Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a singl...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 35; pp. 4396 - 4405 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T
contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer. |
---|---|
AbstractList | Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T
2
contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer. Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron oxide (SPIO) as a contrast agent is one of the most effective techniques for evaluating antitumor therapy. However, constructing a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene (CMG) nanoparticle platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivoMRI suggest CMG as a strong T sub(2) contrast-enhancing agent. CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and are more effective (IC sub(50) = 2 mu M) in killing A549 lung cancer cells than free DOX (IC sub(50) = 4 mu M). CMGs efficiently deliver plasmid DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of plasmid DNA encoding green fluorescent protein (GFP) encapsulated within DOX-CMGs into tumor-bearing mice has shown both GFP expression and DOX accumulation at the tumor site at 24 and 48 h after administration. These results indicate that CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene-therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real-time monitoring of therapeutic effects for cancer. Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer. Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer. Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron oxide (SPIO) as a contrast agent is one of the most effective techniques for evaluating antitumor therapy. However, constructing a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene (CMG) nanoparticle platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI suggest CMG as a strong T₂ contrast-enhancing agent. CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX–CMGs) release DOX faster at pH 5.1 than at pH 7.4, and are more effective (IC₅₀ = 2 μM) in killing A549 lung cancer cells than free DOX (IC₅₀ = 4 μM). CMGs efficiently deliver plasmid DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of plasmid DNA encoding green fluorescent protein (GFP) encapsulated within DOX–CMGs into tumor-bearing mice has shown both GFP expression and DOX accumulation at the tumor site at 24 and 48 h after administration. These results indicate that CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene-therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real-time monitoring of therapeutic effects for cancer. |
Author | Ravi, Sowndharya Garapati, Ujjwala Sree Mohapatra, Subhra Alwarappan, Subbiah Howell, Mark Mohapatra, Shyam S. Das, Mahasweta Wang, Chunyan Mallela, Jaya |
AuthorAffiliation | a Molecular Medicine Department, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A b USF Nanomedicine Research Center, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A c Division of Translational Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A |
AuthorAffiliation_xml | – name: a Molecular Medicine Department, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A – name: b USF Nanomedicine Research Center, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A – name: c Division of Translational Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A |
Author_xml | – sequence: 1 givenname: Chunyan surname: Wang fullname: Wang, Chunyan – sequence: 2 givenname: Sowndharya surname: Ravi fullname: Ravi, Sowndharya – sequence: 3 givenname: Ujjwala Sree surname: Garapati fullname: Garapati, Ujjwala Sree – sequence: 4 givenname: Mahasweta surname: Das fullname: Das, Mahasweta – sequence: 5 givenname: Mark surname: Howell fullname: Howell, Mark – sequence: 6 givenname: Jaya surname: Mallela fullname: Mallela, Jaya – sequence: 7 givenname: Subbiah surname: Alwarappan fullname: Alwarappan, Subbiah – sequence: 8 givenname: Shyam S. surname: Mohapatra fullname: Mohapatra, Shyam S. – sequence: 9 givenname: Subhra surname: Mohapatra fullname: Mohapatra, Subhra |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24883188$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1qFTEUhQep2Fp74wNILmtxNMkkcxIvBDloLfQgiIJ3YU8mmROZSaZJptCH6buaQ3_8Qai5SMLOt1f2gvW02vPBm6p6TvBrghv5Rje5o5hxCo-qA4o5rleciL37O_6-Xx2l9AOXJUgrGvak2qdMiIYIcVBdb5YxO7t4nV3wMCK9dTkk8GiCwZvsdD1EmLfGG3S83py-RB58mCGWl9GktwhQ3ppYaqlU0DxCtiFOqGwoL1OIdYY4mGx6pEPdm9FdmniFgkV9XIb0Cg1FOSHwPdp8OSuMzxFSRlDqOT2rHlsYkzm6PQ-rbx8_fF1_qs8_n56t35_XmjGS645wqbu27QR0wnJCxEowCoSx4hN0u-o06aGxlq4kN5xqKS0DK6VpeSehaw6rdze689JNptdmN8Wo5ugmiFcqgFN_vni3VUO4VAw3raBtETi-FYjhYjEpq8klbcYRvAlLUrTZfS1xKx9ESdHjUghOHkZbRpsGM9H-B0ox5ryMUdAXv5u9d3kXigLgG0DHkFI0VmmXYZeP4t2NimC1i576Fb3ScvJXy53qP-Cfz2ncVg |
CitedBy_id | crossref_primary_10_1080_21691401_2017_1421211 crossref_primary_10_1007_s10904_022_02457_z crossref_primary_10_1007_s44174_023_00144_2 crossref_primary_10_1016_j_ijpharm_2017_06_079 crossref_primary_10_1016_j_pmatsci_2020_100683 crossref_primary_10_1038_gt_2016_79 crossref_primary_10_1002_anbr_202300070 crossref_primary_10_1016_j_ijbiomac_2024_138621 crossref_primary_10_1016_j_carbpol_2019_04_068 crossref_primary_10_1016_j_molliq_2020_114515 crossref_primary_10_1021_acs_biomac_2c00184 crossref_primary_10_1007_s40097_020_00369_3 crossref_primary_10_1016_j_carbpol_2020_116952 crossref_primary_10_1039_C5AY02334C crossref_primary_10_1039_c4tb00390j crossref_primary_10_1016_j_eurpolymj_2023_112576 crossref_primary_10_1016_j_ijbiomac_2023_125322 crossref_primary_10_1039_C4RA09657F crossref_primary_10_1016_j_colsurfb_2017_04_025 crossref_primary_10_1016_j_nano_2023_102675 crossref_primary_10_1557_s43580_021_00087_0 crossref_primary_10_1021_acsami_6b00284 crossref_primary_10_1039_C6NJ01765G crossref_primary_10_1088_1757_899X_164_1_012026 crossref_primary_10_1016_j_addr_2015_11_015 crossref_primary_10_1016_j_carbon_2018_09_019 crossref_primary_10_3390_molecules26164735 crossref_primary_10_1016_j_ijbiomac_2020_08_143 crossref_primary_10_1016_j_cis_2023_102953 crossref_primary_10_1016_j_cbi_2016_11_019 crossref_primary_10_1016_j_thorsurg_2015_12_009 crossref_primary_10_1007_s12668_024_01752_y crossref_primary_10_1016_j_mtchem_2023_101750 crossref_primary_10_1016_j_ijbiomac_2021_02_123 crossref_primary_10_1016_j_jddst_2021_103085 crossref_primary_10_1016_j_pmatsci_2020_100742 crossref_primary_10_1021_acsbiomaterials_1c01631 crossref_primary_10_1039_C4NR00612G crossref_primary_10_1002_smll_201603685 crossref_primary_10_1039_C8NH00318A crossref_primary_10_3389_fcell_2021_637192 crossref_primary_10_1039_C4CS00519H crossref_primary_10_1021_acsami_6b08808 crossref_primary_10_1142_S2424942417500116 crossref_primary_10_1039_C4NR03482A crossref_primary_10_1039_D0TB01149E crossref_primary_10_1002_adfm_201603524 crossref_primary_10_4155_tde_2015_0003 crossref_primary_10_1021_acsami_7b06062 crossref_primary_10_3390_app10165529 crossref_primary_10_1016_j_semcancer_2019_08_014 crossref_primary_10_1155_2016_2412958 crossref_primary_10_1002_cjce_24850 crossref_primary_10_1021_cr500537t crossref_primary_10_1002_EXP_20220002 crossref_primary_10_1016_j_apsusc_2020_145738 crossref_primary_10_1186_s11671_024_03960_7 crossref_primary_10_1016_j_biotechadv_2016_02_001 crossref_primary_10_1007_s11051_017_3833_7 crossref_primary_10_1080_17425247_2019_1556257 crossref_primary_10_1021_nn501836x crossref_primary_10_1039_c3tb20907e crossref_primary_10_2147_IJN_S265876 crossref_primary_10_4155_tde_14_87 crossref_primary_10_3390_pharmaceutics11050216 crossref_primary_10_24018_ejmed_2020_2_5_482 crossref_primary_10_1002_adma_201800662 crossref_primary_10_1002_med_21506 crossref_primary_10_1039_C7RA08287H crossref_primary_10_2174_0109298673251648231106112354 crossref_primary_10_1002_slct_201903145 crossref_primary_10_1177_2472630317738699 crossref_primary_10_3390_polysaccharides6010011 crossref_primary_10_2217_nnm_15_65 crossref_primary_10_1002_btm2_10325 crossref_primary_10_1007_s10948_017_4333_9 crossref_primary_10_1038_s41598_020_76015_3 crossref_primary_10_1021_mp5006883 crossref_primary_10_1007_s13346_015_0218_2 crossref_primary_10_1111_bph_12984 crossref_primary_10_1016_j_jddst_2021_102847 crossref_primary_10_1021_acs_langmuir_8b02710 crossref_primary_10_1038_srep28252 crossref_primary_10_1070_RC2014v083n04ABEH004412 crossref_primary_10_2478_ebtj_2018_0019 crossref_primary_10_1039_C5RA13082D crossref_primary_10_1002_adhm_201700886 crossref_primary_10_1016_j_msec_2018_05_018 crossref_primary_10_1016_j_addr_2016_04_004 crossref_primary_10_1186_s12967_024_05438_7 crossref_primary_10_1021_acsbiomaterials_8b00376 crossref_primary_10_1039_C8TB00121A crossref_primary_10_1016_j_molliq_2021_115746 crossref_primary_10_1016_j_addr_2021_113830 crossref_primary_10_1016_j_molliq_2022_120703 crossref_primary_10_1080_17435390_2019_1708494 crossref_primary_10_1021_acsabm_0c01656 crossref_primary_10_1016_j_ijbiomac_2022_09_084 crossref_primary_10_1016_j_msec_2017_05_054 crossref_primary_10_1016_j_ejps_2019_105036 crossref_primary_10_1016_j_carbpol_2018_08_064 crossref_primary_10_3390_ijms17091440 crossref_primary_10_1016_j_ccr_2018_01_007 crossref_primary_10_1039_C4NR07335E crossref_primary_10_1016_j_jconrel_2015_04_021 crossref_primary_10_1155_2016_5851035 crossref_primary_10_33483_jfpau_717067 crossref_primary_10_1016_j_apsadv_2023_100470 crossref_primary_10_1016_j_carbpol_2018_10_076 crossref_primary_10_1016_j_eurpolymj_2021_110812 crossref_primary_10_1016_j_bbrc_2015_06_131 crossref_primary_10_1166_sam_2022_4329 crossref_primary_10_1016_j_nanoms_2024_06_004 crossref_primary_10_1007_s40005_021_00513_3 crossref_primary_10_1021_acsanm_1c00852 crossref_primary_10_1517_17425247_2015_978760 crossref_primary_10_1038_srep10873 crossref_primary_10_1016_j_mseb_2021_115325 crossref_primary_10_54738_MI_2022_2305 crossref_primary_10_1039_C4RA01589D |
Cites_doi | 10.1016/j.jconrel.2012.04.030 10.1016/j.biomaterials.2011.12.010 10.1038/nprot.2007.352 10.1021/bc200397j 10.1007/s12274-008-8021-8 10.1002/adma.201104964 10.1208/aapsj0901009 10.1080/08982100500364081 10.1021/jp806751k 10.1007/s11547-010-0560-x 10.1021/nl100996u 10.1002/smll.201100191 10.1021/ja104017y 10.1016/S1525-0016(03)00203-X 10.1002/anie.200901479 10.1007/s00330-008-1163-y 10.1016/j.bios.2010.02.022 10.1021/nn300172t 10.1155/2012/915375 10.1245/s10434-011-1710-7 10.2217/17435889.3.6.761 10.1002/smll.200901680 10.1016/j.biomaterials.2011.11.064 10.1002/mame.201000307 10.1165/ajrcmb.25.1.4472 10.1021/nn204625e 10.1002/smll.200901360 10.1016/j.msec.2012.03.016 10.1002/adfm.200901639 10.1038/nature04969 10.1039/b926893f 10.1021/ja803688x 10.1002/jbm.a.34148 10.1002/smll.200900621 10.1159/000336116 10.1021/nn800325a 10.1002/adma.201104864 10.1021/nn1024303 10.1016/j.biomaterials.2009.11.077 10.1039/C0JM02494E 10.1038/nmat1737 10.1039/c0nr00680g 10.1039/c1jm10341e 10.1016/j.biomaterials.2009.06.026 10.1007/s11671-010-9751-6 10.1002/adma.201104070 10.1007/s00280-008-0790-y 10.1016/j.ejrad.2008.09.005 10.1039/c2py20343j 10.1016/j.pmatsci.2012.03.002 |
ContentType | Journal Article |
Copyright | The Royal Society of Chemistry [year] |
Copyright_xml | – notice: The Royal Society of Chemistry [year] |
DBID | AAYXX CITATION NPM 8FD FR3 P64 RC3 7SC 7U5 JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
DOI | 10.1039/c3tb20452a |
DatabaseName | CrossRef PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Genetics Abstracts PubMed MEDLINE - Academic Technology Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Medicine |
EISSN | 2050-7518 |
EndPage | 4405 |
ExternalDocumentID | PMC4036826 24883188 10_1039_c3tb20452a |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA152005 |
GroupedDBID | 0-7 0R~ 4.4 53G 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION D0L EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH NPM 8FD FR3 P64 RC3 7SC 7U5 JQ2 L7M L~C L~D 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c441t-b159cb66b8ab8f51187842a144488ac67bc1da3ff2795e52c99f4af99e65b9ab3 |
ISSN | 2050-750X 2050-7518 |
IngestDate | Thu Aug 21 14:10:45 EDT 2025 Fri Jul 11 03:34:44 EDT 2025 Fri Jul 11 13:59:24 EDT 2025 Fri Jul 11 05:25:40 EDT 2025 Thu Jul 10 18:44:57 EDT 2025 Mon Jul 21 05:20:08 EDT 2025 Tue Jul 01 04:26:59 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-b159cb66b8ab8f51187842a144488ac67bc1da3ff2795e52c99f4af99e65b9ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24883188 |
PQID | 1620055327 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4036826 proquest_miscellaneous_2327959069 proquest_miscellaneous_1826598851 proquest_miscellaneous_1642330486 proquest_miscellaneous_1620055327 pubmed_primary_24883188 crossref_citationtrail_10_1039_c3tb20452a crossref_primary_10_1039_c3tb20452a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-21 |
PublicationDateYYYYMMDD | 2013-09-21 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2013 |
References | Yang (c3tb20452a-(cit43)/*[position()=1]) 2012; 33 Bao (c3tb20452a-(cit28)/*[position()=1]) 2011; 7 Gao (c3tb20452a-(cit7)/*[position()=1]) 2007; 9 Saad (c3tb20452a-(cit8)/*[position()=1]) 2008; 3 He (c3tb20452a-(cit17)/*[position()=1]) 2010; 20 Jie Huang (c3tb20452a-(cit50)/*[position()=1]) 2012; 8 Hong (c3tb20452a-(cit41)/*[position()=1]) 2012; 6 Chen (c3tb20452a-(cit12)/*[position()=1]) 2009; 5 Kaneshiro (c3tb20452a-(cit9)/*[position()=1]) 2009; 30 Agrawal (c3tb20452a-(cit3)/*[position()=1]) 2005; 15 Wang (c3tb20452a-(cit30)/*[position()=1]) 2011; 6 Hu (c3tb20452a-(cit40)/*[position()=1]) 2012; 24 Rana (c3tb20452a-(cit47)/*[position()=1]) 2011; 296 Lu (c3tb20452a-(cit23)/*[position()=1]) 2010; 46 Chen (c3tb20452a-(cit53)/*[position()=1]) 2011; 21 Aryal (c3tb20452a-(cit4)/*[position()=1]) 2010; 1 Gollavelli (c3tb20452a-(cit44)/*[position()=1]) 2012; 33 Yang (c3tb20452a-(cit22)/*[position()=1]) 2008; 112 Coenegrachts (c3tb20452a-(cit15)/*[position()=1]) 2009; 72 Coenegrachts (c3tb20452a-(cit14)/*[position()=1]) 2009; 19 Liu (c3tb20452a-(cit36)/*[position()=1]) 2001; 25 Motomura (c3tb20452a-(cit56)/*[position()=1]) 2011; 18 Kuila (c3tb20452a-(cit45)/*[position()=1]) 2012; 57 Cong (c3tb20452a-(cit35)/*[position()=1]) 2010; 6 Stankovich (c3tb20452a-(cit32)/*[position()=1]) 2006; 442 Bacigalupo (c3tb20452a-(cit13)/*[position()=1]) 2010; 115 Yang (c3tb20452a-(cit49)/*[position()=1]) 2011; 21 Sun (c3tb20452a-(cit19)/*[position()=1]) 2008; 1 Yang (c3tb20452a-(cit29)/*[position()=1]) 2010; 10 Deddens (c3tb20452a-(cit55)/*[position()=1]) 2012; 33 Zhu (c3tb20452a-(cit11)/*[position()=1]) 2010; 31 Bao (c3tb20452a-(cit46)/*[position()=1]) 2011; 7 Wang (c3tb20452a-(cit10)/*[position()=1]) 2006; 5 Yadav (c3tb20452a-(cit5)/*[position()=1]) 2009; 63 Mykhaylyk (c3tb20452a-(cit34)/*[position()=1]) 2007; 2 Li (c3tb20452a-(cit39)/*[position()=1]) 2012; 24 Qingxin Mu (c3tb20452a-(cit51)/*[position()=1]) 2012 Tang (c3tb20452a-(cit25)/*[position()=1]) 2010; 132 Zhang (c3tb20452a-(cit21)/*[position()=1]) 2010; 6 Yang (c3tb20452a-(cit48)/*[position()=1]) 2012; 24 Kim (c3tb20452a-(cit54)/*[position()=1]) 2011; 22 Lin (c3tb20452a-(cit1)/*[position()=1]) 2003; 8 Liu (c3tb20452a-(cit20)/*[position()=1]) 2008; 130 Ren (c3tb20452a-(cit27)/*[position()=1]) 2012; 3 Shen (c3tb20452a-(cit37)/*[position()=1]) 2012; 100 Feng (c3tb20452a-(cit26)/*[position()=1]) 2011; 3 Zhang (c3tb20452a-(cit38)/*[position()=1]) 2012; 32 Wu (c3tb20452a-(cit52)/*[position()=1]) 2008; 2 Wang (c3tb20452a-(cit33)/*[position()=1]) 2012; 163 Yang (c3tb20452a-(cit31)/*[position()=1]) 2011; 5 Singh (c3tb20452a-(cit42)/*[position()=1]) 2012; 6 Nan (c3tb20452a-(cit2)/*[position()=1]) 2012 Liu (c3tb20452a-(cit16)/*[position()=1]) 2010; 25 Lu (c3tb20452a-(cit24)/*[position()=1]) 2009; 48 Onur Parlak (c3tb20452a-(cit18)/*[position()=1]) 2013; 49 |
References_xml | – volume: 163 start-page: 82 year: 2012 ident: c3tb20452a-(cit33)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2012.04.030 – volume: 33 start-page: 2532 year: 2012 ident: c3tb20452a-(cit44)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.12.010 – volume: 2 start-page: 2391 year: 2007 ident: c3tb20452a-(cit34)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.352 – volume: 22 start-page: 2558 year: 2011 ident: c3tb20452a-(cit54)/*[position()=1] publication-title: Bioconjugate Chem. doi: 10.1021/bc200397j – start-page: 8 year: 2012 ident: c3tb20452a-(cit51)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 203 year: 2008 ident: c3tb20452a-(cit19)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-008-8021-8 – volume: 24 start-page: 1868 year: 2012 ident: c3tb20452a-(cit48)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104964 – volume: 9 start-page: E92 year: 2007 ident: c3tb20452a-(cit7)/*[position()=1] publication-title: AAPS J. doi: 10.1208/aapsj0901009 – volume: 15 start-page: 141 year: 2005 ident: c3tb20452a-(cit3)/*[position()=1] publication-title: J. Liposome Res. doi: 10.1080/08982100500364081 – volume: 112 start-page: 17554 year: 2008 ident: c3tb20452a-(cit22)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp806751k – volume: 115 start-page: 1087 year: 2010 ident: c3tb20452a-(cit13)/*[position()=1] publication-title: Radiol. Med. doi: 10.1007/s11547-010-0560-x – volume: 10 start-page: 3318 year: 2010 ident: c3tb20452a-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl100996u – volume: 1 start-page: 12 year: 2010 ident: c3tb20452a-(cit4)/*[position()=1] publication-title: Ther. Delivery – volume: 7 start-page: 1569 year: 2011 ident: c3tb20452a-(cit28)/*[position()=1] publication-title: Small doi: 10.1002/smll.201100191 – volume: 132 start-page: 10976 year: 2010 ident: c3tb20452a-(cit25)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104017y – volume: 7 start-page: 1569 year: 2011 ident: c3tb20452a-(cit46)/*[position()=1] publication-title: Small doi: 10.1002/smll.201100191 – volume: 8 start-page: 441 year: 2003 ident: c3tb20452a-(cit1)/*[position()=1] publication-title: Mol. Ther. doi: 10.1016/S1525-0016(03)00203-X – volume: 48 start-page: 4785 year: 2009 ident: c3tb20452a-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901479 – volume: 19 start-page: 370 year: 2009 ident: c3tb20452a-(cit14)/*[position()=1] publication-title: Eur. J. Radiol. doi: 10.1007/s00330-008-1163-y – volume: 25 start-page: 2361 year: 2010 ident: c3tb20452a-(cit16)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.02.022 – volume: 6 start-page: 2731 year: 2012 ident: c3tb20452a-(cit42)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn300172t – year: 2012 ident: c3tb20452a-(cit2)/*[position()=1] publication-title: J. Drug Delivery doi: 10.1155/2012/915375 – volume: 18 start-page: 3422 year: 2011 ident: c3tb20452a-(cit56)/*[position()=1] publication-title: Ann. Surg. Oncol. doi: 10.1245/s10434-011-1710-7 – volume: 3 start-page: 761 year: 2008 ident: c3tb20452a-(cit8)/*[position()=1] publication-title: Nanomedicine doi: 10.2217/17435889.3.6.761 – volume: 6 start-page: 537 year: 2010 ident: c3tb20452a-(cit21)/*[position()=1] publication-title: Small doi: 10.1002/smll.200901680 – volume: 33 start-page: 2206 year: 2012 ident: c3tb20452a-(cit43)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.11.064 – volume: 296 start-page: 131 year: 2011 ident: c3tb20452a-(cit47)/*[position()=1] publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201000307 – volume: 25 start-page: 111 year: 2001 ident: c3tb20452a-(cit36)/*[position()=1] publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.25.1.4472 – volume: 8 start-page: 8 year: 2012 ident: c3tb20452a-(cit50)/*[position()=1] publication-title: Small – volume: 6 start-page: 2361 year: 2012 ident: c3tb20452a-(cit41)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn204625e – volume: 6 start-page: 169 year: 2010 ident: c3tb20452a-(cit35)/*[position()=1] publication-title: Small doi: 10.1002/smll.200901360 – volume: 32 start-page: 1247 year: 2012 ident: c3tb20452a-(cit38)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2012.03.016 – volume: 20 start-page: 453 year: 2010 ident: c3tb20452a-(cit17)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901639 – volume: 442 start-page: 282 year: 2006 ident: c3tb20452a-(cit32)/*[position()=1] publication-title: Nature doi: 10.1038/nature04969 – volume: 46 start-page: 3116 year: 2010 ident: c3tb20452a-(cit23)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b926893f – volume: 49 start-page: 10 year: 2013 ident: c3tb20452a-(cit18)/*[position()=1] publication-title: Biosens. Bioelectron. – volume: 130 start-page: 10876 year: 2008 ident: c3tb20452a-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803688x – volume: 100 start-page: 2499 year: 2012 ident: c3tb20452a-(cit37)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.34148 – volume: 5 start-page: 2673 year: 2009 ident: c3tb20452a-(cit12)/*[position()=1] publication-title: Small doi: 10.1002/smll.200900621 – volume: 33 start-page: 392 year: 2012 ident: c3tb20452a-(cit55)/*[position()=1] publication-title: Cerebrovasc. Dis. doi: 10.1159/000336116 – volume: 2 start-page: 2023 year: 2008 ident: c3tb20452a-(cit52)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn800325a – volume: 24 start-page: 1722 year: 2012 ident: c3tb20452a-(cit39)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104864 – volume: 5 start-page: 516 year: 2011 ident: c3tb20452a-(cit31)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn1024303 – volume: 31 start-page: 2408 year: 2010 ident: c3tb20452a-(cit11)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.077 – volume: 21 start-page: 3448 year: 2011 ident: c3tb20452a-(cit49)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/C0JM02494E – volume: 5 start-page: 791 year: 2006 ident: c3tb20452a-(cit10)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1737 – volume: 3 start-page: 1252 year: 2011 ident: c3tb20452a-(cit26)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c0nr00680g – volume: 21 start-page: 7736 year: 2011 ident: c3tb20452a-(cit53)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm10341e – volume: 30 start-page: 5660 year: 2009 ident: c3tb20452a-(cit9)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.06.026 – volume: 6 year: 2011 ident: c3tb20452a-(cit30)/*[position()=1] publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9751-6 – volume: 24 start-page: 1748 year: 2012 ident: c3tb20452a-(cit40)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201104070 – volume: 63 start-page: 711 year: 2009 ident: c3tb20452a-(cit5)/*[position()=1] publication-title: Cancer Chemother. Pharmacol. doi: 10.1007/s00280-008-0790-y – volume: 72 start-page: 432 year: 2009 ident: c3tb20452a-(cit15)/*[position()=1] publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2008.09.005 – volume: 3 start-page: 2561 year: 2012 ident: c3tb20452a-(cit27)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/c2py20343j – volume: 57 start-page: 1061 year: 2012 ident: c3tb20452a-(cit45)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.03.002 |
SSID | ssj0000816834 |
Score | 2.4199014 |
Snippet | Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic... Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4396 |
SubjectTerms | Cancer cancer therapy Chitosan doxorubicin Drug delivery systems drug therapy Drugs encapsulation gene therapy Genes graphene green fluorescent protein image analysis inhibitory concentration 50 iron oxides lung neoplasms magnetic resonance imaging magnetism medicine mice monitoring Nanoparticles neoplasm cells plasmids Platforms prostatic neoplasms Tumors |
Title | Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24883188 https://www.proquest.com/docview/1620055327 https://www.proquest.com/docview/1642330486 https://www.proquest.com/docview/1826598851 https://www.proquest.com/docview/2327959069 https://pubmed.ncbi.nlm.nih.gov/PMC4036826 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gIHxJvw0iI4UAW3jt_LrZS-UFukNhG5WbP2OqFKbZTYVOW_8Pf4Hczu2s6mLVXhYkXOynE8387L38wQ8tYNOUttBK_NnRADFM4sBmFmBSzzwwyDolDNjDw4DHYH3uehP1xa-m2wlqqSryU_r6wr-R-p4jmUq6yS_QfJthfFE_gZ5YtHlDAebyRjVT0rLVOd0JPvBIoZ7thTGOWyOtFS_aiFdiQ3D3ZkDiCHHANlgw8HXVWElReyZbMcK11KR1bzD6vTYmpptriQ9W9WKiaSyaHey6fTSifWR1JhasrG0Z5mv8Os7MKoaRR1hfuLnrJ-RHjX9cy5te5HXT7UfKOopEaXqItEgK91sntzXOXnc5gfwQ_FUTguzvJ0DNPz1vTsgBz4rhkMg5OTM5hA93gq2gt-0uVtB7LO7UyUYOZE5HwKZulCa606Hdu3LfSFhtrKmedqbd_ofgPirm8ocvTTAsMp8DxVHH7Z4Niu7NeauCWXff0dw6w2VILDL_H2YH8_7m8N-7fIioPhDOrjlY2t_t5-mw1U408UBaK99aaXrsvW55df9J4uhUQXmb2Gq9S_R-7WQqYbGmP3yZLIH5A7RufLh-TXBejSBrr0EnTpOwTuKl2A7QcK1AAtbUBL8UAXQUsN0NIiowq076mCLEVQUYQsbSBLNWQfkcH2Vn9z16onhVgJuvOlxdEpT3gQ8Ah4lMmgOYw8B3qeh_YJkiDkSS8FN8uckPnCdxLGMg8yxkTgcwbcfUyW8yIXTwkNfOAs5L1UROAlXob2H3UXh14GEAon6JDVRgJxUrfRl9NcJrGic7gsnkurQ960a7_r5jFXrnrdCDLG7SZf2EEuimoW9wKZ8_VdJ7xuDQZErmycec2ayAl8FmFw9fc1GFnhs2F2wDrkiQZRe88OPkW0_VGHhAvwahfIHvWL3-TfxqpXvYceMv76sxv8x-fk9nwvvyDL5bQSL9HjL_mrerv8AUofDsI |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+chitosan+magnetic-graphene+%28CMG%29+nanoparticles%3A+a+theranostic+platform+for+tumor-targeted+co-delivery+of+drugs%2C+genes+and+MRI+contrast+agents&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Wang%2C+Chunyan&rft.au=Ravi%2C+Sowndharya&rft.au=Garapati%2C+Ujjwala+Sree&rft.au=Das%2C+Mahasweta&rft.date=2013-09-21&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=1&rft.issue=35&rft.spage=4396&rft.epage=4405&rft_id=info:doi/10.1039%2Fc3tb20452a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |