Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data

Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic var...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 106; no. 495; pp. 959 - 971
Main Authors Faes, C., Ormerod, J. T., Wand, M. P.
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.09.2011
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/jasa.2011.tm10301

Cover

Loading…
Abstract Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article.
AbstractList Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article.
Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article. [PUBLICATION ABSTRACT]
Author Wand, M. P.
Ormerod, J. T.
Faes, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Faes
  fullname: Faes, C.
– sequence: 2
  givenname: J. T.
  surname: Ormerod
  fullname: Ormerod, J. T.
– sequence: 3
  givenname: M. P.
  surname: Wand
  fullname: Wand, M. P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24734636$$DView record in Pascal Francis
BookMark eNp9kV1rFDEUhoNUcFv9AV4IgyBezTZnkkxmwBtbvwqtivh1IYQzaVKzzCRrkkX235vpri0UNDchJ8_7cs55D8mBD94Q8hjoEqDvjleYcNlQgGWegDIK98gCBJN1I_n3A7Kg0DY1cNE_IIcprWg5susW5MdXjA6zCx7H6gS3Jjn01Zm3JhqvTWVDrD5ixMnk6HSF_rJ6H_z6tvLJXEWTUjGovrn8s7pw5eGvqleY8SG5b3FM5tH-PiJf3rz-fPquPv_w9uz05XmtOYdco9UtcNByoMIMg22t4UC5sKxn2oquB0ob2cumh6EbuMaGwSCwFYZ3YugsOyLPd77rGH5tTMpqckmbcURvwiapntO-Kxa8kE_vkKuwiWX2AlEh58V1BXq2hzBpHG1Er11S6-gmjFvVcMl4y9rCwY7TMaQUjb1BgKo5FTWnouZU1D6VopF3NNrl6_3niG78r_LJTrlKOcTbbhhvpGjnbl7s_p0voU34O8TxUmXcjiH-HYH92_4P8-KzQg
CODEN JSTNAL
CitedBy_id crossref_primary_10_1214_16_STS581
crossref_primary_10_1016_j_chemolab_2015_02_003
crossref_primary_10_1214_17_EJS1332
crossref_primary_10_1080_03610918_2019_1657451
crossref_primary_10_1111_rssa_12077
crossref_primary_10_1002_bimj_201500007
crossref_primary_10_1080_01621459_2016_1197833
crossref_primary_10_6339_23_JDS1102
crossref_primary_10_3390_math11183926
crossref_primary_10_1016_j_csda_2013_07_014
crossref_primary_10_1080_10618600_2014_983642
crossref_primary_10_1080_01621459_2014_969425
crossref_primary_10_1080_10618600_2013_810150
crossref_primary_10_1093_biostatistics_kxab021
crossref_primary_10_1016_j_jspi_2025_106278
crossref_primary_10_1093_biomet_asx033
crossref_primary_10_1214_16_BA1043
crossref_primary_10_3150_18_BEJ1073
crossref_primary_10_1515_ijb_2019_0120
crossref_primary_10_1007_s00180_022_01200_z
crossref_primary_10_1080_01621459_2016_1260468
crossref_primary_10_1007_s11222_017_9747_5
crossref_primary_10_1111_bmsp_12381
crossref_primary_10_1109_TIP_2014_2360122
crossref_primary_10_1007_s11634_024_00590_w
crossref_primary_10_1080_00401706_2012_697244
crossref_primary_10_1016_j_csda_2013_10_030
crossref_primary_10_1214_18_BA1136
crossref_primary_10_1007_s10260_016_0359_6
crossref_primary_10_1214_23_BA1393
crossref_primary_10_1016_j_sste_2019_100302
crossref_primary_10_2174_1574893615999200520082636
crossref_primary_10_1002_sam_11711
crossref_primary_10_1002_sim_6737
crossref_primary_10_1214_17_BJPS387
crossref_primary_10_1002_sta4_18
crossref_primary_10_1214_11_EJS652
crossref_primary_10_1111_j_1467_842X_2011_00637_x
crossref_primary_10_1080_10618600_2024_2402278
crossref_primary_10_3390_ijerph191811358
crossref_primary_10_1111_anzs_12105
crossref_primary_10_1214_22_EJS2063
crossref_primary_10_1214_21_BA1266
crossref_primary_10_3390_e16073832
crossref_primary_10_1111_anzs_12199
crossref_primary_10_1080_10618600_2024_2380051
crossref_primary_10_1007_s11222_023_10365_6
crossref_primary_10_3390_ijerph191912779
crossref_primary_10_1080_10618600_2022_2107532
Cites_doi 10.1111/j.1467-842X.2009.00538.x
10.1016/j.csda.2006.07.020
10.1162/neco.2006.18.8.1790
10.1214/088342304000000026
10.2307/2290350
10.1016/j.neuroimage.2006.10.005
10.1023/A:1008929526011
10.1093/bioinformatics/bti466
10.1198/tast.2010.09058
10.1214/aos/1176350606
10.1214/06-BA117A
10.1111/j.1467-842X.2008.00507.x
10.1111/j.2517-6161.1978.tb01050.x
10.1002/sim.2193
10.1214/06-BA105
10.2307/2288473
10.18637/jss.v014.i14
ContentType Journal Article
Copyright 2011 American Statistical Association 2011
2011 American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Sep 2011
Copyright_xml – notice: 2011 American Statistical Association 2011
– notice: 2011 American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Sep 2011
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/jasa.2011.tm10301
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 971
ExternalDocumentID 2518071481
24734636
10_1198_jasa_2011_tm10301
23427566
10710979
Genre Research Article
Feature
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
TOXWX
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
IQODW
PJZUB
PPXIY
PQGLB
TASJS
8BJ
ACTCW
FQK
JBE
K9.
ID FETCH-LOGICAL-c441t-afc6141c7b05ebbf6fe41045f393cf5891002797291b8b4ca231b5a65e485b8f3
ISSN 0162-1459
IngestDate Fri Jul 11 09:06:25 EDT 2025
Wed Aug 13 04:05:42 EDT 2025
Mon Jul 21 09:17:41 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Tue Jul 01 05:23:10 EDT 2025
Thu May 29 08:44:04 EDT 2025
Wed Dec 25 09:06:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 495
Keywords Statistical distribution
Directed acyclic graphs
Non parametric estimation
Probability distribution
Penalized splines
Economic sciences
Penalty method
Spline approximation
Numerical approximation
Parametric method
Approximation theory
Incomplete information
Deterministic approach
Acyclic graph
Bayes estimation
Monte Carlo method
Data analysis
Mean field approximation
Nonparametric regression
Probability
Incomplete data
Statistical estimation
Regression analysis
Hierarchized structure
Statistical method
Missing data
Regression model
Hierarchical model
Variational approximation
Econometrics
Parametric inference
Directed graph
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-afc6141c7b05ebbf6fe41045f393cf5891002797291b8b4ca231b5a65e485b8f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 905703018
PQPubID 41715
PageCount 13
ParticipantIDs crossref_primary_10_1198_jasa_2011_tm10301
crossref_citationtrail_10_1198_jasa_2011_tm10301
proquest_journals_905703018
proquest_miscellaneous_940980274
informaworld_taylorfrancis_310_1198_jasa_2011_tm10301
pascalfrancis_primary_24734636
jstor_primary_23427566
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2011
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_16
p_1
p_4
p_12
p_13
p_24
p_14
p_15
p_9
Crainiceanu C. (p_5) 2005; 14
Neal R. (p_23) 1998
p_30
p_10
p_21
p_32
p_22
p_33
Wahba G. (p_31) 1978; 40
References_xml – start-page: 205
  year: 1998
  ident: p_23
  publication-title: M. I. Jordan, Dordrecht: Kluwer Academic, pp.
– ident: p_32
  doi: 10.1111/j.1467-842X.2009.00538.x
– ident: p_22
  doi: 10.1016/j.csda.2006.07.020
– ident: p_12
  doi: 10.1162/neco.2006.18.8.1790
– ident: p_16
  doi: 10.1214/088342304000000026
– ident: p_1
  doi: 10.2307/2290350
– ident: p_9
  doi: 10.1016/j.neuroimage.2006.10.005
– ident: p_21
  doi: 10.1023/A:1008929526011
– ident: p_30
  doi: 10.1093/bioinformatics/bti466
– ident: p_24
  doi: 10.1198/tast.2010.09058
– ident: p_14
  doi: 10.1214/aos/1176350606
– ident: p_10
  doi: 10.1214/06-BA117A
– ident: p_33
  doi: 10.1111/j.1467-842X.2008.00507.x
– volume: 40
  start-page: 364
  year: 1978
  ident: p_31
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1978.tb01050.x
– ident: p_13
  doi: 10.1002/sim.2193
– ident: p_15
  doi: 10.1214/06-BA105
– ident: p_4
  doi: 10.2307/2288473
– volume: 14
  start-page: 1
  issue: 14
  year: 2005
  ident: p_5
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v014.i14
SSID ssj0000788
Score 2.2971275
Snippet Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 959
SubjectTerms Applications
Approximation
Bayesian analysis
Bayesian inference
Bayesian method
Computational methods
Directed acyclic graphs
Exact sciences and technology
General topics
Incomplete data
Inference
Insurance, economics, finance
Linear regression
Mathematics
Mean field approximation
Missing data
Modeling
Monte Carlo simulation
Nonparametric inference
Parameter estimation
Parametric inference
Parametric models
Penalized splines
Probability and statistics
Probability calculus
Regression analysis
Sciences and techniques of general use
Statistics
Stochastic models
Theory and Methods
Variational approximation
Wands
Title Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10301
https://www.jstor.org/stable/23427566
https://www.proquest.com/docview/905703018
https://www.proquest.com/docview/940980274
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCuZQDgkJFKFQ-cAIt7MPetY-AWlVRk14SyAHJsjdeVIkWlN0c4NczY3sfUaLyuKwix46t_Sb2zHjmG0JerZD1rdAyErnMImZLEQkw4CKjQfu3BiSkxBvd6Sy_WLDJki9Ho8kgamnTmLflr715Jf-DKrQBrpgl-w_Idj8KDfAZ8IUnIAzPv8L4Exi6rTPvg_5pXULkdZvC5yIIkdr7BqtmeVpWMPYHLWv71YfB-lzuN4C5cx2EhLV9WusgE8XV_m0c0fMenB3Bo9-DOkfs1RpG-hCfSR-d_TnEVk5Drtmqd6rK1gcR3JJ5GiUscHu3-2qcDwSIST7YJ2Xo6o9c6auw7O7mUrgqArX2XKvNDRZFS_qjq72un12p88XlpZqfLef3yP0UTAbcpLN41p_KhatB2q003HDDFO92JtjSUbYYbNuoVQyh1TW83cqXP9k5yZ16Mn9EHgaE6HsvJI_JyN4ekQfTjpS3PiKHHVz1E_JlIDu0lR3ayQ6FxdBeUihARLdkh_ayQ1F2aJAdirLzlCzOz-YfL6JQaSMqQR1uIl2VoKYlZWFibo2p8soysNN5lcmsrLDwJLovJBhiiRGGlRqsAsN1zi0T3IgqOyYHsAj7jNCsqGyiWZVItmKp5qJgJuUiqRIu8lWRj0ncvltVBhp6rIbyTTlzVAqFcCiEQwU4xuR1N-SH52C5qzMfAqYa5_gKMKnsjnHHDtluhjRjWBoBFny6BXXfgRUZ0u2NyUmLvQqbQ61kjNR2cSLGhHbfAhJ4Hadv7fcNdGGxFOgVev7nLifksP_fvSAHzXpjX4I23JhTJ-a_ARbIuBk
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQObQXCoWKbWnxgRNSSrK2E_tIKdUWuiuEWugBybK9dl-Qrdjsgf56ZmJnlwXUQ6-JndjjmfHMePwNIa_GiPpWGZXJUrGMeyczCQ5cZg1Y_94Chzg80R2OysEp_3AmzlLAbZrSKtGHDhEootXVKNwYjI4SruSbKzM1EX2z-YFlssD7eShUWaFgsny00MRVW3cSrJp-VnCh0qnmfz-xtC8toZZ2mYqYNmmmQLkQS178o73bLelwnehuMjET5Xpv1tg9d_sXzuP9Z_uYPErWKn0b2esJeeDrDbKGBmrEd35Kvn0BZzsFFOm--eXxUiY96q4RUpgg_WQwAwxLAVAYBR1N6pvFk8_-PKbi1vTrZXNBh8AJsJ3SA9OYZ-T08P3Ju0GWKjZkDsyqJjPBwXZfuMrmwlsbyuA5-HsiMMVcwAKG6AYrMOgLKy13BqxLK0wpPJfCysA2yUo9qf1zQlkVfGF4KBQf874RsuK2L2QRCiHLcVX2SN6tl3YJzhyranzXrVujpEa6aaSbTnTrkdfzLjcRy-OuxuJPJtBNG0BJS6_ZHf02W26Z_6HPOELsw4B3l9hn0YBXDGHbemS74yedFMlUqxwh0vJC9gidvwUNgMc6pvaTGTQBF11idGHrnkN-SVYHJ8NjfXw0-rhN1mLUHLPoXpCV5ufM74DZ1djdVrZ-A2VzKBc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfQJqFe-NomytjwgRNSRtLYiX0cbNUGrJomOnpAsmzXHh9bWi3pYfz1vBe7LQW0Q6-JndjP79N-_j1CXo8R9a3UMhGFzBPmrEgEBHCJ0eD9OwMcYvFE92xQnAzZhxEfxdycOqZVYgztA1BEq6tRuKdjHwRcirc_dK0D-GZzg1WyIPjZLPCAD29wpIOlIi7bspPg1PSSjHEZDzX_-4kVs7QCWjpPVMSsSV0D4XyoePGP8m4tUv9xKLtat0CGmIjy82DWmAP76y-Yx7Un-4Q8ir4qPQzM9ZQ8cNUz0kH3NKA7b5GvlxBqx-1E-k7fObySSU_nlwgpzI-ea8z_wkIAFAZBB5Nqunxy4a5CIm5Fv3xvvtEz4AMwpvRIN3qbDPvHn9-fJLFeQ2LBqWoS7S0Y-8yWJuXOGF94xyDa4z6XufVYvhCDYAnufGaEYVaDb2m4Lrhjghvh8x2yUU0q95zQvPQu08xnko1ZT3NRMtPjIvMZF8W4LLoknS-XshHMHGtqXKs2qJFCId0U0k1FunXJm0WXaUDyuK8x_5MHVNNun8SVV_k9_XZaZln8oZczBNiHAe-vcM-yAStzBG3rkt05O6moRmolUwRISzPRJXTxFuQfD3V05SYzaAIBusC9hRdrDvkVeXh-1FefTgcfd0knbJljCt1LstHcztwe-FyN2W8l6zewuSa7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inference+for+parametric+and+nonparametric+regression+with+missing+data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Faes%2C+C&rft.au=Ormerod%2C+J+T&rft.au=Wand%2C+M+P&rft.date=2011-09-01&rft.issn=0162-1459&rft.volume=106&rft.issue=495&rft.spage=959&rft.epage=971&rft_id=info:doi/10.1198%2Fjasa.2011.tm10301&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon