62 article-title: Investigation of interfacial changes on grain boundaries of Li(Ni0.5Co0.2Mn0.3)O2 in the initial overcharge process publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801764 – volume: 10 start-page: 39599 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib14 article-title: Enhancing the structural stability of Ni-rich layered oxide cathodes with a preformed Zr-concentrated defective nanolayer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11112 – volume: 178 start-page: 409 year: 2008 ident: 10.1016/j.jhazmat.2020.124610_bib9 article-title: Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.11.110 – volume: 6 start-page: 5797 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib38 article-title: Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03880 – volume: 59 start-page: 2578 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib24 article-title: Advances in the cathode materials for lithium rechargeable batteries publication-title: Angew. Chem. doi: 10.1002/anie.201902359 – volume: 3 start-page: 2433 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib70 article-title: Revealing cycling rate-dependent structure evolution in Ni-rich layered cathode materials publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01490 – volume: 7 start-page: 3077 year: 2014 ident: 10.1016/j.jhazmat.2020.124610_bib27 article-title: Profiling the nanoscale gradient in stoichiometric layered cathode particles for lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01400F – volume: 4 year: 2014 ident: 10.1016/j.jhazmat.2020.124610_bib20 article-title: Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300787 – volume: 4 start-page: 576 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib21 article-title: Quaternary layered Ni-Rich NCMA cathode for lithium-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02499 – volume: 10 start-page: 18270 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib1 article-title: Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02396 – volume: 56 start-page: 434 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib23 article-title: Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.046 – volume: 54 start-page: 4440 year: 2015 ident: 10.1016/j.jhazmat.2020.124610_bib31 article-title: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries publication-title: Angew. Chem. doi: 10.1002/anie.201409262 – volume: 7 start-page: 7750 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib39 article-title: Comparison of the ammoniacal leaching behavior of layered LiNixCoyMn1-x-yO2 (x = 1/3, 0.5, 0.8) cathode materials publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06675 – volume: 53 start-page: 753 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib59 article-title: Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.051 – year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib58 article-title: Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03725 – volume: 47 start-page: 7239 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib64 article-title: Toward sustainable and systematic recycling of spent rechargeable batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00297E – volume: 254 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib5 article-title: Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126670 – volume: 8 start-page: 7839 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib28 article-title: Synthesis of Ni-rich cathode material from maleic acid-leachate of spent lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c00610 – volume: 448 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib40 article-title: Improved cycling stability of LiNi0.6Co0.2Mn0.2O2 through microstructure consolidation by TiO2 coating for Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.227439 – volume: 575 start-page: 75 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib15 article-title: Recycling lithium-ion batteries from electric vehicles publication-title: Nature doi: 10.1038/s41586-019-1682-5 – volume: 29 start-page: 7961 year: 2017 ident: 10.1016/j.jhazmat.2020.124610_bib45 article-title: Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03002 – volume: 12 start-page: 36119 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib61 article-title: Toward Understanding the reactivity of garnet-type solid electrolytes with H2O/CO2 in a glovebox using X-ray photoelectron spectroscopy and electrochemical methods publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09135 – volume: 6 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib25 article-title: Revisiting primary particles in layered lithium transition-metal oxides and their impact on structural degradation publication-title: Adv. Sci. doi: 10.1002/advs.201800843 – volume: 11 start-page: 33901 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib53 article-title: Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10310 – volume: 11 start-page: 14076 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib17 article-title: A simple method for the complete performance recovery of degraded Ni-rich LiNi0.70Co0.15Mn0.15O2 cathode via surface reconstruction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b22529 – year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib57 article-title: A simplified process for recovery of Li and Co from spent LiCoO2 cathode using Al foil as the in situ reductant publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 339 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib51 article-title: Deep eutectic solvents for cathode recycling of Li-ion batteries publication-title: Nat. Energy doi: 10.1038/s41560-019-0368-4 – volume: 345 start-page: 78 year: 2017 ident: 10.1016/j.jhazmat.2020.124610_bib35 article-title: Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.118 – volume: 44 start-page: 111 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib30 article-title: Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.010 – volume: 149 start-page: 118 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib7 article-title: Total reflection X-ray fluorescence in the field of lithium ion batteries – elemental detection in lithium containing electrolytes using nanoliter droplets publication-title: Spectrochim. Acta Part B At. Spectrosc. doi: 10.1016/j.sab.2018.07.027 – volume: 141 start-page: 5097 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib34 article-title: Collapse of LiNi1-x-yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13798 – volume: 7 start-page: 16103 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib32 article-title: Synergistic recovery of valuable metals from spent nickel–metal hydride batteries and lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02863 – volume: 228 start-page: 801 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib29 article-title: Recycling of spent lithium-ion batteries in view of lithium recovery: a critical review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.304 – volume: 1 start-page: 16013 year: 2016 ident: 10.1016/j.jhazmat.2020.124610_bib4 article-title: Promise and reality of post-lithium-ion batteries with high energy densities publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 11 start-page: 43166 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib16 article-title: Understanding the electrode/electrolyte interface layer on the Li-rich nickel manganese cobalt layered oxide cathode by XPS publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14389 – volume: 18 start-page: 3241 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib41 article-title: Oxygen release induced chemomechanical breakdown of layered cathode materials publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01036 – volume: 10 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib54 article-title: Direct recycling of spent NCM cathodes through ionothermal lithiation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001204 – volume: 6 start-page: 1504 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib37 article-title: A critical review and analysis on the recycling of spent lithium-ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03811 – volume: 10 start-page: 3220 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib52 article-title: Trade-off in membrane distillation with monolithic omniphobic membranes publication-title: Nat. Commun. doi: 10.1038/s41467-019-11209-6 – volume: 380 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib12 article-title: Manganese-based multi-oxide derived from spent ternary lithium-ions batteries as high-efficient catalyst for VOCs oxidation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120905 – volume: 383 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib67 article-title: Regeneration and reutilization of cathode materials from spent lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123089 – volume: 9 start-page: 2810 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib42 article-title: Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials publication-title: Nat. Commun. doi: 10.1038/s41467-018-05172-x – volume: 8 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib2 article-title: MnPO4-coated Li(Ni0.4Co0.2Mn0.4)O2 for lithium(-ion) batteries with outstanding cycling stability and enhanced lithiation kinetics publication-title: Adv. Energy Mater. – volume: 213 start-page: 1346 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib46 article-title: Manganese-based catalysts recovered from spent ternary lithium-ion batteries and its catalytic activity enhanced by a mechanical method publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.12.248 – volume: 89 start-page: 292 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib71 article-title: The lithium-ion battery: state of the art and future perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.03.002 – volume: 12 start-page: 20874 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib56 article-title: Revealing the phase-transition dynamics and mechanism in a spinel Li4Ti5O12 anode material through in situ electron microscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03533 – volume: 9 start-page: 38567 year: 2017 ident: 10.1016/j.jhazmat.2020.124610_bib26 article-title: Improved performances of LiNi0.8Co0.15Al0.05O2 material employing NaAlO2 as a new aluminum source publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12306 – volume: 11 start-page: 830 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib49 article-title: Effect of composition on the structure of lithium- and manganese-rich transition metal oxides publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02443F – volume: 2 start-page: 464 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib50 article-title: Charge heterogeneity and surface chemistry in polycrystalline cathode materials publication-title: Joule doi: 10.1016/j.joule.2017.12.008 – volume: 151 start-page: A914 year: 2004 ident: 10.1016/j.jhazmat.2020.124610_bib55 article-title: Electrochemical characterization of positive electrode material LiNi1/3Co1/3Mn1/3O2 and compatibility with electrolyte for lithium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1740781 – volume: 7 start-page: 998 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib36 article-title: Realizing superior cycle stability of a Ni‐rich layered LiNi 0.83Co0.12Mn0.05O2 cathode with a B2O3 surface modification publication-title: ChemElectroChem doi: 10.1002/celc.201901991 – volume: 351 start-page: 192 year: 2017 ident: 10.1016/j.jhazmat.2020.124610_bib19 article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.093 – volume: 58 start-page: 673 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib13 article-title: Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.004 – volume: 8 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib60 article-title: Stabilizing the structure of nickel‐rich lithiated oxides via Cr doping as cathode with boosted high‐voltage/temperature cycling performance for Li‐ion battery publication-title: Energy Technol. – volume: 2 start-page: 7454 year: 2014 ident: 10.1016/j.jhazmat.2020.124610_bib65 article-title: PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00699B – volume: 9 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib63 article-title: Commercialization of lithium battery technologies for electric vehicles publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900161 – volume: 396 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib66 article-title: Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122740 – volume: 329 start-page: 364 year: 2016 ident: 10.1016/j.jhazmat.2020.124610_bib6 article-title: Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.099 – start-page: 1 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib8 article-title: Lithium iron phosphate batteries recycling: an assessment of current status publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1776053 – volume: 399 start-page: 274 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib18 article-title: Recycling of lithium-ion batteries: recent advances and perspectives publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.07.116 – volume: 7 start-page: 2942 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib22 article-title: Lithium-ion batteries: outlook on present, future, and hybridized technologies publication-title: J. Mater. Chem. A doi: 10.1039/C8TA10513H – volume: 49 start-page: 538 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib69 article-title: Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.077 – volume: 13 start-page: 3079 year: 2020 ident: 10.1016/j.jhazmat.2020.124610_bib10 article-title: Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities publication-title: ChemSusChem doi: 10.1002/cssc.201903213 – volume: 13 start-page: 11891 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib33 article-title: Surface-functionalized coating for lithium-rich cathode material to achieve ultra-high rate and excellent cycle performance publication-title: ACS Nano doi: 10.1021/acsnano.9b05960 – volume: 374 start-page: 1 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib3 article-title: The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.020 – volume: 14 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib44 article-title: Microstructural degradation of Ni-rich Li[NixCoyMn1-x-y]O2 cathodes during accelerated calendar aging publication-title: Small – volume: 334 start-page: 497 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib68 article-title: Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.050 – volume: 164 start-page: A389 year: 2017 ident: 10.1016/j.jhazmat.2020.124610_bib11 article-title: Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.1111702jes – volume: 3 start-page: 1683 year: 2018 ident: 10.1016/j.jhazmat.2020.124610_bib47 article-title: Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00833 – volume: 9 year: 2019 ident: 10.1016/j.jhazmat.2020.124610_bib48 article-title: Ambient‐pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2(0 <x< 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900454 |
SSID | ssj0001754 |
Score | 2.6332326 |
Snippet | Lithium nickel manganese cobalt oxide in the spent lithium ion batteries (LIBs) contains a lot of lithium, nickel, cobalt and manganese. However, how to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 124610 |
SubjectTerms | Cathode material cathodes cobalt cobalt oxide electrochemistry heat treatment industrialization LiNi0.5Co0.2Mn0.3O2 lithium lithium batteries manganese manganese monoxide nickel pollution Reconstructing Regeneration technology Spent lithium-ion batteries |
Title | A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.jhazmat.2020.124610 https://www.proquest.com/docview/2465438812 https://www.proquest.com/docview/2524230152 |
Volume | 410 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKucABQQFRHtUgcWyyTmzncVytqBYoywEq9WbZsb3NaklW7FZIHPgp_FZm8mgBCSpxjWz5MeOZbzLjz4y9UiITWWV4VHEfIpkVZVRUVOQYuJBBOQK9VG2xyOZn8u25Ot9js_EuDJVVDra_t-mdtR6-TIbdnGzqevKRknrobiW9AZ71PKZS5qTl8ffrMg90jz2FFGUAsPX1LZ7JKl5dmG8IDDFMTIlngbjH_-af_rDUnfs5uc_uDbgRpv3UHrA93xywu7-wCR6wW6fm60P2YwpLqqU5Bt-xQ6BTOYZq3W69i9Ztu4F-wfDFLzvGaRIM7K5-sAOCWOii5IFZtllCGwBhIpzWi5rHatbyOH3fYBz-IQVifW2dB1xep8pA11Vgu8FRAQH-RX35OaIBbEfjiVH5I3Z28vrTbB4NjzBEFSKlXWQrtAghNz6ozBllEdDlHr18kQQjjapUbixGJdbkJZ5_ixbDBJeUoSh5ENJm4jHbb9rGP2GQOCu4E2VwJpNJoFCpdCJxzlY8MQU_ZHLcel0NDOX0UMZaj6VoKz1ITJPEdC-xQxZfddv0FB03dShGuerfdE2jG7mp68tRDzSeQ0qumMa3l1udEjGdwG1J_9FGEXpFAJY-_f8pPGN3UqqrIQZZ9ZztozL4FwiMdvao0_wjdnv65t188RN3GQ3t |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLXasgAWCAqo5VEuEuyajPNwJlmwqFqqKZ0OC1qpO2PH9jSjIRmRqSpY8Cn8BD_IvXm0gASVkLqNxpPkPnzOja-PGXsloiRKcsW9nFvnxUmaeWlOTY6OR7EThkgvdVtMktFJ_O5UnK6wH_1eGGqr7Ob-dk5vZuvuyqCz5mBRFIMPtKiHcBvTGeAI231n5aH9coF1W_3mYA-d_DoM998e74687mgBL0f8X3o6xzh3Q2WdSIwSGmnK0CJ2pYFTsRK5GCqNXFurYYZRrTEPlDNB5tKMuyjWSYT_u8puxThd0LEJ_rervhLE41azipYc8PGutg0NZv7sTH1FJop1aUjCDiR2_jdA_AMaGrzbv8_udUQVdlpbPGArtlxnd3-RL1xnq2N18ZB934EpNe9sg23kKBDFtiGfV7U13ryqFtBaGD7baSNxTZEAy8sv-oCsGZqyvJOyLadQOUBeCuNiUnBf7FbcD49KLPzfh0Ays5WxgK_X5A7Q_hioF3hXwIrirDj_5NENdKMbWtj6ETu5Edc8ZmtlVdoNBoHRETdR5oxK4sBRbZaZKDBG5zxQKd9kcW96mXeS6HQyx1z2vW8z2XlMksdk67FN5l8OW7SaINcNSHu_yt-CWyJuXTf0ZR8HEhOfVnNUaavzWoakhBehWcJ__EYQXUbGFz75_0d4wW6Pjo_GcnwwOXzK7oTU1EPyteIZW8PAsM-RlS31VpMFwD7edNr9BBHySbs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+green%2C+efficient%2C+closed-loop+direct+regeneration+technology+for+reconstructing+of+the+LiNi0.5Co0.2Mn0.3O2+cathode+material+from+spent+lithium-ion+batteries&rft.jtitle=Journal+of+hazardous+materials&rft.au=Fan%2C+Xiaoping&rft.au=Tan%2C+Chunlei&rft.au=Li%2C+Yu&rft.au=Chen%2C+Zhiqiang&rft.date=2021-05-15&rft.issn=0304-3894&rft.volume=410+p.124610-&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.124610&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |