Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic var...
Saved in:
Published in | Journal of the American Statistical Association Vol. 106; no. 495; pp. 959 - 971 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.09.2011
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0162-1459 1537-274X |
DOI | 10.1198/jasa.2011.tm10301 |
Cover
Loading…
Abstract | Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article. |
---|---|
AbstractList | Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article. Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite probability calculus is challenging and Monte Carlo methods typically are employed. We develop an alternative approach based on deterministic variational Bayes approximations. Both parametric and nonparametric regression are considered. Attention is restricted to the more challenging case of missing predictor data. We demonstrate that variational Bayes can achieve good accuracy, but with considerably less computational overhead. The main ramification is fast approximate Bayesian inference in parametric and nonparametric regression models with missing data. Supplemental materials accompany the online version of this article. [PUBLICATION ABSTRACT] |
Author | Wand, M. P. Ormerod, J. T. Faes, C. |
Author_xml | – sequence: 1 givenname: C. surname: Faes fullname: Faes, C. – sequence: 2 givenname: J. T. surname: Ormerod fullname: Ormerod, J. T. – sequence: 3 givenname: M. P. surname: Wand fullname: Wand, M. P. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24734636$$DView record in Pascal Francis |
BookMark | eNp9kV1rFDEUhoNUcFv9AV4IgyBezTZnkkxmwBtbvwqtivh1IYQzaVKzzCRrkkX235vpri0UNDchJ8_7cs55D8mBD94Q8hjoEqDvjleYcNlQgGWegDIK98gCBJN1I_n3A7Kg0DY1cNE_IIcprWg5susW5MdXjA6zCx7H6gS3Jjn01Zm3JhqvTWVDrD5ixMnk6HSF_rJ6H_z6tvLJXEWTUjGovrn8s7pw5eGvqleY8SG5b3FM5tH-PiJf3rz-fPquPv_w9uz05XmtOYdco9UtcNByoMIMg22t4UC5sKxn2oquB0ob2cumh6EbuMaGwSCwFYZ3YugsOyLPd77rGH5tTMpqckmbcURvwiapntO-Kxa8kE_vkKuwiWX2AlEh58V1BXq2hzBpHG1Er11S6-gmjFvVcMl4y9rCwY7TMaQUjb1BgKo5FTWnouZU1D6VopF3NNrl6_3niG78r_LJTrlKOcTbbhhvpGjnbl7s_p0voU34O8TxUmXcjiH-HYH92_4P8-KzQg |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1214_16_STS581 crossref_primary_10_1016_j_chemolab_2015_02_003 crossref_primary_10_1214_17_EJS1332 crossref_primary_10_1080_03610918_2019_1657451 crossref_primary_10_1111_rssa_12077 crossref_primary_10_1002_bimj_201500007 crossref_primary_10_1080_01621459_2016_1197833 crossref_primary_10_6339_23_JDS1102 crossref_primary_10_3390_math11183926 crossref_primary_10_1016_j_csda_2013_07_014 crossref_primary_10_1080_10618600_2014_983642 crossref_primary_10_1080_01621459_2014_969425 crossref_primary_10_1080_10618600_2013_810150 crossref_primary_10_1093_biostatistics_kxab021 crossref_primary_10_1016_j_jspi_2025_106278 crossref_primary_10_1093_biomet_asx033 crossref_primary_10_1214_16_BA1043 crossref_primary_10_3150_18_BEJ1073 crossref_primary_10_1515_ijb_2019_0120 crossref_primary_10_1007_s00180_022_01200_z crossref_primary_10_1080_01621459_2016_1260468 crossref_primary_10_1007_s11222_017_9747_5 crossref_primary_10_1111_bmsp_12381 crossref_primary_10_1109_TIP_2014_2360122 crossref_primary_10_1007_s11634_024_00590_w crossref_primary_10_1080_00401706_2012_697244 crossref_primary_10_1016_j_csda_2013_10_030 crossref_primary_10_1214_18_BA1136 crossref_primary_10_1007_s10260_016_0359_6 crossref_primary_10_1214_23_BA1393 crossref_primary_10_1016_j_sste_2019_100302 crossref_primary_10_2174_1574893615999200520082636 crossref_primary_10_1002_sam_11711 crossref_primary_10_1002_sim_6737 crossref_primary_10_1214_17_BJPS387 crossref_primary_10_1002_sta4_18 crossref_primary_10_1214_11_EJS652 crossref_primary_10_1111_j_1467_842X_2011_00637_x crossref_primary_10_1080_10618600_2024_2402278 crossref_primary_10_3390_ijerph191811358 crossref_primary_10_1111_anzs_12105 crossref_primary_10_1214_22_EJS2063 crossref_primary_10_1214_21_BA1266 crossref_primary_10_3390_e16073832 crossref_primary_10_1111_anzs_12199 crossref_primary_10_1080_10618600_2024_2380051 crossref_primary_10_1007_s11222_023_10365_6 crossref_primary_10_3390_ijerph191912779 crossref_primary_10_1080_10618600_2022_2107532 |
Cites_doi | 10.1111/j.1467-842X.2009.00538.x 10.1016/j.csda.2006.07.020 10.1162/neco.2006.18.8.1790 10.1214/088342304000000026 10.2307/2290350 10.1016/j.neuroimage.2006.10.005 10.1023/A:1008929526011 10.1093/bioinformatics/bti466 10.1198/tast.2010.09058 10.1214/aos/1176350606 10.1214/06-BA117A 10.1111/j.1467-842X.2008.00507.x 10.1111/j.2517-6161.1978.tb01050.x 10.1002/sim.2193 10.1214/06-BA105 10.2307/2288473 10.18637/jss.v014.i14 |
ContentType | Journal Article |
Copyright | 2011 American Statistical Association
2011 2011 American Statistical Association 2015 INIST-CNRS Copyright American Statistical Association Sep 2011 |
Copyright_xml | – notice: 2011 American Statistical Association 2011 – notice: 2011 American Statistical Association – notice: 2015 INIST-CNRS – notice: Copyright American Statistical Association Sep 2011 |
DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
DOI | 10.1198/jasa.2011.tm10301 |
DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 971 |
ExternalDocumentID | 2518071481 24734636 10_1198_jasa_2011_tm10301 23427566 10710979 |
Genre | Research Article Feature |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AAAVZ AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABRLO ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGCQS AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FJW GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH ROSJB RTWRZ RWL RXW S-T SA0 SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UQL UT5 UU3 WH7 WZA YQT YYM ZGOLN ZUP ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAFWJ AAIKQ AAKBW AAYXX ABEFU ABJCF ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO E.L FEDTE FRNLG FVMVE FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S MVM NHB NUSFT P-O PADUT PHGZM PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL RNS S0X SJN TAQ TFMCV TOXWX UB9 UKHRP VH1 VOH WHG YXB YYP ZCG ZGI ZXP IQODW PJZUB PPXIY PQGLB TASJS 8BJ ACTCW FQK JBE K9. |
ID | FETCH-LOGICAL-c441t-afc6141c7b05ebbf6fe41045f393cf5891002797291b8b4ca231b5a65e485b8f3 |
ISSN | 0162-1459 |
IngestDate | Fri Jul 11 09:06:25 EDT 2025 Wed Aug 13 04:05:42 EDT 2025 Mon Jul 21 09:17:41 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Tue Jul 01 05:23:10 EDT 2025 Thu May 29 08:44:04 EDT 2025 Wed Dec 25 09:06:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 495 |
Keywords | Statistical distribution Directed acyclic graphs Non parametric estimation Probability distribution Penalized splines Economic sciences Penalty method Spline approximation Numerical approximation Parametric method Approximation theory Incomplete information Deterministic approach Acyclic graph Bayes estimation Monte Carlo method Data analysis Mean field approximation Nonparametric regression Probability Incomplete data Statistical estimation Regression analysis Hierarchized structure Statistical method Missing data Regression model Hierarchical model Variational approximation Econometrics Parametric inference Directed graph |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-afc6141c7b05ebbf6fe41045f393cf5891002797291b8b4ca231b5a65e485b8f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 905703018 |
PQPubID | 41715 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1198_jasa_2011_tm10301 crossref_citationtrail_10_1198_jasa_2011_tm10301 proquest_journals_905703018 proquest_miscellaneous_940980274 informaworld_taylorfrancis_310_1198_jasa_2011_tm10301 pascalfrancis_primary_24734636 jstor_primary_23427566 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2011 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | p_16 p_1 p_4 p_12 p_13 p_24 p_14 p_15 p_9 Crainiceanu C. (p_5) 2005; 14 Neal R. (p_23) 1998 p_30 p_10 p_21 p_32 p_22 p_33 Wahba G. (p_31) 1978; 40 |
References_xml | – start-page: 205 year: 1998 ident: p_23 publication-title: M. I. Jordan, Dordrecht: Kluwer Academic, pp. – ident: p_32 doi: 10.1111/j.1467-842X.2009.00538.x – ident: p_22 doi: 10.1016/j.csda.2006.07.020 – ident: p_12 doi: 10.1162/neco.2006.18.8.1790 – ident: p_16 doi: 10.1214/088342304000000026 – ident: p_1 doi: 10.2307/2290350 – ident: p_9 doi: 10.1016/j.neuroimage.2006.10.005 – ident: p_21 doi: 10.1023/A:1008929526011 – ident: p_30 doi: 10.1093/bioinformatics/bti466 – ident: p_24 doi: 10.1198/tast.2010.09058 – ident: p_14 doi: 10.1214/aos/1176350606 – ident: p_10 doi: 10.1214/06-BA117A – ident: p_33 doi: 10.1111/j.1467-842X.2008.00507.x – volume: 40 start-page: 364 year: 1978 ident: p_31 publication-title: Journal of the Royal Statistical Society, Ser. B doi: 10.1111/j.2517-6161.1978.tb01050.x – ident: p_13 doi: 10.1002/sim.2193 – ident: p_15 doi: 10.1214/06-BA105 – ident: p_4 doi: 10.2307/2288473 – volume: 14 start-page: 1 issue: 14 year: 2005 ident: p_5 publication-title: Journal of Statistical Software doi: 10.18637/jss.v014.i14 |
SSID | ssj0000788 |
Score | 2.2971275 |
Snippet | Bayesian hierarchical models are attractive structures for conducting regression analyses when the data are subject to missingness. However, the requisite... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 959 |
SubjectTerms | Applications Approximation Bayesian analysis Bayesian inference Bayesian method Computational methods Directed acyclic graphs Exact sciences and technology General topics Incomplete data Inference Insurance, economics, finance Linear regression Mathematics Mean field approximation Missing data Modeling Monte Carlo simulation Nonparametric inference Parameter estimation Parametric inference Parametric models Penalized splines Probability and statistics Probability calculus Regression analysis Sciences and techniques of general use Statistics Stochastic models Theory and Methods Variational approximation Wands |
Title | Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data |
URI | https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10301 https://www.jstor.org/stable/23427566 https://www.proquest.com/docview/905703018 https://www.proquest.com/docview/940980274 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCuZQDgkJFKFQ-cAIt7MPetY-AWlVRk14SyAHJsjdeVIkWlN0c4NczY3sfUaLyuKwix46t_Sb2zHjmG0JerZD1rdAyErnMImZLEQkw4CKjQfu3BiSkxBvd6Sy_WLDJki9Ho8kgamnTmLflr715Jf-DKrQBrpgl-w_Idj8KDfAZ8IUnIAzPv8L4Exi6rTPvg_5pXULkdZvC5yIIkdr7BqtmeVpWMPYHLWv71YfB-lzuN4C5cx2EhLV9WusgE8XV_m0c0fMenB3Bo9-DOkfs1RpG-hCfSR-d_TnEVk5Drtmqd6rK1gcR3JJ5GiUscHu3-2qcDwSIST7YJ2Xo6o9c6auw7O7mUrgqArX2XKvNDRZFS_qjq72un12p88XlpZqfLef3yP0UTAbcpLN41p_KhatB2q003HDDFO92JtjSUbYYbNuoVQyh1TW83cqXP9k5yZ16Mn9EHgaE6HsvJI_JyN4ekQfTjpS3PiKHHVz1E_JlIDu0lR3ayQ6FxdBeUihARLdkh_ayQ1F2aJAdirLzlCzOz-YfL6JQaSMqQR1uIl2VoKYlZWFibo2p8soysNN5lcmsrLDwJLovJBhiiRGGlRqsAsN1zi0T3IgqOyYHsAj7jNCsqGyiWZVItmKp5qJgJuUiqRIu8lWRj0ncvltVBhp6rIbyTTlzVAqFcCiEQwU4xuR1N-SH52C5qzMfAqYa5_gKMKnsjnHHDtluhjRjWBoBFny6BXXfgRUZ0u2NyUmLvQqbQ61kjNR2cSLGhHbfAhJ4Hadv7fcNdGGxFOgVev7nLifksP_fvSAHzXpjX4I23JhTJ-a_ARbIuBk |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQObQXCoWKbWnxgRNSSrK2E_tIKdUWuiuEWugBybK9dl-Qrdjsgf56ZmJnlwXUQ6-JndjjmfHMePwNIa_GiPpWGZXJUrGMeyczCQ5cZg1Y_94Chzg80R2OysEp_3AmzlLAbZrSKtGHDhEootXVKNwYjI4SruSbKzM1EX2z-YFlssD7eShUWaFgsny00MRVW3cSrJp-VnCh0qnmfz-xtC8toZZ2mYqYNmmmQLkQS178o73bLelwnehuMjET5Xpv1tg9d_sXzuP9Z_uYPErWKn0b2esJeeDrDbKGBmrEd35Kvn0BZzsFFOm--eXxUiY96q4RUpgg_WQwAwxLAVAYBR1N6pvFk8_-PKbi1vTrZXNBh8AJsJ3SA9OYZ-T08P3Ju0GWKjZkDsyqJjPBwXZfuMrmwlsbyuA5-HsiMMVcwAKG6AYrMOgLKy13BqxLK0wpPJfCysA2yUo9qf1zQlkVfGF4KBQf874RsuK2L2QRCiHLcVX2SN6tl3YJzhyranzXrVujpEa6aaSbTnTrkdfzLjcRy-OuxuJPJtBNG0BJS6_ZHf02W26Z_6HPOELsw4B3l9hn0YBXDGHbemS74yedFMlUqxwh0vJC9gidvwUNgMc6pvaTGTQBF11idGHrnkN-SVYHJ8NjfXw0-rhN1mLUHLPoXpCV5ufM74DZ1djdVrZ-A2VzKBc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfQJqFe-NomytjwgRNSRtLYiX0cbNUGrJomOnpAsmzXHh9bWi3pYfz1vBe7LQW0Q6-JndjP79N-_j1CXo8R9a3UMhGFzBPmrEgEBHCJ0eD9OwMcYvFE92xQnAzZhxEfxdycOqZVYgztA1BEq6tRuKdjHwRcirc_dK0D-GZzg1WyIPjZLPCAD29wpIOlIi7bspPg1PSSjHEZDzX_-4kVs7QCWjpPVMSsSV0D4XyoePGP8m4tUv9xKLtat0CGmIjy82DWmAP76y-Yx7Un-4Q8ir4qPQzM9ZQ8cNUz0kH3NKA7b5GvlxBqx-1E-k7fObySSU_nlwgpzI-ea8z_wkIAFAZBB5Nqunxy4a5CIm5Fv3xvvtEz4AMwpvRIN3qbDPvHn9-fJLFeQ2LBqWoS7S0Y-8yWJuXOGF94xyDa4z6XufVYvhCDYAnufGaEYVaDb2m4Lrhjghvh8x2yUU0q95zQvPQu08xnko1ZT3NRMtPjIvMZF8W4LLoknS-XshHMHGtqXKs2qJFCId0U0k1FunXJm0WXaUDyuK8x_5MHVNNun8SVV_k9_XZaZln8oZczBNiHAe-vcM-yAStzBG3rkt05O6moRmolUwRISzPRJXTxFuQfD3V05SYzaAIBusC9hRdrDvkVeXh-1FefTgcfd0knbJljCt1LstHcztwe-FyN2W8l6zewuSa7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+Bayesian+inference+for+parametric+and+nonparametric+regression+with+missing+data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Faes%2C+C&rft.au=Ormerod%2C+J+T&rft.au=Wand%2C+M+P&rft.date=2011-09-01&rft.issn=0162-1459&rft.volume=106&rft.issue=495&rft.spage=959&rft.epage=971&rft_id=info:doi/10.1198%2Fjasa.2011.tm10301&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |