Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation

Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the p...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1840; no. 1; pp. 701 - 706
Main Authors Adeyemi, O.S., Whiteley, C.G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2014
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2013.10.038

Cover

Loading…
Abstract Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target. Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles. The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue. The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP. The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials. Proposed structure of the binding sites for TbAK showing the interaction of silver/gold nanoparticles through Cys271, interfering with N1 of the arginine substrate. The interatomic distance between the thiolate atom of Cys271 and N1 of the arginine substrate is 3.3Å. The interatomic distance between Trp104 and N1 is 22.2Å while that distance between Trp104 and bound Ag/Au nanoparticles is 21.1Å and 22.6Å respectively. Nitrate not shown. [Display omitted] •Interaction of silver and gold nanoparticles with arginine kinase from Trypanosoma brucei by fluorescence quenching•FRET showed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan.•The nanoparticles bind close to the arginine substrate through a cysteine residue crucial for the enzymes reaction mechanism.•These nanoparticles could have implications against trypanosomiasis in clinical trials.
AbstractList Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target. Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles. The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue. The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP. The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials. Proposed structure of the binding sites for TbAK showing the interaction of silver/gold nanoparticles through Cys271, interfering with N1 of the arginine substrate. The interatomic distance between the thiolate atom of Cys271 and N1 of the arginine substrate is 3.3Å. The interatomic distance between Trp104 and N1 is 22.2Å while that distance between Trp104 and bound Ag/Au nanoparticles is 21.1Å and 22.6Å respectively. Nitrate not shown. [Display omitted] •Interaction of silver and gold nanoparticles with arginine kinase from Trypanosoma brucei by fluorescence quenching•FRET showed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan.•The nanoparticles bind close to the arginine substrate through a cysteine residue crucial for the enzymes reaction mechanism.•These nanoparticles could have implications against trypanosomiasis in clinical trials.
Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.BACKGROUNDTrypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.METHODSFluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.RESULTSThe enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.CONCLUSIONSThe nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.GENERAL SIGNIFICANCEThe nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.
Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target.Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles.The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern–Volmer constants (KSV) were 15.2nM, 0.058nM−1 [Ag]; and 43.5nM, 0.052nM−1 [Au] and these decreased to 11.2nM, 0.041nM−1 [Ag]; and 24.2nM, 0.039nM−1 [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore–nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue.The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine–guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP.The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.
Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore relevant to attack possible biomedical targets with specific preparations and since arginine kinase does not occur in humans but is present in the parasite it becomes a suitable target. Fluorescence quenching, thermodynamic analysis and FRET have shown that arginine kinase from T. brucei interacted with silver or gold nanoparticles. The enzyme only had one binding site. At 25°C the dissociation (Kd) and Stern-Volmer constants (KSV) were 15.2nM, 0.058nM(-1) [Ag]; and 43.5nM, 0.052nM(-1) [Au] and these decreased to 11.2nM, 0.041nM(-1) [Ag]; and 24.2nM, 0.039nM(-1) [Au] at 30°C illustrating static quenching and the formation of a non-fluorescent fluorophore-nanoparticle complex. Silver nanoparticles bound to arginine kinase with greater affinity, enhanced fluorescence quenching and easier access to tryptophan molecules than gold. Negative ΔH and ΔG values implied that the interaction of both Ag and Au nanoparticles with arginine kinase was spontaneous with electrostatic forces. FRET confirmed that the nanoparticles were bound 2.11nm [Ag] and 2.26nm [Au] from a single surface tryptophan residue. The nanoparticles bind close to the arginine substrate through a cysteine residue that controls the electrophilic and nucleophilic characters of the substrate arginine-guanidinium group crucial for enzymatic phosphoryl transfer between ADP and ATP. The nanoparticles of silver and gold interact with arginine kinase from T. brucei and may prove to have far reaching consequences in clinical trials.
Author Adeyemi, O.S.
Whiteley, C.G.
Author_xml – sequence: 1
  givenname: O.S.
  surname: Adeyemi
  fullname: Adeyemi, O.S.
– sequence: 2
  givenname: C.G.
  surname: Whiteley
  fullname: Whiteley, C.G.
  email: C.Whiteley@ru.ac.za
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24184914$$D View this record in MEDLINE/PubMed
BookMark eNqFUctO3DAUtSpQGaB_UFVedpPBTuwkZlGpQn0gIbEZ1pYfN-BpYqe2A5qP6D_X04FNF-CN5eNzzn2cU3TkgweEPlKypoS2F9u11uoe_LomtCnQmjT9O7SifVdXPSHtEVqRhrCK0ZafoNOUtqQcLvh7dFIz2jNB2Qr9ufYZojLZBY_DgCfIasRe-TCrmJ0ZIeEnlx9wBBMm7cpPxireO-884F_lnQAPMUx4E3dzkaUwKazjYsBd4s0DxCnYnVeTM1h5i9MMJscwjEuIrhSLBYdHNS5q38E5Oh7UmODD832G7r5_21z9rG5uf1xffb2pDGM0Vwp6C0wLQomu2dCCqm3XcqGt6FjNwfS6Y8IOHaec0UG0vBk4hU43BKgSXXOGPh985xh-L5CynFwyMI7KQ1iSrMumqGgFq9-kUtZ2pNSmTaF-eqYuegIr5zKhijv5su1CuDwQTAwpRRikcfnf4DkqN0pK5D5auZWHaOU-2j1aoi1i9p_4xf8N2ZeDDMo-Hx1EmYwDb8C6EmmWNrjXDf4CCeXCfg
CitedBy_id crossref_primary_10_1590_1678_9199_jvatitd_1441_18
crossref_primary_10_1016_j_trac_2014_09_010
crossref_primary_10_1038_s41598_023_37178_x
crossref_primary_10_1080_21691401_2018_1489267
crossref_primary_10_3923_jms_2015_71_79
crossref_primary_10_1155_2014_675905
crossref_primary_10_1016_j_cbi_2019_01_034
crossref_primary_10_15407_biotech7_06_083
crossref_primary_10_1016_j_nantod_2021_101122
crossref_primary_10_2478_aoas_2018_0060
crossref_primary_10_1007_s10863_016_9660_1
crossref_primary_10_1016_j_jacme_2015_09_005
crossref_primary_10_1016_j_bbrep_2021_101013
crossref_primary_10_3390_membranes10050101
crossref_primary_10_5812_jamm_115282
crossref_primary_10_1039_C6NR02113A
crossref_primary_10_2147_IJN_S401319
crossref_primary_10_3762_bjnano_12_36
crossref_primary_10_1016_j_jtice_2015_10_029
crossref_primary_10_1017_S0007485315000450
crossref_primary_10_1007_s00580_018_2841_z
crossref_primary_10_3390_molecules25153432
crossref_primary_10_1088_0957_4484_27_36_365101
crossref_primary_10_1002_jsfa_8925
crossref_primary_10_1016_j_biopha_2023_114597
crossref_primary_10_5812_jamm_104248
crossref_primary_10_1016_j_ijbiomac_2024_135154
crossref_primary_10_1155_2014_196091
crossref_primary_10_1016_j_actatropica_2017_02_019
crossref_primary_10_1186_s13071_019_3520_x
crossref_primary_10_1016_j_ijbiomac_2015_05_033
crossref_primary_10_3390_pathogens12060838
crossref_primary_10_3762_bjnano_7_60
crossref_primary_10_1016_j_actatropica_2017_10_021
crossref_primary_10_1515_jbcpp_2013_0092
crossref_primary_10_1007_s00580_016_2274_5
crossref_primary_10_1042_BSR20190379
Cites_doi 10.1016/S0014-5793(03)01171-2
10.1016/j.cbpb.2008.03.017
10.1088/0957-4484/23/3/035102
10.1016/0003-9861(85)90137-7
10.1007/s11051-012-0824-6
10.1111/j.1432-0436.2003.07109007.x
10.1074/jbc.M204052200
10.1016/j.saa.2011.08.052
10.1111/j.1550-7408.2002.tb00346.x
10.1002/prot.21557
10.1002/andp.19484370105
10.3109/14756366.2011.590805
10.1016/j.cbd.2005.10.007
10.1016/j.bbagen.2011.09.002
10.1016/j.ijbiomac.2011.08.017
10.1016/j.npep.2012.12.006
10.1016/j.ijbiomac.2013.09.008
10.1146/annurev.physiol.63.1.289
10.1016/j.exppara.2006.04.004
10.1021/ed900029c
10.1021/bi00514a017
10.1016/j.ijbiomac.2008.11.007
10.1016/j.nano.2012.05.020
10.1016/j.bbagen.2005.04.009
10.1111/j.1550-7408.1999.tb05132.x
10.4061/2011/576483
10.1023/A:1024172518062
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2013.10.038
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 706
ExternalDocumentID 24184914
10_1016_j_bbagen_2013_10_038
S0304416513004789
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c441t-ae8de4b9010b24f6ea2d7659bd97425ec8b749df751541f9653f51e7b30e1a973
IEDL.DBID .~1
ISSN 0304-4165
0006-3002
IngestDate Mon Jul 21 09:47:27 EDT 2025
Fri Jul 11 06:03:42 EDT 2025
Mon Jul 21 05:49:59 EDT 2025
Tue Jul 01 00:22:02 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metal nanoparticle
Trypanosomiasis
Thermodynamic fluorimetric analysis
Arginine kinase
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-ae8de4b9010b24f6ea2d7659bd97425ec8b749df751541f9653f51e7b30e1a973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0304416513004789-fx1_lrg.jpg
PMID 24184914
PQID 1467065913
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000196942
proquest_miscellaneous_1467065913
pubmed_primary_24184914
crossref_citationtrail_10_1016_j_bbagen_2013_10_038
crossref_primary_10_1016_j_bbagen_2013_10_038
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_10_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2014
2014-01-00
2014-Jan
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January 2014
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schlamadinger, Kats, Kim (bb0090) 2010; 87
Padayachee, Ngqwala, Whiteley (bb0070) 2012; 27
Förster (bb0095) 1948; 2
Al-Kady, Geber, Hussein, Ebeida (bb0085) 2011; 83
Chen, Mills, Periasamy (bb0105) 2003; 71
Pereira, Alonso, Ivaldi, Silver, Alves, Torres, Flawiá (bb0010) 2003; 554
Padayachee, Whiteley (bb0065) 2013; 47
Fernandez, Haouz, Pereira, Aguilar, Alzari (bb0110) 2007; 69
Sennuga, van Marwijk, Boshoff, Whiteley (bb0125) 2012; 14
Sennuga, van Marwijk, Whiteley (bb0050) 2012
Uda, Fujimoto, Akiyama, Mizuta, Tanaka, Ellington, Suzuki (bb0025) 2006; 1
Miranda, Canepa, Bouvier, Pereira CA (bb0045) 2006; 114
Canonaco, Schlattner, Pruett, Wallimann, Sauer (bb0030) 2003; 25
Xie, Xu, Wang (bb0080) 2005; 1724
Adeyemi, Whiteley (bb0075) 2013; 62
Padayachee, Whiteley (bb0060) 2011; 1810
Wang, Zhu, Wang (bb0100) 2011; 49
Wu, Zhu, Lü, Xia, Yang, Zou, Wang (bb0120) 2009; 44
Ross, Subramanian (bb0130) 1981; 20
Pereira, Alonso, Torres, Flawiá (bb0115) 2002; 49
Sennuga, van Marwijk, Whiteley (bb0055) 2013; 9
Ellington (bb0020) 2001; 63
Andrews, Graham, Snider, Fraga (bb0015) 2008; 150
Pereira, Alonso, Paveto, Flawiá, Torres (bb0005) 1999; 46
Strazza, Hunter, Walker, Darnall (bb0135) 1985; 238
Canonaco, Schlattner, Pruett, Wallimann, Sauer (bb0035) 2002; 277
Pereira, Bouvier, Cámara, Miranda (bb0040) 2011
Miranda (10.1016/j.bbagen.2013.10.038_bb0045) 2006; 114
Sennuga (10.1016/j.bbagen.2013.10.038_bb0050) 2012
Padayachee (10.1016/j.bbagen.2013.10.038_bb0065) 2013; 47
Pereira (10.1016/j.bbagen.2013.10.038_bb0005) 1999; 46
Strazza (10.1016/j.bbagen.2013.10.038_bb0135) 1985; 238
Padayachee (10.1016/j.bbagen.2013.10.038_bb0070) 2012; 27
Padayachee (10.1016/j.bbagen.2013.10.038_bb0060) 2011; 1810
Xie (10.1016/j.bbagen.2013.10.038_bb0080) 2005; 1724
Uda (10.1016/j.bbagen.2013.10.038_bb0025) 2006; 1
Förster (10.1016/j.bbagen.2013.10.038_bb0095) 1948; 2
Sennuga (10.1016/j.bbagen.2013.10.038_bb0055) 2013; 9
Adeyemi (10.1016/j.bbagen.2013.10.038_bb0075) 2013; 62
Ellington (10.1016/j.bbagen.2013.10.038_bb0020) 2001; 63
Fernandez (10.1016/j.bbagen.2013.10.038_bb0110) 2007; 69
Pereira (10.1016/j.bbagen.2013.10.038_bb0115) 2002; 49
Wang (10.1016/j.bbagen.2013.10.038_bb0100) 2011; 49
Ross (10.1016/j.bbagen.2013.10.038_bb0130) 1981; 20
Schlamadinger (10.1016/j.bbagen.2013.10.038_bb0090) 2010; 87
Canonaco (10.1016/j.bbagen.2013.10.038_bb0030) 2003; 25
Pereira (10.1016/j.bbagen.2013.10.038_bb0010) 2003; 554
Andrews (10.1016/j.bbagen.2013.10.038_bb0015) 2008; 150
Chen (10.1016/j.bbagen.2013.10.038_bb0105) 2003; 71
Al-Kady (10.1016/j.bbagen.2013.10.038_bb0085) 2011; 83
Pereira (10.1016/j.bbagen.2013.10.038_bb0040) 2011
Sennuga (10.1016/j.bbagen.2013.10.038_bb0125) 2012; 14
Canonaco (10.1016/j.bbagen.2013.10.038_bb0035) 2002; 277
Wu (10.1016/j.bbagen.2013.10.038_bb0120) 2009; 44
References_xml – volume: 1
  start-page: 209
  year: 2006
  end-page: 218
  ident: bb0025
  article-title: Evolution argine kinase gene family
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
– volume: 83
  start-page: 398
  year: 2011
  end-page: 405
  ident: bb0085
  article-title: Structural and fluorescence quenching characterisation of hematite nanoparticles
  publication-title: Spectrochim. Acta
– volume: 62
  start-page: 450
  year: 2013
  end-page: 456
  ident: bb0075
  article-title: Interaction of nanoparticles with arginine kinase from
  publication-title: Int. J. Biol. Macromol.
– volume: 238
  start-page: 30
  year: 1985
  end-page: 42
  ident: bb0135
  article-title: The thermodynamics of bovine and porcine insulin determined by concentration difference spectroscopy
  publication-title: Arch. Biochem. Biophys.
– volume: 71
  start-page: 528
  year: 2003
  end-page: 554
  ident: bb0105
  article-title: Protein localization in living cells and tissues using FRET and FLIM
  publication-title: Differentiation
– volume: 44
  start-page: 149
  year: 2009
  end-page: 155
  ident: bb0120
  article-title: The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation
  publication-title: Int. J. Biol. Macromol.
– year: 2011
  ident: bb0040
  article-title: Singular features of Trypanosomatids' phosphotransferases involved in cell energy management
  publication-title: Enzyme Res.
– volume: 1810
  start-page: 1136
  year: 2011
  end-page: 1140
  ident: bb0060
  article-title: Spectrofluorimetric analysis of amyloid peptides with neuronal nitric oxide synthase: implications in Alzheimer's disease
  publication-title: Biochim. Biophys. Acta
– volume: 2
  start-page: 55
  year: 1948
  end-page: 75
  ident: bb0095
  article-title: Intermolecular energy migration and fluorescence
  publication-title: Ann. Phys.
– volume: 46
  start-page: 566
  year: 1999
  end-page: 570
  ident: bb0005
  article-title: -arginine uptake and
  publication-title: J. Eukaryot. Microbiol.
– volume: 277
  start-page: 31303
  year: 2002
  end-page: 31309
  ident: bb0035
  article-title: Functional expression of phosphagen kinase systems confers resistance to transient stresses in
  publication-title: J. Biol. Chem.
– volume: 114
  start-page: 341
  year: 2006
  end-page: 344
  ident: bb0045
  article-title: : oxidative stress induces arginine kinase expression
  publication-title: Exp. Parasitol.
– volume: 9
  start-page: 185
  year: 2013
  end-page: 193
  ident: bb0055
  article-title: Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 1724
  start-page: 215
  year: 2005
  end-page: 224
  ident: bb0080
  article-title: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods
  publication-title: Biochim. Biophys. Acta Gen. Subj.
– volume: 20
  start-page: 3096
  year: 1981
  end-page: 3102
  ident: bb0130
  article-title: Thermodynamics of protein association reactions: forces contributing to stability
  publication-title: Biochemistry
– volume: 63
  start-page: 289
  year: 2001
  end-page: 325
  ident: bb0020
  article-title: Evolution and physiological roles of phosphagen system
  publication-title: Annu. Rev. Physiol.
– year: 2012
  ident: bb0050
  article-title: Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles
  publication-title: Nanotechnology
– volume: 47
  start-page: 171
  year: 2013
  end-page: 178
  ident: bb0065
  article-title: Interaction of glycine zipper fragments of Aβ-peptides with neuronal nitric oxide synthase: kinetic, thermodynamic and spectrofluorimetric analysis
  publication-title: Neuropeptides
– volume: 49
  start-page: 985
  year: 2011
  end-page: 991
  ident: bb0100
  article-title: Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation
  publication-title: Int. J. Biol. Macromol.
– volume: 150
  start-page: 312
  year: 2008
  end-page: 319
  ident: bb0015
  article-title: Characterisation of a novel bacterial arginine kinase from
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol.
– volume: 87
  start-page: 961
  year: 2010
  end-page: 964
  ident: bb0090
  article-title: Quenching of tryptophan fluorescence in unfolded cytochrome c: biophysics experiment for physical chemistry students
  publication-title: J. Chem. Educ.
– volume: 14
  year: 2012
  ident: bb0125
  article-title: Enhanced activity of chaperonin GroEL in the presence of platinum nanoparticles
  publication-title: J. Nanopart. Res.
– volume: 27
  start-page: 356
  year: 2012
  end-page: 364
  ident: bb0070
  article-title: Association of β-amyloid peptide fragments with neuronal nitric oxide synthase: implications in the etiology of Alzheimers disease
  publication-title: Enzyme Inhib. Med. Chem.
– volume: 69
  start-page: 209
  year: 2007
  end-page: 214
  ident: bb0110
  article-title: The crystal structure of
  publication-title: Proteins
– volume: 554
  start-page: 201
  year: 2003
  end-page: 205
  ident: bb0010
  article-title: Arginine kinase overexpression improves
  publication-title: FEBS Lett.
– volume: 25
  start-page: 1013
  year: 2003
  end-page: 1017
  ident: bb0030
  article-title: Functional expression of arginine kinase improves recovery from pH stress of
  publication-title: Biotechnol. Lett.
– volume: 49
  start-page: 82
  year: 2002
  end-page: 85
  ident: bb0115
  article-title: Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids
  publication-title: J. Eukaryot. Microbiol.
– volume: 554
  start-page: 201
  issue: 1–2
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.038_bb0010
  article-title: Arginine kinase overexpression improves Trypanosoma cruzi survival capability
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)01171-2
– volume: 150
  start-page: 312
  issue: 3
  year: 2008
  ident: 10.1016/j.bbagen.2013.10.038_bb0015
  article-title: Characterisation of a novel bacterial arginine kinase from Desulfotalea psychrophila
  publication-title: Comp. Biochem. Physiol. B Biochem. Mol. Biol.
  doi: 10.1016/j.cbpb.2008.03.017
– year: 2012
  ident: 10.1016/j.bbagen.2013.10.038_bb0050
  article-title: Ferroxidase activity of apoferritin is increased in the presence of platinum nanoparticles
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/3/035102
– volume: 238
  start-page: 30
  year: 1985
  ident: 10.1016/j.bbagen.2013.10.038_bb0135
  article-title: The thermodynamics of bovine and porcine insulin determined by concentration difference spectroscopy
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(85)90137-7
– volume: 14
  issue: 5
  year: 2012
  ident: 10.1016/j.bbagen.2013.10.038_bb0125
  article-title: Enhanced activity of chaperonin GroEL in the presence of platinum nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-0824-6
– volume: 71
  start-page: 528
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.038_bb0105
  article-title: Protein localization in living cells and tissues using FRET and FLIM
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.2003.07109007.x
– volume: 277
  start-page: 31303
  issue: 35
  year: 2002
  ident: 10.1016/j.bbagen.2013.10.038_bb0035
  article-title: Functional expression of phosphagen kinase systems confers resistance to transient stresses in Saccharomyces cerevisiae by buffering the ATP pool
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M204052200
– volume: 83
  start-page: 398
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.038_bb0085
  article-title: Structural and fluorescence quenching characterisation of hematite nanoparticles
  publication-title: Spectrochim. Acta
  doi: 10.1016/j.saa.2011.08.052
– volume: 49
  start-page: 82
  issue: 1
  year: 2002
  ident: 10.1016/j.bbagen.2013.10.038_bb0115
  article-title: Arginine kinase: a common feature for management of energy reserves in African and American flagellated trypanosomatids
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/j.1550-7408.2002.tb00346.x
– volume: 69
  start-page: 209
  year: 2007
  ident: 10.1016/j.bbagen.2013.10.038_bb0110
  article-title: The crystal structure of Trypanosoma cruzi arginine kinase
  publication-title: Proteins
  doi: 10.1002/prot.21557
– volume: 2
  start-page: 55
  year: 1948
  ident: 10.1016/j.bbagen.2013.10.038_bb0095
  article-title: Intermolecular energy migration and fluorescence
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19484370105
– volume: 27
  start-page: 356
  issue: 3
  year: 2012
  ident: 10.1016/j.bbagen.2013.10.038_bb0070
  article-title: Association of β-amyloid peptide fragments with neuronal nitric oxide synthase: implications in the etiology of Alzheimers disease
  publication-title: Enzyme Inhib. Med. Chem.
  doi: 10.3109/14756366.2011.590805
– volume: 1
  start-page: 209
  issue: 2
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.038_bb0025
  article-title: Evolution argine kinase gene family
  publication-title: Comp. Biochem. Physiol. D Genomics Proteomics
  doi: 10.1016/j.cbd.2005.10.007
– volume: 1810
  start-page: 1136
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.038_bb0060
  article-title: Spectrofluorimetric analysis of amyloid peptides with neuronal nitric oxide synthase: implications in Alzheimer's disease
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2011.09.002
– volume: 49
  start-page: 985
  issue: 5
  year: 2011
  ident: 10.1016/j.bbagen.2013.10.038_bb0100
  article-title: Mechanism of inhibition of arginine kinase by flavonoids consistent with thermodynamics of docking simulation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2011.08.017
– volume: 47
  start-page: 171
  year: 2013
  ident: 10.1016/j.bbagen.2013.10.038_bb0065
  article-title: Interaction of glycine zipper fragments of Aβ-peptides with neuronal nitric oxide synthase: kinetic, thermodynamic and spectrofluorimetric analysis
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2012.12.006
– volume: 62
  start-page: 450
  year: 2013
  ident: 10.1016/j.bbagen.2013.10.038_bb0075
  article-title: Interaction of nanoparticles with arginine kinase from Trypanosoma brucei: kinetic and mechanistic evaluation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.09.008
– volume: 63
  start-page: 289
  year: 2001
  ident: 10.1016/j.bbagen.2013.10.038_bb0020
  article-title: Evolution and physiological roles of phosphagen system
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.63.1.289
– volume: 114
  start-page: 341
  issue: 4
  year: 2006
  ident: 10.1016/j.bbagen.2013.10.038_bb0045
  article-title: Trypanosoma cruzi: oxidative stress induces arginine kinase expression
  publication-title: Exp. Parasitol.
  doi: 10.1016/j.exppara.2006.04.004
– volume: 87
  start-page: 961
  issue: 9
  year: 2010
  ident: 10.1016/j.bbagen.2013.10.038_bb0090
  article-title: Quenching of tryptophan fluorescence in unfolded cytochrome c: biophysics experiment for physical chemistry students
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed900029c
– volume: 20
  start-page: 3096
  year: 1981
  ident: 10.1016/j.bbagen.2013.10.038_bb0130
  article-title: Thermodynamics of protein association reactions: forces contributing to stability
  publication-title: Biochemistry
  doi: 10.1021/bi00514a017
– volume: 44
  start-page: 149
  issue: 2
  year: 2009
  ident: 10.1016/j.bbagen.2013.10.038_bb0120
  article-title: The effect of rutin on arginine kinase: inhibition kinetics and thermodynamics merging with docking simulation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2008.11.007
– volume: 9
  start-page: 185
  issue: 2
  year: 2013
  ident: 10.1016/j.bbagen.2013.10.038_bb0055
  article-title: Multiple fold increase in activity of ferroxidase–apoferritin complex by silver and gold nanoparticles
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2012.05.020
– volume: 1724
  start-page: 215
  issue: 1–2
  year: 2005
  ident: 10.1016/j.bbagen.2013.10.038_bb0080
  article-title: Interaction between hesperetin and human serum albumin revealed by spectroscopic methods
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2005.04.009
– volume: 46
  start-page: 566
  issue: 6
  year: 1999
  ident: 10.1016/j.bbagen.2013.10.038_bb0005
  article-title: l-arginine uptake and l-phosphoarginine synthesis in Trypanosoma cruzi
  publication-title: J. Eukaryot. Microbiol.
  doi: 10.1111/j.1550-7408.1999.tb05132.x
– year: 2011
  ident: 10.1016/j.bbagen.2013.10.038_bb0040
  article-title: Singular features of Trypanosomatids' phosphotransferases involved in cell energy management
  publication-title: Enzyme Res.
  doi: 10.4061/2011/576483
– volume: 25
  start-page: 1013
  issue: 13
  year: 2003
  ident: 10.1016/j.bbagen.2013.10.038_bb0030
  article-title: Functional expression of arginine kinase improves recovery from pH stress of Escherichia coli
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1024172518062
SSID ssj0000595
ssj0025309
Score 2.2676725
Snippet Trypanosoma brucei, responsible for African sleeping sickness, is a lethal parasite against which there is need for new drug protocols. It is therefore...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 701
SubjectTerms adenosine diphosphate
adenosine monophosphate
African trypanosomiasis
Algorithms
arginine
Arginine - metabolism
Arginine kinase
Arginine Kinase - metabolism
binding sites
clinical trials
cysteine
dissociation
drugs
electrostatic interactions
fluorescence
Fluorescence Resonance Energy Transfer
Fluorescent Dyes
gold
Gold - chemistry
Humans
Metal nanoparticle
Metal Nanoparticles - chemistry
Models, Molecular
nanogold
nanoparticles
nanosilver
nitroprusside
parasites
Recombinant Proteins - metabolism
silver
Silver - chemistry
Spectrometry, Fluorescence
Thermodynamic fluorimetric analysis
Thermodynamics
Trypanosoma brucei
Trypanosoma brucei brucei - metabolism
Trypanosomiasis
tryptophan
Title Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: Thermodynamic and spectrofluorimetric evaluation
URI https://dx.doi.org/10.1016/j.bbagen.2013.10.038
https://www.ncbi.nlm.nih.gov/pubmed/24184914
https://www.proquest.com/docview/1467065913
https://www.proquest.com/docview/2000196942
Volume 1840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CSmkvpU1f20dQoVdn1_bYsnoLS8O2S3NoE5qbkexR2TRrh30ccuk_6H_ujGUnFBoCPRkZCQbNaPSN5gXwXntvisT7iHKdRkiEUVFpjNDqGNmSs7ZrB_TlOJ-d4uez7GwHpkMujIRV9ro_6PROW_d_xv1uji8Xi_E3ceoxnMjEIYO6kCQ-RC1SfvDrJsyD4UMWPAlMAM8e0ue6GC_n-NBKFdQ4PZAYL8lS-ff1dBv87K6ho8fwqMeP6jCQ-AR2qNmD-6Gj5NUePJgODdyewu_utS8kLqjWqyUx0FaNbdhO7sPhlDzDKjGKl64LiVF29UNaRpD6yeM1KUk_USerK1Ya7bpdWuVEGBYfFMvXatnWoaG9sk2tuqRNVusX21Z6Bkjpf3VTTPwZnB59PJnOor77QlTxtm4iS0VN6CR8wyXoc7JJrfPMuJpNkCSjqnAaTe01IyKMvcmz1GcxaZdOKLZGp89ht2kbeglKMu7rdFJP3MQiIwhrxewxlnSuK1PoEaTDppdVX5pcOmRclEMM2nkZWFUKq-Qvs2oE0fWqy1Ca4475euBn-ZeIlXx73LHy3cD-knkoLhXbULtdi-EkfmITp7fPSfoiRJiM4EWQnWt6GT8VaGJ89d-0vYaHPMLwKvQGdjerLb1lnLRx-91B2Id7h5_ms2P5zr9-n_8BUxoWHg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BoopeKqCl3ZYWV-rV3U3ixHFvaFW0vPbCInGL7MSutmUTtI8DP4L_zEzsgCoVIfUYx5Ysjz3-xvP4AL5J51QeO8dtJhMurBU8L6XgQstIoCWndUsHdDHJxlfi9Dq93oBRlwtDYZVB93ud3mrr0DIIqzm4nc0Gl-TUQziRkkNGyFxtwhZVp0p7sHV0cjaePCnktCVfof6cBnQZdG2YlzF4bqkQapR8pzAvSlT59w31HAJtb6LjHXgTICQ78rPchQ1b78ErTyp5twfbo47D7S3ctw9-PneBNY7NLWJtVusaTeUQEcfoJZaRXTw3bVQM04tfxBph2R_8XlpGGShsurhDvdEsm7lmhvbD7AfDLbaYN5XntGe6rlibt4ma_WbdEG0AVf9nT_XE38HV8c_paMwDAQMvcWVXXNu8ssJQBIeJhcusjiuZpcpUaIXEqS1zI4WqnERQJCKnsjRxaWSlSYY20kom-9Crm9p-AEZJ91UyrIZmqAWCCK3J8lHaykyWKpd9SLpFL8pQnZxIMm6KLgztd-FFVZCoqBVF1Qf-OOrWV-d4ob_s5Fn8tcsKvEBeGPm1E3-BMiSviq5ts16S7USuYhUlz_eJQx0iEffhvd87j_NFCJULFYmP_z23Q9geTy_Oi_OTydkneI1_hH8kOoDearG2nxE2rcyXcCweAA_0Fyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+of+metal+nanoparticles+with+recombinant+arginine+kinase+from+Trypanosoma+brucei%3A+Thermodynamic+and+spectrofluorimetric+evaluation&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Adeyemi%2C+O.S.&rft.au=Whiteley%2C+C.G.&rft.date=2014-01-01&rft.pub=Elsevier+B.V&rft.issn=0304-4165&rft.eissn=1872-8006&rft.volume=1840&rft.issue=1&rft.spage=701&rft.epage=706&rft_id=info:doi/10.1016%2Fj.bbagen.2013.10.038&rft.externalDocID=S0304416513004789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon