Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents

Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a singl...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 1; no. 35; pp. 4396 - 4405
Main Authors Wang, Chunyan, Ravi, Sowndharya, Garapati, Ujjwala Sree, Das, Mahasweta, Howell, Mark, Mallela, Jaya, Alwarappan, Subbiah, Mohapatra, Shyam S., Mohapatra, Subhra
Format Journal Article
LanguageEnglish
Published England 21.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
AbstractList Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T 2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron oxide (SPIO) as a contrast agent is one of the most effective techniques for evaluating antitumor therapy. However, constructing a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene (CMG) nanoparticle platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivoMRI suggest CMG as a strong T sub(2) contrast-enhancing agent. CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and are more effective (IC sub(50) = 2 mu M) in killing A549 lung cancer cells than free DOX (IC sub(50) = 4 mu M). CMGs efficiently deliver plasmid DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of plasmid DNA encoding green fluorescent protein (GFP) encapsulated within DOX-CMGs into tumor-bearing mice has shown both GFP expression and DOX accumulation at the tumor site at 24 and 48 h after administration. These results indicate that CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene-therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real-time monitoring of therapeutic effects for cancer.
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron oxide (SPIO) as a contrast agent is one of the most effective techniques for evaluating antitumor therapy. However, constructing a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene (CMG) nanoparticle platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI suggest CMG as a strong T₂ contrast-enhancing agent. CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX–CMGs) release DOX faster at pH 5.1 than at pH 7.4, and are more effective (IC₅₀ = 2 μM) in killing A549 lung cancer cells than free DOX (IC₅₀ = 4 μM). CMGs efficiently deliver plasmid DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of plasmid DNA encoding green fluorescent protein (GFP) encapsulated within DOX–CMGs into tumor-bearing mice has shown both GFP expression and DOX accumulation at the tumor site at 24 and 48 h after administration. These results indicate that CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene-therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real-time monitoring of therapeutic effects for cancer.
Author Ravi, Sowndharya
Garapati, Ujjwala Sree
Mohapatra, Subhra
Alwarappan, Subbiah
Howell, Mark
Mohapatra, Shyam S.
Das, Mahasweta
Wang, Chunyan
Mallela, Jaya
AuthorAffiliation a Molecular Medicine Department, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
b USF Nanomedicine Research Center, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
c Division of Translational Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
AuthorAffiliation_xml – name: a Molecular Medicine Department, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
– name: b USF Nanomedicine Research Center, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
– name: c Division of Translational Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd,Tampa, FL, 33612,U.S.A
Author_xml – sequence: 1
  givenname: Chunyan
  surname: Wang
  fullname: Wang, Chunyan
– sequence: 2
  givenname: Sowndharya
  surname: Ravi
  fullname: Ravi, Sowndharya
– sequence: 3
  givenname: Ujjwala Sree
  surname: Garapati
  fullname: Garapati, Ujjwala Sree
– sequence: 4
  givenname: Mahasweta
  surname: Das
  fullname: Das, Mahasweta
– sequence: 5
  givenname: Mark
  surname: Howell
  fullname: Howell, Mark
– sequence: 6
  givenname: Jaya
  surname: Mallela
  fullname: Mallela, Jaya
– sequence: 7
  givenname: Subbiah
  surname: Alwarappan
  fullname: Alwarappan, Subbiah
– sequence: 8
  givenname: Shyam S.
  surname: Mohapatra
  fullname: Mohapatra, Shyam S.
– sequence: 9
  givenname: Subhra
  surname: Mohapatra
  fullname: Mohapatra, Subhra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24883188$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1qFTEUhQep2Fp74wNILmtxNMkkcxIvBDloLfQgiIJ3YU8mmROZSaZJptCH6buaQ3_8Qai5SMLOt1f2gvW02vPBm6p6TvBrghv5Rje5o5hxCo-qA4o5rleciL37O_6-Xx2l9AOXJUgrGvak2qdMiIYIcVBdb5YxO7t4nV3wMCK9dTkk8GiCwZvsdD1EmLfGG3S83py-RB58mCGWl9GktwhQ3ppYaqlU0DxCtiFOqGwoL1OIdYY4mGx6pEPdm9FdmniFgkV9XIb0Cg1FOSHwPdp8OSuMzxFSRlDqOT2rHlsYkzm6PQ-rbx8_fF1_qs8_n56t35_XmjGS645wqbu27QR0wnJCxEowCoSx4hN0u-o06aGxlq4kN5xqKS0DK6VpeSehaw6rdze689JNptdmN8Wo5ugmiFcqgFN_vni3VUO4VAw3raBtETi-FYjhYjEpq8klbcYRvAlLUrTZfS1xKx9ESdHjUghOHkZbRpsGM9H-B0ox5ryMUdAXv5u9d3kXigLgG0DHkFI0VmmXYZeP4t2NimC1i576Fb3ScvJXy53qP-Cfz2ncVg
CitedBy_id crossref_primary_10_1080_21691401_2017_1421211
crossref_primary_10_1007_s10904_022_02457_z
crossref_primary_10_1007_s44174_023_00144_2
crossref_primary_10_1016_j_ijpharm_2017_06_079
crossref_primary_10_1016_j_pmatsci_2020_100683
crossref_primary_10_1038_gt_2016_79
crossref_primary_10_1002_anbr_202300070
crossref_primary_10_1016_j_ijbiomac_2024_138621
crossref_primary_10_1016_j_carbpol_2019_04_068
crossref_primary_10_1016_j_molliq_2020_114515
crossref_primary_10_1021_acs_biomac_2c00184
crossref_primary_10_1007_s40097_020_00369_3
crossref_primary_10_1016_j_carbpol_2020_116952
crossref_primary_10_1039_C5AY02334C
crossref_primary_10_1039_c4tb00390j
crossref_primary_10_1016_j_eurpolymj_2023_112576
crossref_primary_10_1016_j_ijbiomac_2023_125322
crossref_primary_10_1039_C4RA09657F
crossref_primary_10_1016_j_colsurfb_2017_04_025
crossref_primary_10_1016_j_nano_2023_102675
crossref_primary_10_1557_s43580_021_00087_0
crossref_primary_10_1021_acsami_6b00284
crossref_primary_10_1039_C6NJ01765G
crossref_primary_10_1088_1757_899X_164_1_012026
crossref_primary_10_1016_j_addr_2015_11_015
crossref_primary_10_1016_j_carbon_2018_09_019
crossref_primary_10_3390_molecules26164735
crossref_primary_10_1016_j_ijbiomac_2020_08_143
crossref_primary_10_1016_j_cis_2023_102953
crossref_primary_10_1016_j_cbi_2016_11_019
crossref_primary_10_1016_j_thorsurg_2015_12_009
crossref_primary_10_1007_s12668_024_01752_y
crossref_primary_10_1016_j_mtchem_2023_101750
crossref_primary_10_1016_j_ijbiomac_2021_02_123
crossref_primary_10_1016_j_jddst_2021_103085
crossref_primary_10_1016_j_pmatsci_2020_100742
crossref_primary_10_1021_acsbiomaterials_1c01631
crossref_primary_10_1039_C4NR00612G
crossref_primary_10_1002_smll_201603685
crossref_primary_10_1039_C8NH00318A
crossref_primary_10_3389_fcell_2021_637192
crossref_primary_10_1039_C4CS00519H
crossref_primary_10_1021_acsami_6b08808
crossref_primary_10_1142_S2424942417500116
crossref_primary_10_1039_C4NR03482A
crossref_primary_10_1039_D0TB01149E
crossref_primary_10_1002_adfm_201603524
crossref_primary_10_4155_tde_2015_0003
crossref_primary_10_1021_acsami_7b06062
crossref_primary_10_3390_app10165529
crossref_primary_10_1016_j_semcancer_2019_08_014
crossref_primary_10_1155_2016_2412958
crossref_primary_10_1002_cjce_24850
crossref_primary_10_1021_cr500537t
crossref_primary_10_1002_EXP_20220002
crossref_primary_10_1016_j_apsusc_2020_145738
crossref_primary_10_1186_s11671_024_03960_7
crossref_primary_10_1016_j_biotechadv_2016_02_001
crossref_primary_10_1007_s11051_017_3833_7
crossref_primary_10_1080_17425247_2019_1556257
crossref_primary_10_1021_nn501836x
crossref_primary_10_1039_c3tb20907e
crossref_primary_10_2147_IJN_S265876
crossref_primary_10_4155_tde_14_87
crossref_primary_10_3390_pharmaceutics11050216
crossref_primary_10_24018_ejmed_2020_2_5_482
crossref_primary_10_1002_adma_201800662
crossref_primary_10_1002_med_21506
crossref_primary_10_1039_C7RA08287H
crossref_primary_10_2174_0109298673251648231106112354
crossref_primary_10_1002_slct_201903145
crossref_primary_10_1177_2472630317738699
crossref_primary_10_3390_polysaccharides6010011
crossref_primary_10_2217_nnm_15_65
crossref_primary_10_1002_btm2_10325
crossref_primary_10_1007_s10948_017_4333_9
crossref_primary_10_1038_s41598_020_76015_3
crossref_primary_10_1021_mp5006883
crossref_primary_10_1007_s13346_015_0218_2
crossref_primary_10_1111_bph_12984
crossref_primary_10_1016_j_jddst_2021_102847
crossref_primary_10_1021_acs_langmuir_8b02710
crossref_primary_10_1038_srep28252
crossref_primary_10_1070_RC2014v083n04ABEH004412
crossref_primary_10_2478_ebtj_2018_0019
crossref_primary_10_1039_C5RA13082D
crossref_primary_10_1002_adhm_201700886
crossref_primary_10_1016_j_msec_2018_05_018
crossref_primary_10_1016_j_addr_2016_04_004
crossref_primary_10_1186_s12967_024_05438_7
crossref_primary_10_1021_acsbiomaterials_8b00376
crossref_primary_10_1039_C8TB00121A
crossref_primary_10_1016_j_molliq_2021_115746
crossref_primary_10_1016_j_addr_2021_113830
crossref_primary_10_1016_j_molliq_2022_120703
crossref_primary_10_1080_17435390_2019_1708494
crossref_primary_10_1021_acsabm_0c01656
crossref_primary_10_1016_j_ijbiomac_2022_09_084
crossref_primary_10_1016_j_msec_2017_05_054
crossref_primary_10_1016_j_ejps_2019_105036
crossref_primary_10_1016_j_carbpol_2018_08_064
crossref_primary_10_3390_ijms17091440
crossref_primary_10_1016_j_ccr_2018_01_007
crossref_primary_10_1039_C4NR07335E
crossref_primary_10_1016_j_jconrel_2015_04_021
crossref_primary_10_1155_2016_5851035
crossref_primary_10_33483_jfpau_717067
crossref_primary_10_1016_j_apsadv_2023_100470
crossref_primary_10_1016_j_carbpol_2018_10_076
crossref_primary_10_1016_j_eurpolymj_2021_110812
crossref_primary_10_1016_j_bbrc_2015_06_131
crossref_primary_10_1166_sam_2022_4329
crossref_primary_10_1016_j_nanoms_2024_06_004
crossref_primary_10_1007_s40005_021_00513_3
crossref_primary_10_1021_acsanm_1c00852
crossref_primary_10_1517_17425247_2015_978760
crossref_primary_10_1038_srep10873
crossref_primary_10_1016_j_mseb_2021_115325
crossref_primary_10_54738_MI_2022_2305
crossref_primary_10_1039_C4RA01589D
Cites_doi 10.1016/j.jconrel.2012.04.030
10.1016/j.biomaterials.2011.12.010
10.1038/nprot.2007.352
10.1021/bc200397j
10.1007/s12274-008-8021-8
10.1002/adma.201104964
10.1208/aapsj0901009
10.1080/08982100500364081
10.1021/jp806751k
10.1007/s11547-010-0560-x
10.1021/nl100996u
10.1002/smll.201100191
10.1021/ja104017y
10.1016/S1525-0016(03)00203-X
10.1002/anie.200901479
10.1007/s00330-008-1163-y
10.1016/j.bios.2010.02.022
10.1021/nn300172t
10.1155/2012/915375
10.1245/s10434-011-1710-7
10.2217/17435889.3.6.761
10.1002/smll.200901680
10.1016/j.biomaterials.2011.11.064
10.1002/mame.201000307
10.1165/ajrcmb.25.1.4472
10.1021/nn204625e
10.1002/smll.200901360
10.1016/j.msec.2012.03.016
10.1002/adfm.200901639
10.1038/nature04969
10.1039/b926893f
10.1021/ja803688x
10.1002/jbm.a.34148
10.1002/smll.200900621
10.1159/000336116
10.1021/nn800325a
10.1002/adma.201104864
10.1021/nn1024303
10.1016/j.biomaterials.2009.11.077
10.1039/C0JM02494E
10.1038/nmat1737
10.1039/c0nr00680g
10.1039/c1jm10341e
10.1016/j.biomaterials.2009.06.026
10.1007/s11671-010-9751-6
10.1002/adma.201104070
10.1007/s00280-008-0790-y
10.1016/j.ejrad.2008.09.005
10.1039/c2py20343j
10.1016/j.pmatsci.2012.03.002
ContentType Journal Article
Copyright The Royal Society of Chemistry [year]
Copyright_xml – notice: The Royal Society of Chemistry [year]
DBID AAYXX
CITATION
NPM
8FD
FR3
P64
RC3
7SC
7U5
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
DOI 10.1039/c3tb20452a
DatabaseName CrossRef
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Genetics Abstracts
PubMed
MEDLINE - Academic
Technology Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
EISSN 2050-7518
EndPage 4405
ExternalDocumentID PMC4036826
24883188
10_1039_c3tb20452a
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA152005
GroupedDBID 0-7
0R~
4.4
53G
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
D0L
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
NPM
8FD
FR3
P64
RC3
7SC
7U5
JQ2
L7M
L~C
L~D
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c441t-b159cb66b8ab8f51187842a144488ac67bc1da3ff2795e52c99f4af99e65b9ab3
ISSN 2050-750X
2050-7518
IngestDate Thu Aug 21 14:10:45 EDT 2025
Fri Jul 11 03:34:44 EDT 2025
Fri Jul 11 13:59:24 EDT 2025
Fri Jul 11 05:25:40 EDT 2025
Thu Jul 10 18:44:57 EDT 2025
Mon Jul 21 05:20:08 EDT 2025
Tue Jul 01 04:26:59 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-b159cb66b8ab8f51187842a144488ac67bc1da3ff2795e52c99f4af99e65b9ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24883188
PQID 1620055327
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4036826
proquest_miscellaneous_2327959069
proquest_miscellaneous_1826598851
proquest_miscellaneous_1642330486
proquest_miscellaneous_1620055327
pubmed_primary_24883188
crossref_citationtrail_10_1039_c3tb20452a
crossref_primary_10_1039_c3tb20452a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-21
PublicationDateYYYYMMDD 2013-09-21
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2013
References Yang (c3tb20452a-(cit43)/*[position()=1]) 2012; 33
Bao (c3tb20452a-(cit28)/*[position()=1]) 2011; 7
Gao (c3tb20452a-(cit7)/*[position()=1]) 2007; 9
Saad (c3tb20452a-(cit8)/*[position()=1]) 2008; 3
He (c3tb20452a-(cit17)/*[position()=1]) 2010; 20
Jie Huang (c3tb20452a-(cit50)/*[position()=1]) 2012; 8
Hong (c3tb20452a-(cit41)/*[position()=1]) 2012; 6
Chen (c3tb20452a-(cit12)/*[position()=1]) 2009; 5
Kaneshiro (c3tb20452a-(cit9)/*[position()=1]) 2009; 30
Agrawal (c3tb20452a-(cit3)/*[position()=1]) 2005; 15
Wang (c3tb20452a-(cit30)/*[position()=1]) 2011; 6
Hu (c3tb20452a-(cit40)/*[position()=1]) 2012; 24
Rana (c3tb20452a-(cit47)/*[position()=1]) 2011; 296
Lu (c3tb20452a-(cit23)/*[position()=1]) 2010; 46
Chen (c3tb20452a-(cit53)/*[position()=1]) 2011; 21
Aryal (c3tb20452a-(cit4)/*[position()=1]) 2010; 1
Gollavelli (c3tb20452a-(cit44)/*[position()=1]) 2012; 33
Yang (c3tb20452a-(cit22)/*[position()=1]) 2008; 112
Coenegrachts (c3tb20452a-(cit15)/*[position()=1]) 2009; 72
Coenegrachts (c3tb20452a-(cit14)/*[position()=1]) 2009; 19
Liu (c3tb20452a-(cit36)/*[position()=1]) 2001; 25
Motomura (c3tb20452a-(cit56)/*[position()=1]) 2011; 18
Kuila (c3tb20452a-(cit45)/*[position()=1]) 2012; 57
Cong (c3tb20452a-(cit35)/*[position()=1]) 2010; 6
Stankovich (c3tb20452a-(cit32)/*[position()=1]) 2006; 442
Bacigalupo (c3tb20452a-(cit13)/*[position()=1]) 2010; 115
Yang (c3tb20452a-(cit49)/*[position()=1]) 2011; 21
Sun (c3tb20452a-(cit19)/*[position()=1]) 2008; 1
Yang (c3tb20452a-(cit29)/*[position()=1]) 2010; 10
Deddens (c3tb20452a-(cit55)/*[position()=1]) 2012; 33
Zhu (c3tb20452a-(cit11)/*[position()=1]) 2010; 31
Bao (c3tb20452a-(cit46)/*[position()=1]) 2011; 7
Wang (c3tb20452a-(cit10)/*[position()=1]) 2006; 5
Yadav (c3tb20452a-(cit5)/*[position()=1]) 2009; 63
Mykhaylyk (c3tb20452a-(cit34)/*[position()=1]) 2007; 2
Li (c3tb20452a-(cit39)/*[position()=1]) 2012; 24
Qingxin Mu (c3tb20452a-(cit51)/*[position()=1]) 2012
Tang (c3tb20452a-(cit25)/*[position()=1]) 2010; 132
Zhang (c3tb20452a-(cit21)/*[position()=1]) 2010; 6
Yang (c3tb20452a-(cit48)/*[position()=1]) 2012; 24
Kim (c3tb20452a-(cit54)/*[position()=1]) 2011; 22
Lin (c3tb20452a-(cit1)/*[position()=1]) 2003; 8
Liu (c3tb20452a-(cit20)/*[position()=1]) 2008; 130
Ren (c3tb20452a-(cit27)/*[position()=1]) 2012; 3
Shen (c3tb20452a-(cit37)/*[position()=1]) 2012; 100
Feng (c3tb20452a-(cit26)/*[position()=1]) 2011; 3
Zhang (c3tb20452a-(cit38)/*[position()=1]) 2012; 32
Wu (c3tb20452a-(cit52)/*[position()=1]) 2008; 2
Wang (c3tb20452a-(cit33)/*[position()=1]) 2012; 163
Yang (c3tb20452a-(cit31)/*[position()=1]) 2011; 5
Singh (c3tb20452a-(cit42)/*[position()=1]) 2012; 6
Nan (c3tb20452a-(cit2)/*[position()=1]) 2012
Liu (c3tb20452a-(cit16)/*[position()=1]) 2010; 25
Lu (c3tb20452a-(cit24)/*[position()=1]) 2009; 48
Onur Parlak (c3tb20452a-(cit18)/*[position()=1]) 2013; 49
References_xml – volume: 163
  start-page: 82
  year: 2012
  ident: c3tb20452a-(cit33)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2012.04.030
– volume: 33
  start-page: 2532
  year: 2012
  ident: c3tb20452a-(cit44)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.12.010
– volume: 2
  start-page: 2391
  year: 2007
  ident: c3tb20452a-(cit34)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.352
– volume: 22
  start-page: 2558
  year: 2011
  ident: c3tb20452a-(cit54)/*[position()=1]
  publication-title: Bioconjugate Chem.
  doi: 10.1021/bc200397j
– start-page: 8
  year: 2012
  ident: c3tb20452a-(cit51)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 203
  year: 2008
  ident: c3tb20452a-(cit19)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-008-8021-8
– volume: 24
  start-page: 1868
  year: 2012
  ident: c3tb20452a-(cit48)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104964
– volume: 9
  start-page: E92
  year: 2007
  ident: c3tb20452a-(cit7)/*[position()=1]
  publication-title: AAPS J.
  doi: 10.1208/aapsj0901009
– volume: 15
  start-page: 141
  year: 2005
  ident: c3tb20452a-(cit3)/*[position()=1]
  publication-title: J. Liposome Res.
  doi: 10.1080/08982100500364081
– volume: 112
  start-page: 17554
  year: 2008
  ident: c3tb20452a-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806751k
– volume: 115
  start-page: 1087
  year: 2010
  ident: c3tb20452a-(cit13)/*[position()=1]
  publication-title: Radiol. Med.
  doi: 10.1007/s11547-010-0560-x
– volume: 10
  start-page: 3318
  year: 2010
  ident: c3tb20452a-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl100996u
– volume: 1
  start-page: 12
  year: 2010
  ident: c3tb20452a-(cit4)/*[position()=1]
  publication-title: Ther. Delivery
– volume: 7
  start-page: 1569
  year: 2011
  ident: c3tb20452a-(cit28)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201100191
– volume: 132
  start-page: 10976
  year: 2010
  ident: c3tb20452a-(cit25)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104017y
– volume: 7
  start-page: 1569
  year: 2011
  ident: c3tb20452a-(cit46)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201100191
– volume: 8
  start-page: 441
  year: 2003
  ident: c3tb20452a-(cit1)/*[position()=1]
  publication-title: Mol. Ther.
  doi: 10.1016/S1525-0016(03)00203-X
– volume: 48
  start-page: 4785
  year: 2009
  ident: c3tb20452a-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901479
– volume: 19
  start-page: 370
  year: 2009
  ident: c3tb20452a-(cit14)/*[position()=1]
  publication-title: Eur. J. Radiol.
  doi: 10.1007/s00330-008-1163-y
– volume: 25
  start-page: 2361
  year: 2010
  ident: c3tb20452a-(cit16)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.02.022
– volume: 6
  start-page: 2731
  year: 2012
  ident: c3tb20452a-(cit42)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn300172t
– year: 2012
  ident: c3tb20452a-(cit2)/*[position()=1]
  publication-title: J. Drug Delivery
  doi: 10.1155/2012/915375
– volume: 18
  start-page: 3422
  year: 2011
  ident: c3tb20452a-(cit56)/*[position()=1]
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-011-1710-7
– volume: 3
  start-page: 761
  year: 2008
  ident: c3tb20452a-(cit8)/*[position()=1]
  publication-title: Nanomedicine
  doi: 10.2217/17435889.3.6.761
– volume: 6
  start-page: 537
  year: 2010
  ident: c3tb20452a-(cit21)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200901680
– volume: 33
  start-page: 2206
  year: 2012
  ident: c3tb20452a-(cit43)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.11.064
– volume: 296
  start-page: 131
  year: 2011
  ident: c3tb20452a-(cit47)/*[position()=1]
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201000307
– volume: 25
  start-page: 111
  year: 2001
  ident: c3tb20452a-(cit36)/*[position()=1]
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/ajrcmb.25.1.4472
– volume: 8
  start-page: 8
  year: 2012
  ident: c3tb20452a-(cit50)/*[position()=1]
  publication-title: Small
– volume: 6
  start-page: 2361
  year: 2012
  ident: c3tb20452a-(cit41)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn204625e
– volume: 6
  start-page: 169
  year: 2010
  ident: c3tb20452a-(cit35)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200901360
– volume: 32
  start-page: 1247
  year: 2012
  ident: c3tb20452a-(cit38)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2012.03.016
– volume: 20
  start-page: 453
  year: 2010
  ident: c3tb20452a-(cit17)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200901639
– volume: 442
  start-page: 282
  year: 2006
  ident: c3tb20452a-(cit32)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 46
  start-page: 3116
  year: 2010
  ident: c3tb20452a-(cit23)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b926893f
– volume: 49
  start-page: 10
  year: 2013
  ident: c3tb20452a-(cit18)/*[position()=1]
  publication-title: Biosens. Bioelectron.
– volume: 130
  start-page: 10876
  year: 2008
  ident: c3tb20452a-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803688x
– volume: 100
  start-page: 2499
  year: 2012
  ident: c3tb20452a-(cit37)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.34148
– volume: 5
  start-page: 2673
  year: 2009
  ident: c3tb20452a-(cit12)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.200900621
– volume: 33
  start-page: 392
  year: 2012
  ident: c3tb20452a-(cit55)/*[position()=1]
  publication-title: Cerebrovasc. Dis.
  doi: 10.1159/000336116
– volume: 2
  start-page: 2023
  year: 2008
  ident: c3tb20452a-(cit52)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn800325a
– volume: 24
  start-page: 1722
  year: 2012
  ident: c3tb20452a-(cit39)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104864
– volume: 5
  start-page: 516
  year: 2011
  ident: c3tb20452a-(cit31)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn1024303
– volume: 31
  start-page: 2408
  year: 2010
  ident: c3tb20452a-(cit11)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.077
– volume: 21
  start-page: 3448
  year: 2011
  ident: c3tb20452a-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02494E
– volume: 5
  start-page: 791
  year: 2006
  ident: c3tb20452a-(cit10)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1737
– volume: 3
  start-page: 1252
  year: 2011
  ident: c3tb20452a-(cit26)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c0nr00680g
– volume: 21
  start-page: 7736
  year: 2011
  ident: c3tb20452a-(cit53)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10341e
– volume: 30
  start-page: 5660
  year: 2009
  ident: c3tb20452a-(cit9)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.06.026
– volume: 6
  year: 2011
  ident: c3tb20452a-(cit30)/*[position()=1]
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9751-6
– volume: 24
  start-page: 1748
  year: 2012
  ident: c3tb20452a-(cit40)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104070
– volume: 63
  start-page: 711
  year: 2009
  ident: c3tb20452a-(cit5)/*[position()=1]
  publication-title: Cancer Chemother. Pharmacol.
  doi: 10.1007/s00280-008-0790-y
– volume: 72
  start-page: 432
  year: 2009
  ident: c3tb20452a-(cit15)/*[position()=1]
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2008.09.005
– volume: 3
  start-page: 2561
  year: 2012
  ident: c3tb20452a-(cit27)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/c2py20343j
– volume: 57
  start-page: 1061
  year: 2012
  ident: c3tb20452a-(cit45)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.03.002
SSID ssj0000816834
Score 2.4199014
Snippet Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic...
Combining chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. Noninvasive MRI with superparamagnetic iron...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4396
SubjectTerms Cancer
cancer therapy
Chitosan
doxorubicin
Drug delivery systems
drug therapy
Drugs
encapsulation
gene therapy
Genes
graphene
green fluorescent protein
image analysis
inhibitory concentration 50
iron oxides
lung neoplasms
magnetic resonance imaging
magnetism
medicine
mice
monitoring
Nanoparticles
neoplasm cells
plasmids
Platforms
prostatic neoplasms
Tumors
Title Multifunctional chitosan magnetic-graphene (CMG) nanoparticles: a theranostic platform for tumor-targeted co-delivery of drugs, genes and MRI contrast agents
URI https://www.ncbi.nlm.nih.gov/pubmed/24883188
https://www.proquest.com/docview/1620055327
https://www.proquest.com/docview/1642330486
https://www.proquest.com/docview/1826598851
https://www.proquest.com/docview/2327959069
https://pubmed.ncbi.nlm.nih.gov/PMC4036826
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6V9gIHxJvw0iI4UAW3jt_LrZS-UFukNhG5WbP2OqFKbZTYVOW_8Pf4Hczu2s6mLVXhYkXOynE8387L38wQ8tYNOUttBK_NnRADFM4sBmFmBSzzwwyDolDNjDw4DHYH3uehP1xa-m2wlqqSryU_r6wr-R-p4jmUq6yS_QfJthfFE_gZ5YtHlDAebyRjVT0rLVOd0JPvBIoZ7thTGOWyOtFS_aiFdiQ3D3ZkDiCHHANlgw8HXVWElReyZbMcK11KR1bzD6vTYmpptriQ9W9WKiaSyaHey6fTSifWR1JhasrG0Z5mv8Os7MKoaRR1hfuLnrJ-RHjX9cy5te5HXT7UfKOopEaXqItEgK91sntzXOXnc5gfwQ_FUTguzvJ0DNPz1vTsgBz4rhkMg5OTM5hA93gq2gt-0uVtB7LO7UyUYOZE5HwKZulCa606Hdu3LfSFhtrKmedqbd_ofgPirm8ocvTTAsMp8DxVHH7Z4Niu7NeauCWXff0dw6w2VILDL_H2YH8_7m8N-7fIioPhDOrjlY2t_t5-mw1U408UBaK99aaXrsvW55df9J4uhUQXmb2Gq9S_R-7WQqYbGmP3yZLIH5A7RufLh-TXBejSBrr0EnTpOwTuKl2A7QcK1AAtbUBL8UAXQUsN0NIiowq076mCLEVQUYQsbSBLNWQfkcH2Vn9z16onhVgJuvOlxdEpT3gQ8Ah4lMmgOYw8B3qeh_YJkiDkSS8FN8uckPnCdxLGMg8yxkTgcwbcfUyW8yIXTwkNfOAs5L1UROAlXob2H3UXh14GEAon6JDVRgJxUrfRl9NcJrGic7gsnkurQ960a7_r5jFXrnrdCDLG7SZf2EEuimoW9wKZ8_VdJ7xuDQZErmycec2ayAl8FmFw9fc1GFnhs2F2wDrkiQZRe88OPkW0_VGHhAvwahfIHvWL3-TfxqpXvYceMv76sxv8x-fk9nwvvyDL5bQSL9HjL_mrerv8AUofDsI
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+chitosan+magnetic-graphene+%28CMG%29+nanoparticles%3A+a+theranostic+platform+for+tumor-targeted+co-delivery+of+drugs%2C+genes+and+MRI+contrast+agents&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Wang%2C+Chunyan&rft.au=Ravi%2C+Sowndharya&rft.au=Garapati%2C+Ujjwala+Sree&rft.au=Das%2C+Mahasweta&rft.date=2013-09-21&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=1&rft.issue=35&rft.spage=4396&rft.epage=4405&rft_id=info:doi/10.1039%2Fc3tb20452a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon