Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation
Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the p...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 1; pp. 701 - 706 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2013.10.038 |
Cover
Loading…
Abstract | Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.
Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.
The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.
The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.
The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.
Proposed structure of the binding sites for TbAK showing the interaction of silver/gold nanoparticles through Cys271, interfering with N1 of the arginine substrate. The interatomic distance between the thiolate atom of Cys271 and N1 of the arginine substrate is 3.3Å. The interatomic distance between Trp104 and N1 is 22.2Å while that distance between Trp104 and bound Ag/Au nanoparticles is 21.1Å and 22.6Å respectively. Nitrate not shown. [Display omitted]
•Interaction of silver and gold nanoparticles with arginine kinase from Trypanosoma brucei by fluorescence quenching•FRET showed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan.•The nanoparticles bind close to the arginine substrate through a cysteine residue crucial for the enzymes reaction mechanism.•These nanoparticles could have implications against trypanosomiasis in clinical trials. |
---|---|
AbstractList | Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.
Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.
The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.
The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.
The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.
Proposed structure of the binding sites for TbAK showing the interaction of silver/gold nanoparticles through Cys271, interfering with N1 of the arginine substrate. The interatomic distance between the thiolate atom of Cys271 and N1 of the arginine substrate is 3.3Å. The interatomic distance between Trp104 and N1 is 22.2Å while that distance between Trp104 and bound Ag/Au nanoparticles is 21.1Å and 22.6Å respectively. Nitrate not shown. [Display omitted]
•Interaction of silver and gold nanoparticles with arginine kinase from Trypanosoma brucei by fluorescence quenching•FRET showed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan.•The nanoparticles bind close to the arginine substrate through a cysteine residue crucial for the enzymes reaction mechanism.•These nanoparticles could have implications against trypanosomiasis in clinical trials. Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.BACKGROUNDTrypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.METHODSFluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.RESULTSThe enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.CONCLUSIONSThe nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.GENERAL SIGNIFICANCEThe nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials. Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials. Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target. Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles. The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue. The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP. The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials. |
Author | Adeyemi, O.S. Whiteley, C.G. |
Author_xml | – sequence: 1 givenname: O.S. surname: Adeyemi fullname: Adeyemi, O.S. – sequence: 2 givenname: C.G. surname: Whiteley fullname: Whiteley, C.G. email: C.Whiteley@ru.ac.za |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24184914$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctO3DAUtSpQGaB_UFVedpPBTuwkZlGpQn0gIbEZ1pYfN-BpYqe2A5qP6D_X04FNF-CN5eNzzn2cU3TkgweEPlKypoS2F9u11uoe_LomtCnQmjT9O7SifVdXPSHtEVqRhrCK0ZafoNOUtqQcLvh7dFIz2jNB2Qr9ufYZojLZBY_DgCfIasRe-TCrmJ0ZIeEnlx9wBBMm7cpPxireO-884F_lnQAPMUx4E3dzkaUwKazjYsBd4s0DxCnYnVeTM1h5i9MMJscwjEuIrhSLBYdHNS5q38E5Oh7UmODD832G7r5_21z9rG5uf1xffb2pDGM0Vwp6C0wLQomu2dCCqm3XcqGt6FjNwfS6Y8IOHaec0UG0vBk4hU43BKgSXXOGPh985xh-L5CynFwyMI7KQ1iSrMumqGgFq9-kUtZ2pNSmTaF-eqYuegIr5zKhijv5su1CuDwQTAwpRRikcfnf4DkqN0pK5D5auZWHaOU-2j1aoi1i9p_4xf8N2ZeDDMo-Hx1EmYwDb8C6EmmWNrjXDf4CCeXCfg |
CitedBy_id | crossref_primary_10_1590_1678_9199_jvatitd_1441_18 crossref_primary_10_1016_j_trac_2014_09_010 crossref_primary_10_1038_s41598_023_37178_x crossref_primary_10_1080_21691401_2018_1489267 crossref_primary_10_3923_jms_2015_71_79 crossref_primary_10_1155_2014_675905 crossref_primary_10_1016_j_cbi_2019_01_034 crossref_primary_10_15407_biotech7_06_083 crossref_primary_10_1016_j_nantod_2021_101122 crossref_primary_10_2478_aoas_2018_0060 crossref_primary_10_1007_s10863_016_9660_1 crossref_primary_10_1016_j_jacme_2015_09_005 crossref_primary_10_1016_j_bbrep_2021_101013 crossref_primary_10_3390_membranes10050101 crossref_primary_10_5812_jamm_115282 crossref_primary_10_1039_C6NR02113A crossref_primary_10_2147_IJN_S401319 crossref_primary_10_3762_bjnano_12_36 crossref_primary_10_1016_j_jtice_2015_10_029 crossref_primary_10_1017_S0007485315000450 crossref_primary_10_1007_s00580_018_2841_z crossref_primary_10_3390_molecules25153432 crossref_primary_10_1088_0957_4484_27_36_365101 crossref_primary_10_1002_jsfa_8925 crossref_primary_10_1016_j_biopha_2023_114597 crossref_primary_10_5812_jamm_104248 crossref_primary_10_1016_j_ijbiomac_2024_135154 crossref_primary_10_1155_2014_196091 crossref_primary_10_1016_j_actatropica_2017_02_019 crossref_primary_10_1186_s13071_019_3520_x crossref_primary_10_1016_j_ijbiomac_2015_05_033 crossref_primary_10_3390_pathogens12060838 crossref_primary_10_3762_bjnano_7_60 crossref_primary_10_1016_j_actatropica_2017_10_021 crossref_primary_10_1515_jbcpp_2013_0092 crossref_primary_10_1007_s00580_016_2274_5 crossref_primary_10_1042_BSR20190379 |
Cites_doi | 10.1016/S0014-5793(03)01171-2 10.1016/j.cbpb.2008.03.017 10.1088/0957-4484/23/3/035102 10.1016/0003-9861(85)90137-7 10.1007/s11051-012-0824-6 10.1111/j.1432-0436.2003.07109007.x 10.1074/jbc.M204052200 10.1016/j.saa.2011.08.052 10.1111/j.1550-7408.2002.tb00346.x 10.1002/prot.21557 10.1002/andp.19484370105 10.3109/14756366.2011.590805 10.1016/j.cbd.2005.10.007 10.1016/j.bbagen.2011.09.002 10.1016/j.ijbiomac.2011.08.017 10.1016/j.npep.2012.12.006 10.1016/j.ijbiomac.2013.09.008 10.1146/annurev.physiol.63.1.289 10.1016/j.exppara.2006.04.004 10.1021/ed900029c 10.1021/bi00514a017 10.1016/j.ijbiomac.2008.11.007 10.1016/j.nano.2012.05.020 10.1016/j.bbagen.2005.04.009 10.1111/j.1550-7408.1999.tb05132.x 10.4061/2011/576483 10.1023/A:1024172518062 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2013.10.038 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 706 |
ExternalDocumentID | 24184914 10_1016_j_bbagen_2013_10_038 S0304416513004789 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c441t-ae8de4b9010b24f6ea2d7659bd97425ec8b749df751541f9653f51e7b30e1a973 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Mon Jul 21 09:47:27 EDT 2025 Fri Jul 11 06:03:42 EDT 2025 Mon Jul 21 05:49:59 EDT 2025 Tue Jul 01 00:22:02 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:32:43 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metal nanoparticle Trypanosomiasis Thermodynamic fluorimetric analysis Arginine kinase |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-ae8de4b9010b24f6ea2d7659bd97425ec8b749df751541f9653f51e7b30e1a973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0304416513004789-fx1_lrg.jpg |
PMID | 24184914 |
PQID | 1467065913 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000196942 proquest_miscellaneous_1467065913 pubmed_primary_24184914 crossref_citationtrail_10_1016_j_bbagen_2013_10_038 crossref_primary_10_1016_j_bbagen_2013_10_038 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_10_038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2014 2014-01-00 2014-Jan 20140101 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January 2014 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Schlamadinger, Kats, Kim (bb0090) 2010; 87 Padayachee, Ngqwala, Whiteley (bb0070) 2012; 27 Förster (bb0095) 1948; 2 Al-Kady, Geber, Hussein, Ebeida (bb0085) 2011; 83 Chen, Mills, Periasamy (bb0105) 2003; 71 Pereira, Alonso, Ivaldi, Silver, Alves, Torres, Flawiá (bb0010) 2003; 554 Padayachee, Whiteley (bb0065) 2013; 47 Fernandez, Haouz, Pereira, Aguilar, Alzari (bb0110) 2007; 69 Sennuga, van Marwijk, Boshoff, Whiteley (bb0125) 2012; 14 Sennuga, van Marwijk, Whiteley (bb0050) 2012 Uda, Fujimoto, Akiyama, Mizuta, Tanaka, Ellington, Suzuki (bb0025) 2006; 1 Miranda, Canepa, Bouvier, Pereira CA (bb0045) 2006; 114 Canonaco, Schlattner, Pruett, Wallimann, Sauer (bb0030) 2003; 25 Xie, Xu, Wang (bb0080) 2005; 1724 Adeyemi, Whiteley (bb0075) 2013; 62 Padayachee, Whiteley (bb0060) 2011; 1810 Wang, Zhu, Wang (bb0100) 2011; 49 Wu, Zhu, Lü, Xia, Yang, Zou, Wang (bb0120) 2009; 44 Ross, Subramanian (bb0130) 1981; 20 Pereira, Alonso, Torres, Flawiá (bb0115) 2002; 49 Sennuga, van Marwijk, Whiteley (bb0055) 2013; 9 Ellington (bb0020) 2001; 63 Andrews, Graham, Snider, Fraga (bb0015) 2008; 150 Pereira, Alonso, Paveto, Flawiá, Torres (bb0005) 1999; 46 Strazza, Hunter, Walker, Darnall (bb0135) 1985; 238 Canonaco, Schlattner, Pruett, Wallimann, Sauer (bb0035) 2002; 277 Pereira, Bouvier, Cámara, Miranda (bb0040) 2011 Miranda (10.1016/j.bbagen.2013.10.038_bb0045) 2006; 114 Sennuga (10.1016/j.bbagen.2013.10.038_bb0050) 2012 Padayachee (10.1016/j.bbagen.2013.10.038_bb0065) 2013; 47 Pereira (10.1016/j.bbagen.2013.10.038_bb0005) 1999; 46 Strazza (10.1016/j.bbagen.2013.10.038_bb0135) 1985; 238 Padayachee (10.1016/j.bbagen.2013.10.038_bb0070) 2012; 27 Padayachee (10.1016/j.bbagen.2013.10.038_bb0060) 2011; 1810 Xie (10.1016/j.bbagen.2013.10.038_bb0080) 2005; 1724 Uda (10.1016/j.bbagen.2013.10.038_bb0025) 2006; 1 Förster (10.1016/j.bbagen.2013.10.038_bb0095) 1948; 2 Sennuga (10.1016/j.bbagen.2013.10.038_bb0055) 2013; 9 Adeyemi (10.1016/j.bbagen.2013.10.038_bb0075) 2013; 62 Ellington (10.1016/j.bbagen.2013.10.038_bb0020) 2001; 63 Fernandez (10.1016/j.bbagen.2013.10.038_bb0110) 2007; 69 Pereira (10.1016/j.bbagen.2013.10.038_bb0115) 2002; 49 Wang (10.1016/j.bbagen.2013.10.038_bb0100) 2011; 49 Ross (10.1016/j.bbagen.2013.10.038_bb0130) 1981; 20 Schlamadinger (10.1016/j.bbagen.2013.10.038_bb0090) 2010; 87 Canonaco (10.1016/j.bbagen.2013.10.038_bb0030) 2003; 25 Pereira (10.1016/j.bbagen.2013.10.038_bb0010) 2003; 554 Andrews (10.1016/j.bbagen.2013.10.038_bb0015) 2008; 150 Chen (10.1016/j.bbagen.2013.10.038_bb0105) 2003; 71 Al-Kady (10.1016/j.bbagen.2013.10.038_bb0085) 2011; 83 Pereira (10.1016/j.bbagen.2013.10.038_bb0040) 2011 Sennuga (10.1016/j.bbagen.2013.10.038_bb0125) 2012; 14 Canonaco (10.1016/j.bbagen.2013.10.038_bb0035) 2002; 277 Wu (10.1016/j.bbagen.2013.10.038_bb0120) 2009; 44 |
References_xml | – volume: 1 start-page: 209 year: 2006 end-page: 218 ident: bb0025 article-title: Evolution argine kinase gene family publication-title: Comp. Biochem. Physiol. D Genomics Proteomics – volume: 83 start-page: 398 year: 2011 end-page: 405 ident: bb0085 article-title: Structural and fluorescence quenching characterisation of hematite nanoparticles publication-title: Spectrochim. Acta – volume: 62 start-page: 450 year: 2013 end-page: 456 ident: bb0075 article-title: Interaction of nanoparticles with arginine kinase from publication-title: Int. J. Biol. Macromol. – volume: 238 start-page: 30 year: 1985 end-page: 42 ident: bb0135 article-title: The thermodynamics of bovine and porcine insulin determined by concentration difference spectroscopy publication-title: Arch. Biochem. Biophys. – volume: 71 start-page: 528 year: 2003 end-page: 554 ident: bb0105 article-title: Protein localization in living cells and tissues using FRET and FLIM publication-title: Differentiation – volume: 44 start-page: 149 year: 2009 end-page: 155 ident: bb0120 article-title: The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation publication-title: Int. J. Biol. Macromol. – year: 2011 ident: bb0040 article-title: Singular features of Trypanosomatids' phosphotransferases involved in cell energy management publication-title: Enzyme Res. – volume: 1810 start-page: 1136 year: 2011 end-page: 1140 ident: bb0060 article-title: Spectrofluorimetric analysis of amyloid peptides with neuronal nitric oxide synthase: implications in Alzheimer's disease publication-title: Biochim. Biophys. Acta – volume: 2 start-page: 55 year: 1948 end-page: 75 ident: bb0095 article-title: Intermolecular energy migration and fluorescence publication-title: Ann. Phys. – volume: 46 start-page: 566 year: 1999 end-page: 570 ident: bb0005 article-title: -arginine uptake and publication-title: J. Eukaryot. Microbiol. – volume: 277 start-page: 31303 year: 2002 end-page: 31309 ident: bb0035 article-title: Functional expression of phosphagen kinase systems confers resistance to transient stresses in publication-title: J. Biol. Chem. – volume: 114 start-page: 341 year: 2006 end-page: 344 ident: bb0045 article-title: : oxidative stress induces arginine kinase expression publication-title: Exp. Parasitol. – volume: 9 start-page: 185 year: 2013 end-page: 193 ident: bb0055 article-title: Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 1724 start-page: 215 year: 2005 end-page: 224 ident: bb0080 article-title: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods publication-title: Biochim. Biophys. Acta Gen. Subj. – volume: 20 start-page: 3096 year: 1981 end-page: 3102 ident: bb0130 article-title: Thermodynamics of protein association reactions: forces contributing to stability publication-title: Biochemistry – volume: 63 start-page: 289 year: 2001 end-page: 325 ident: bb0020 article-title: Evolution and physiological roles of phosphagen system publication-title: Annu. Rev. Physiol. – year: 2012 ident: bb0050 article-title: Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles publication-title: Nanotechnology – volume: 47 start-page: 171 year: 2013 end-page: 178 ident: bb0065 article-title: Interaction of glycine zipper fragments of Aβ-peptides with neuronal nitric oxide synthase: kinetic, thermodynamic and spectrofluorimetric analysis publication-title: Neuropeptides – volume: 49 start-page: 985 year: 2011 end-page: 991 ident: bb0100 article-title: Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation publication-title: Int. J. Biol. Macromol. – volume: 150 start-page: 312 year: 2008 end-page: 319 ident: bb0015 article-title: Characterisation of a novel bacterial arginine kinase from publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. – volume: 87 start-page: 961 year: 2010 end-page: 964 ident: bb0090 article-title: Quenching of tryptophan fluorescence in unfolded cytochrome c: biophysics experiment for physical chemistry students publication-title: J. Chem. Educ. – volume: 14 year: 2012 ident: bb0125 article-title: Enhanced activity of chaperonin GroEL in the presence of platinum nanoparticles publication-title: J. Nanopart. Res. – volume: 27 start-page: 356 year: 2012 end-page: 364 ident: bb0070 article-title: Association of β-amyloid peptide fragments with neuronal nitric oxide synthase: implications in the etiology of Alzheimers disease publication-title: Enzyme Inhib. Med. Chem. – volume: 69 start-page: 209 year: 2007 end-page: 214 ident: bb0110 article-title: The crystal structure of publication-title: Proteins – volume: 554 start-page: 201 year: 2003 end-page: 205 ident: bb0010 article-title: Arginine kinase overexpression improves publication-title: FEBS Lett. – volume: 25 start-page: 1013 year: 2003 end-page: 1017 ident: bb0030 article-title: Functional expression of arginine kinase improves recovery from pH stress of publication-title: Biotechnol. Lett. – volume: 49 start-page: 82 year: 2002 end-page: 85 ident: bb0115 article-title: Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids publication-title: J. Eukaryot. Microbiol. – volume: 554 start-page: 201 issue: 1–2 year: 2003 ident: 10.1016/j.bbagen.2013.10.038_bb0010 article-title: Arginine kinase overexpression improves Trypanosoma cruzi survival capability publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)01171-2 – volume: 150 start-page: 312 issue: 3 year: 2008 ident: 10.1016/j.bbagen.2013.10.038_bb0015 article-title: Characterisation of a novel bacterial arginine kinase from Desulfotalea psychrophila publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2008.03.017 – year: 2012 ident: 10.1016/j.bbagen.2013.10.038_bb0050 article-title: Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles publication-title: Nanotechnology doi: 10.1088/0957-4484/23/3/035102 – volume: 238 start-page: 30 year: 1985 ident: 10.1016/j.bbagen.2013.10.038_bb0135 article-title: The thermodynamics of bovine and porcine insulin determined by concentration difference spectroscopy publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(85)90137-7 – volume: 14 issue: 5 year: 2012 ident: 10.1016/j.bbagen.2013.10.038_bb0125 article-title: Enhanced activity of chaperonin GroEL in the presence of platinum nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-0824-6 – volume: 71 start-page: 528 year: 2003 ident: 10.1016/j.bbagen.2013.10.038_bb0105 article-title: Protein localization in living cells and tissues using FRET and FLIM publication-title: Differentiation doi: 10.1111/j.1432-0436.2003.07109007.x – volume: 277 start-page: 31303 issue: 35 year: 2002 ident: 10.1016/j.bbagen.2013.10.038_bb0035 article-title: Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool publication-title: J. Biol. Chem. doi: 10.1074/jbc.M204052200 – volume: 83 start-page: 398 year: 2011 ident: 10.1016/j.bbagen.2013.10.038_bb0085 article-title: Structural and fluorescence quenching characterisation of hematite nanoparticles publication-title: Spectrochim. Acta doi: 10.1016/j.saa.2011.08.052 – volume: 49 start-page: 82 issue: 1 year: 2002 ident: 10.1016/j.bbagen.2013.10.038_bb0115 article-title: Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids publication-title: J. Eukaryot. Microbiol. doi: 10.1111/j.1550-7408.2002.tb00346.x – volume: 69 start-page: 209 year: 2007 ident: 10.1016/j.bbagen.2013.10.038_bb0110 article-title: The crystal structure of Trypanosoma cruzi arginine kinase publication-title: Proteins doi: 10.1002/prot.21557 – volume: 2 start-page: 55 year: 1948 ident: 10.1016/j.bbagen.2013.10.038_bb0095 article-title: Intermolecular energy migration and fluorescence publication-title: Ann. Phys. doi: 10.1002/andp.19484370105 – volume: 27 start-page: 356 issue: 3 year: 2012 ident: 10.1016/j.bbagen.2013.10.038_bb0070 article-title: Association of β-amyloid peptide fragments with neuronal nitric oxide synthase: implications in the etiology of Alzheimers disease publication-title: Enzyme Inhib. Med. Chem. doi: 10.3109/14756366.2011.590805 – volume: 1 start-page: 209 issue: 2 year: 2006 ident: 10.1016/j.bbagen.2013.10.038_bb0025 article-title: Evolution argine kinase gene family publication-title: Comp. Biochem. Physiol. D Genomics Proteomics doi: 10.1016/j.cbd.2005.10.007 – volume: 1810 start-page: 1136 year: 2011 ident: 10.1016/j.bbagen.2013.10.038_bb0060 article-title: Spectrofluorimetric analysis of amyloid peptides with neuronal nitric oxide synthase: implications in Alzheimer's disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2011.09.002 – volume: 49 start-page: 985 issue: 5 year: 2011 ident: 10.1016/j.bbagen.2013.10.038_bb0100 article-title: Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2011.08.017 – volume: 47 start-page: 171 year: 2013 ident: 10.1016/j.bbagen.2013.10.038_bb0065 article-title: Interaction of glycine zipper fragments of Aβ-peptides with neuronal nitric oxide synthase: kinetic, thermodynamic and spectrofluorimetric analysis publication-title: Neuropeptides doi: 10.1016/j.npep.2012.12.006 – volume: 62 start-page: 450 year: 2013 ident: 10.1016/j.bbagen.2013.10.038_bb0075 article-title: Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.09.008 – volume: 63 start-page: 289 year: 2001 ident: 10.1016/j.bbagen.2013.10.038_bb0020 article-title: Evolution and physiological roles of phosphagen system publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.63.1.289 – volume: 114 start-page: 341 issue: 4 year: 2006 ident: 10.1016/j.bbagen.2013.10.038_bb0045 article-title: Trypanosoma cruzi: oxidative stress induces arginine kinase expression publication-title: Exp. Parasitol. doi: 10.1016/j.exppara.2006.04.004 – volume: 87 start-page: 961 issue: 9 year: 2010 ident: 10.1016/j.bbagen.2013.10.038_bb0090 article-title: Quenching of tryptophan fluorescence in unfolded cytochrome c: biophysics experiment for physical chemistry students publication-title: J. Chem. Educ. doi: 10.1021/ed900029c – volume: 20 start-page: 3096 year: 1981 ident: 10.1016/j.bbagen.2013.10.038_bb0130 article-title: Thermodynamics of protein association reactions: forces contributing to stability publication-title: Biochemistry doi: 10.1021/bi00514a017 – volume: 44 start-page: 149 issue: 2 year: 2009 ident: 10.1016/j.bbagen.2013.10.038_bb0120 article-title: The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2008.11.007 – volume: 9 start-page: 185 issue: 2 year: 2013 ident: 10.1016/j.bbagen.2013.10.038_bb0055 article-title: Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2012.05.020 – volume: 1724 start-page: 215 issue: 1–2 year: 2005 ident: 10.1016/j.bbagen.2013.10.038_bb0080 article-title: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2005.04.009 – volume: 46 start-page: 566 issue: 6 year: 1999 ident: 10.1016/j.bbagen.2013.10.038_bb0005 article-title: l-arginine uptake and l-phosphoarginine synthesis in Trypanosoma cruzi publication-title: J. Eukaryot. Microbiol. doi: 10.1111/j.1550-7408.1999.tb05132.x – year: 2011 ident: 10.1016/j.bbagen.2013.10.038_bb0040 article-title: Singular features of Trypanosomatids' phosphotransferases involved in cell energy management publication-title: Enzyme Res. doi: 10.4061/2011/576483 – volume: 25 start-page: 1013 issue: 13 year: 2003 ident: 10.1016/j.bbagen.2013.10.038_bb0030 article-title: Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli publication-title: Biotechnol. Lett. doi: 10.1023/A:1024172518062 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2676725 |
Snippet | Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 701 |
SubjectTerms | adenosine diphosphate adenosine monophosphate African trypanosomiasis Algorithms arginine Arginine - metabolism Arginine kinase Arginine Kinase - metabolism binding sites clinical trials cysteine dissociation drugs electrostatic interactions fluorescence Fluorescence Resonance Energy Transfer Fluorescent Dyes gold Gold - chemistry Humans Metal nanoparticle Metal Nanoparticles - chemistry Models, Molecular nanogold nanoparticles nanosilver nitroprusside parasites Recombinant Proteins - metabolism silver Silver - chemistry Spectrometry, Fluorescence Thermodynamic fluorimetric analysis Thermodynamics Trypanosoma brucei Trypanosoma brucei brucei - metabolism Trypanosomiasis tryptophan |
Title | Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.10.038 https://www.ncbi.nlm.nih.gov/pubmed/24184914 https://www.proquest.com/docview/1467065913 https://www.proquest.com/docview/2000196942 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmkvpU1f20dQoVdn1_bYsnoLS8O2S3NoE5qbkexR2TRrh30ccuk_6H_ujGUnFBoCPRkZCQbNaPSN5gXwXntvisT7iHKdRkiEUVFpjNDqGNmSs7ZrB_TlOJ-d4uez7GwHpkMujIRV9ro_6PROW_d_xv1uji8Xi_E3ceoxnMjEIYO6kCQ-RC1SfvDrJsyD4UMWPAlMAM8e0ue6GC_n-NBKFdQ4PZAYL8lS-ff1dBv87K6ho8fwqMeP6jCQ-AR2qNmD-6Gj5NUePJgODdyewu_utS8kLqjWqyUx0FaNbdhO7sPhlDzDKjGKl64LiVF29UNaRpD6yeM1KUk_USerK1Ya7bpdWuVEGBYfFMvXatnWoaG9sk2tuqRNVusX21Z6Bkjpf3VTTPwZnB59PJnOor77QlTxtm4iS0VN6CR8wyXoc7JJrfPMuJpNkCSjqnAaTe01IyKMvcmz1GcxaZdOKLZGp89ht2kbeglKMu7rdFJP3MQiIwhrxewxlnSuK1PoEaTDppdVX5pcOmRclEMM2nkZWFUKq-Qvs2oE0fWqy1Ca4475euBn-ZeIlXx73LHy3cD-knkoLhXbULtdi-EkfmITp7fPSfoiRJiM4EWQnWt6GT8VaGJ89d-0vYaHPMLwKvQGdjerLb1lnLRx-91B2Id7h5_ms2P5zr9-n_8BUxoWHg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BoopeKqCl3ZYWV-rV3U3ixHFvaFW0vPbCInGL7MSutmUTtI8DP4L_zEzsgCoVIfUYx5Ysjz3-xvP4AL5J51QeO8dtJhMurBU8L6XgQstIoCWndUsHdDHJxlfi9Dq93oBRlwtDYZVB93ud3mrr0DIIqzm4nc0Gl-TUQziRkkNGyFxtwhZVp0p7sHV0cjaePCnktCVfof6cBnQZdG2YlzF4bqkQapR8pzAvSlT59w31HAJtb6LjHXgTICQ78rPchQ1b78ErTyp5twfbo47D7S3ctw9-PneBNY7NLWJtVusaTeUQEcfoJZaRXTw3bVQM04tfxBph2R_8XlpGGShsurhDvdEsm7lmhvbD7AfDLbaYN5XntGe6rlibt4ma_WbdEG0AVf9nT_XE38HV8c_paMwDAQMvcWVXXNu8ssJQBIeJhcusjiuZpcpUaIXEqS1zI4WqnERQJCKnsjRxaWSlSYY20kom-9Crm9p-AEZJ91UyrIZmqAWCCK3J8lHaykyWKpd9SLpFL8pQnZxIMm6KLgztd-FFVZCoqBVF1Qf-OOrWV-d4ob_s5Fn8tcsKvEBeGPm1E3-BMiSviq5ts16S7USuYhUlz_eJQx0iEffhvd87j_NFCJULFYmP_z23Q9geTy_Oi_OTydkneI1_hH8kOoDearG2nxE2rcyXcCweAA_0Fyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+metal+nanoparticles+with+recombinant+arginine+kinase+from+Trypanosoma+brucei%3A+Thermodynamic+and+spectrofluorimetric+evaluation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Adeyemi%2C+O.S.&rft.au=Whiteley%2C+C.G.&rft.date=2014-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1840&rft.issue=1&rft.spage=701&rft.epage=706&rft_id=info:doi/10.1016%2Fj.bbagen.2013.10.038&rft.externalDocID=S0304416513004789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |