Individualized growth prediction of mice skin tumors with maximum likelihood estimators

•Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growt...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 185; p. 105165
Main Authors Patmanidis, Spyridon, Charalampidis, Alexandros C., Kordonis, Ioannis, Strati, Katerina, Mitsis, Georgios D., Papavassilopoulos, George P.
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.03.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2019.105165

Cover

Abstract •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growth more accurately compared to the NLS estimator.•Prior knowledge about the growth of a tumor has the potential to improve the predictions at early growth stages.•Parallel computing can effectively reduce the execution time of the computationally demanding ML numerical solution. In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model. To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions. Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages. In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.
AbstractList •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growth more accurately compared to the NLS estimator.•Prior knowledge about the growth of a tumor has the potential to improve the predictions at early growth stages.•Parallel computing can effectively reduce the execution time of the computationally demanding ML numerical solution. In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model. To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions. Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages. In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.
In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.BACKGROUND & OBJECTIVEIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.METHODSTo describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.RESULTSExperimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.CONCLUSIONIn most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.
In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model. To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions. Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages. In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.
Background & ObjectiveIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.MethodsTo describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.ResultsExperimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.ConclusionIn most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.
ArticleNumber 105165
Author Charalampidis, Alexandros C.
Kordonis, Ioannis
Mitsis, Georgios D.
Papavassilopoulos, George P.
Patmanidis, Spyridon
Strati, Katerina
Author_xml – sequence: 1
  givenname: Spyridon
  surname: Patmanidis
  fullname: Patmanidis, Spyridon
  email: spatmani@central.ntua.gr
  organization: School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens, Greece
– sequence: 2
  givenname: Alexandros C.
  surname: Charalampidis
  fullname: Charalampidis, Alexandros C.
  email: alexandros.charalampidis@centralesupelec.fr
  organization: Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Einsteinufer 17, Berlin D-10587, Germany
– sequence: 3
  givenname: Ioannis
  surname: Kordonis
  fullname: Kordonis, Ioannis
  organization: CentraleSupélec, Avenue de la Boulaie, 35576 Cesson-Sévigné, France
– sequence: 4
  givenname: Katerina
  surname: Strati
  fullname: Strati, Katerina
  email: strati.katerina@ucy.ac.cy
  organization: Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus
– sequence: 5
  givenname: Georgios D.
  surname: Mitsis
  fullname: Mitsis, Georgios D.
  email: georgios.mitsis@mcgill.ca
  organization: Department of Bioengineering, McGill University, 817 Sherbrooke Ave W, MacDonald Engineering Building 270, Montréal QC H3A 0C3, Canada
– sequence: 6
  givenname: George P.
  surname: Papavassilopoulos
  fullname: Papavassilopoulos, George P.
  email: yorgos@netmode.ece.ntua.gr
  organization: School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31710982$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02361464$$DView record in HAL
BookMark eNqFkU1v1DAQhi1URLeFP8AB5QiHLLbjjwRxqSpoK63EBcTRcmyHnV0nXuxkS_n1OErbQw_lZGn0POOZec_QyRAGh9BbgtcEE_Fxtzb9oV1TTJpc4ETwF2hFaklLyQU_QasMNSUVWJ6is5R2GGPKuXiFTisiCW5qukI_bwYLR7CT9vDX2eJXDLfjtjhEZ8GMEIYidEUPxhVpD0MxTn2IqbiFzPT6D_RTX3jYOw_bEGzh0gi9HjPyGr3stE_uzf17jn58_fL98rrcfLu6ubzYlIYxMpataFhdV03NHLVCtoLKjkhppeBa1xVvG0aplHlq0ci2FhVzec-Od5xTUVtXnaMPS9-t9uoQ8-_xTgUN6vpio-YappUgTLAjyez7hT3E8HvKs6oeknHe68GFKSlaEYZJVbEmo-_u0antnX3s_HC4DNQLYGJIKbpOGRj1fLAxavCKYDVnpHZqzkjNGaklo6zSJ-pD92elz4vk8jGP4KJKBtxgckzRmVHZAM_rn57oxsMARvu9u_uf_A85F7wO
CitedBy_id crossref_primary_10_1007_s10462_024_10886_0
crossref_primary_10_1016_j_cmpb_2020_105412
crossref_primary_10_1186_s12885_020_07015_9
crossref_primary_10_1016_j_cmpb_2023_107920
crossref_primary_10_1109_LCSYS_2022_3186611
crossref_primary_10_1007_s11042_021_10829_9
Cites_doi 10.1049/iet-cta.2010.0553
10.1098/rsta.2006.1786
10.1046/j.1365-2184.1999.3210039.x
10.1016/S0010-4825(00)00032-9
10.1111/j.1365-2184.1977.tb00316.x
10.1016/j.jfranklin.2017.05.017
10.1287/ijoc.2015.0659
10.1158/0008-5472.CAN-14-0721
10.1016/j.bulm.2003.11.002
10.1158/0008-5472.CAN-12-4355
10.1038/307658a0
10.1038/264542a0
10.1158/0008-5472.CAN-15-3567
10.1007/s11538-015-0110-8
10.1007/s00034-018-0800-1
10.1038/bjc.1964.55
10.1016/j.compchemeng.2007.07.001
10.1080/01969720590897233
10.2307/2533143
10.1016/j.cell.2015.11.002
10.1016/j.ifacol.2017.08.2289
10.1016/j.automatica.2010.10.013
10.1002/acs.3029
10.1007/s10439-014-0975-y
10.1111/j.1365-2184.1978.tb00884.x
10.1007/s11538-014-9986-y
10.1016/j.apm.2013.06.007
10.1371/journal.pcbi.1003800
10.1016/S0167-8140(99)00009-2
10.1016/j.cmpb.2018.03.014
10.1890/13-1486.1
10.1158/0008-5472.CAN-15-1389
10.1111/j.1365-2184.1980.tb00486.x
10.1109/TBME.2005.845219
10.1016/j.cell.2011.02.013
10.2174/1381612819666131125150434
10.1109/TBME.2013.2280189
10.1371/journal.pone.0143840
10.1016/j.sigpro.2014.03.031
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
DOI 10.1016/j.cmpb.2019.105165
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Mathematics
Statistics
Computer Science
EISSN 1872-7565
ExternalDocumentID oai_HAL_hal_02361464v1
31710982
10_1016_j_cmpb_2019_105165
S0169260719302184
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AFCTW
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
ID FETCH-LOGICAL-c441t-b694883984e2d67b627f177d765aa835b942277556697b8634e516f5f55268de3
IEDL.DBID AIKHN
ISSN 0169-2607
1872-7565
IngestDate Fri May 09 12:27:46 EDT 2025
Fri Sep 05 10:37:10 EDT 2025
Wed Feb 19 02:30:02 EST 2025
Tue Jul 01 02:40:59 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Fri Feb 23 02:48:29 EST 2024
Tue Aug 26 16:33:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tumor growth modeling
Parameter estimation
Maximum likelihood
Nonlinear systems
Least squares
Language English
License Copyright © 2019. Published by Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-b694883984e2d67b627f177d765aa835b942277556697b8634e516f5f55268de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2117-8038
PMID 31710982
PQID 2314013349
PQPubID 23479
ParticipantIDs hal_primary_oai_HAL_hal_02361464v1
proquest_miscellaneous_2314013349
pubmed_primary_31710982
crossref_citationtrail_10_1016_j_cmpb_2019_105165
crossref_primary_10_1016_j_cmpb_2019_105165
elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_105165
elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_105165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
2020-03
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Barillot, Calzone, Hupe, Vert, Zinovyev (bib0002) 2012
Brunton, Wheldon (bib0029) 1980; 13
Brunton, Wheldon (bib0027) 1977; 10
Stewart, Wild (bib0001) 2014
Ding (bib0044) 2014; 104
Ding (bib0045) 2014; 38
Enderling, Chaplain (bib0015) 2014; 20
Norton (bib0033) 1985; 12
Benzekry, Tracz, Mastri, Corbelli, Barbolosi, Ebos (bib0010) 2016; 76
Barbolosi, Iliadis (bib0023) 2001; 31
Patmanidis, Charalampidis, Kordonis, Mitsis, Papavassilopoulos (bib0036) 2018; 160
Gutiérrez, Gutiérrez-Sanchez, Nafidi, Román, Torres (bib0043) 2005; 36
Bartelink, Begg, Martin, van Dijk, van t Veer, van der Vaart, Verheij (bib0034) 1999; 50
Norton, Simon, Brereton, Bogden (bib0032) 1976; 264
Babbs (bib0009) 2012; 2
Chignola, Foroni (bib0026) 2005; 52
Liu (bib0003) 2017
Gerlee (bib0017) 2013; 73
Ljung (bib0038) 1986
Talkington, Durrett (bib0031) 2015; 77
Rockne, Frankel (bib0007) 2017
Kay (bib0037) 1993
Laird (bib0020) 1965; 18
Loizides, Iacovides, Hadjiandreou, Rizki, Achilleos, Strati, Mitsis (bib0025) 2015; 10
Chignola, Schenetti, Chiesa, Foroni, Sartpris, Brendolan, Tridente, Andrighetto, Liberati (bib0030) 1999; 32
Benzekry, Lamont, Beheshti, Tracz, Ebos, Hlatky, Hahnfeldt (bib0018) 2014; 10
Patmanidis, Charalampidis, Kordonis, Mitsis, Papavassilopoulos (bib0035) 2017; 50
Achilleos, Loizides, Hadjiandreou, Stylianopoulos, Mitsis (bib0024) 2014; 42
Brunton, Wheldon (bib0028) 1978; 11
Garg, Rao, Redmond (bib0041) 1970; 19
Geng, Paganetti, Grassberger (bib0012) 2017; 7
Hartung, Mollard, Barbolosi, Benabdallah, Chapuisat, Henry, Giacometti, Iliadis, Ciccolini, Faivre, Hubert (bib0021) 2014; 74
Matlab Optimization Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017.
Araujo, McElwain (bib0014) 2004; 66
Li, Liu, Ding (bib0048) 2019; 33
Gompertz (bib0019) 1825; 115
Lambert (bib0042) 1996; 52
Goodfellow, Bengio, Courville (bib0040) 2016
Michor, Beal (bib0013) 2015; 163
Sarapata, de Pillis (bib0022) 2014; 76
Dennis, Ponciano (bib0050) 2014; 95
Li, Liu, Ding (bib0047) 2018; 37
Li, Liu, Ding (bib0046) 2017; 354
Charalampidis, Papavassilopoulos (bib0051) 2011; 5
Byrne, Alarcon, Owen, Webb, Maini (bib0016) 2006; 364
Matlab Parallel Computing Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017.
Dua, Dua, Pistikopoulos (bib0006) 2008; 32
Bortfeld, Ramakrishnan, Tsitsiklis, Unkelbach (bib0008) 2015; 27
Balmain, Ramsden, Bowden, Smith (bib0049) 1984; 307
Hanahan, Weinberg (bib0004) 2011; 144
Serre, Benzekry, Padovani, Meille, André, Ciccolini, Barlesi, Muracciole, Barbolosi (bib0011) 2016; 76
Hadjiandreou, Mitsis (bib0005) 2014; 61
Schön, Wills, Ninness (bib0039) 2011; 47
Bortfeld (10.1016/j.cmpb.2019.105165_bib0008) 2015; 27
Ding (10.1016/j.cmpb.2019.105165_bib0044) 2014; 104
Barillot (10.1016/j.cmpb.2019.105165_bib0002) 2012
Lambert (10.1016/j.cmpb.2019.105165_bib0042) 1996; 52
Ljung (10.1016/j.cmpb.2019.105165_bib0038) 1986
Charalampidis (10.1016/j.cmpb.2019.105165_bib0051) 2011; 5
Dennis (10.1016/j.cmpb.2019.105165_bib0050) 2014; 95
Geng (10.1016/j.cmpb.2019.105165_bib0012) 2017; 7
Balmain (10.1016/j.cmpb.2019.105165_bib0049) 1984; 307
Li (10.1016/j.cmpb.2019.105165_bib0046) 2017; 354
Achilleos (10.1016/j.cmpb.2019.105165_bib0024) 2014; 42
Hartung (10.1016/j.cmpb.2019.105165_bib0021) 2014; 74
Schön (10.1016/j.cmpb.2019.105165_bib0039) 2011; 47
Araujo (10.1016/j.cmpb.2019.105165_bib0014) 2004; 66
Benzekry (10.1016/j.cmpb.2019.105165_bib0018) 2014; 10
Serre (10.1016/j.cmpb.2019.105165_bib0011) 2016; 76
Brunton (10.1016/j.cmpb.2019.105165_bib0028) 1978; 11
Norton (10.1016/j.cmpb.2019.105165_bib0033) 1985; 12
Enderling (10.1016/j.cmpb.2019.105165_bib0015) 2014; 20
Liu (10.1016/j.cmpb.2019.105165_bib0003) 2017
Barbolosi (10.1016/j.cmpb.2019.105165_bib0023) 2001; 31
Gutiérrez (10.1016/j.cmpb.2019.105165_bib0043) 2005; 36
Michor (10.1016/j.cmpb.2019.105165_bib0013) 2015; 163
Brunton (10.1016/j.cmpb.2019.105165_bib0029) 1980; 13
Patmanidis (10.1016/j.cmpb.2019.105165_bib0035) 2017; 50
Ding (10.1016/j.cmpb.2019.105165_bib0045) 2014; 38
Laird (10.1016/j.cmpb.2019.105165_bib0020) 1965; 18
Li (10.1016/j.cmpb.2019.105165_bib0048) 2019; 33
Norton (10.1016/j.cmpb.2019.105165_bib0032) 1976; 264
Sarapata (10.1016/j.cmpb.2019.105165_bib0022) 2014; 76
Rockne (10.1016/j.cmpb.2019.105165_bib0007) 2017
Kay (10.1016/j.cmpb.2019.105165_bib0037) 1993
Hanahan (10.1016/j.cmpb.2019.105165_bib0004) 2011; 144
Chignola (10.1016/j.cmpb.2019.105165_bib0030) 1999; 32
Loizides (10.1016/j.cmpb.2019.105165_bib0025) 2015; 10
Chignola (10.1016/j.cmpb.2019.105165_bib0026) 2005; 52
Stewart (10.1016/j.cmpb.2019.105165_bib0001) 2014
Gompertz (10.1016/j.cmpb.2019.105165_bib0019) 1825; 115
Hadjiandreou (10.1016/j.cmpb.2019.105165_bib0005) 2014; 61
Gerlee (10.1016/j.cmpb.2019.105165_bib0017) 2013; 73
Byrne (10.1016/j.cmpb.2019.105165_bib0016) 2006; 364
Benzekry (10.1016/j.cmpb.2019.105165_bib0010) 2016; 76
Bartelink (10.1016/j.cmpb.2019.105165_bib0034) 1999; 50
10.1016/j.cmpb.2019.105165_bib0053
10.1016/j.cmpb.2019.105165_bib0052
Goodfellow (10.1016/j.cmpb.2019.105165_sbref0040) 2016
Garg (10.1016/j.cmpb.2019.105165_bib0041) 1970; 19
Dua (10.1016/j.cmpb.2019.105165_bib0006) 2008; 32
Li (10.1016/j.cmpb.2019.105165_bib0047) 2018; 37
Patmanidis (10.1016/j.cmpb.2019.105165_bib0036) 2018; 160
Talkington (10.1016/j.cmpb.2019.105165_bib0031) 2015; 77
Babbs (10.1016/j.cmpb.2019.105165_bib0009) 2012; 2
Brunton (10.1016/j.cmpb.2019.105165_bib0027) 1977; 10
References_xml – volume: 364
  start-page: 1563
  year: 2006
  end-page: 1578
  ident: bib0016
  article-title: Modelling aspects of cancer dynamics: a review
  publication-title: Philos. Trans. R. Soc.Lond. A
– volume: 77
  start-page: 1934
  year: 2015
  end-page: 1954
  ident: bib0031
  article-title: Estimating tumor growth rates in vivo
  publication-title: Bull. Math. Biol.
– volume: 104
  start-page: 369
  year: 2014
  end-page: 380
  ident: bib0044
  article-title: State filtering and parameter estimation for state space systems with scarce measurements
  publication-title: Signal Process.
– volume: 354
  start-page: 4861
  year: 2017
  end-page: 4881
  ident: bib0046
  article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise
  publication-title: J. Frankl. Inst.
– volume: 5
  start-page: 1155
  year: 2011
  end-page: 1166
  ident: bib0051
  article-title: Development and numerical investigation of new non-linear Kalman filter variants
  publication-title: IET Control Theory Appl.
– volume: 76
  start-page: 535
  year: 2016
  end-page: 547
  ident: bib0010
  article-title: Modeling spontaneous metastasis following surgery: an in vivo-in silico approach
  publication-title: Cancer Res.
– reference: Matlab Optimization Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017.
– year: 2016
  ident: bib0040
  article-title: Deep Learning
– volume: 66
  start-page: 1039
  year: 2004
  end-page: 1091
  ident: bib0014
  article-title: A history of the study of solid tumour growth: the contribution of mathematical modelling
  publication-title: Bull. Math. Biol.
– year: 2014
  ident: bib0001
  article-title: World Cancer Report 2014
– volume: 74
  start-page: 6397
  year: 2014
  end-page: 6407
  ident: bib0021
  article-title: Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice
  publication-title: Cancer Res.
– volume: 163
  start-page: 1059
  year: 2015
  end-page: 1063
  ident: bib0013
  article-title: Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort
  publication-title: Cell
– volume: 18
  start-page: 490
  year: 1965
  end-page: 502
  ident: bib0020
  article-title: Dynamics of tumour growth
  publication-title: Br. J. Cancer
– volume: 33
  start-page: 1189
  year: 2019
  end-page: 1211
  ident: bib0048
  article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle
  publication-title: Int. J. Adapt. Control Signal Process.
– volume: 7
  year: 2017
  ident: bib0012
  article-title: Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model
  publication-title: Sci. Rep.
– volume: 47
  start-page: 39
  year: 2011
  end-page: 49
  ident: bib0039
  article-title: System identification of nonlinear state-space models
  publication-title: Automatica
– volume: 13
  start-page: 455
  year: 1980
  end-page: 460
  ident: bib0029
  article-title: The gompertz equation and the construction of tumour growth curves
  publication-title: Cell Prolif.
– year: 2012
  ident: bib0002
  article-title: Computational Systems Biology of Cancer
– volume: 27
  start-page: 788
  year: 2015
  end-page: 803
  ident: bib0008
  article-title: Optimization of radiation therapy fractionation schedules in the presence of tumor repopulation
  publication-title: INFORMS J. Comput.
– volume: 32
  start-page: 39
  year: 1999
  end-page: 48
  ident: bib0030
  article-title: Oscillating growth patterns of multicellular tumour spheroids
  publication-title: Cell Prolif.
– volume: 37
  start-page: 5023
  year: 2018
  end-page: 5048
  ident: bib0047
  article-title: Filtering-based maximum likelihood gradient iterative estimation algorithm for bilinear systems with autoregressive moving average noise
  publication-title: Circuits Syst Signal Process
– volume: 20
  start-page: 4934
  year: 2014
  end-page: 4940
  ident: bib0015
  article-title: Mathematical modeling of tumor growth and treatment
  publication-title: Curr. Pharm. Des.
– volume: 31
  start-page: 157
  year: 2001
  end-page: 172
  ident: bib0023
  article-title: Optimizing drug regimens in cancer chemotherapy: a simulation study using a PKPD model
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 591
  year: 1977
  end-page: 594
  ident: bib0027
  article-title: Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements
  publication-title: Cell Prolif.
– volume: 115
  start-page: 513
  year: 1825
  end-page: 583
  ident: bib0019
  article-title: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies
  publication-title: Philos. Trans. R. Soc. Lond.
– year: 1986
  ident: bib0038
  article-title: System Identification: Theory for the User
– volume: 10
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib0025
  article-title: Model-based tumor growth dynamics and therapy response in a mouse model of de novo carcinogenesis
  publication-title: PLOS ONE
– volume: 10
  year: 2014
  ident: bib0018
  article-title: Classical mathematical models for description and prediction of experimental tumor growth
  publication-title: PLoS Comput. Biol.
– volume: 42
  start-page: 1095
  year: 2014
  end-page: 1111
  ident: bib0024
  article-title: Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-specific predictions
  publication-title: Ann. Biomed. Eng.
– volume: 12
  start-page: 231
  year: 1985
  end-page: 249
  ident: bib0033
  article-title: Implications of kinetic heterogeneity in clinical oncology
  publication-title: Semin. Oncol.
– volume: 38
  start-page: 403
  year: 2014
  end-page: 412
  ident: bib0045
  article-title: Combined state and least squares parameter estimation algorithms for dynamic systems
  publication-title: Appl. Math. Modell.
– volume: 11
  start-page: 161
  year: 1978
  end-page: 175
  ident: bib0028
  article-title: Characteristic species dependent growth patterns of mammalian neoplasms
  publication-title: Cell Prolif.
– reference: Matlab Parallel Computing Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017.
– year: 2017
  ident: bib0003
  article-title: Tumors and Cancers: Skin Soft Tissue Bone Urogenitals
– volume: 19
  start-page: 152
  year: 1970
  end-page: 159
  ident: bib0041
  article-title: Maximum-likelihood estimation of the parameters of the gompertz survival function
  publication-title: J. R. Stat. Soc. Ser. C
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib0004
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 52
  start-page: 50
  year: 1996
  end-page: 55
  ident: bib0042
  article-title: Modeling of nonlinear growth curve on series of correlated count data measured at unequally spaced times: a full likelihood based approach
  publication-title: Biometrics
– volume: 307
  start-page: 658
  year: 1984
  end-page: 660
  ident: bib0049
  article-title: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas
  publication-title: Nature
– volume: 61
  start-page: 415
  year: 2014
  end-page: 425
  ident: bib0005
  article-title: Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 99
  year: 2008
  end-page: 107
  ident: bib0006
  article-title: Optimal delivery of chemotherapeutic agents in cancer
  publication-title: Comput. Chem. Eng.
– volume: 52
  start-page: 808
  year: 2005
  end-page: 815
  ident: bib0026
  article-title: Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 36
  start-page: 203
  year: 2005
  end-page: 216
  ident: bib0043
  article-title: Inference in gompertz-type nonhomogeneous stochastic systems by means of discrete sampling
  publication-title: Cybern. Syst.
– volume: 73
  start-page: 2407
  year: 2013
  end-page: 2411
  ident: bib0017
  article-title: The model muddle: in search of tumor growth laws
  publication-title: Cancer Res.
– volume: 160
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0036
  article-title: Tumor growth modeling: parameter estimation with maximum likelihood methods
  publication-title: Comput. Methods Programs Biomed.
– volume: 50
  start-page: 1
  year: 1999
  end-page: 11
  ident: bib0034
  article-title: Towards prediction and modulation of treatment response
  publication-title: Radiother. Oncol.
– year: 1993
  ident: bib0037
  article-title: Fundamentals Of Statistical Signal Processing
– volume: 76
  start-page: 2010
  year: 2014
  end-page: 2024
  ident: bib0022
  article-title: A comparison and catalog of intrinsic tumor growth models
  publication-title: Bull. Math. Biol.
– volume: 76
  start-page: 4931
  year: 2016
  end-page: 4940
  ident: bib0011
  article-title: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy
  publication-title: Cancer Res.
– volume: 95
  start-page: 2069
  year: 2014
  end-page: 2076
  ident: bib0050
  article-title: Density-dependent state-space model for population-abundance data with unequal time intervals
  publication-title: Ecology
– volume: 264
  start-page: 542
  year: 1976
  end-page: 545
  ident: bib0032
  article-title: Predicting the course of gompertzian growth
  publication-title: Nature
– year: 2017
  ident: bib0007
  article-title: Advances in Radiation Oncology
– volume: 50
  start-page: 12203
  year: 2017
  end-page: 12209
  ident: bib0035
  article-title: Comparing methods for parameter estimation of the gompertz tumor growth model
  publication-title: IFAC-PapersOnLine
– volume: 2
  start-page: 204
  year: 2012
  end-page: 213
  ident: bib0009
  article-title: Predicting success or failure of immunotherapy for cancer: insights from a clinically applicable mathematical model
  publication-title: Am. J. Cancer Res.
– year: 1986
  ident: 10.1016/j.cmpb.2019.105165_bib0038
– volume: 5
  start-page: 1155
  issue: 10
  year: 2011
  ident: 10.1016/j.cmpb.2019.105165_bib0051
  article-title: Development and numerical investigation of new non-linear Kalman filter variants
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2010.0553
– volume: 364
  start-page: 1563
  issue: 1843
  year: 2006
  ident: 10.1016/j.cmpb.2019.105165_bib0016
  article-title: Modelling aspects of cancer dynamics: a review
  publication-title: Philos. Trans. R. Soc.Lond. A
  doi: 10.1098/rsta.2006.1786
– volume: 32
  start-page: 39
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2019.105165_bib0030
  article-title: Oscillating growth patterns of multicellular tumour spheroids
  publication-title: Cell Prolif.
  doi: 10.1046/j.1365-2184.1999.3210039.x
– volume: 19
  start-page: 152
  issue: 2
  year: 1970
  ident: 10.1016/j.cmpb.2019.105165_bib0041
  article-title: Maximum-likelihood estimation of the parameters of the gompertz survival function
  publication-title: J. R. Stat. Soc. Ser. C
– volume: 31
  start-page: 157
  issue: 3
  year: 2001
  ident: 10.1016/j.cmpb.2019.105165_bib0023
  article-title: Optimizing drug regimens in cancer chemotherapy: a simulation study using a PKPD model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(00)00032-9
– volume: 10
  start-page: 591
  issue: 6
  year: 1977
  ident: 10.1016/j.cmpb.2019.105165_bib0027
  article-title: Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements
  publication-title: Cell Prolif.
  doi: 10.1111/j.1365-2184.1977.tb00316.x
– volume: 354
  start-page: 4861
  issue: 12
  year: 2017
  ident: 10.1016/j.cmpb.2019.105165_bib0046
  article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2017.05.017
– volume: 27
  start-page: 788
  issue: 4
  year: 2015
  ident: 10.1016/j.cmpb.2019.105165_bib0008
  article-title: Optimization of radiation therapy fractionation schedules in the presence of tumor repopulation
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2015.0659
– volume: 74
  start-page: 6397
  issue: 22
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0021
  article-title: Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-0721
– year: 1993
  ident: 10.1016/j.cmpb.2019.105165_bib0037
– year: 2016
  ident: 10.1016/j.cmpb.2019.105165_sbref0040
– volume: 66
  start-page: 1039
  issue: 5
  year: 2004
  ident: 10.1016/j.cmpb.2019.105165_bib0014
  article-title: A history of the study of solid tumour growth: the contribution of mathematical modelling
  publication-title: Bull. Math. Biol.
  doi: 10.1016/j.bulm.2003.11.002
– year: 2012
  ident: 10.1016/j.cmpb.2019.105165_bib0002
– volume: 73
  start-page: 2407
  issue: 8
  year: 2013
  ident: 10.1016/j.cmpb.2019.105165_bib0017
  article-title: The model muddle: in search of tumor growth laws
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-4355
– volume: 307
  start-page: 658
  year: 1984
  ident: 10.1016/j.cmpb.2019.105165_bib0049
  article-title: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas
  publication-title: Nature
  doi: 10.1038/307658a0
– year: 2017
  ident: 10.1016/j.cmpb.2019.105165_bib0007
– volume: 12
  start-page: 231
  issue: 13
  year: 1985
  ident: 10.1016/j.cmpb.2019.105165_bib0033
  article-title: Implications of kinetic heterogeneity in clinical oncology
  publication-title: Semin. Oncol.
– volume: 264
  start-page: 542
  year: 1976
  ident: 10.1016/j.cmpb.2019.105165_bib0032
  article-title: Predicting the course of gompertzian growth
  publication-title: Nature
  doi: 10.1038/264542a0
– volume: 76
  start-page: 4931
  issue: 17
  year: 2016
  ident: 10.1016/j.cmpb.2019.105165_bib0011
  article-title: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-3567
– volume: 77
  start-page: 1934
  issue: 10
  year: 2015
  ident: 10.1016/j.cmpb.2019.105165_bib0031
  article-title: Estimating tumor growth rates in vivo
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-015-0110-8
– volume: 37
  start-page: 5023
  issue: 11
  year: 2018
  ident: 10.1016/j.cmpb.2019.105165_bib0047
  article-title: Filtering-based maximum likelihood gradient iterative estimation algorithm for bilinear systems with autoregressive moving average noise
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-018-0800-1
– year: 2017
  ident: 10.1016/j.cmpb.2019.105165_bib0003
– volume: 7
  issue: 13542
  year: 2017
  ident: 10.1016/j.cmpb.2019.105165_bib0012
  article-title: Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model
  publication-title: Sci. Rep.
– volume: 18
  start-page: 490
  issue: 3
  year: 1965
  ident: 10.1016/j.cmpb.2019.105165_bib0020
  article-title: Dynamics of tumour growth
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1964.55
– volume: 32
  start-page: 99
  issue: 1
  year: 2008
  ident: 10.1016/j.cmpb.2019.105165_bib0006
  article-title: Optimal delivery of chemotherapeutic agents in cancer
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2007.07.001
– volume: 36
  start-page: 203
  issue: 2
  year: 2005
  ident: 10.1016/j.cmpb.2019.105165_bib0043
  article-title: Inference in gompertz-type nonhomogeneous stochastic systems by means of discrete sampling
  publication-title: Cybern. Syst.
  doi: 10.1080/01969720590897233
– volume: 52
  start-page: 50
  issue: 1
  year: 1996
  ident: 10.1016/j.cmpb.2019.105165_bib0042
  article-title: Modeling of nonlinear growth curve on series of correlated count data measured at unequally spaced times: a full likelihood based approach
  publication-title: Biometrics
  doi: 10.2307/2533143
– volume: 163
  start-page: 1059
  issue: 5
  year: 2015
  ident: 10.1016/j.cmpb.2019.105165_bib0013
  article-title: Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.002
– volume: 50
  start-page: 12203
  issue: 1
  year: 2017
  ident: 10.1016/j.cmpb.2019.105165_bib0035
  article-title: Comparing methods for parameter estimation of the gompertz tumor growth model
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.2289
– volume: 47
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2019.105165_bib0039
  article-title: System identification of nonlinear state-space models
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.10.013
– year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0001
– volume: 33
  start-page: 1189
  issue: 7
  year: 2019
  ident: 10.1016/j.cmpb.2019.105165_bib0048
  article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3029
– volume: 42
  start-page: 1095
  issue: 5
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0024
  article-title: Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-specific predictions
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-0975-y
– volume: 11
  start-page: 161
  issue: 2
  year: 1978
  ident: 10.1016/j.cmpb.2019.105165_bib0028
  article-title: Characteristic species dependent growth patterns of mammalian neoplasms
  publication-title: Cell Prolif.
  doi: 10.1111/j.1365-2184.1978.tb00884.x
– ident: 10.1016/j.cmpb.2019.105165_bib0052
– volume: 76
  start-page: 2010
  issue: 8
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0022
  article-title: A comparison and catalog of intrinsic tumor growth models
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-014-9986-y
– volume: 38
  start-page: 403
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0045
  article-title: Combined state and least squares parameter estimation algorithms for dynamic systems
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2013.06.007
– volume: 2
  start-page: 204
  issue: 2
  year: 2012
  ident: 10.1016/j.cmpb.2019.105165_bib0009
  article-title: Predicting success or failure of immunotherapy for cancer: insights from a clinically applicable mathematical model
  publication-title: Am. J. Cancer Res.
– volume: 115
  start-page: 513
  year: 1825
  ident: 10.1016/j.cmpb.2019.105165_bib0019
  article-title: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies
  publication-title: Philos. Trans. R. Soc. Lond.
– ident: 10.1016/j.cmpb.2019.105165_bib0053
– volume: 10
  issue: 8
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0018
  article-title: Classical mathematical models for description and prediction of experimental tumor growth
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003800
– volume: 50
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2019.105165_bib0034
  article-title: Towards prediction and modulation of treatment response
  publication-title: Radiother. Oncol.
  doi: 10.1016/S0167-8140(99)00009-2
– volume: 160
  start-page: 1
  year: 2018
  ident: 10.1016/j.cmpb.2019.105165_bib0036
  article-title: Tumor growth modeling: parameter estimation with maximum likelihood methods
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.03.014
– volume: 95
  start-page: 2069
  issue: 8
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0050
  article-title: Density-dependent state-space model for population-abundance data with unequal time intervals
  publication-title: Ecology
  doi: 10.1890/13-1486.1
– volume: 76
  start-page: 535
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpb.2019.105165_bib0010
  article-title: Modeling spontaneous metastasis following surgery: an in vivo-in silico approach
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-1389
– volume: 13
  start-page: 455
  issue: 4
  year: 1980
  ident: 10.1016/j.cmpb.2019.105165_bib0029
  article-title: The gompertz equation and the construction of tumour growth curves
  publication-title: Cell Prolif.
  doi: 10.1111/j.1365-2184.1980.tb00486.x
– volume: 52
  start-page: 808
  issue: 5
  year: 2005
  ident: 10.1016/j.cmpb.2019.105165_bib0026
  article-title: Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.845219
– volume: 144
  start-page: 646
  issue: 5
  year: 2011
  ident: 10.1016/j.cmpb.2019.105165_bib0004
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 20
  start-page: 4934
  issue: 30
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0015
  article-title: Mathematical modeling of tumor growth and treatment
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612819666131125150434
– volume: 61
  start-page: 415
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0005
  article-title: Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2280189
– volume: 10
  start-page: 1
  issue: 12
  year: 2015
  ident: 10.1016/j.cmpb.2019.105165_bib0025
  article-title: Model-based tumor growth dynamics and therapy response in a mouse model of de novo carcinogenesis
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0143840
– volume: 104
  start-page: 369
  year: 2014
  ident: 10.1016/j.cmpb.2019.105165_bib0044
  article-title: State filtering and parameter estimation for state space systems with scarce measurements
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.03.031
SSID ssj0002556
Score 2.2978253
Snippet •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an...
In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice...
Background & ObjectiveIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105165
SubjectTerms Animals
Applications
Artificial Intelligence
Biotechnology
Cancer
Computation
Computer Science
Discrete Mathematics
Distributed, Parallel, and Cluster Computing
Engineering Sciences
General Mathematics
Least squares
Life Sciences
Likelihood Functions
Machine Learning
Mathematics
Maximum likelihood
Methodology
Mice
Mice, Transgenic
Modeling and Simulation
Nonlinear systems
Numerical Analysis
Optimization and Control
Parameter estimation
Probability
Programming Languages
Signal and Image Processing
Skin Neoplasms - pathology
Software Engineering
Statistics
Systems and Control
Tumor growth modeling
Title Individualized growth prediction of mice skin tumors with maximum likelihood estimators
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260719302184
https://dx.doi.org/10.1016/j.cmpb.2019.105165
https://www.ncbi.nlm.nih.gov/pubmed/31710982
https://www.proquest.com/docview/2314013349
https://hal.science/hal-02361464
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tnYR4QXxTPiaDeEOhje3Y9WM1MXXA9gITe7OcxNnCmrRq02nigb-du8aJhARD4jFWLrJ-Z99HfPczwFvMkIm5TEdOT10ks8RFTjpUSDLJlJhkXHPqRj45VfMz-fE8Od-Dw64Xhsoqg-1vbfrOWoeRcUBzvCrL8RfiEeFEj2bELlEZwD4XRiVD2J8df5qf9gaZWLZaim8TkUDonWnLvLJqlVKFl6Ebb2PyMX_2T4NLKpT8WxS680ZH9-FeCCPZrJ3pA9jz9UO4cxIOyh_Bt-O-0ar84XN2gdl2c8lWa3qDdMGWBaOb6NnmqqxZs62W6w2jn7Kscjdlta3Yorzyi5JYjxkxcVSUnW8ew9nRh6-H8yjcoRBlGOg0UaoMblFhptLzXOlUcV3EWudaJc5h9JUaybnWiJAyOp0qIT2iUCRFQjwwuRdPYFgva_8MmEekdSGTLEMF5xOd6kIQm1vq8LHwfARxh5zNAsE43XOxsF0l2XdLaFtC27Zoj-BdL7Nq6TVufVt0CrFd4yiaOovW_1appJf6bWn9U-4N6ryfFvFwz2efLY0R7T66GHkdj-B1tyQsbkw6bXG1X243FgNnyl2FNCN42q6V_lsYtMUTM-XP_3NqL-Aup7x_Vwv3EobNeutfYXDUpAcweP8zPghb4BfOogmD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RYJeKt5seRnEDYXd-BGvj1VFtYXdXmhFb5aTODR0k13tZquqB347M3khJCgSx1ieyJqx52HPfAPwDiNkQi7TgdNjF8hEucBJhwJRoyQSo4RrTtXIs5NociY_navzLTjsamEorbLV_Y1Or7V1OzJsuTlc5vnwC-GIcIJHM6IOVLbhjlRCU17fhx-_8jwIY6sB-DYBTW8rZ5okr6RYxpTfZajfbUgW5s_WafuC0iT_5oPWtujoPuy1TiQ7aNb5ALZ8-RDuztpn8kfw9bgvs8pvfMq-YaxdXbDlimaQJNgiY9SHnq0v85JVm2KxWjO6kmWFu86LTcHm-aWf54R5zAiHo6DYfP0Yzo4-nh5OgraDQpCgm1MFcWTwgAozlp6nkY4jrrNQ61RHyjn0vWIjOdcaORQZHY8jIT1yIVOZIhSY1IsnsFMuSv8MmEc-60yqJEHxpiMd60wQllvs8DPzfABhxzmbtPDi1OVibrs8su-WuG2J27bh9gDe9zTLBlzj1tmiE4jtykZR0VnU_bdSqZ7qt431T7q3KPN-WYTCPTmYWhoj0H00MPIqHMCbbktYPJb01uJKv9isLbrNFLkKaQbwtNkr_b_QZQtHZsz3_3Npr-He5HQ2tdPjk8_PYZfTDUCdFfcCdqrVxr9EN6mKX9XH4CcJyQpO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+growth+prediction+of+mice+skin+tumors+with+maximum+likelihood+estimators&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Patmanidis%2C+Spyridon&rft.au=Charalampidis%2C+Alexandros+C&rft.au=Kordonis%2C+Ioannis&rft.au=Strati%2C+Katerina&rft.date=2020-03-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=185&rft.spage=105165&rft_id=info:doi/10.1016%2Fj.cmpb.2019.105165&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon