Individualized growth prediction of mice skin tumors with maximum likelihood estimators
•Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growt...
Saved in:
Published in | Computer methods and programs in biomedicine Vol. 185; p. 105165 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0169-2607 1872-7565 1872-7565 |
DOI | 10.1016/j.cmpb.2019.105165 |
Cover
Abstract | •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growth more accurately compared to the NLS estimator.•Prior knowledge about the growth of a tumor has the potential to improve the predictions at early growth stages.•Parallel computing can effectively reduce the execution time of the computationally demanding ML numerical solution.
In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.
To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.
Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.
In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters. |
---|---|
AbstractList | •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an important factor and should be taken into consideration during modeling.•The ML estimator provided estimates that predicted the future growth more accurately compared to the NLS estimator.•Prior knowledge about the growth of a tumor has the potential to improve the predictions at early growth stages.•Parallel computing can effectively reduce the execution time of the computationally demanding ML numerical solution.
In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.
To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.
Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.
In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters. In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.BACKGROUND & OBJECTIVEIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.METHODSTo describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.RESULTSExperimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters.CONCLUSIONIn most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters. In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non-linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model. To describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions. Experimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages. In most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor's growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters. Background & ObjectiveIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice skin tumors of de novo carcinogenesis. The main objective is to compare the Maximum Likelihood estimator with the best performance from our previous work with the Non–linear Least Squares estimator which is commonly used in the literature to estimate the growth parameters of the Gompertz model.MethodsTo describe tumor growth, we propose a stochastic model which is based on the Gompertz growth function. The principle of Maximum Likelihood is used to estimate both the growth rate and the carrying capacity of the Gompertz function, along with the characteristics of the additive Gaussian process and measurement noise. Moreover, we examine whether a Maximum A Posteriori estimator is able to utilize any available prior knowledge in order to improve the predictions.ResultsExperimental data from a total of 24 tumors in 8 mice (3 tumors each) were used to study the performance of the proposed methods with respect to prediction accuracy. Our results show that the Maximum Likelihood estimator is able to provide, in most cases, more accurate predictions. Moreover, the Maximum A Posteriori estimator has the potential to correct potentially non-realistic estimates for the carrying capacity at early growth stages.ConclusionIn most cases, the Maximum Likelihood estimator is able to provide more reliable predictions for the tumor’s growth on individual test subjects. The Maximum A Posteriori estimator, it has the potential to improve the prediction when the available experimental data do not provide adequate information by utilizing prior knowledge about the unknown parameters. |
ArticleNumber | 105165 |
Author | Charalampidis, Alexandros C. Kordonis, Ioannis Mitsis, Georgios D. Papavassilopoulos, George P. Patmanidis, Spyridon Strati, Katerina |
Author_xml | – sequence: 1 givenname: Spyridon surname: Patmanidis fullname: Patmanidis, Spyridon email: spatmani@central.ntua.gr organization: School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens, Greece – sequence: 2 givenname: Alexandros C. surname: Charalampidis fullname: Charalampidis, Alexandros C. email: alexandros.charalampidis@centralesupelec.fr organization: Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Einsteinufer 17, Berlin D-10587, Germany – sequence: 3 givenname: Ioannis surname: Kordonis fullname: Kordonis, Ioannis organization: CentraleSupélec, Avenue de la Boulaie, 35576 Cesson-Sévigné, France – sequence: 4 givenname: Katerina surname: Strati fullname: Strati, Katerina email: strati.katerina@ucy.ac.cy organization: Department of Biological Sciences, University of Cyprus, Panepistimiou 1, Aglantzia 2109, Nicosia, Cyprus – sequence: 5 givenname: Georgios D. surname: Mitsis fullname: Mitsis, Georgios D. email: georgios.mitsis@mcgill.ca organization: Department of Bioengineering, McGill University, 817 Sherbrooke Ave W, MacDonald Engineering Building 270, Montréal QC H3A 0C3, Canada – sequence: 6 givenname: George P. surname: Papavassilopoulos fullname: Papavassilopoulos, George P. email: yorgos@netmode.ece.ntua.gr organization: School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou 15780, Athens, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31710982$$D View this record in MEDLINE/PubMed https://hal.science/hal-02361464$$DView record in HAL |
BookMark | eNqFkU1v1DAQhi1URLeFP8AB5QiHLLbjjwRxqSpoK63EBcTRcmyHnV0nXuxkS_n1OErbQw_lZGn0POOZec_QyRAGh9BbgtcEE_Fxtzb9oV1TTJpc4ETwF2hFaklLyQU_QasMNSUVWJ6is5R2GGPKuXiFTisiCW5qukI_bwYLR7CT9vDX2eJXDLfjtjhEZ8GMEIYidEUPxhVpD0MxTn2IqbiFzPT6D_RTX3jYOw_bEGzh0gi9HjPyGr3stE_uzf17jn58_fL98rrcfLu6ubzYlIYxMpataFhdV03NHLVCtoLKjkhppeBa1xVvG0aplHlq0ci2FhVzec-Od5xTUVtXnaMPS9-t9uoQ8-_xTgUN6vpio-YappUgTLAjyez7hT3E8HvKs6oeknHe68GFKSlaEYZJVbEmo-_u0antnX3s_HC4DNQLYGJIKbpOGRj1fLAxavCKYDVnpHZqzkjNGaklo6zSJ-pD92elz4vk8jGP4KJKBtxgckzRmVHZAM_rn57oxsMARvu9u_uf_A85F7wO |
CitedBy_id | crossref_primary_10_1007_s10462_024_10886_0 crossref_primary_10_1016_j_cmpb_2020_105412 crossref_primary_10_1186_s12885_020_07015_9 crossref_primary_10_1016_j_cmpb_2023_107920 crossref_primary_10_1109_LCSYS_2022_3186611 crossref_primary_10_1007_s11042_021_10829_9 |
Cites_doi | 10.1049/iet-cta.2010.0553 10.1098/rsta.2006.1786 10.1046/j.1365-2184.1999.3210039.x 10.1016/S0010-4825(00)00032-9 10.1111/j.1365-2184.1977.tb00316.x 10.1016/j.jfranklin.2017.05.017 10.1287/ijoc.2015.0659 10.1158/0008-5472.CAN-14-0721 10.1016/j.bulm.2003.11.002 10.1158/0008-5472.CAN-12-4355 10.1038/307658a0 10.1038/264542a0 10.1158/0008-5472.CAN-15-3567 10.1007/s11538-015-0110-8 10.1007/s00034-018-0800-1 10.1038/bjc.1964.55 10.1016/j.compchemeng.2007.07.001 10.1080/01969720590897233 10.2307/2533143 10.1016/j.cell.2015.11.002 10.1016/j.ifacol.2017.08.2289 10.1016/j.automatica.2010.10.013 10.1002/acs.3029 10.1007/s10439-014-0975-y 10.1111/j.1365-2184.1978.tb00884.x 10.1007/s11538-014-9986-y 10.1016/j.apm.2013.06.007 10.1371/journal.pcbi.1003800 10.1016/S0167-8140(99)00009-2 10.1016/j.cmpb.2018.03.014 10.1890/13-1486.1 10.1158/0008-5472.CAN-15-1389 10.1111/j.1365-2184.1980.tb00486.x 10.1109/TBME.2005.845219 10.1016/j.cell.2011.02.013 10.2174/1381612819666131125150434 10.1109/TBME.2013.2280189 10.1371/journal.pone.0143840 10.1016/j.sigpro.2014.03.031 |
ContentType | Journal Article |
Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
DOI | 10.1016/j.cmpb.2019.105165 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Mathematics Statistics Computer Science |
EISSN | 1872-7565 |
ExternalDocumentID | oai_HAL_hal_02361464v1 31710982 10_1016_j_cmpb_2019_105165 S0169260719302184 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR RIG AAYXX AFCTW AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC |
ID | FETCH-LOGICAL-c441t-b694883984e2d67b627f177d765aa835b942277556697b8634e516f5f55268de3 |
IEDL.DBID | AIKHN |
ISSN | 0169-2607 1872-7565 |
IngestDate | Fri May 09 12:27:46 EDT 2025 Fri Sep 05 10:37:10 EDT 2025 Wed Feb 19 02:30:02 EST 2025 Tue Jul 01 02:40:59 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Fri Feb 23 02:48:29 EST 2024 Tue Aug 26 16:33:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tumor growth modeling Parameter estimation Maximum likelihood Nonlinear systems Least squares |
Language | English |
License | Copyright © 2019. Published by Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-b694883984e2d67b627f177d765aa835b942277556697b8634e516f5f55268de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2117-8038 |
PMID | 31710982 |
PQID | 2314013349 |
PQPubID | 23479 |
ParticipantIDs | hal_primary_oai_HAL_hal_02361464v1 proquest_miscellaneous_2314013349 pubmed_primary_31710982 crossref_citationtrail_10_1016_j_cmpb_2019_105165 crossref_primary_10_1016_j_cmpb_2019_105165 elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_105165 elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_105165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 2020-03 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Computer methods and programs in biomedicine |
PublicationTitleAlternate | Comput Methods Programs Biomed |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Barillot, Calzone, Hupe, Vert, Zinovyev (bib0002) 2012 Brunton, Wheldon (bib0029) 1980; 13 Brunton, Wheldon (bib0027) 1977; 10 Stewart, Wild (bib0001) 2014 Ding (bib0044) 2014; 104 Ding (bib0045) 2014; 38 Enderling, Chaplain (bib0015) 2014; 20 Norton (bib0033) 1985; 12 Benzekry, Tracz, Mastri, Corbelli, Barbolosi, Ebos (bib0010) 2016; 76 Barbolosi, Iliadis (bib0023) 2001; 31 Patmanidis, Charalampidis, Kordonis, Mitsis, Papavassilopoulos (bib0036) 2018; 160 Gutiérrez, Gutiérrez-Sanchez, Nafidi, Román, Torres (bib0043) 2005; 36 Bartelink, Begg, Martin, van Dijk, van t Veer, van der Vaart, Verheij (bib0034) 1999; 50 Norton, Simon, Brereton, Bogden (bib0032) 1976; 264 Babbs (bib0009) 2012; 2 Chignola, Foroni (bib0026) 2005; 52 Liu (bib0003) 2017 Gerlee (bib0017) 2013; 73 Ljung (bib0038) 1986 Talkington, Durrett (bib0031) 2015; 77 Rockne, Frankel (bib0007) 2017 Kay (bib0037) 1993 Laird (bib0020) 1965; 18 Loizides, Iacovides, Hadjiandreou, Rizki, Achilleos, Strati, Mitsis (bib0025) 2015; 10 Chignola, Schenetti, Chiesa, Foroni, Sartpris, Brendolan, Tridente, Andrighetto, Liberati (bib0030) 1999; 32 Benzekry, Lamont, Beheshti, Tracz, Ebos, Hlatky, Hahnfeldt (bib0018) 2014; 10 Patmanidis, Charalampidis, Kordonis, Mitsis, Papavassilopoulos (bib0035) 2017; 50 Achilleos, Loizides, Hadjiandreou, Stylianopoulos, Mitsis (bib0024) 2014; 42 Brunton, Wheldon (bib0028) 1978; 11 Garg, Rao, Redmond (bib0041) 1970; 19 Geng, Paganetti, Grassberger (bib0012) 2017; 7 Hartung, Mollard, Barbolosi, Benabdallah, Chapuisat, Henry, Giacometti, Iliadis, Ciccolini, Faivre, Hubert (bib0021) 2014; 74 Matlab Optimization Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017. Araujo, McElwain (bib0014) 2004; 66 Li, Liu, Ding (bib0048) 2019; 33 Gompertz (bib0019) 1825; 115 Lambert (bib0042) 1996; 52 Goodfellow, Bengio, Courville (bib0040) 2016 Michor, Beal (bib0013) 2015; 163 Sarapata, de Pillis (bib0022) 2014; 76 Dennis, Ponciano (bib0050) 2014; 95 Li, Liu, Ding (bib0047) 2018; 37 Li, Liu, Ding (bib0046) 2017; 354 Charalampidis, Papavassilopoulos (bib0051) 2011; 5 Byrne, Alarcon, Owen, Webb, Maini (bib0016) 2006; 364 Matlab Parallel Computing Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017. Dua, Dua, Pistikopoulos (bib0006) 2008; 32 Bortfeld, Ramakrishnan, Tsitsiklis, Unkelbach (bib0008) 2015; 27 Balmain, Ramsden, Bowden, Smith (bib0049) 1984; 307 Hanahan, Weinberg (bib0004) 2011; 144 Serre, Benzekry, Padovani, Meille, André, Ciccolini, Barlesi, Muracciole, Barbolosi (bib0011) 2016; 76 Hadjiandreou, Mitsis (bib0005) 2014; 61 Schön, Wills, Ninness (bib0039) 2011; 47 Bortfeld (10.1016/j.cmpb.2019.105165_bib0008) 2015; 27 Ding (10.1016/j.cmpb.2019.105165_bib0044) 2014; 104 Barillot (10.1016/j.cmpb.2019.105165_bib0002) 2012 Lambert (10.1016/j.cmpb.2019.105165_bib0042) 1996; 52 Ljung (10.1016/j.cmpb.2019.105165_bib0038) 1986 Charalampidis (10.1016/j.cmpb.2019.105165_bib0051) 2011; 5 Dennis (10.1016/j.cmpb.2019.105165_bib0050) 2014; 95 Geng (10.1016/j.cmpb.2019.105165_bib0012) 2017; 7 Balmain (10.1016/j.cmpb.2019.105165_bib0049) 1984; 307 Li (10.1016/j.cmpb.2019.105165_bib0046) 2017; 354 Achilleos (10.1016/j.cmpb.2019.105165_bib0024) 2014; 42 Hartung (10.1016/j.cmpb.2019.105165_bib0021) 2014; 74 Schön (10.1016/j.cmpb.2019.105165_bib0039) 2011; 47 Araujo (10.1016/j.cmpb.2019.105165_bib0014) 2004; 66 Benzekry (10.1016/j.cmpb.2019.105165_bib0018) 2014; 10 Serre (10.1016/j.cmpb.2019.105165_bib0011) 2016; 76 Brunton (10.1016/j.cmpb.2019.105165_bib0028) 1978; 11 Norton (10.1016/j.cmpb.2019.105165_bib0033) 1985; 12 Enderling (10.1016/j.cmpb.2019.105165_bib0015) 2014; 20 Liu (10.1016/j.cmpb.2019.105165_bib0003) 2017 Barbolosi (10.1016/j.cmpb.2019.105165_bib0023) 2001; 31 Gutiérrez (10.1016/j.cmpb.2019.105165_bib0043) 2005; 36 Michor (10.1016/j.cmpb.2019.105165_bib0013) 2015; 163 Brunton (10.1016/j.cmpb.2019.105165_bib0029) 1980; 13 Patmanidis (10.1016/j.cmpb.2019.105165_bib0035) 2017; 50 Ding (10.1016/j.cmpb.2019.105165_bib0045) 2014; 38 Laird (10.1016/j.cmpb.2019.105165_bib0020) 1965; 18 Li (10.1016/j.cmpb.2019.105165_bib0048) 2019; 33 Norton (10.1016/j.cmpb.2019.105165_bib0032) 1976; 264 Sarapata (10.1016/j.cmpb.2019.105165_bib0022) 2014; 76 Rockne (10.1016/j.cmpb.2019.105165_bib0007) 2017 Kay (10.1016/j.cmpb.2019.105165_bib0037) 1993 Hanahan (10.1016/j.cmpb.2019.105165_bib0004) 2011; 144 Chignola (10.1016/j.cmpb.2019.105165_bib0030) 1999; 32 Loizides (10.1016/j.cmpb.2019.105165_bib0025) 2015; 10 Chignola (10.1016/j.cmpb.2019.105165_bib0026) 2005; 52 Stewart (10.1016/j.cmpb.2019.105165_bib0001) 2014 Gompertz (10.1016/j.cmpb.2019.105165_bib0019) 1825; 115 Hadjiandreou (10.1016/j.cmpb.2019.105165_bib0005) 2014; 61 Gerlee (10.1016/j.cmpb.2019.105165_bib0017) 2013; 73 Byrne (10.1016/j.cmpb.2019.105165_bib0016) 2006; 364 Benzekry (10.1016/j.cmpb.2019.105165_bib0010) 2016; 76 Bartelink (10.1016/j.cmpb.2019.105165_bib0034) 1999; 50 10.1016/j.cmpb.2019.105165_bib0053 10.1016/j.cmpb.2019.105165_bib0052 Goodfellow (10.1016/j.cmpb.2019.105165_sbref0040) 2016 Garg (10.1016/j.cmpb.2019.105165_bib0041) 1970; 19 Dua (10.1016/j.cmpb.2019.105165_bib0006) 2008; 32 Li (10.1016/j.cmpb.2019.105165_bib0047) 2018; 37 Patmanidis (10.1016/j.cmpb.2019.105165_bib0036) 2018; 160 Talkington (10.1016/j.cmpb.2019.105165_bib0031) 2015; 77 Babbs (10.1016/j.cmpb.2019.105165_bib0009) 2012; 2 Brunton (10.1016/j.cmpb.2019.105165_bib0027) 1977; 10 |
References_xml | – volume: 364 start-page: 1563 year: 2006 end-page: 1578 ident: bib0016 article-title: Modelling aspects of cancer dynamics: a review publication-title: Philos. Trans. R. Soc.Lond. A – volume: 77 start-page: 1934 year: 2015 end-page: 1954 ident: bib0031 article-title: Estimating tumor growth rates in vivo publication-title: Bull. Math. Biol. – volume: 104 start-page: 369 year: 2014 end-page: 380 ident: bib0044 article-title: State filtering and parameter estimation for state space systems with scarce measurements publication-title: Signal Process. – volume: 354 start-page: 4861 year: 2017 end-page: 4881 ident: bib0046 article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: J. Frankl. Inst. – volume: 5 start-page: 1155 year: 2011 end-page: 1166 ident: bib0051 article-title: Development and numerical investigation of new non-linear Kalman filter variants publication-title: IET Control Theory Appl. – volume: 76 start-page: 535 year: 2016 end-page: 547 ident: bib0010 article-title: Modeling spontaneous metastasis following surgery: an in vivo-in silico approach publication-title: Cancer Res. – reference: Matlab Optimization Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017. – year: 2016 ident: bib0040 article-title: Deep Learning – volume: 66 start-page: 1039 year: 2004 end-page: 1091 ident: bib0014 article-title: A history of the study of solid tumour growth: the contribution of mathematical modelling publication-title: Bull. Math. Biol. – year: 2014 ident: bib0001 article-title: World Cancer Report 2014 – volume: 74 start-page: 6397 year: 2014 end-page: 6407 ident: bib0021 article-title: Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice publication-title: Cancer Res. – volume: 163 start-page: 1059 year: 2015 end-page: 1063 ident: bib0013 article-title: Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort publication-title: Cell – volume: 18 start-page: 490 year: 1965 end-page: 502 ident: bib0020 article-title: Dynamics of tumour growth publication-title: Br. J. Cancer – volume: 33 start-page: 1189 year: 2019 end-page: 1211 ident: bib0048 article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle publication-title: Int. J. Adapt. Control Signal Process. – volume: 7 year: 2017 ident: bib0012 article-title: Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model publication-title: Sci. Rep. – volume: 47 start-page: 39 year: 2011 end-page: 49 ident: bib0039 article-title: System identification of nonlinear state-space models publication-title: Automatica – volume: 13 start-page: 455 year: 1980 end-page: 460 ident: bib0029 article-title: The gompertz equation and the construction of tumour growth curves publication-title: Cell Prolif. – year: 2012 ident: bib0002 article-title: Computational Systems Biology of Cancer – volume: 27 start-page: 788 year: 2015 end-page: 803 ident: bib0008 article-title: Optimization of radiation therapy fractionation schedules in the presence of tumor repopulation publication-title: INFORMS J. Comput. – volume: 32 start-page: 39 year: 1999 end-page: 48 ident: bib0030 article-title: Oscillating growth patterns of multicellular tumour spheroids publication-title: Cell Prolif. – volume: 37 start-page: 5023 year: 2018 end-page: 5048 ident: bib0047 article-title: Filtering-based maximum likelihood gradient iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: Circuits Syst Signal Process – volume: 20 start-page: 4934 year: 2014 end-page: 4940 ident: bib0015 article-title: Mathematical modeling of tumor growth and treatment publication-title: Curr. Pharm. Des. – volume: 31 start-page: 157 year: 2001 end-page: 172 ident: bib0023 article-title: Optimizing drug regimens in cancer chemotherapy: a simulation study using a PKPD model publication-title: Comput. Biol. Med. – volume: 10 start-page: 591 year: 1977 end-page: 594 ident: bib0027 article-title: Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements publication-title: Cell Prolif. – volume: 115 start-page: 513 year: 1825 end-page: 583 ident: bib0019 article-title: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies publication-title: Philos. Trans. R. Soc. Lond. – year: 1986 ident: bib0038 article-title: System Identification: Theory for the User – volume: 10 start-page: 1 year: 2015 end-page: 18 ident: bib0025 article-title: Model-based tumor growth dynamics and therapy response in a mouse model of de novo carcinogenesis publication-title: PLOS ONE – volume: 10 year: 2014 ident: bib0018 article-title: Classical mathematical models for description and prediction of experimental tumor growth publication-title: PLoS Comput. Biol. – volume: 42 start-page: 1095 year: 2014 end-page: 1111 ident: bib0024 article-title: Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-specific predictions publication-title: Ann. Biomed. Eng. – volume: 12 start-page: 231 year: 1985 end-page: 249 ident: bib0033 article-title: Implications of kinetic heterogeneity in clinical oncology publication-title: Semin. Oncol. – volume: 38 start-page: 403 year: 2014 end-page: 412 ident: bib0045 article-title: Combined state and least squares parameter estimation algorithms for dynamic systems publication-title: Appl. Math. Modell. – volume: 11 start-page: 161 year: 1978 end-page: 175 ident: bib0028 article-title: Characteristic species dependent growth patterns of mammalian neoplasms publication-title: Cell Prolif. – reference: Matlab Parallel Computing Toolbox User’s Guide, The MathWorks Inc., Natick, MA, 2017. – year: 2017 ident: bib0003 article-title: Tumors and Cancers: Skin Soft Tissue Bone Urogenitals – volume: 19 start-page: 152 year: 1970 end-page: 159 ident: bib0041 article-title: Maximum-likelihood estimation of the parameters of the gompertz survival function publication-title: J. R. Stat. Soc. Ser. C – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib0004 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 52 start-page: 50 year: 1996 end-page: 55 ident: bib0042 article-title: Modeling of nonlinear growth curve on series of correlated count data measured at unequally spaced times: a full likelihood based approach publication-title: Biometrics – volume: 307 start-page: 658 year: 1984 end-page: 660 ident: bib0049 article-title: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas publication-title: Nature – volume: 61 start-page: 415 year: 2014 end-page: 425 ident: bib0005 article-title: Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 99 year: 2008 end-page: 107 ident: bib0006 article-title: Optimal delivery of chemotherapeutic agents in cancer publication-title: Comput. Chem. Eng. – volume: 52 start-page: 808 year: 2005 end-page: 815 ident: bib0026 article-title: Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology publication-title: IEEE Trans. Biomed. Eng. – volume: 36 start-page: 203 year: 2005 end-page: 216 ident: bib0043 article-title: Inference in gompertz-type nonhomogeneous stochastic systems by means of discrete sampling publication-title: Cybern. Syst. – volume: 73 start-page: 2407 year: 2013 end-page: 2411 ident: bib0017 article-title: The model muddle: in search of tumor growth laws publication-title: Cancer Res. – volume: 160 start-page: 1 year: 2018 end-page: 10 ident: bib0036 article-title: Tumor growth modeling: parameter estimation with maximum likelihood methods publication-title: Comput. Methods Programs Biomed. – volume: 50 start-page: 1 year: 1999 end-page: 11 ident: bib0034 article-title: Towards prediction and modulation of treatment response publication-title: Radiother. Oncol. – year: 1993 ident: bib0037 article-title: Fundamentals Of Statistical Signal Processing – volume: 76 start-page: 2010 year: 2014 end-page: 2024 ident: bib0022 article-title: A comparison and catalog of intrinsic tumor growth models publication-title: Bull. Math. Biol. – volume: 76 start-page: 4931 year: 2016 end-page: 4940 ident: bib0011 article-title: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy publication-title: Cancer Res. – volume: 95 start-page: 2069 year: 2014 end-page: 2076 ident: bib0050 article-title: Density-dependent state-space model for population-abundance data with unequal time intervals publication-title: Ecology – volume: 264 start-page: 542 year: 1976 end-page: 545 ident: bib0032 article-title: Predicting the course of gompertzian growth publication-title: Nature – year: 2017 ident: bib0007 article-title: Advances in Radiation Oncology – volume: 50 start-page: 12203 year: 2017 end-page: 12209 ident: bib0035 article-title: Comparing methods for parameter estimation of the gompertz tumor growth model publication-title: IFAC-PapersOnLine – volume: 2 start-page: 204 year: 2012 end-page: 213 ident: bib0009 article-title: Predicting success or failure of immunotherapy for cancer: insights from a clinically applicable mathematical model publication-title: Am. J. Cancer Res. – year: 1986 ident: 10.1016/j.cmpb.2019.105165_bib0038 – volume: 5 start-page: 1155 issue: 10 year: 2011 ident: 10.1016/j.cmpb.2019.105165_bib0051 article-title: Development and numerical investigation of new non-linear Kalman filter variants publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2010.0553 – volume: 364 start-page: 1563 issue: 1843 year: 2006 ident: 10.1016/j.cmpb.2019.105165_bib0016 article-title: Modelling aspects of cancer dynamics: a review publication-title: Philos. Trans. R. Soc.Lond. A doi: 10.1098/rsta.2006.1786 – volume: 32 start-page: 39 issue: 1 year: 1999 ident: 10.1016/j.cmpb.2019.105165_bib0030 article-title: Oscillating growth patterns of multicellular tumour spheroids publication-title: Cell Prolif. doi: 10.1046/j.1365-2184.1999.3210039.x – volume: 19 start-page: 152 issue: 2 year: 1970 ident: 10.1016/j.cmpb.2019.105165_bib0041 article-title: Maximum-likelihood estimation of the parameters of the gompertz survival function publication-title: J. R. Stat. Soc. Ser. C – volume: 31 start-page: 157 issue: 3 year: 2001 ident: 10.1016/j.cmpb.2019.105165_bib0023 article-title: Optimizing drug regimens in cancer chemotherapy: a simulation study using a PKPD model publication-title: Comput. Biol. Med. doi: 10.1016/S0010-4825(00)00032-9 – volume: 10 start-page: 591 issue: 6 year: 1977 ident: 10.1016/j.cmpb.2019.105165_bib0027 article-title: Prediction of the complete growth pattern of human multiple myeloma from restricted initial measurements publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1977.tb00316.x – volume: 354 start-page: 4861 issue: 12 year: 2017 ident: 10.1016/j.cmpb.2019.105165_bib0046 article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.05.017 – volume: 27 start-page: 788 issue: 4 year: 2015 ident: 10.1016/j.cmpb.2019.105165_bib0008 article-title: Optimization of radiation therapy fractionation schedules in the presence of tumor repopulation publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2015.0659 – volume: 74 start-page: 6397 issue: 22 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0021 article-title: Mathematical modeling of tumor growth and metastatic spreading: validation in tumor-bearing mice publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0721 – year: 1993 ident: 10.1016/j.cmpb.2019.105165_bib0037 – year: 2016 ident: 10.1016/j.cmpb.2019.105165_sbref0040 – volume: 66 start-page: 1039 issue: 5 year: 2004 ident: 10.1016/j.cmpb.2019.105165_bib0014 article-title: A history of the study of solid tumour growth: the contribution of mathematical modelling publication-title: Bull. Math. Biol. doi: 10.1016/j.bulm.2003.11.002 – year: 2012 ident: 10.1016/j.cmpb.2019.105165_bib0002 – volume: 73 start-page: 2407 issue: 8 year: 2013 ident: 10.1016/j.cmpb.2019.105165_bib0017 article-title: The model muddle: in search of tumor growth laws publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-4355 – volume: 307 start-page: 658 year: 1984 ident: 10.1016/j.cmpb.2019.105165_bib0049 article-title: Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas publication-title: Nature doi: 10.1038/307658a0 – year: 2017 ident: 10.1016/j.cmpb.2019.105165_bib0007 – volume: 12 start-page: 231 issue: 13 year: 1985 ident: 10.1016/j.cmpb.2019.105165_bib0033 article-title: Implications of kinetic heterogeneity in clinical oncology publication-title: Semin. Oncol. – volume: 264 start-page: 542 year: 1976 ident: 10.1016/j.cmpb.2019.105165_bib0032 article-title: Predicting the course of gompertzian growth publication-title: Nature doi: 10.1038/264542a0 – volume: 76 start-page: 4931 issue: 17 year: 2016 ident: 10.1016/j.cmpb.2019.105165_bib0011 article-title: Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3567 – volume: 77 start-page: 1934 issue: 10 year: 2015 ident: 10.1016/j.cmpb.2019.105165_bib0031 article-title: Estimating tumor growth rates in vivo publication-title: Bull. Math. Biol. doi: 10.1007/s11538-015-0110-8 – volume: 37 start-page: 5023 issue: 11 year: 2018 ident: 10.1016/j.cmpb.2019.105165_bib0047 article-title: Filtering-based maximum likelihood gradient iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: Circuits Syst Signal Process doi: 10.1007/s00034-018-0800-1 – year: 2017 ident: 10.1016/j.cmpb.2019.105165_bib0003 – volume: 7 issue: 13542 year: 2017 ident: 10.1016/j.cmpb.2019.105165_bib0012 article-title: Prediction of treatment response for combined chemo- and radiation therapy for non-small cell lung cancer patients using a bio-mathematical model publication-title: Sci. Rep. – volume: 18 start-page: 490 issue: 3 year: 1965 ident: 10.1016/j.cmpb.2019.105165_bib0020 article-title: Dynamics of tumour growth publication-title: Br. J. Cancer doi: 10.1038/bjc.1964.55 – volume: 32 start-page: 99 issue: 1 year: 2008 ident: 10.1016/j.cmpb.2019.105165_bib0006 article-title: Optimal delivery of chemotherapeutic agents in cancer publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.07.001 – volume: 36 start-page: 203 issue: 2 year: 2005 ident: 10.1016/j.cmpb.2019.105165_bib0043 article-title: Inference in gompertz-type nonhomogeneous stochastic systems by means of discrete sampling publication-title: Cybern. Syst. doi: 10.1080/01969720590897233 – volume: 52 start-page: 50 issue: 1 year: 1996 ident: 10.1016/j.cmpb.2019.105165_bib0042 article-title: Modeling of nonlinear growth curve on series of correlated count data measured at unequally spaced times: a full likelihood based approach publication-title: Biometrics doi: 10.2307/2533143 – volume: 163 start-page: 1059 issue: 5 year: 2015 ident: 10.1016/j.cmpb.2019.105165_bib0013 article-title: Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort publication-title: Cell doi: 10.1016/j.cell.2015.11.002 – volume: 50 start-page: 12203 issue: 1 year: 2017 ident: 10.1016/j.cmpb.2019.105165_bib0035 article-title: Comparing methods for parameter estimation of the gompertz tumor growth model publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.08.2289 – volume: 47 start-page: 39 issue: 1 year: 2011 ident: 10.1016/j.cmpb.2019.105165_bib0039 article-title: System identification of nonlinear state-space models publication-title: Automatica doi: 10.1016/j.automatica.2010.10.013 – year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0001 – volume: 33 start-page: 1189 issue: 7 year: 2019 ident: 10.1016/j.cmpb.2019.105165_bib0048 article-title: The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3029 – volume: 42 start-page: 1095 issue: 5 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0024 article-title: Multiprocess dynamic modeling of tumor evolution with Bayesian tumor-specific predictions publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-0975-y – volume: 11 start-page: 161 issue: 2 year: 1978 ident: 10.1016/j.cmpb.2019.105165_bib0028 article-title: Characteristic species dependent growth patterns of mammalian neoplasms publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1978.tb00884.x – ident: 10.1016/j.cmpb.2019.105165_bib0052 – volume: 76 start-page: 2010 issue: 8 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0022 article-title: A comparison and catalog of intrinsic tumor growth models publication-title: Bull. Math. Biol. doi: 10.1007/s11538-014-9986-y – volume: 38 start-page: 403 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0045 article-title: Combined state and least squares parameter estimation algorithms for dynamic systems publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2013.06.007 – volume: 2 start-page: 204 issue: 2 year: 2012 ident: 10.1016/j.cmpb.2019.105165_bib0009 article-title: Predicting success or failure of immunotherapy for cancer: insights from a clinically applicable mathematical model publication-title: Am. J. Cancer Res. – volume: 115 start-page: 513 year: 1825 ident: 10.1016/j.cmpb.2019.105165_bib0019 article-title: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies publication-title: Philos. Trans. R. Soc. Lond. – ident: 10.1016/j.cmpb.2019.105165_bib0053 – volume: 10 issue: 8 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0018 article-title: Classical mathematical models for description and prediction of experimental tumor growth publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003800 – volume: 50 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.cmpb.2019.105165_bib0034 article-title: Towards prediction and modulation of treatment response publication-title: Radiother. Oncol. doi: 10.1016/S0167-8140(99)00009-2 – volume: 160 start-page: 1 year: 2018 ident: 10.1016/j.cmpb.2019.105165_bib0036 article-title: Tumor growth modeling: parameter estimation with maximum likelihood methods publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.03.014 – volume: 95 start-page: 2069 issue: 8 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0050 article-title: Density-dependent state-space model for population-abundance data with unequal time intervals publication-title: Ecology doi: 10.1890/13-1486.1 – volume: 76 start-page: 535 issue: 3 year: 2016 ident: 10.1016/j.cmpb.2019.105165_bib0010 article-title: Modeling spontaneous metastasis following surgery: an in vivo-in silico approach publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-1389 – volume: 13 start-page: 455 issue: 4 year: 1980 ident: 10.1016/j.cmpb.2019.105165_bib0029 article-title: The gompertz equation and the construction of tumour growth curves publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1980.tb00486.x – volume: 52 start-page: 808 issue: 5 year: 2005 ident: 10.1016/j.cmpb.2019.105165_bib0026 article-title: Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: implications for clinical oncology publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.845219 – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 10.1016/j.cmpb.2019.105165_bib0004 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 20 start-page: 4934 issue: 30 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0015 article-title: Mathematical modeling of tumor growth and treatment publication-title: Curr. Pharm. Des. doi: 10.2174/1381612819666131125150434 – volume: 61 start-page: 415 issue: 2 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0005 article-title: Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2280189 – volume: 10 start-page: 1 issue: 12 year: 2015 ident: 10.1016/j.cmpb.2019.105165_bib0025 article-title: Model-based tumor growth dynamics and therapy response in a mouse model of de novo carcinogenesis publication-title: PLOS ONE doi: 10.1371/journal.pone.0143840 – volume: 104 start-page: 369 year: 2014 ident: 10.1016/j.cmpb.2019.105165_bib0044 article-title: State filtering and parameter estimation for state space systems with scarce measurements publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.03.031 |
SSID | ssj0002556 |
Score | 2.2978253 |
Snippet | •Maximum Likelihood estimators can provide reliable growth predictions on individual basis for certain types of cancer.•The heterogeneity of tumor growth is an... In this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on measurements from mice... Background & ObjectiveIn this work, we focus on estimating the parameters of the Gompertz model in order to predict tumor growth. The estimation is based on... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105165 |
SubjectTerms | Animals Applications Artificial Intelligence Biotechnology Cancer Computation Computer Science Discrete Mathematics Distributed, Parallel, and Cluster Computing Engineering Sciences General Mathematics Least squares Life Sciences Likelihood Functions Machine Learning Mathematics Maximum likelihood Methodology Mice Mice, Transgenic Modeling and Simulation Nonlinear systems Numerical Analysis Optimization and Control Parameter estimation Probability Programming Languages Signal and Image Processing Skin Neoplasms - pathology Software Engineering Statistics Systems and Control Tumor growth modeling |
Title | Individualized growth prediction of mice skin tumors with maximum likelihood estimators |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260719302184 https://dx.doi.org/10.1016/j.cmpb.2019.105165 https://www.ncbi.nlm.nih.gov/pubmed/31710982 https://www.proquest.com/docview/2314013349 https://hal.science/hal-02361464 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-tnYR4QXxTPiaDeEOhje3Y9WM1MXXA9gITe7OcxNnCmrRq02nigb-du8aJhARD4jFWLrJ-Z99HfPczwFvMkIm5TEdOT10ks8RFTjpUSDLJlJhkXHPqRj45VfMz-fE8Od-Dw64Xhsoqg-1vbfrOWoeRcUBzvCrL8RfiEeFEj2bELlEZwD4XRiVD2J8df5qf9gaZWLZaim8TkUDonWnLvLJqlVKFl6Ebb2PyMX_2T4NLKpT8WxS680ZH9-FeCCPZrJ3pA9jz9UO4cxIOyh_Bt-O-0ar84XN2gdl2c8lWa3qDdMGWBaOb6NnmqqxZs62W6w2jn7Kscjdlta3Yorzyi5JYjxkxcVSUnW8ew9nRh6-H8yjcoRBlGOg0UaoMblFhptLzXOlUcV3EWudaJc5h9JUaybnWiJAyOp0qIT2iUCRFQjwwuRdPYFgva_8MmEekdSGTLEMF5xOd6kIQm1vq8LHwfARxh5zNAsE43XOxsF0l2XdLaFtC27Zoj-BdL7Nq6TVufVt0CrFd4yiaOovW_1appJf6bWn9U-4N6ryfFvFwz2efLY0R7T66GHkdj-B1tyQsbkw6bXG1X243FgNnyl2FNCN42q6V_lsYtMUTM-XP_3NqL-Aup7x_Vwv3EobNeutfYXDUpAcweP8zPghb4BfOogmD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RYJeKt5seRnEDYXd-BGvj1VFtYXdXmhFb5aTODR0k13tZquqB347M3khJCgSx1ieyJqx52HPfAPwDiNkQi7TgdNjF8hEucBJhwJRoyQSo4RrTtXIs5NociY_navzLTjsamEorbLV_Y1Or7V1OzJsuTlc5vnwC-GIcIJHM6IOVLbhjlRCU17fhx-_8jwIY6sB-DYBTW8rZ5okr6RYxpTfZajfbUgW5s_WafuC0iT_5oPWtujoPuy1TiQ7aNb5ALZ8-RDuztpn8kfw9bgvs8pvfMq-YaxdXbDlimaQJNgiY9SHnq0v85JVm2KxWjO6kmWFu86LTcHm-aWf54R5zAiHo6DYfP0Yzo4-nh5OgraDQpCgm1MFcWTwgAozlp6nkY4jrrNQ61RHyjn0vWIjOdcaORQZHY8jIT1yIVOZIhSY1IsnsFMuSv8MmEc-60yqJEHxpiMd60wQllvs8DPzfABhxzmbtPDi1OVibrs8su-WuG2J27bh9gDe9zTLBlzj1tmiE4jtykZR0VnU_bdSqZ7qt431T7q3KPN-WYTCPTmYWhoj0H00MPIqHMCbbktYPJb01uJKv9isLbrNFLkKaQbwtNkr_b_QZQtHZsz3_3Npr-He5HQ2tdPjk8_PYZfTDUCdFfcCdqrVxr9EN6mKX9XH4CcJyQpO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individualized+growth+prediction+of+mice+skin+tumors+with+maximum+likelihood+estimators&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Patmanidis%2C+Spyridon&rft.au=Charalampidis%2C+Alexandros+C&rft.au=Kordonis%2C+Ioannis&rft.au=Strati%2C+Katerina&rft.date=2020-03-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=185&rft.spage=105165&rft_id=info:doi/10.1016%2Fj.cmpb.2019.105165&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |