The emerging mechanisms and functions of microautophagy
‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to d...
Saved in:
Published in | Nature reviews. Molecular cell biology Vol. 24; no. 3; pp. 186 - 203 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge. |
---|---|
AbstractList | 'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases. ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases. Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge. ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge. 'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases. |
Author | Wang, Liming Klionsky, Daniel J. Shen, Han-Ming |
Author_xml | – sequence: 1 givenname: Liming orcidid: 0000-0002-5444-2424 surname: Wang fullname: Wang, Liming organization: School of Biomedical Sciences, Hunan University – sequence: 2 givenname: Daniel J. orcidid: 0000-0002-7828-8118 surname: Klionsky fullname: Klionsky, Daniel J. email: klionsky@umich.edu organization: Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan – sequence: 3 givenname: Han-Ming orcidid: 0000-0001-7369-5227 surname: Shen fullname: Shen, Han-Ming email: hmshen@um.edu.mo organization: Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36097284$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAURS1URD_gDzCgSCwsgWcnruMRVXxJlVjKbDm2k6ZqnGInQ_vrcUkLUodOtuVzr947YzSwjTUI3WJ4xJBkTz7FNIMYCIkBKOHx7gKNcMpweGYw-LszMkRj71cAeIoZvULDZAqckSwdIbZYmsjUxpWVLaPaqKW0la99JK2Ois6qtmqsj5oiqivlGtm1zWYpy-01uizk2pubwzlBX68vi9l7PP98-5g9z2OVpriNJceYKUjBEChkXmiV5yllOOWaapwTrSlNlC4IZUYxPYUkfOSc4gS4NFwlE_TQ925c890Z34q68sqs19KapvOChC6gfMpoQO9P0FXTORumCxTjhCUZI4G6O1BdXhstNq6qpduKo5IAZD0Q1vXemUKoqpV7Da2T1VpgEHv7orcvgn3xa1_sQpScRI_tZ0NJH_IBtqVx_2OfSf0A9-OWiA |
CitedBy_id | crossref_primary_10_1016_j_cmet_2024_02_004 crossref_primary_10_1016_j_phrs_2024_107120 crossref_primary_10_1073_pnas_2321612121 crossref_primary_10_3390_cells12030475 crossref_primary_10_3389_fphar_2022_999017 crossref_primary_10_1016_j_tim_2023_04_001 crossref_primary_10_1097_FJC_0000000000001646 crossref_primary_10_1007_s12035_024_04642_2 crossref_primary_10_1002_alz_70048 crossref_primary_10_1038_s41420_023_01496_w crossref_primary_10_1186_s12967_023_04114_6 crossref_primary_10_3389_fimmu_2024_1488020 crossref_primary_10_1016_j_tcb_2024_09_002 crossref_primary_10_1016_j_celrep_2024_114619 crossref_primary_10_1016_j_molcel_2025_02_022 crossref_primary_10_1016_j_prp_2023_154899 crossref_primary_10_31083_j_fbl2906231 crossref_primary_10_4103_NRR_NRR_D_23_01948 crossref_primary_10_1016_j_bbrc_2024_151219 crossref_primary_10_3389_fmolb_2023_1155521 crossref_primary_10_1016_j_fsi_2023_109068 crossref_primary_10_1097_MCC_0000000000001056 crossref_primary_10_3389_fnagi_2023_1281338 crossref_primary_10_1016_j_fsi_2024_110109 crossref_primary_10_1080_15548627_2023_2230837 crossref_primary_10_3389_fphar_2023_1275792 crossref_primary_10_3390_cells13020183 crossref_primary_10_1002_advs_202401676 crossref_primary_10_1016_j_tcb_2023_11_005 crossref_primary_10_3389_fendo_2024_1291389 crossref_primary_10_1021_acs_analchem_3c04520 crossref_primary_10_1111_cns_14548 crossref_primary_10_1152_ajprenal_00415_2023 crossref_primary_10_1080_15548627_2025_2455158 crossref_primary_10_1021_acsomega_4c03738 crossref_primary_10_1038_s41467_024_45206_1 crossref_primary_10_1038_s41401_024_01334_4 crossref_primary_10_3389_fcell_2023_1297024 crossref_primary_10_3389_fendo_2024_1374644 crossref_primary_10_15252_embr_202357265 crossref_primary_10_4049_jimmunol_2300406 crossref_primary_10_3390_genes14081550 crossref_primary_10_3389_fimmu_2024_1343987 crossref_primary_10_3389_fphar_2024_1416781 crossref_primary_10_1152_physrev_00025_2023 crossref_primary_10_1038_s41392_024_02095_6 crossref_primary_10_1007_s12672_024_01250_3 crossref_primary_10_3390_ijms252211932 crossref_primary_10_3389_fcell_2023_1158279 crossref_primary_10_1007_s10753_024_02049_8 crossref_primary_10_3389_fnmol_2024_1498459 crossref_primary_10_1021_acschembio_4c00835 crossref_primary_10_3389_fimmu_2023_1118449 crossref_primary_10_1038_s41420_023_01753_y crossref_primary_10_1016_j_jmb_2024_168473 crossref_primary_10_1002_cbf_3984 crossref_primary_10_1016_j_canlet_2024_216728 crossref_primary_10_3389_fphar_2023_1273511 crossref_primary_10_1080_15548627_2024_2447207 crossref_primary_10_1016_j_phymed_2025_156389 crossref_primary_10_1089_ars_2022_0202 crossref_primary_10_32604_biocell_2023_045591 crossref_primary_10_1166_jbn_2024_3827 crossref_primary_10_1096_fba_2024_00035 crossref_primary_10_1007_s10616_024_00689_0 crossref_primary_10_3390_ijms252011112 crossref_primary_10_3389_fcell_2024_1520949 crossref_primary_10_3389_fcimb_2023_1289170 crossref_primary_10_1016_j_jhazmat_2024_135952 crossref_primary_10_1016_j_jare_2024_10_026 crossref_primary_10_3748_wjg_v30_i24_3036 crossref_primary_10_1016_j_intimp_2023_110712 crossref_primary_10_3389_fcell_2025_1518991 crossref_primary_10_3389_fendo_2024_1298423 crossref_primary_10_1038_s41467_024_48597_3 crossref_primary_10_3389_fcell_2024_1347857 crossref_primary_10_3390_ph16050671 crossref_primary_10_1128_msphere_00460_23 crossref_primary_10_1038_s41598_024_59367_y crossref_primary_10_4103_NRR_NRR_D_23_01195 crossref_primary_10_1002_mba2_47 crossref_primary_10_3389_fnmol_2023_1168948 crossref_primary_10_1016_j_ecoenv_2024_117426 crossref_primary_10_1038_s41569_025_01142_1 crossref_primary_10_4254_wjh_v15_i12_1272 crossref_primary_10_3390_ijms25105569 crossref_primary_10_3390_ijms25169035 crossref_primary_10_2491_jjsth_35_675 crossref_primary_10_3390_ijms26020806 crossref_primary_10_3390_cells12060947 crossref_primary_10_1080_15548627_2025_2457925 crossref_primary_10_3390_antiox13010115 crossref_primary_10_1038_s41401_024_01356_y crossref_primary_10_1186_s13287_024_03813_1 crossref_primary_10_1002_1873_3468_14796 crossref_primary_10_1016_j_lfs_2024_123088 crossref_primary_10_1016_j_scitotenv_2024_171230 crossref_primary_10_1097_MD_0000000000039999 crossref_primary_10_4103_NRR_NRR_D_24_00432 crossref_primary_10_1016_j_arr_2023_101917 crossref_primary_10_1016_j_tplants_2024_12_012 crossref_primary_10_1016_j_arr_2024_102629 crossref_primary_10_1038_s41401_024_01416_3 crossref_primary_10_1016_j_ijbiomac_2024_139057 crossref_primary_10_2147_CCID_S462294 crossref_primary_10_1042_BSR20240137 crossref_primary_10_1051_bioconf_20237202009 crossref_primary_10_3390_cells13191611 crossref_primary_10_1016_j_canlet_2025_217532 crossref_primary_10_3390_jof9101003 crossref_primary_10_3389_fmed_2024_1491009 crossref_primary_10_1371_journal_pone_0312694 crossref_primary_10_3390_cells13020123 crossref_primary_10_1016_j_jlr_2024_100639 crossref_primary_10_3389_fendo_2023_1142805 crossref_primary_10_1016_j_scitotenv_2024_175880 crossref_primary_10_1038_s41392_023_01437_0 crossref_primary_10_1016_j_jhazmat_2024_133854 crossref_primary_10_1021_acs_analchem_3c02878 crossref_primary_10_1016_j_virol_2024_110371 crossref_primary_10_1080_01635581_2023_2270215 crossref_primary_10_1002_advs_202409425 crossref_primary_10_3390_cells12060956 crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002 crossref_primary_10_3390_cancers15092622 crossref_primary_10_1152_ajprenal_00012_2023 crossref_primary_10_1007_s44307_024_00040_w crossref_primary_10_1016_j_yexcr_2025_114478 crossref_primary_10_1002_biof_1980 crossref_primary_10_3390_brainsci14010096 crossref_primary_10_1080_15548627_2024_2319901 crossref_primary_10_1016_j_phrs_2024_107063 crossref_primary_10_3390_cells14040282 crossref_primary_10_1186_s12929_024_01089_4 crossref_primary_10_1038_s41576_022_00562_w crossref_primary_10_3390_ijms242417254 crossref_primary_10_1111_imr_13410 crossref_primary_10_3389_fphar_2023_1266311 crossref_primary_10_1242_jcs_261028 crossref_primary_10_1016_j_bioorg_2024_107466 crossref_primary_10_1016_j_csbj_2023_09_036 crossref_primary_10_1038_s41589_024_01741_y crossref_primary_10_1038_s41556_023_01197_7 crossref_primary_10_1002_jex2_165 crossref_primary_10_3390_ijms25126793 crossref_primary_10_1038_s41368_024_00297_w crossref_primary_10_3390_biom14121517 crossref_primary_10_15252_embr_202357300 crossref_primary_10_1080_15548627_2023_2287932 crossref_primary_10_1136_egastro_2023_100057 crossref_primary_10_3389_fphar_2024_1364616 crossref_primary_10_3390_cells12050810 crossref_primary_10_3389_fphar_2024_1469830 crossref_primary_10_3389_fnins_2022_1075141 crossref_primary_10_3390_cells13040325 crossref_primary_10_1038_s41586_024_07835_w crossref_primary_10_1016_j_bcp_2024_116277 crossref_primary_10_1016_j_pharmr_2025_100053 crossref_primary_10_3390_cimb45110546 crossref_primary_10_1016_j_envint_2024_109193 crossref_primary_10_1016_j_medidd_2024_100188 crossref_primary_10_3390_cells11244062 crossref_primary_10_1186_s13020_023_00824_7 crossref_primary_10_1016_j_semcdb_2024_02_001 crossref_primary_10_1186_s11658_024_00626_1 crossref_primary_10_4252_wjsc_v16_i12_990 crossref_primary_10_1016_j_neuron_2024_09_015 crossref_primary_10_1038_s41581_023_00692_2 crossref_primary_10_1080_27694127_2024_2320605 crossref_primary_10_3390_cells12131779 crossref_primary_10_3390_pathogens13110980 crossref_primary_10_1016_j_bbrc_2024_151244 crossref_primary_10_1093_burnst_tkad029 crossref_primary_10_1080_15548627_2025_2471736 crossref_primary_10_1111_jcmm_18278 crossref_primary_10_1272_jnms_JNMS_2024_91_102 crossref_primary_10_1016_j_apsb_2024_04_020 crossref_primary_10_3389_fphar_2024_1449831 crossref_primary_10_1002_advs_202413280 crossref_primary_10_1016_j_heliyon_2024_e35299 crossref_primary_10_1016_j_celrep_2023_112343 crossref_primary_10_1016_j_bbadis_2024_167263 crossref_primary_10_1002_mco2_70024 crossref_primary_10_3390_cells13060500 crossref_primary_10_3892_ijmm_2024_5440 crossref_primary_10_1080_15548627_2024_2439657 crossref_primary_10_3390_ijms26031321 crossref_primary_10_1016_j_celrep_2025_115282 crossref_primary_10_3389_fvets_2025_1543459 crossref_primary_10_1039_D4MH01137F crossref_primary_10_1016_j_neuint_2024_105827 crossref_primary_10_1002_cmdc_202400866 crossref_primary_10_61474_ncs_2023_00011 crossref_primary_10_1093_ndt_gfad024 crossref_primary_10_1016_j_tcb_2025_02_005 crossref_primary_10_3390_nu16193305 crossref_primary_10_1098_rspb_2023_1305 crossref_primary_10_3390_ijms252413413 crossref_primary_10_1016_j_biopha_2024_117557 crossref_primary_10_3389_fnins_2023_1219441 crossref_primary_10_1016_j_canlet_2023_216590 crossref_primary_10_3389_fimmu_2024_1486627 crossref_primary_10_1016_j_bbrc_2024_151102 crossref_primary_10_3390_ijms242316880 crossref_primary_10_3389_fcell_2023_1149409 crossref_primary_10_3390_biom14050573 crossref_primary_10_1016_j_celrep_2023_113529 crossref_primary_10_1016_j_bcp_2024_116075 crossref_primary_10_1093_femsyr_foae022 crossref_primary_10_31083_j_fbl2911393 crossref_primary_10_1080_08916934_2024_2351872 crossref_primary_10_1016_j_ijbiomac_2024_136978 crossref_primary_10_37349_emed_2023_00157 crossref_primary_10_4103_1673_5374_385848 crossref_primary_10_3390_cells11233813 |
Cites_doi | 10.1101/cshperspect.a016808 10.1016/j.celrep.2019.08.059 10.1002/bies.201800008 10.1371/journal.pgen.1008387 10.1083/jcb.201008121 10.1016/j.molcel.2019.09.005 10.1038/s41580-019-0180-9 10.1080/15548627.2021.1935007 10.1038/s41556-018-0092-5 10.1111/febs.12468 10.1186/s40035-015-0041-1 10.1038/s41467-019-12991-z 10.1038/ng1609 10.1080/15548627.2016.1248019 10.4161/nucl.11738 10.1016/j.semcdb.2017.08.020 10.1084/jem.20181329 10.1080/15548627.2021.1899440 10.1080/15548627.2015.1078961 10.1080/10409238.2019.1610351 10.1146/annurev-cellbio-092910-154152 10.1007/BF00218073 10.1016/j.devcel.2015.11.010 10.1093/hmg/ddm309 10.1093/hmg/ddv314 10.1093/nar/gkaa393 10.1073/pnas.1804091115 10.1016/j.cmet.2011.12.017 10.1038/cdd.2012.72 10.1038/s41467-021-22501-9 10.1016/j.tcb.2019.02.004 10.7554/eLife.21690 10.1073/pnas.1305623110 10.1096/fj.201802102R 10.1242/jcs.259393 10.1038/s41556-020-00583-9 10.1016/j.devcel.2009.06.014 10.1093/brain/aws143 10.1038/s41598-017-01246-w 10.1016/j.tcb.2004.07.014 10.1073/pnas.1615455113 10.1242/jcs.222406 10.1073/pnas.1903506116 10.1016/j.ceb.2016.01.006 10.15252/embj.2021108863 10.1016/j.neurobiolaging.2011.11.009 10.1016/j.cub.2017.09.015 10.1212/01.wnl.0000231510.89311.8b 10.1073/pnas.1820161116 10.1038/s41556-020-0549-1 10.3389/fphys.2020.00515 10.1242/jcs.215210 10.1038/cdd.2012.63 10.1091/mbc.e05-02-0143 10.1038/nrc2342 10.3389/fcimb.2020.583137 10.4161/auto.4034 10.7554/eLife.07736 10.1083/jcb.201711002 10.1016/S1534-5807(03)00296-X 10.1016/j.ymeth.2014.12.014 10.1371/journal.pone.0016060 10.1212/01.wnl.0000260963.08711.08 10.1046/j.1356-9597.2001.00499.x 10.1242/jcs.232850 10.1016/j.cell.2020.01.027 10.1038/ng1884 10.1016/S0021-9258(18)69235-X 10.7554/eLife.13943 10.1080/15548627.2016.1145325 10.1242/jcs.208017 10.1074/jbc.M210843200 10.1016/j.cell.2021.03.048 10.3389/fcell.2020.00214 10.1016/S0021-9258(18)89099-8 10.1038/s41556-019-0391-5 10.1016/j.molcel.2018.10.040 10.1074/jbc.M109.074617 10.1016/j.livres.2018.09.005 10.1038/cr.2013.169 10.1016/j.brainres.2016.03.035 10.1038/oncsis.2015.43 10.1038/nrm1552 10.3389/fmolb.2019.00040 10.12703/P6-97 10.1016/j.isci.2019.09.009 10.1098/rsob.210091 10.1038/s41556-021-00798-4 10.1074/jbc.AC119.009977 10.15252/embj.201798804 10.1038/nature25486 10.1186/s12915-021-01048-7 10.1016/j.bbrc.2019.11.064 10.1073/pnas.1113421108 10.1073/pnas.1814552115 10.1016/j.molcel.2021.01.009 10.1038/ncomms2069 10.1074/jbc.M406960200 10.1080/15548627.2020.1783833 10.1038/nrc3262 10.1038/s41580-018-0001-6 10.1038/s41422-020-00416-2 10.1016/j.tcb.2018.08.005 10.1038/nrc3365 10.1073/pnas.1109356108 10.1016/j.neuroscience.2014.01.001 10.1016/0014-4800(85)90020-6 10.1091/mbc.10.5.1353 10.1186/s12860-020-00314-w 10.1016/j.cell.2017.05.016 10.1091/mbc.e03-05-0340 10.15252/embj.201488104 10.1007/s00294-019-00982-y 10.1016/j.cell.2019.05.056 10.4161/auto.3586 10.1038/s41580-021-00392-4 10.1016/j.bbamem.2020.183416 10.1186/s13024-017-0203-y 10.4161/auto.6398 10.1016/j.redox.2014.11.006 10.1038/s41556-019-0450-y 10.1242/jcs.108.1.25 10.1016/j.cell.2017.04.023 10.1080/15548627.2016.1208887 10.4161/auto.7.7.14733 10.1080/15548627.2020.1757955 10.1016/j.tibs.2017.09.002 10.1016/j.ceb.2007.12.002 10.1016/j.molcel.2015.07.034 10.1038/s41418-018-0266-5 10.1128/jb.177.2.357-363.1995 10.1016/j.bbrc.2020.01.129 10.1007/978-981-10-4567-7_10 10.1146/annurev.cellbio.23.090506.123319 10.1016/j.redox.2014.06.004 10.1038/s41598-018-35811-8 10.1016/j.devcel.2017.02.016 10.1111/febs.16281 10.1016/j.celrep.2017.09.028 10.5483/BMBRep.2016.49.6.212 10.7554/eLife.25960 10.1002/1873-3468.12996 10.1371/journal.pbio.3001361 10.1083/jcb.201404115 10.1038/nature23449 10.1007/s00018-015-1903-5 10.1016/j.tcb.2020.02.001 10.1111/cas.13824 10.1038/s41418-019-0474-7 10.1007/s00018-021-04017-z 10.1038/s41467-022-31213-7 10.1016/j.bbrc.2015.03.025 10.1093/hmg/ddy066 10.1038/s41586-020-1968-7 10.1016/j.bbamcr.2006.08.023 10.1016/j.molcel.2021.08.039 10.1083/jcb.201611029 10.1016/j.jphs.2019.05.007 10.1016/j.cell.2016.07.002 10.1038/s41467-019-09253-3 10.1016/j.devcel.2020.11.016 10.1016/j.tibs.2019.08.002 10.1038/cr.2016.86 10.1038/nature07976 10.1016/j.molcel.2021.03.001 10.1038/emboj.2011.286 10.1523/JNEUROSCI.2898-12.2013 10.1016/j.cub.2011.11.057 10.1016/j.cell.2014.05.048 10.1083/jcb.141.3.625 10.1093/molbev/msaa127 10.15698/cst2021.09.255 10.15252/embj.201899259 10.1038/nrm.2017.76 10.1073/pnas.80.8.2179 10.1016/j.cub.2018.01.004 10.1016/0014-4827(82)90020-9 10.3389/fcell.2019.00185 10.1242/jcs.113.19.3365 10.1074/jbc.M113.529461 10.1038/s41418-020-00667-x 10.1016/j.devcel.2010.12.003 10.1016/j.bbrc.2020.05.168 10.4161/auto.24880 10.1007/s00294-020-01059-x 10.1016/j.jmb.2019.08.010 10.1111/j.1600-0854.2005.00337.x 10.1016/j.cell.2016.05.039 10.1111/cas.13208 10.1007/978-1-59745-157-4_16 10.1016/j.devcel.2020.08.008 10.1083/jcb.201603105 10.1101/cshperspect.a016766 10.1091/mbc.e13-08-0448 10.1016/j.tibs.2013.12.001 10.4161/auto.23002 10.1016/j.cell.2011.06.001 10.1016/j.molcel.2005.05.020 10.1242/jcs.222984 10.1091/mbc.e02-08-0483 10.1016/j.febslet.2010.01.019 10.1073/pnas.1705499114 10.3389/fnagi.2017.00228 10.1073/pnas.2011442117 10.1083/jcb.202002144 10.1016/j.devcel.2007.12.011 10.1080/15548627.2020.1712109 10.1016/j.cell.2010.11.034 10.1016/S0092-8674(01)00434-2 10.4161/15548627.2014.984277 10.1186/s40246-019-0203-9 10.1083/jcb.202009128 10.1111/acel.12692 10.1038/cr.2013.168 10.1016/j.semcdb.2017.08.014 10.1007/BF02912068 10.1093/hmg/ddp367 10.1002/1873-3468.13571 10.1083/jcb.201902127 10.1038/ng.2425 10.1016/j.bbalip.2017.06.008 10.1016/j.cell.2015.03.046 10.1038/nrc3409 10.1074/jbc.M116.736744 10.1038/embor.2013.114 10.15252/embj.2019102586 10.1083/jcb.93.1.144 10.1371/journal.pgen.1008631 10.1126/science.1101738 10.1016/j.cell.2010.05.008 10.1016/j.devcel.2021.06.003 10.1371/journal.pone.0030767 10.1016/j.neuron.2015.10.012 10.15252/embj.2019102539 10.3390/jcm9051440 10.3390/ijms21020578 10.1074/jbc.RA119.008709 10.1038/srep12472 10.1007/s00436-020-06718-z 10.1016/j.ajhg.2020.10.012 10.1074/jbc.RA118.005698 10.1080/15548627.2020.1725402 10.1016/j.cell.2011.03.035 10.1371/journal.pone.0016054 10.1038/s41421-020-0141-7 10.1016/j.cell.2012.11.001 10.1016/j.tcb.2012.05.006 10.1038/s41598-019-39563-x 10.1042/BCJ20200917 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. Springer Nature Limited. |
Copyright_xml | – notice: Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. Springer Nature Limited. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7RV 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 |
DOI | 10.1038/s41580-022-00529-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-0080 |
EndPage | 203 |
ExternalDocumentID | 36097284 10_1038_s41580_022_00529_z |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D0L D1J DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PCBAR PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 |
ID | FETCH-LOGICAL-c441t-a9117c040e20fabfdcbb457149d5d1b2dd553cdf257ec7d6039d5b951309ae9c3 |
IEDL.DBID | 7X7 |
ISSN | 1471-0072 1471-0080 |
IngestDate | Fri Jul 11 04:25:21 EDT 2025 Sat Aug 23 12:50:47 EDT 2025 Thu Apr 03 06:57:02 EDT 2025 Thu Apr 24 23:03:39 EDT 2025 Tue Jul 01 04:30:53 EDT 2025 Fri Feb 21 02:37:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | 2022. Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-a9117c040e20fabfdcbb457149d5d1b2dd553cdf257ec7d6039d5b951309ae9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7828-8118 0000-0001-7369-5227 0000-0002-5444-2424 |
PMID | 36097284 |
PQID | 2779273872 |
PQPubID | 27585 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2714059675 proquest_journals_2779273872 pubmed_primary_36097284 crossref_citationtrail_10_1038_s41580_022_00529_z crossref_primary_10_1038_s41580_022_00529_z springer_journals_10_1038_s41580_022_00529_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Molecular cell biology |
PublicationTitleAbbrev | Nat Rev Mol Cell Biol |
PublicationTitleAlternate | Nat Rev Mol Cell Biol |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hockey (CR202) 2015; 128 Kaushik, Cuervo (CR110) 2012; 22 Schulze, Sathyanarayan, Mashek (CR77) 2017; 1862 Kovács, Reith, Seglen (CR3) 1982; 137 Germain, Kim (CR87) 2020 van der Zee (CR192) 2008; 17 Ciechanover (CR131) 2005; 6 Hasegawa, Maejima, Iwamoto, Yoshimori (CR68) 2015; 75 Lescat (CR116) 2020; 37 Kvam, Goldfarb (CR55) 2007; 3 Quiles, Gustafsson (CR26) 2020; 11 Bache, Raiborg, Mehlum, Stenmark (CR149) 2003; 278 Kitamura (CR36) 2011; 6 Wang (CR80) 2015; 72 Aizawa (CR65) 2016; 12 Skibinski (CR191) 2005; 37 Ganesan, Cai (CR247) 2021; 478 Nguyen (CR157) 2021; 81 Wong, Ysselstein, Krainc (CR39) 2018; 554 Cuervo, Stefanis, Fredenburg, Lansbury, Sulzer (CR180) 2004; 305 Caballero (CR182) 2018 Kaushik, Cuervo (CR8) 2018; 19 Marshall, Vierstra (CR135) 2019; 6 Yim, Mizushima (CR159) 2020; 6 Hao (CR165) 2018 Mukaiyama (CR89) 2002; 7 Zhao (CR61) 2021 Heckmann, Green (CR71) 2019 Farré, Subramani (CR95) 2004; 14 Itakura, Kishi-Itakura, Mizushima (CR50) 2012; 151 Hatakeyama (CR144) 2019; 73 Sakai, Oku, van der Klei, Kiel (CR94) 2006; 1763 Mukherjee, Patel, Koga, Cuervo, Jenny (CR103) 2016; 12 Tan (CR230) 2022; 13 Ahlberg, Berkenstam, Henell, Glaumann (CR14) 1985; 260 He (CR73) 2021; 19 Morshed, Tasnin, Ushimaru (CR142) 2020; 21 Willén (CR195) 2017; 12 Welter (CR32) 2013; 280 Schulze (CR86) 2020; 117 Yang, Wang, Ren, Chen, Chen (CR59) 2017; 114 Kwon, Ciechanover (CR132) 2017; 42 Mostofa (CR57) 2019; 28 Albrecht, Ploper, Tejeda-Muñoz, De Robertis (CR126) 2018; 115 Shaid, Brandts, Serve, Dikic (CR146) 2013; 20 Yang (CR118) 2020 Müller (CR107) 2015; 4 Bourdenx, Gavathiotis, Cuervo (CR9) 2021; 17 Roger, Muñoz-Gómez, Kamikawa (CR25) 2017; 27 Mijaljica, Prescott, Devenish (CR10) 2011; 7 Parkinson (CR190) 2006; 67 Ryan (CR232) 2020; 39 Nguyen (CR216) 2019; 20 Cho, Kim, Jo, Choe, Jo (CR88) 2018; 41 Lemasters (CR33) 2014; 2 Taelman (CR127) 2010; 143 Huotari, Helenius (CR104) 2011; 30 Caballero (CR114) 2021; 12 Lu, Psakhye, Jentsch (CR254) 2014; 158 Zhang (CR72) 2021; 19 Cohen-Kaplan (CR137) 2016; 113 Xu, Camfield, Gorski (CR106) 2018 Tsuneki, Nakamura, Kinjo, Nakanishi, Arakawa (CR221) 2015; 5 Hughes, Hughes, Henderson, Yazvenko, Gottschling (CR236) 2016 Coffey, Beckel, Laties, Mitchell (CR197) 2014; 263 Sakai, Koller, Rangell, Keller, Subramani (CR90) 1998; 141 Huber, Teis (CR161) 2016; 39 Wallace (CR220) 2012; 12 Shen, Mizushima (CR21) 2014; 39 Soubannier (CR235) 2012; 22 Singh (CR75) 2009; 458 Bhattacharya, Qi (CR40) 2019; 132 Kawamura (CR178) 2012; 3 Nusse, Clevers (CR125) 2017; 169 Bourdenx (CR185) 2021; 184 Mortimore, Lardeux, Adams (CR16) 1988; 263 Chino, Mizushima (CR41) 2020; 30 Kurokawa (CR85) 2020 Tofaris (CR188) 2011; 108 Henne, Stenmark, Emr (CR242) 2013 Henry (CR203) 2015; 24 Brady (CR215) 2011; 145 Jin, Strunk, Weisman (CR167) 2015; 161 Agrotis (CR158) 2019; 294 Park, Kim, Yoon (CR183) 2016; 49 Boassa (CR186) 2013; 33 Hatakeyama, De Virgilio (CR143) 2019; 65 Schafer (CR42) 2020; 39 Kanki, Wang, Cao, Baba, Klionsky (CR239) 2009; 17 Eskelinen (CR115) 2005; 6 Chauhan (CR101) 2019; 33 Huang (CR184) 2014; 127 Martinez (CR152) 2011; 108 Iwama, Ohsumi (CR251) 2019; 294 Mackenzie (CR58) 2017; 548 Linares (CR120) 2021 Marzella, Ahlberg, Glaumann (CR2) 1982; 93 Zechner, Madeo, Kratky (CR74) 2017; 18 Mazzulli (CR200) 2011; 146 De Leonibus, Cinque, Settembre (CR46) 2019; 593 Tuttle, Dunn (CR99) 1995; 108 Zheng (CR130) 2021; 17 Ramirez (CR205) 2006; 38 Seo (CR84) 2017 Wang (CR113) 2009; 18 Kounakis, Chaniotakis, Markaki, Tavernarakis (CR76) 2019; 7 Henne (CR166) 2017; 997 Mak, McCormack, Manning-Bog, Cuervo, Di Monte (CR181) 2010; 285 Ohsumi (CR5) 2014; 24 Lin (CR255) 2020; 10 Roberts (CR54) 2003; 14 Latifkar, Hur, Sanchez, Cerione, Antonyak (CR177) 2019 Papadopoulos, Kravic, Meyer (CR69) 2020; 432 Farré, Manjithaya, Mathewson, Subramani (CR98) 2008; 14 White (CR214) 2012; 12 Li, Breker, Graham, Schuldiner, Hochstrasser (CR138) 2019; 15 Li (CR240) 2020; 8 Piper, Dikic, Lukacs (CR245) 2014 Anding, Baehrecke (CR24) 2017; 41 Into (CR123) 2017; 7 König (CR231) 2021 Ni, Williams, Ding (CR27) 2015; 4 Sano (CR225) 2020; 529 Kumar, Jia, Deretic (CR151) 2021; 5 Coyne (CR189) 2017; 21 Oku (CR117) 2017; 216 Morozova (CR108) 2016; 291 Graef (CR79) 2018; 592 Zellner, Schifferer, Behrends (CR121) 2021; 81 Tejeda-Munoz, Albrecht, Bui, De Robertis (CR218) 2019; 116 Ahlberg, Marzella, Glaumann (CR11) 1982; 47 Mulcahy Levy, Thorburn (CR212) 2020; 27 Hanson, Cashikar (CR175) 2012; 28 Wang, Qi, Tang, Shen (CR29) 2020; 45 Hoffmann (CR199) 2019; 9 Spataro (CR207) 2019; 13 Puertollano, Ferguson, Brugarolas, Ballabio (CR169) 2018 Lefebvre, Legouis, Culetto (CR105) 2018; 74 Deguine, Barton (CR122) 2014; 6 Noguchi, Shimizu (CR229) 2021 Decressac (CR201) 2013; 110 Vyas, Zaganjor, Haigis (CR219) 2016; 166 Uttenweiler, Mayer (CR19) 2008; 445 Lim (CR211) 2019; 21 Nakamura, Arakawa (CR38) 2017; 108 Schultz, Krus, Lieberman (CR209) 2016; 1649 Tsuji (CR208) 2017 Stringer, Piper (CR244) 2011; 192 Kanki (CR238) 2013; 14 McLelland, Soubannier, Chen, McBride, Fon (CR148) 2014; 33 Lee, Lamech, Johns, Overholtzer (CR70) 2020; 55 van Zutphen (CR81) 2014; 25 Livneh, Cohen-Kaplan, Cohen-Rosenzweig, Avni, Ciechanover (CR134) 2016; 26 Sahu (CR100) 2011; 20 Xu (CR43) 2021; 31 Mejlvang (CR119) 2018; 217 Vevea (CR83) 2015; 35 Guo (CR196) 2017; 9 Manjithaya, Nazarko, Farré, Subramani (CR93) 2010; 584 Sugiura, McLelland, Fon, McBride (CR233) 2014; 33 Klionsky (CR1) 2008; 4 Aizawa (CR66) 2017; 13 Heckmann (CR153) 2019; 178 Galluzzi, Spranger, Fuchs, López-Soto (CR124) 2019; 29 Mizushima (CR6) 2018; 20 Yang, Bedford (CR217) 2013; 13 Schaeffer (CR253) 2012; 135 Krüger, Wang, Kumar, Mandelkow (CR252) 2012; 33 Otto, Thumm (CR53) 2021; 17 Moon (CR129) 2012; 15 Dan (CR226) 2020; 48 Picca (CR234) 2020 Gorrell, Omari, Makareeva, Leikin (CR47) 2021; 78 Schuck, Gallagher, Walter (CR20) 2014; 127 Matheoud (CR241) 2016; 166 Mukaiyama (CR96) 2004; 15 Nakamura (CR37) 2012; 7 Prinz, Toulmay, Balla (CR163) 2020; 21 Omari (CR45) 2018; 115 Okuyama (CR223) 2019; 9 de Waal, Vreeling-Sindelarova, Schellens, Houtkooper, James (CR15) 1986; 243 Pickles, Vigie, Youle (CR28) 2018; 28 Sharmin, Morshed, Ushimaru (CR140) 2020; 524 Fujiwara (CR62) 2013; 9 Liao, Duan, Zhang, Zhang, Xia (CR44) 2019; 294 Kumar (CR172) 2020; 22 Le Guerroué, Youle (CR147) 2021; 28 Papandreou, Tavernarakis (CR52) 2019; 26 Wong, Kim, Peng, Krainc (CR164) 2019; 29 Mesquita, Glenn, Jenny (CR102) 2020 Albrecht, Bui, De Robertis (CR128) 2019; 116 Morshed, Sharmin, Ushimaru (CR141) 2020; 522 Gratia (CR60) 2019; 216 Scorrano (CR162) 2019; 10 De Falco, Restucci, Urraro, Roperto (CR171) 2020; 119 Marzella, Ahlberg, Glaumann (CR12) 1981; 36 Fujiwara, Hase, Wada, Kabuta (CR64) 2015; 460 Marshall, Vierstra (CR136) 2015; 11 Wang, Miao, Chang (CR82) 2014; 206 Mijaljica, Prescott, Devenish (CR56) 2010; 1 Rodger (CR194) 2020; 107 van Veen (CR204) 2020; 578 Klionsky (CR4) 2003; 5 Kamino (CR222) 2016; 4 Loi, Raimondi, Morone, Molinari (CR51) 2019; 10 Cuttler, Hassan, Carr, Cloete, Bardien (CR179) 2021; 11 Frankel, Audhya (CR176) 2018; 74 Ahlberg, Glaumann (CR13) 1985; 42 Titorenko, Keizer, Harder, Veenhuis (CR91) 1995; 177 Towers (CR228) 2021; 56 Miyamoto (CR35) 2011; 6 Chang (CR97) 2005; 16 Sato (CR170) 2019; 140 Leibiger (CR248) 2018; 27 Fujiwara (CR63) 2013; 9 Dubouloz, Deloche, Wanke, Cameroni, De Virgilio (CR145) 2005; 19 Liu, Czaja (CR78) 2013; 20 Collins, Goldberg (CR133) 2017; 169 Sugeno (CR187) 2014; 289 Davis (CR210) 2021; 56 Fregno (CR48) 2018 Denzer, Kleijmeer, Heijnen, Stoorvogel, Geuze (CR246) 2000; 113 Segev (CR250) 2020; 16 Fischer, Wang, Padman, Lazarou, Youle (CR156) 2020 Nakamura (CR173) 2020; 22 Zhao, Codogno, Zhang (CR22) 2021 Lee (CR198) 2010; 141 Gaowa (CR224) 2018; 109 Feng, He, Yao, Klionsky (CR7) 2014; 24 Mortimore, Hutson, Surmacz (CR17) 1983; 80 Klionsky (CR213) 2021; 40 Yuan, Stromhaug, Dunn (CR92) 1999; 10 Hurley (CR243) 2008; 20 Mochida (CR193) 2012; 44 Li, Hochstrasser (CR249) 2020 Kissová (CR30) 2007; 3 Li, Hochstrasser (CR139) 2022 Lemasters, Zhong (CR34) 2018; 2 Uytterhoeven (CR109) 2015; 88 Katzmann, Babst, Emr (CR150) 2001; 106 Liu (CR111) 2015; 59 Florey, Gammoh, Kim, Jiang, Overholtzer (CR155) 2015; 11 McLelland, Lee, McBride, Fon (CR160) 2016; 214 Hase (CR67) 2020 Oku, Sakai (CR18) 2018; 40 Helleday, Petermann, Lundin, Hodgson, Sharma (CR227) 2008; 8 Kissová, Deffieu, Manon, Camougrand (CR31) 2004; 279 Leidal (CR154) 2020; 22 Kirkin, Rogov (CR23) 2019; 76 Di Fonzo (CR206) 2007; 68 English (CR237) 2020 Piper, Katzmann (CR174) 2007; 23 Fregno, Molinari (CR49) 2019; 54 Arakhamia (CR112) 2020; 180 Hu, Dammer, Ren, Wang (CR168) 2015; 4 M Zhao (529_CR61) 2021 R Sahu (529_CR100) 2011; 20 YB Hu (529_CR168) 2015; 4 S Kaushik (529_CR8) 2018; 19 R Puertollano (529_CR169) 2018 R Iwama (529_CR251) 2019; 294 R Zechner (529_CR74) 2017; 18 N Sugeno (529_CR187) 2014; 289 S Pickles (529_CR28) 2018; 28 ZG Zheng (529_CR130) 2021; 17 E White (529_CR214) 2012; 12 P Roberts (529_CR54) 2003; 14 H Chino (529_CR41) 2020; 30 K Kounakis (529_CR76) 2019; 7 M Oku (529_CR117) 2017; 216 RJ Schulze (529_CR86) 2020; 117 AL Anding (529_CR24) 2017; 41 LN Hockey (529_CR202) 2015; 128 EL Eskelinen (529_CR115) 2005; 6 M Oku (529_CR18) 2018; 40 RS Marshall (529_CR135) 2019; 6 YG Zhao (529_CR22) 2021 R Hatakeyama (529_CR144) 2019; 73 B Li (529_CR240) 2020; 8 Y Wang (529_CR113) 2009; 18 GE Mortimore (529_CR16) 1988; 263 A Picca (529_CR234) 2020 I Livneh (529_CR134) 2016; 26 Y Kurokawa (529_CR85) 2020 DH Cho (529_CR88) 2018; 41 M Bourdenx (529_CR185) 2021; 184 JC Farré (529_CR98) 2008; 14 V Cohen-Kaplan (529_CR137) 2016; 113 JS Park (529_CR183) 2016; 49 F Dubouloz (529_CR145) 2005; 19 I Kissová (529_CR30) 2007; 3 G Skibinski (529_CR191) 2005; 37 GK Tofaris (529_CR188) 2011; 108 I Fregno (529_CR49) 2019; 54 R Singh (529_CR75) 2009; 458 AJ Roger (529_CR25) 2017; 27 EJ de Waal (529_CR15) 1986; 243 S Kumar (529_CR172) 2020; 22 K Cuttler (529_CR179) 2021; 11 RC Piper (529_CR245) 2014 E Itakura (529_CR50) 2012; 151 S Shaid (529_CR146) 2013; 20 B Caballero (529_CR182) 2018 CW Wang (529_CR82) 2014; 206 WW-Y Yim (529_CR159) 2020; 6 S Kumar (529_CR151) 2021; 5 LV Albrecht (529_CR128) 2019; 116 A Bhattacharya (529_CR40) 2019; 132 DJ Katzmann (529_CR150) 2001; 106 V Kirkin (529_CR23) 2019; 76 K Willén (529_CR195) 2017; 12 AG Henry (529_CR203) 2015; 24 L Marzella (529_CR12) 1981; 36 J Mejlvang (529_CR119) 2018; 217 T Kanki (529_CR239) 2009; 17 S Morshed (529_CR141) 2020; 522 T Chang (529_CR97) 2005; 16 M Graef (529_CR79) 2018; 592 BL Heckmann (529_CR71) 2019 AM Leidal (529_CR154) 2020; 22 JF Linares (529_CR120) 2021 TA Ryan (529_CR232) 2020; 39 JJ Lemasters (529_CR33) 2014; 2 GL McLelland (529_CR148) 2014; 33 K Hase (529_CR67) 2020 A Mukherjee (529_CR103) 2016; 12 J Deguine (529_CR122) 2014; 6 U Krüger (529_CR252) 2012; 33 T König (529_CR231) 2021 A Di Fonzo (529_CR206) 2007; 68 CA Brady (529_CR215) 2011; 145 Y Feng (529_CR7) 2014; 24 VI Titorenko (529_CR91) 1995; 177 O Florey (529_CR155) 2015; 11 M Tsuneki (529_CR221) 2015; 5 LV Albrecht (529_CR126) 2018; 115 KJ Mackenzie (529_CR58) 2017; 548 L Gorrell (529_CR47) 2021; 78 D Mijaljica (529_CR56) 2010; 1 F Hao (529_CR165) 2018 JM Mulcahy Levy (529_CR212) 2020; 27 D Ganesan (529_CR247) 2021; 478 A Agrotis (529_CR158) 2019; 294 DL Tuttle (529_CR99) 1995; 108 A Ramirez (529_CR205) 2006; 38 F Le Guerroué (529_CR147) 2021; 28 J Li (529_CR138) 2019; 15 S Schuck (529_CR20) 2014; 127 R Manjithaya (529_CR93) 2010; 584 VF Taelman (529_CR127) 2010; 143 M Bourdenx (529_CR9) 2021; 17 D Mijaljica (529_CR10) 2011; 7 PI Hanson (529_CR175) 2012; 28 L Marzella (529_CR2) 1982; 93 X Yang (529_CR118) 2020 JR Mazzulli (529_CR200) 2011; 146 A Latifkar (529_CR177) 2019 N Tejeda-Munoz (529_CR218) 2019; 116 R Nusse (529_CR125) 2017; 169 WM Henne (529_CR242) 2013 J Ahlberg (529_CR14) 1985; 260 Y Sakai (529_CR94) 2006; 1763 C Papadopoulos (529_CR69) 2020; 432 C Lee (529_CR70) 2020; 55 Y Fujiwara (529_CR64) 2015; 460 Y Jin (529_CR167) 2015; 161 OB Davis (529_CR210) 2021; 56 N Kitamura (529_CR36) 2011; 6 Y Sakai (529_CR90) 1998; 141 Y Miyamoto (529_CR35) 2011; 6 F De Falco (529_CR171) 2020; 119 AS Chauhan (529_CR101) 2019; 33 T Arakhamia (529_CR112) 2020; 180 TN Nguyen (529_CR157) 2021; 81 H Kamino (529_CR222) 2016; 4 MG Mostofa (529_CR57) 2019; 28 D Boassa (529_CR186) 2013; 33 Y Fujiwara (529_CR62) 2013; 9 X Dan (529_CR226) 2020; 48 N Mizushima (529_CR6) 2018; 20 R Spataro (529_CR207) 2019; 13 V Uytterhoeven (529_CR109) 2015; 88 CW He (529_CR73) 2021; 19 I Kissová (529_CR31) 2004; 279 RJ Schulze (529_CR77) 2017; 1862 XM Liu (529_CR111) 2015; 59 S van Veen (529_CR204) 2020; 578 JA Schafer (529_CR42) 2020; 39 DJ Klionsky (529_CR4) 2003; 5 AY Seo (529_CR84) 2017 TD Fischer (529_CR156) 2020 JH Lee (529_CR198) 2010; 141 D Matheoud (529_CR241) 2016; 166 N Kawamura (529_CR178) 2012; 3 F Xu (529_CR43) 2021; 31 T Into (529_CR123) 2017; 7 EB Frankel (529_CR176) 2018; 74 JH Hurley (529_CR243) 2008; 20 K Okuyama (529_CR223) 2019; 9 J Huotari (529_CR104) 2011; 30 S Nakamura (529_CR173) 2020; 22 A Uttenweiler (529_CR19) 2008; 445 KG Bache (529_CR149) 2003; 278 C De Leonibus (529_CR46) 2019; 593 C Lefebvre (529_CR105) 2018; 74 JM Quiles (529_CR26) 2020; 11 JD Vevea (529_CR83) 2015; 35 W Yuan (529_CR92) 1999; 10 X Guo (529_CR196) 2017; 9 Y Nakamura (529_CR37) 2012; 7 H Sano (529_CR225) 2020; 529 WM Henne (529_CR166) 2017; 997 H Mukaiyama (529_CR96) 2004; 15 HM Shen (529_CR21) 2014; 39 YC Wong (529_CR164) 2019; 29 A Sugiura (529_CR233) 2014; 33 M Loi (529_CR51) 2019; 10 M Gratia (529_CR60) 2019; 216 YT Kwon (529_CR132) 2017; 42 L Wang (529_CR29) 2020; 45 AN Coyne (529_CR189) 2017; 21 L Galluzzi (529_CR124) 2019; 29 CY Lin (529_CR255) 2020; 10 DJ Klionsky (529_CR213) 2021; 40 J Xu (529_CR106) 2018 CC Huang (529_CR184) 2014; 127 ML Schultz (529_CR209) 2016; 1649 GE Mortimore (529_CR17) 1983; 80 Y Nakamura (529_CR38) 2017; 108 S Omari (529_CR45) 2018; 115 M Müller (529_CR107) 2015; 4 I Fregno (529_CR48) 2018 S Aizawa (529_CR65) 2016; 12 FB Otto (529_CR53) 2021; 17 AL Kovács (529_CR3) 1982; 137 K Morozova (529_CR108) 2016; 291 WA Prinz (529_CR163) 2020; 21 AM Cuervo (529_CR180) 2004; 305 RC Piper (529_CR174) 2007; 23 C Rodger (529_CR194) 2020; 107 K Lu (529_CR254) 2014; 158 SK Mak (529_CR181) 2010; 285 S Aizawa (529_CR66) 2017; 13 A Mesquita (529_CR102) 2020 Y Fujiwara (529_CR63) 2013; 9 GA Collins (529_CR133) 2017; 169 S Vyas (529_CR219) 2016; 166 A Ciechanover (529_CR131) 2005; 6 J Ahlberg (529_CR13) 1985; 42 CW Wang (529_CR80) 2015; 72 YC Wong (529_CR39) 2018; 554 J Li (529_CR139) 2022 M Sato (529_CR170) 2019; 140 B Caballero (529_CR114) 2021; 12 L Scorrano (529_CR162) 2019; 10 DJ Klionsky (529_CR1) 2008; 4 K Germain (529_CR87) 2020 S Zellner (529_CR121) 2021; 81 M Decressac (529_CR201) 2013; 110 RS Marshall (529_CR136) 2015; 11 CY Lim (529_CR211) 2019; 21 S Morshed (529_CR142) 2020; 21 H Mukaiyama (529_CR89) 2002; 7 DC Wallace (529_CR220) 2012; 12 S Noguchi (529_CR229) 2021 S Gaowa (529_CR224) 2018; 109 HWS Tan (529_CR230) 2022; 13 T Tsuji (529_CR208) 2017 J Hasegawa (529_CR68) 2015; 75 Y Yang (529_CR217) 2013; 13 HM Ni (529_CR27) 2015; 4 L Lescat (529_CR116) 2020; 37 W Zhang (529_CR72) 2021; 19 EE Coffey (529_CR197) 2014; 263 J Martinez (529_CR152) 2011; 108 AM English (529_CR237) 2020 Y Liao (529_CR44) 2019; 294 N Segev (529_CR250) 2020; 16 JJ Lemasters (529_CR34) 2018; 2 T Sharmin (529_CR140) 2020; 524 K Denzer (529_CR246) 2000; 113 V Soubannier (529_CR235) 2012; 22 DK Stringer (529_CR244) 2011; 192 J Li (529_CR249) 2020 T Kanki (529_CR238) 2013; 14 H Yang (529_CR59) 2017; 114 J Ahlberg (529_CR11) 1982; 47 ME Papandreou (529_CR52) 2019; 26 BL Heckmann (529_CR153) 2019; 178 N Parkinson (529_CR190) 2006; 67 R Hatakeyama (529_CR143) 2019; 65 E Kvam (529_CR55) 2007; 3 JC Farré (529_CR95) 2004; 14 S Kaushik (529_CR110) 2012; 22 TA Nguyen (529_CR216) 2019; 20 AL Hughes (529_CR236) 2016 LA Huber (529_CR161) 2016; 39 T Helleday (529_CR227) 2008; 8 C Leibiger (529_CR248) 2018; 27 J van der Zee (529_CR192) 2008; 17 E Welter (529_CR32) 2013; 280 K Liu (529_CR78) 2013; 20 AC Hoffmann (529_CR199) 2019; 9 YA Moon (529_CR129) 2012; 15 Y Ohsumi (529_CR5) 2014; 24 GH Mochida (529_CR193) 2012; 44 GL McLelland (529_CR160) 2016; 214 CG Towers (529_CR228) 2021; 56 V Schaeffer (529_CR253) 2012; 135 T van Zutphen (529_CR81) 2014; 25 |
References_xml | – year: 2014 ident: CR245 article-title: Ubiquitin-dependent sorting in endocytosis publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016808 – volume: 28 start-page: 3423 year: 2019 end-page: 3434.e3422 ident: CR57 article-title: rDNA Condensation promotes rDNA separation from nucleolar proteins degraded for nucleophagy after TORC1 inactivation publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.059 – volume: 40 year: 2018 ident: CR18 article-title: Three distinct types of microautophagy based on membrane dynamics and molecular machineries publication-title: Bioessays doi: 10.1002/bies.201800008 – volume: 15 year: 2019 ident: CR138 article-title: AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008387 – volume: 192 start-page: 229 year: 2011 end-page: 242 ident: CR244 article-title: A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination publication-title: J. Cell Biol. doi: 10.1083/jcb.201008121 – volume: 76 start-page: 268 year: 2019 end-page: 285 ident: CR23 article-title: A diversity of selective autophagy receptors determines the specificity of the autophagy pathway publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.005 – volume: 21 start-page: 7 year: 2020 end-page: 24 ident: CR163 article-title: The functional universe of membrane contact sites publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0180-9 – volume: 17 start-page: 2040 year: 2021 end-page: 2042 ident: CR9 article-title: Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis publication-title: Autophagy doi: 10.1080/15548627.2021.1935007 – volume: 20 start-page: 521 year: 2018 end-page: 527 ident: CR6 article-title: A brief history of autophagy from cell biology to physiology and disease publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0092-5 – volume: 280 start-page: 4970 year: 2013 end-page: 4982 ident: CR32 article-title: Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy publication-title: FEBS J. doi: 10.1111/febs.12468 – volume: 4 start-page: 18 year: 2015 ident: CR168 article-title: The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration publication-title: Transl. Neurodegener. doi: 10.1186/s40035-015-0041-1 – volume: 10 year: 2019 ident: CR51 article-title: ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress publication-title: Nat. Commun. doi: 10.1038/s41467-019-12991-z – volume: 37 start-page: 806 year: 2005 end-page: 808 ident: CR191 article-title: Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia publication-title: Nat. Genet. doi: 10.1038/ng1609 – volume: 13 start-page: 218 year: 2017 end-page: 222 ident: CR66 article-title: Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes publication-title: Autophagy doi: 10.1080/15548627.2016.1248019 – volume: 1 start-page: 213 year: 2010 end-page: 223 ident: CR56 article-title: The intricacy of nuclear membrane dynamics during nucleophagy publication-title: Nucleus doi: 10.4161/nucl.11738 – volume: 74 start-page: 4 year: 2018 end-page: 10 ident: CR176 article-title: ESCRT-dependent cargo sorting at multivesicular endosomes publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.020 – volume: 216 start-page: 1199 year: 2019 end-page: 1213 ident: CR60 article-title: Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS publication-title: J. Exp. Med. doi: 10.1084/jem.20181329 – year: 2021 ident: CR61 article-title: CGAS is a micronucleophagy receptor for the clearance of micronuclei publication-title: Autophagy doi: 10.1080/15548627.2021.1899440 – volume: 11 start-page: 1927 year: 2015 end-page: 1928 ident: CR136 article-title: Eat or be eaten: the autophagic plight of inactive 26S proteasomes publication-title: Autophagy doi: 10.1080/15548627.2015.1078961 – volume: 33 start-page: 282 year: 2014 end-page: 295 ident: CR148 article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control publication-title: EMBO J. – volume: 54 start-page: 153 year: 2019 end-page: 163 ident: CR49 article-title: Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2019.1610351 – volume: 28 start-page: 337 year: 2012 end-page: 362 ident: CR175 article-title: Multivesicular body morphogenesis publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154152 – volume: 243 start-page: 641 year: 1986 end-page: 648 ident: CR15 article-title: Quantitative changes in the lysosomal vacuolar system of rat hepatocytes during short-term starvation. A morphometric analysis with special reference to macro- and microautophagy publication-title: Cell Tissue Res. doi: 10.1007/BF00218073 – volume: 35 start-page: 584 year: 2015 end-page: 599 ident: CR83 article-title: Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.11.010 – volume: 17 start-page: 313 year: 2008 end-page: 322 ident: CR192 article-title: CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm309 – volume: 24 start-page: 6013 year: 2015 end-page: 6028 ident: CR203 article-title: Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv314 – volume: 48 start-page: 6611 year: 2020 end-page: 6623 ident: CR226 article-title: DNA damage invokes mitophagy through a pathway involving Spata18 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa393 – volume: 115 start-page: E5317 year: 2018 end-page: E5325 ident: CR126 article-title: Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1804091115 – volume: 15 start-page: 240 year: 2012 end-page: 246 ident: CR129 article-title: The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.12.017 – volume: 20 start-page: 21 year: 2013 end-page: 30 ident: CR146 article-title: Ubiquitination and selective autophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.72 – volume: 12 year: 2021 ident: CR114 article-title: Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice publication-title: Nat. Commun. doi: 10.1038/s41467-021-22501-9 – volume: 29 start-page: 500 year: 2019 end-page: 513 ident: CR164 article-title: Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.02.004 – year: 2017 ident: CR84 article-title: AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation publication-title: eLife doi: 10.7554/eLife.21690 – volume: 110 start-page: E1817 year: 2013 end-page: E1826 ident: CR201 article-title: TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1305623110 – volume: 33 start-page: 5626 year: 2019 end-page: 5640 ident: CR101 article-title: Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways publication-title: FASEB J. doi: 10.1096/fj.201802102R – year: 2022 ident: CR139 article-title: Selective microautophagy of proteasomes is initiated by ESCRT-0 and is promoted by proteasome ubiquitylation publication-title: J. Cell Sci. doi: 10.1242/jcs.259393 – volume: 22 start-page: 1252 year: 2020 end-page: 1263 ident: CR173 article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00583-9 – volume: 17 start-page: 98 year: 2009 end-page: 109 ident: CR239 article-title: Atg32 is a mitochondrial protein that confers selectivity during mitophagy publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.06.014 – volume: 135 start-page: 2169 year: 2012 end-page: 2177 ident: CR253 article-title: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy publication-title: Brain doi: 10.1093/brain/aws143 – volume: 7 year: 2017 ident: CR123 article-title: Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01246-w – volume: 14 start-page: 515 year: 2004 end-page: 523 ident: CR95 article-title: Peroxisome turnover by micropexophagy: an autophagy-related process publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.07.014 – volume: 113 start-page: E7490 year: 2016 end-page: E7499 ident: CR137 article-title: p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615455113 – year: 2019 ident: CR177 article-title: New insights into extracellular vesicle biogenesis and function publication-title: J. Cell Sci. doi: 10.1242/jcs.222406 – volume: 116 start-page: 10402 year: 2019 end-page: 10411 ident: CR218 article-title: Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903506116 – volume: 39 start-page: 8 year: 2016 end-page: 14 ident: CR161 article-title: Lysosomal signaling in control of degradation pathways publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.01.006 – volume: 40 year: 2021 ident: CR213 article-title: Autophagy in major human diseases publication-title: EMBO J. doi: 10.15252/embj.2021108863 – volume: 33 start-page: 2291 year: 2012 end-page: 2305 ident: CR252 article-title: Autophagic degradation of tau in primary neurons and its enhancement by trehalose publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.11.009 – volume: 27 start-page: R1177 year: 2017 end-page: R1192 ident: CR25 article-title: The origin and diversification of mitochondria publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.09.015 – volume: 67 start-page: 1074 year: 2006 end-page: 1077 ident: CR190 article-title: ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) publication-title: Neurology doi: 10.1212/01.wnl.0000231510.89311.8b – volume: 116 start-page: 2987 year: 2019 end-page: 2995 ident: CR128 article-title: Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820161116 – volume: 22 start-page: 973 year: 2020 end-page: 985 ident: CR172 article-title: Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0549-1 – volume: 11 start-page: 515 year: 2020 ident: CR26 article-title: Mitochondrial quality control and cellular proteostasis: two sides of the same coin publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00515 – year: 2018 ident: CR106 article-title: The interplay between exosomes and autophagy - partners in crime publication-title: J. Cell Sci. doi: 10.1242/jcs.215210 – volume: 20 start-page: 3 year: 2013 end-page: 11 ident: CR78 article-title: Regulation of lipid stores and metabolism by lipophagy publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.63 – volume: 16 start-page: 4941 year: 2005 end-page: 4953 ident: CR97 article-title: PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-02-0143 – volume: 8 start-page: 193 year: 2008 end-page: 204 ident: CR227 article-title: DNA repair pathways as targets for cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2342 – volume: 10 start-page: 583137 year: 2020 ident: CR255 article-title: Autophagy receptor tollip facilitates bacterial autophagy by recruiting galectin-7 in response to group A infection publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2020.583137 – volume: 3 start-page: 329 year: 2007 end-page: 336 ident: CR30 article-title: Selective and non-selective autophagic degradation of mitochondria in yeast publication-title: Autophagy doi: 10.4161/auto.4034 – volume: 4 year: 2015 ident: CR107 article-title: The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation publication-title: eLife doi: 10.7554/eLife.07736 – volume: 217 start-page: 3640 year: 2018 end-page: 3655 ident: CR119 article-title: Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201711002 – volume: 5 start-page: 539 year: 2003 end-page: 545 ident: CR4 article-title: A unified nomenclature for yeast autophagy-related genes publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00296-X – volume: 75 start-page: 128 year: 2015 end-page: 132 ident: CR68 article-title: Selective autophagy: lysophagy publication-title: Methods doi: 10.1016/j.ymeth.2014.12.014 – volume: 6 year: 2011 ident: CR36 article-title: Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria publication-title: PLoS ONE doi: 10.1371/journal.pone.0016060 – volume: 68 start-page: 1557 year: 2007 end-page: 1562 ident: CR206 article-title: ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease publication-title: Neurology doi: 10.1212/01.wnl.0000260963.08711.08 – volume: 7 start-page: 75 year: 2002 end-page: 90 ident: CR89 article-title: Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy publication-title: Genes Cell doi: 10.1046/j.1356-9597.2001.00499.x – volume: 132 start-page: jcs232850 year: 2019 ident: CR40 article-title: ER-associated degradation in health and disease - from substrate to organism publication-title: J. Cell Sci. doi: 10.1242/jcs.232850 – volume: 180 start-page: 633 year: 2020 end-page: 644.e612 ident: CR112 article-title: Posttranslational modifications mediate the structural diversity of tauopathy strains publication-title: Cell doi: 10.1016/j.cell.2020.01.027 – volume: 38 start-page: 1184 year: 2006 end-page: 1191 ident: CR205 article-title: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase publication-title: Nat. Genet. doi: 10.1038/ng1884 – volume: 263 start-page: 2506 year: 1988 end-page: 2512 ident: CR16 article-title: Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)69235-X – year: 2016 ident: CR236 article-title: Selective sorting and destruction of mitochondrial membrane proteins in aged yeast publication-title: eLife doi: 10.7554/eLife.13943 – volume: 12 start-page: 565 year: 2016 end-page: 578 ident: CR65 article-title: Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes publication-title: Autophagy doi: 10.1080/15548627.2016.1145325 – year: 2018 ident: CR165 article-title: Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site publication-title: J. Cell Sci. doi: 10.1242/jcs.208017 – volume: 278 start-page: 12513 year: 2003 end-page: 12521 ident: CR149 article-title: STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210843200 – volume: 184 start-page: 2696 year: 2021 end-page: 2714.e2625 ident: CR185 article-title: Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome publication-title: Cell doi: 10.1016/j.cell.2021.03.048 – volume: 8 start-page: 214 year: 2020 ident: CR240 article-title: Mitochondrial-derived vesicles protect cardiomyocytes against hypoxic damage publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00214 – volume: 260 start-page: 5847 year: 1985 end-page: 5854 ident: CR14 article-title: Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)89099-8 – volume: 21 start-page: 1206 year: 2019 end-page: 1218 ident: CR211 article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0391-5 – volume: 73 start-page: 325 year: 2019 end-page: 338.e328 ident: CR144 article-title: Spatially distinct pools of TORC1 balance protein homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.040 – volume: 285 start-page: 13621 year: 2010 end-page: 13629 ident: CR181 article-title: Lysosomal degradation of alpha-synuclein in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.074617 – volume: 2 start-page: 125 year: 2018 end-page: 132 ident: CR34 article-title: Mitophagy in hepatocytes: types, initiators and role in adaptive ethanol metabolism publication-title: Liver Res. doi: 10.1016/j.livres.2018.09.005 – volume: 24 start-page: 9 year: 2014 end-page: 23 ident: CR5 article-title: Historical landmarks of autophagy research publication-title: Cell Res. doi: 10.1038/cr.2013.169 – volume: 1649 start-page: 181 year: 2016 end-page: 188 ident: CR209 article-title: Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease publication-title: Brain Res. doi: 10.1016/j.brainres.2016.03.035 – volume: 4 year: 2016 ident: CR222 article-title: Mieap-regulated mitochondrial quality control is frequently inactivated in human colorectal cancer publication-title: Oncogenesis doi: 10.1038/oncsis.2015.43 – volume: 6 start-page: 79 year: 2005 end-page: 87 ident: CR131 article-title: Proteolysis: from the lysosome to ubiquitin and the proteasome publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1552 – volume: 6 start-page: 40 year: 2019 ident: CR135 article-title: Dynamic regulation of the 26S proteasome: from synthesis to degradation publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00040 – volume: 6 start-page: 97 year: 2014 ident: CR122 article-title: MyD88: a central player in innate immune signaling publication-title: F1000Prime Rep. doi: 10.12703/P6-97 – volume: 20 start-page: 14 year: 2019 end-page: 24 ident: CR216 article-title: SIDT2 RNA transporter promotes lung and gastrointestinal tumor development publication-title: iScience doi: 10.1016/j.isci.2019.09.009 – volume: 11 start-page: 210091 year: 2021 ident: CR179 article-title: Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders publication-title: Open. Biol. doi: 10.1098/rsob.210091 – year: 2021 ident: CR231 article-title: MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00798-4 – volume: 294 start-page: 12610 year: 2019 end-page: 12621 ident: CR158 article-title: Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC119.009977 – year: 2018 ident: CR169 article-title: The complex relationship between TFEB transcription factor phosphorylation and subcellular localization publication-title: EMBO J. doi: 10.15252/embj.201798804 – volume: 554 start-page: 382 year: 2018 end-page: 386 ident: CR39 article-title: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis publication-title: Nature doi: 10.1038/nature25486 – volume: 19 year: 2021 ident: CR73 article-title: Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase publication-title: BMC Biol. doi: 10.1186/s12915-021-01048-7 – volume: 522 start-page: 88 year: 2020 end-page: 94 ident: CR141 article-title: TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.11.064 – volume: 108 start-page: 17396 year: 2011 end-page: 17401 ident: CR152 article-title: Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113421108 – volume: 115 start-page: E10099 year: 2018 end-page: E10108 ident: CR45 article-title: Noncanonical autophagy at ER exit sites regulates procollagen turnover publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814552115 – volume: 81 start-page: 1337 year: 2021 end-page: 1354.e1338 ident: CR121 article-title: Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.01.009 – volume: 3 year: 2012 ident: CR178 article-title: Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos publication-title: Nat. Commun. doi: 10.1038/ncomms2069 – volume: 279 start-page: 39068 year: 2004 end-page: 39074 ident: CR31 article-title: Uth1p is involved in the autophagic degradation of mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406960200 – year: 2020 ident: CR102 article-title: Differential activation of eMI by distinct forms of cellular stress publication-title: Autophagy doi: 10.1080/15548627.2020.1783833 – volume: 12 start-page: 401 year: 2012 end-page: 410 ident: CR214 article-title: Deconvoluting the context-dependent role for autophagy in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3262 – volume: 19 start-page: 365 year: 2018 end-page: 381 ident: CR8 article-title: The coming of age of chaperone-mediated autophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0001-6 – volume: 31 start-page: 141 year: 2021 end-page: 156 ident: CR43 article-title: COPII mitigates ER stress by promoting formation of ER whorls publication-title: Cell Res. doi: 10.1038/s41422-020-00416-2 – volume: 29 start-page: 44 year: 2019 end-page: 65 ident: CR124 article-title: WNT signaling in cancer immunosurveillance publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.08.005 – volume: 12 start-page: 685 year: 2012 end-page: 698 ident: CR220 article-title: Mitochondria and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3365 – volume: 127 start-page: 3024 year: 2014 end-page: 3038 ident: CR184 article-title: Metabolism and mis-metabolism of the neuropathological signature protein TDP-43 publication-title: J. Cell Sci. – volume: 108 start-page: 17004 year: 2011 end-page: 17009 ident: CR188 article-title: Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1109356108 – volume: 263 start-page: 111 year: 2014 end-page: 124 ident: CR197 article-title: Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.01.001 – volume: 42 start-page: 78 year: 1985 end-page: 88 ident: CR13 article-title: Uptake–microautophagy–and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis publication-title: Exp. Mol. Pathol. doi: 10.1016/0014-4800(85)90020-6 – volume: 10 start-page: 1353 year: 1999 end-page: 1366 ident: CR92 article-title: Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.5.1353 – volume: 21 start-page: 70 year: 2020 ident: CR142 article-title: ESCRT machinery plays a role in microautophagy in yeast publication-title: BMC Mol. Cell Biol. doi: 10.1186/s12860-020-00314-w – volume: 169 start-page: 985 year: 2017 end-page: 999 ident: CR125 article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 15 start-page: 58 year: 2004 end-page: 70 ident: CR96 article-title: Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-05-0340 – volume: 127 start-page: 4078 year: 2014 end-page: 4088 ident: CR20 article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery publication-title: J. Cell Sci. – volume: 33 start-page: 2142 year: 2014 end-page: 2156 ident: CR233 article-title: A new pathway for mitochondrial quality control: mitochondrial-derived vesicles publication-title: EMBO J. doi: 10.15252/embj.201488104 – volume: 65 start-page: 1243 year: 2019 end-page: 1249 ident: CR143 article-title: TORC1 specifically inhibits microautophagy through ESCRT-0 publication-title: Curr. Genet. doi: 10.1007/s00294-019-00982-y – volume: 178 start-page: 536 year: 2019 end-page: 551.e514 ident: CR153 article-title: LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2019.05.056 – volume: 3 start-page: 85 year: 2007 end-page: 92 ident: CR55 article-title: Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae publication-title: Autophagy doi: 10.4161/auto.3586 – year: 2021 ident: CR22 article-title: Machinery, regulation and pathophysiological implications of autophagosome maturation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00392-4 – year: 2020 ident: CR85 article-title: Microautophagy in the yeast vacuole depends on the activities of phosphatidylinositol 4-kinases, Stt4p and Pik1p publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2020.183416 – volume: 12 start-page: 61 year: 2017 ident: CR195 article-title: Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0203-y – volume: 4 start-page: 740 year: 2008 end-page: 743 ident: CR1 article-title: Autophagy revisited: a conversation with Christian de Duve publication-title: Autophagy doi: 10.4161/auto.6398 – volume: 4 start-page: 6 year: 2015 end-page: 13 ident: CR27 article-title: Mitochondrial dynamics and mitochondrial quality control publication-title: Redox Biol. doi: 10.1016/j.redox.2014.11.006 – volume: 22 start-page: 187 year: 2020 end-page: 199 ident: CR154 article-title: The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0450-y – volume: 108 start-page: 25 year: 1995 end-page: 35 ident: CR99 article-title: Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris publication-title: J. Cell Sci. doi: 10.1242/jcs.108.1.25 – volume: 169 start-page: 792 year: 2017 end-page: 806 ident: CR133 article-title: The logic of the 26S proteasome publication-title: Cell doi: 10.1016/j.cell.2017.04.023 – volume: 12 start-page: 1984 year: 2016 end-page: 1999 ident: CR103 article-title: Selective endosomal microautophagy is starvation-inducible in Drosophila publication-title: Autophagy doi: 10.1080/15548627.2016.1208887 – volume: 7 start-page: 673 year: 2011 end-page: 682 ident: CR10 article-title: Microautophagy in mammalian cells: revisiting a 40-year-old conundrum publication-title: Autophagy doi: 10.4161/auto.7.7.14733 – volume: 17 start-page: 1592 year: 2021 end-page: 1613 ident: CR130 article-title: Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway publication-title: Autophagy doi: 10.1080/15548627.2020.1757955 – volume: 42 start-page: 873 year: 2017 end-page: 886 ident: CR132 article-title: The ubiquitin code in the ubiquitin-proteasome system and autophagy publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.09.002 – volume: 20 start-page: 4 year: 2008 end-page: 11 ident: CR243 article-title: ESCRT complexes and the biogenesis of multivesicular bodies publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2007.12.002 – volume: 59 start-page: 1035 year: 2015 end-page: 1042 ident: CR111 article-title: ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.034 – volume: 26 start-page: 630 year: 2019 end-page: 639 ident: CR52 article-title: Nucleophagy: from homeostasis to disease publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0266-5 – volume: 177 start-page: 357 year: 1995 end-page: 363 ident: CR91 article-title: Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha publication-title: J. Bacteriol. doi: 10.1128/jb.177.2.357-363.1995 – volume: 524 start-page: 614 year: 2020 end-page: 620 ident: CR140 article-title: PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.01.129 – volume: 997 start-page: 135 year: 2017 end-page: 147 ident: CR166 article-title: Discovery and roles of ER-endolysosomal contact sites in disease publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-4567-7_10 – volume: 23 start-page: 519 year: 2007 end-page: 547 ident: CR174 article-title: Biogenesis and function of multivesicular bodies publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123319 – volume: 2 start-page: 749 year: 2014 end-page: 754 ident: CR33 article-title: Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3) publication-title: Redox Biol. doi: 10.1016/j.redox.2014.06.004 – volume: 9 year: 2019 ident: CR199 article-title: Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose publication-title: Sci. Rep. doi: 10.1038/s41598-018-35811-8 – volume: 41 start-page: 10 year: 2017 end-page: 22 ident: CR24 article-title: Cleaning house: selective autophagy of organelles publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.02.016 – year: 2021 ident: CR229 article-title: Molecular mechanisms and biological roles of GOMED publication-title: FEBS J. doi: 10.1111/febs.16281 – volume: 21 start-page: 110 year: 2017 end-page: 125 ident: CR189 article-title: Post-transcriptional inhibition of Hsc70-4/HSPA8 expression leads to synaptic vesicle cycling defects in multiple models of ALS publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.028 – volume: 49 start-page: 337 year: 2016 end-page: 342 ident: CR183 article-title: Regulation of amyloid precursor protein processing by its KFERQ motif publication-title: BMB Rep. doi: 10.5483/BMBRep.2016.49.6.212 – year: 2017 ident: CR208 article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole publication-title: eLife doi: 10.7554/eLife.25960 – volume: 47 start-page: 523 year: 1982 end-page: 532 ident: CR11 article-title: Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis publication-title: Lab. Invest. – volume: 592 start-page: 1291 year: 2018 end-page: 1303 ident: CR79 article-title: Lipid droplet-mediated lipid and protein homeostasis in budding yeast publication-title: FEBS Lett. doi: 10.1002/1873-3468.12996 – volume: 19 year: 2021 ident: CR72 article-title: A conserved ubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteins for degradation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001361 – volume: 206 start-page: 357 year: 2014 end-page: 366 ident: CR82 article-title: A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast publication-title: J. Cell Biol. doi: 10.1083/jcb.201404115 – volume: 548 start-page: 461 year: 2017 end-page: 465 ident: CR58 article-title: cGAS surveillance of micronuclei links genome instability to innate immunity publication-title: Nature doi: 10.1038/nature23449 – volume: 72 start-page: 2677 year: 2015 end-page: 2695 ident: CR80 article-title: Lipid droplet dynamics in budding yeast publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-015-1903-5 – volume: 30 start-page: 384 year: 2020 end-page: 398 ident: CR41 article-title: ER-Phagy: quality control and turnover of endoplasmic reticulum publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.001 – volume: 109 start-page: 3910 year: 2018 end-page: 3920 ident: CR224 article-title: Possible role of p53/Mieap-regulated mitochondrial quality control as a tumor suppressor in human breast cancer publication-title: Cancer Sci. doi: 10.1111/cas.13824 – volume: 27 start-page: 843 year: 2020 end-page: 857 ident: CR212 article-title: Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0474-7 – volume: 78 start-page: 8283 year: 2021 end-page: 8300 ident: CR47 article-title: Noncanonical ER-Golgi trafficking and autophagy of endogenous procollagen in osteoblasts publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-021-04017-z – volume: 13 start-page: 3720 year: 2022 ident: CR230 article-title: A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery publication-title: Nat. Commun. doi: 10.1038/s41467-022-31213-7 – volume: 460 start-page: 281 year: 2015 end-page: 286 ident: CR64 article-title: An RNautophagy/DNautophagy receptor, LAMP2C, possesses an arginine-rich motif that mediates RNA/DNA-binding publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.03.025 – volume: 27 start-page: 1593 year: 2018 end-page: 1607 ident: CR248 article-title: TDP-43 controls lysosomal pathways thereby determining its own clearance and cytotoxicity publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy066 – volume: 578 start-page: 419 year: 2020 end-page: 424 ident: CR204 article-title: ATP13A2 deficiency disrupts lysosomal polyamine export publication-title: Nature doi: 10.1038/s41586-020-1968-7 – volume: 41 start-page: 55 year: 2018 end-page: 64 ident: CR88 article-title: Pexophagy: molecular mechanisms and implications for health and diseases publication-title: Mol. Cell – volume: 1763 start-page: 1767 year: 2006 end-page: 1775 ident: CR94 article-title: Pexophagy: autophagic degradation of peroxisomes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.08.023 – year: 2021 ident: CR120 article-title: PKCλ/ι inhibition activates an ULK2-mediated interferon response to repress tumorigenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.08.039 – volume: 216 start-page: 3263 year: 2017 end-page: 3274 ident: CR117 article-title: Evidence for ESCRT- and clathrin-dependent microautophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201611029 – volume: 140 start-page: 201 year: 2019 end-page: 204 ident: CR170 article-title: Rapamycin activates mammalian microautophagy publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2019.05.007 – volume: 166 start-page: 555 year: 2016 end-page: 566 ident: CR219 article-title: Mitochondria and cancer publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 10 year: 2019 ident: CR162 article-title: Coming together to define membrane contact sites publication-title: Nat. Commun. doi: 10.1038/s41467-019-09253-3 – volume: 56 start-page: 260 year: 2021 end-page: 276.e267 ident: CR210 article-title: NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann-Pick type C publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.11.016 – volume: 45 start-page: 58 year: 2020 end-page: 75 ident: CR29 article-title: Post-translational modifications of key machinery in the control of mitophagy publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.08.002 – volume: 26 start-page: 869 year: 2016 end-page: 885 ident: CR134 article-title: The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death publication-title: Cell Res. doi: 10.1038/cr.2016.86 – volume: 458 start-page: 1131 year: 2009 end-page: 1135 ident: CR75 article-title: Autophagy regulates lipid metabolism publication-title: Nature doi: 10.1038/nature07976 – volume: 81 start-page: 2013 year: 2021 end-page: 2030.e2019 ident: CR157 article-title: ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.03.001 – volume: 30 start-page: 3481 year: 2011 end-page: 3500 ident: CR104 article-title: Endosome maturation publication-title: EMBO J. doi: 10.1038/emboj.2011.286 – volume: 33 start-page: 2605 year: 2013 end-page: 2615 ident: CR186 article-title: Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2898-12.2013 – volume: 22 start-page: 135 year: 2012 end-page: 141 ident: CR235 article-title: A vesicular transport pathway shuttles cargo from mitochondria to lysosomes publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.11.057 – volume: 158 start-page: 549 year: 2014 end-page: 563 ident: CR254 article-title: Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family publication-title: Cell doi: 10.1016/j.cell.2014.05.048 – volume: 141 start-page: 625 year: 1998 end-page: 636 ident: CR90 article-title: Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates publication-title: J. Cell Biol. doi: 10.1083/jcb.141.3.625 – volume: 37 start-page: 2887 year: 2020 end-page: 2899 ident: CR116 article-title: Chaperone-mediated autophagy in the light of evolution: insight from fish publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa127 – volume: 5 start-page: 128 year: 2021 end-page: 142 ident: CR151 article-title: Atg8ylation as a general membrane stress and remodeling response publication-title: Cell Stress. doi: 10.15698/cst2021.09.255 – year: 2018 ident: CR48 article-title: ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport publication-title: EMBO J. doi: 10.15252/embj.201899259 – volume: 18 start-page: 671 year: 2017 end-page: 684 ident: CR74 article-title: Cytosolic lipolysis and lipophagy: two sides of the same coin publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.76 – volume: 80 start-page: 2179 year: 1983 end-page: 2183 ident: CR17 article-title: Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.80.8.2179 – volume: 28 start-page: R170 year: 2018 end-page: R185 ident: CR28 article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.004 – volume: 137 start-page: 191 year: 1982 end-page: 201 ident: CR3 article-title: Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(82)90020-9 – volume: 7 start-page: 185 year: 2019 ident: CR76 article-title: Emerging roles of lipophagy in health and disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00185 – volume: 113 start-page: 3365 year: 2000 end-page: 3374 ident: CR246 article-title: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device publication-title: J. Cell Sci. doi: 10.1242/jcs.113.19.3365 – volume: 289 start-page: 18137 year: 2014 end-page: 18151 ident: CR187 article-title: Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized α-synuclein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.529461 – volume: 28 start-page: 439 year: 2021 end-page: 454 ident: CR147 article-title: Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00667-x – volume: 20 start-page: 131 year: 2011 end-page: 139 ident: CR100 article-title: Microautophagy of cytosolic proteins by late endosomes publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.12.003 – volume: 529 start-page: 582 year: 2020 end-page: 589 ident: CR225 article-title: p53/Mieap-regulated mitochondrial quality control plays an important role as a tumor suppressor in gastric and esophageal cancers publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.05.168 – volume: 9 start-page: 1167 year: 2013 end-page: 1171 ident: CR63 article-title: Direct uptake and degradation of DNA by lysosomes publication-title: Autophagy doi: 10.4161/auto.24880 – year: 2020 ident: CR249 article-title: Microautophagy regulates proteasome homeostasis publication-title: Curr. Genet. doi: 10.1007/s00294-020-01059-x – volume: 432 start-page: 231 year: 2020 end-page: 239 ident: CR69 article-title: Repair or lysophagy: dealing with damaged lysosomes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.08.010 – volume: 6 start-page: 1058 year: 2005 end-page: 1061 ident: CR115 article-title: Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2 publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00337.x – volume: 166 start-page: 314 year: 2016 end-page: 327 ident: CR241 article-title: Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation publication-title: Cell doi: 10.1016/j.cell.2016.05.039 – volume: 108 start-page: 809 year: 2017 end-page: 817 ident: CR38 article-title: Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53 publication-title: Cancer Sci. doi: 10.1111/cas.13208 – volume: 445 start-page: 245 year: 2008 end-page: 259 ident: CR19 article-title: Microautophagy in the yeast Saccharomyces cerevisiae publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-157-4_16 – volume: 55 start-page: 289 year: 2020 end-page: 297.e284 ident: CR70 article-title: Selective lysosome membrane turnover is induced by nutrient starvation publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.08.008 – volume: 214 start-page: 275 year: 2016 end-page: 291 ident: CR160 article-title: Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system publication-title: J. Cell Biol. doi: 10.1083/jcb.201603105 – year: 2013 ident: CR242 article-title: Molecular mechanisms of the membrane sculpting ESCRT pathway publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016766 – volume: 25 start-page: 290 year: 2014 end-page: 301 ident: CR81 article-title: Lipid droplet autophagy in the yeast Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-08-0448 – volume: 39 start-page: 61 year: 2014 end-page: 71 ident: CR21 article-title: At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.12.001 – volume: 128 start-page: 232 year: 2015 end-page: 238 ident: CR202 article-title: Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition publication-title: J. Cell Sci. – volume: 9 start-page: 403 year: 2013 end-page: 409 ident: CR62 article-title: Discovery of a novel type of autophagy targeting RNA publication-title: Autophagy doi: 10.4161/auto.23002 – volume: 146 start-page: 37 year: 2011 end-page: 52 ident: CR200 article-title: Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies publication-title: Cell doi: 10.1016/j.cell.2011.06.001 – volume: 19 start-page: 15 year: 2005 end-page: 26 ident: CR145 article-title: The TOR and EGO protein complexes orchestrate microautophagy in yeast publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.05.020 – year: 2019 ident: CR71 article-title: LC3-associated phagocytosis at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.222984 – volume: 14 start-page: 129 year: 2003 end-page: 141 ident: CR54 article-title: Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-08-0483 – volume: 584 start-page: 1367 year: 2010 end-page: 1373 ident: CR93 article-title: Molecular mechanism and physiological role of pexophagy publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.01.019 – volume: 114 start-page: E4612 year: 2017 end-page: E4620 ident: CR59 article-title: cGAS is essential for cellular senescence publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1705499114 – volume: 9 start-page: 228 year: 2017 ident: CR196 article-title: Amyloid β-induced redistribution of transcriptional factor EB and lysosomal dysfunction in primary microglial cells publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00228 – volume: 117 start-page: 32443 year: 2020 end-page: 32452 ident: CR86 article-title: Direct lysosome-based autophagy of lipid droplets in hepatocytes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2011442117 – year: 2020 ident: CR237 article-title: ER-mitochondria contacts promote mitochondrial-derived compartment biogenesis publication-title: J. Cell Biol. doi: 10.1083/jcb.202002144 – volume: 14 start-page: 365 year: 2008 end-page: 376 ident: CR98 article-title: PpAtg30 tags peroxisomes for turnover by selective autophagy publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.12.011 – year: 2020 ident: CR67 article-title: Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes publication-title: Autophagy doi: 10.1080/15548627.2020.1712109 – volume: 143 start-page: 1136 year: 2010 end-page: 1148 ident: CR127 article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes publication-title: Cell doi: 10.1016/j.cell.2010.11.034 – volume: 106 start-page: 145 year: 2001 end-page: 155 ident: CR150 article-title: Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I publication-title: Cell doi: 10.1016/S0092-8674(01)00434-2 – volume: 11 start-page: 88 year: 2015 end-page: 99 ident: CR155 article-title: V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation publication-title: Autophagy doi: 10.4161/15548627.2014.984277 – volume: 13 year: 2019 ident: CR207 article-title: Mutations in ATP13A2 (PARK9) are associated with an amyotrophic lateral sclerosis-like phenotype, implicating this locus in further phenotypic expansion publication-title: Hum. Genomics doi: 10.1186/s40246-019-0203-9 – year: 2020 ident: CR156 article-title: STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain publication-title: J. Cell Biol. doi: 10.1083/jcb.202009128 – year: 2018 ident: CR182 article-title: Interplay of pathogenic forms of human tau with different autophagic pathways publication-title: Aging Cell doi: 10.1111/acel.12692 – volume: 24 start-page: 24 year: 2014 end-page: 41 ident: CR7 article-title: The machinery of macroautophagy publication-title: Cell Res. doi: 10.1038/cr.2013.168 – volume: 74 start-page: 21 year: 2018 end-page: 28 ident: CR105 article-title: ESCRT and autophagies: endosomal functions and beyond publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.014 – volume: 36 start-page: 219 year: 1981 end-page: 234 ident: CR12 article-title: Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation publication-title: Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. doi: 10.1007/BF02912068 – volume: 18 start-page: 4153 year: 2009 end-page: 4170 ident: CR113 article-title: Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp367 – volume: 593 start-page: 2319 year: 2019 end-page: 2329 ident: CR46 article-title: Emerging lysosomal pathways for quality control at the endoplasmic reticulum publication-title: FEBS Lett. doi: 10.1002/1873-3468.13571 – year: 2020 ident: CR118 article-title: TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201902127 – volume: 44 start-page: 1260 year: 2012 end-page: 1264 ident: CR193 article-title: CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development publication-title: Nat. Genet. doi: 10.1038/ng.2425 – volume: 1862 start-page: 1178 year: 2017 end-page: 1187 ident: CR77 article-title: Breaking fat: the regulation and mechanisms of lipophagy publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2017.06.008 – volume: 161 start-page: 197 year: 2015 end-page: 198 ident: CR167 article-title: Close encounters of the lysosome-peroxisome kind publication-title: Cell doi: 10.1016/j.cell.2015.03.046 – volume: 13 start-page: 37 year: 2013 end-page: 50 ident: CR217 article-title: Protein arginine methyltransferases and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3409 – volume: 291 start-page: 18096 year: 2016 end-page: 18106 ident: CR108 article-title: Structural and biological interaction of hsc-70 protein with phosphatidylserine in endosomal microautophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.736744 – volume: 14 start-page: 788 year: 2013 end-page: 794 ident: CR238 article-title: Casein kinase 2 is essential for mitophagy publication-title: EMBO Rep. doi: 10.1038/embor.2013.114 – volume: 39 year: 2020 ident: CR42 article-title: ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast publication-title: EMBO J. doi: 10.15252/embj.2019102586 – volume: 93 start-page: 144 year: 1982 end-page: 154 ident: CR2 article-title: Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization publication-title: J. Cell Biol. doi: 10.1083/jcb.93.1.144 – volume: 16 year: 2020 ident: CR250 article-title: ESCRTing proteasomes to the lysosome publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008631 – volume: 305 start-page: 1292 year: 2004 end-page: 1295 ident: CR180 article-title: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy publication-title: Science doi: 10.1126/science.1101738 – volume: 141 start-page: 1146 year: 2010 end-page: 1158 ident: CR198 article-title: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations publication-title: Cell doi: 10.1016/j.cell.2010.05.008 – volume: 56 start-page: 2029 year: 2021 end-page: 2042.e2025 ident: CR228 article-title: Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.06.003 – volume: 7 year: 2012 ident: CR37 article-title: BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria publication-title: PLoS ONE doi: 10.1371/journal.pone.0030767 – volume: 88 start-page: 735 year: 2015 end-page: 748 ident: CR109 article-title: Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy publication-title: Neuron doi: 10.1016/j.neuron.2015.10.012 – volume: 39 year: 2020 ident: CR232 article-title: Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles publication-title: EMBO J. doi: 10.15252/embj.2019102539 – year: 2020 ident: CR234 article-title: Generation and release of mitochondrial-derived vesicles in health, aging and disease publication-title: J. Clin. Med. doi: 10.3390/jcm9051440 – year: 2020 ident: CR87 article-title: Pexophagy: a model for selective autophagy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21020578 – volume: 294 start-page: 20009 year: 2019 end-page: 20023 ident: CR44 article-title: Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.008709 – volume: 5 year: 2015 ident: CR221 article-title: Mieap suppresses murine intestinal tumor via its mitochondrial quality control publication-title: Sci. Rep. doi: 10.1038/srep12472 – volume: 119 start-page: 2245 year: 2020 end-page: 2255 ident: CR171 article-title: Microautophagy upregulation in cutaneous lymph nodes of dogs naturally infected by Leishmania infantum publication-title: Parasitol. Res. doi: 10.1007/s00436-020-06718-z – volume: 107 start-page: 1129 year: 2020 end-page: 1148 ident: CR194 article-title: De novo VPS4A mutations cause multisystem disease with abnormal neurodevelopment publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.10.012 – volume: 294 start-page: 5590 year: 2019 end-page: 5603 ident: CR251 article-title: Analysis of autophagy activated during changes in carbon source availability in yeast cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005698 – volume: 17 start-page: 626 year: 2021 end-page: 639 ident: CR53 article-title: Mechanistic dissection of macro- and micronucleophagy publication-title: Autophagy doi: 10.1080/15548627.2020.1725402 – volume: 145 start-page: 571 year: 2011 end-page: 583 ident: CR215 article-title: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression publication-title: Cell doi: 10.1016/j.cell.2011.03.035 – volume: 6 year: 2011 ident: CR35 article-title: Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control publication-title: PLoS ONE doi: 10.1371/journal.pone.0016054 – volume: 6 start-page: 6 year: 2020 ident: CR159 article-title: Lysosome biology in autophagy publication-title: Cell Discov. doi: 10.1038/s41421-020-0141-7 – volume: 151 start-page: 1256 year: 2012 end-page: 1269 ident: CR50 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 22 start-page: 407 year: 2012 end-page: 417 ident: CR110 article-title: Chaperone-mediated autophagy: a unique way to enter the lysosome world publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.05.006 – volume: 9 year: 2019 ident: CR223 article-title: Mieap-induced accumulation of lysosomes within mitochondria (MALM) regulates gastric cancer cell invasion under hypoxia by suppressing reactive oxygen species accumulation publication-title: Sci. Rep. doi: 10.1038/s41598-019-39563-x – volume: 478 start-page: 1959 year: 2021 end-page: 1976 ident: CR247 article-title: Understanding amphisomes publication-title: Biochem. J. doi: 10.1042/BCJ20200917 – volume: 6 start-page: 97 year: 2014 ident: 529_CR122 publication-title: F1000Prime Rep. doi: 10.12703/P6-97 – volume: 14 start-page: 129 year: 2003 ident: 529_CR54 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-08-0483 – volume: 6 year: 2011 ident: 529_CR35 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016054 – year: 2014 ident: 529_CR245 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016808 – volume: 578 start-page: 419 year: 2020 ident: 529_CR204 publication-title: Nature doi: 10.1038/s41586-020-1968-7 – year: 2022 ident: 529_CR139 publication-title: J. Cell Sci. doi: 10.1242/jcs.259393 – volume: 6 start-page: 79 year: 2005 ident: 529_CR131 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1552 – year: 2018 ident: 529_CR165 publication-title: J. Cell Sci. doi: 10.1242/jcs.208017 – volume: 108 start-page: 25 year: 1995 ident: 529_CR99 publication-title: J. Cell Sci. doi: 10.1242/jcs.108.1.25 – year: 2021 ident: 529_CR231 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00798-4 – year: 2020 ident: 529_CR156 publication-title: J. Cell Biol. doi: 10.1083/jcb.202009128 – volume: 291 start-page: 18096 year: 2016 ident: 529_CR108 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.736744 – volume: 145 start-page: 571 year: 2011 ident: 529_CR215 publication-title: Cell doi: 10.1016/j.cell.2011.03.035 – volume: 39 year: 2020 ident: 529_CR232 publication-title: EMBO J. doi: 10.15252/embj.2019102539 – volume: 40 year: 2018 ident: 529_CR18 publication-title: Bioessays doi: 10.1002/bies.201800008 – year: 2020 ident: 529_CR67 publication-title: Autophagy doi: 10.1080/15548627.2020.1712109 – volume: 108 start-page: 809 year: 2017 ident: 529_CR38 publication-title: Cancer Sci. doi: 10.1111/cas.13208 – volume: 7 year: 2017 ident: 529_CR123 publication-title: Sci. Rep. doi: 10.1038/s41598-017-01246-w – volume: 27 start-page: R1177 year: 2017 ident: 529_CR25 publication-title: Curr. Biol. doi: 10.1016/j.cub.2017.09.015 – year: 2018 ident: 529_CR106 publication-title: J. Cell Sci. doi: 10.1242/jcs.215210 – volume: 21 start-page: 7 year: 2020 ident: 529_CR163 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0180-9 – volume: 119 start-page: 2245 year: 2020 ident: 529_CR171 publication-title: Parasitol. Res. doi: 10.1007/s00436-020-06718-z – volume: 10 start-page: 583137 year: 2020 ident: 529_CR255 publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2020.583137 – volume: 56 start-page: 2029 year: 2021 ident: 529_CR228 publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.06.003 – volume: 108 start-page: 17396 year: 2011 ident: 529_CR152 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113421108 – volume: 18 start-page: 671 year: 2017 ident: 529_CR74 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.76 – volume: 214 start-page: 275 year: 2016 ident: 529_CR160 publication-title: J. Cell Biol. doi: 10.1083/jcb.201603105 – volume: 19 year: 2021 ident: 529_CR72 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001361 – volume: 80 start-page: 2179 year: 1983 ident: 529_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.80.8.2179 – volume: 113 start-page: 3365 year: 2000 ident: 529_CR246 publication-title: J. Cell Sci. doi: 10.1242/jcs.113.19.3365 – volume: 593 start-page: 2319 year: 2019 ident: 529_CR46 publication-title: FEBS Lett. doi: 10.1002/1873-3468.13571 – volume: 13 start-page: 3720 year: 2022 ident: 529_CR230 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31213-7 – year: 2021 ident: 529_CR120 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.08.039 – year: 2017 ident: 529_CR208 publication-title: eLife doi: 10.7554/eLife.25960 – volume: 522 start-page: 88 year: 2020 ident: 529_CR141 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.11.064 – volume: 478 start-page: 1959 year: 2021 ident: 529_CR247 publication-title: Biochem. J. doi: 10.1042/BCJ20200917 – volume: 166 start-page: 555 year: 2016 ident: 529_CR219 publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 554 start-page: 382 year: 2018 ident: 529_CR39 publication-title: Nature doi: 10.1038/nature25486 – volume: 33 start-page: 282 year: 2014 ident: 529_CR148 publication-title: EMBO J. – volume: 169 start-page: 792 year: 2017 ident: 529_CR133 publication-title: Cell doi: 10.1016/j.cell.2017.04.023 – volume: 9 year: 2019 ident: 529_CR199 publication-title: Sci. Rep. doi: 10.1038/s41598-018-35811-8 – volume: 20 start-page: 3 year: 2013 ident: 529_CR78 publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.63 – volume: 127 start-page: 3024 year: 2014 ident: 529_CR184 publication-title: J. Cell Sci. – volume: 39 year: 2020 ident: 529_CR42 publication-title: EMBO J. doi: 10.15252/embj.2019102586 – volume: 1862 start-page: 1178 year: 2017 ident: 529_CR77 publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2017.06.008 – year: 2013 ident: 529_CR242 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016766 – volume: 141 start-page: 1146 year: 2010 ident: 529_CR198 publication-title: Cell doi: 10.1016/j.cell.2010.05.008 – year: 2017 ident: 529_CR84 publication-title: eLife doi: 10.7554/eLife.21690 – volume: 206 start-page: 357 year: 2014 ident: 529_CR82 publication-title: J. Cell Biol. doi: 10.1083/jcb.201404115 – volume: 27 start-page: 1593 year: 2018 ident: 529_CR248 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy066 – volume: 166 start-page: 314 year: 2016 ident: 529_CR241 publication-title: Cell doi: 10.1016/j.cell.2016.05.039 – volume: 169 start-page: 985 year: 2017 ident: 529_CR125 publication-title: Cell doi: 10.1016/j.cell.2017.05.016 – volume: 28 start-page: 3423 year: 2019 ident: 529_CR57 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.059 – volume: 263 start-page: 111 year: 2014 ident: 529_CR197 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.01.001 – volume: 78 start-page: 8283 year: 2021 ident: 529_CR47 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-021-04017-z – year: 2020 ident: 529_CR87 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21020578 – volume: 177 start-page: 357 year: 1995 ident: 529_CR91 publication-title: J. Bacteriol. doi: 10.1128/jb.177.2.357-363.1995 – volume: 22 start-page: 187 year: 2020 ident: 529_CR154 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0450-y – volume: 12 start-page: 1984 year: 2016 ident: 529_CR103 publication-title: Autophagy doi: 10.1080/15548627.2016.1208887 – volume: 997 start-page: 135 year: 2017 ident: 529_CR166 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-4567-7_10 – volume: 19 start-page: 15 year: 2005 ident: 529_CR145 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.05.020 – volume: 33 start-page: 2605 year: 2013 ident: 529_CR186 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2898-12.2013 – volume: 41 start-page: 10 year: 2017 ident: 529_CR24 publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.02.016 – volume: 49 start-page: 337 year: 2016 ident: 529_CR183 publication-title: BMB Rep. doi: 10.5483/BMBRep.2016.49.6.212 – volume: 48 start-page: 6611 year: 2020 ident: 529_CR226 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa393 – volume: 65 start-page: 1243 year: 2019 ident: 529_CR143 publication-title: Curr. Genet. doi: 10.1007/s00294-019-00982-y – volume: 116 start-page: 2987 year: 2019 ident: 529_CR128 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1820161116 – volume: 74 start-page: 4 year: 2018 ident: 529_CR176 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.020 – volume: 524 start-page: 614 year: 2020 ident: 529_CR140 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.01.129 – year: 2018 ident: 529_CR182 publication-title: Aging Cell doi: 10.1111/acel.12692 – volume: 140 start-page: 201 year: 2019 ident: 529_CR170 publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2019.05.007 – volume: 24 start-page: 6013 year: 2015 ident: 529_CR203 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv314 – volume: 11 start-page: 88 year: 2015 ident: 529_CR155 publication-title: Autophagy doi: 10.4161/15548627.2014.984277 – volume: 56 start-page: 260 year: 2021 ident: 529_CR210 publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.11.016 – volume: 263 start-page: 2506 year: 1988 ident: 529_CR16 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)69235-X – volume: 21 start-page: 110 year: 2017 ident: 529_CR189 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.028 – volume: 21 start-page: 1206 year: 2019 ident: 529_CR211 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0391-5 – volume: 22 start-page: 407 year: 2012 ident: 529_CR110 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.05.006 – volume: 4 start-page: 740 year: 2008 ident: 529_CR1 publication-title: Autophagy doi: 10.4161/auto.6398 – volume: 24 start-page: 24 year: 2014 ident: 529_CR7 publication-title: Cell Res. doi: 10.1038/cr.2013.168 – volume: 4 year: 2015 ident: 529_CR107 publication-title: eLife doi: 10.7554/eLife.07736 – volume: 20 start-page: 131 year: 2011 ident: 529_CR100 publication-title: Dev. Cell doi: 10.1016/j.devcel.2010.12.003 – volume: 23 start-page: 519 year: 2007 ident: 529_CR174 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123319 – volume: 42 start-page: 78 year: 1985 ident: 529_CR13 publication-title: Exp. Mol. Pathol. doi: 10.1016/0014-4800(85)90020-6 – volume: 115 start-page: E10099 year: 2018 ident: 529_CR45 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814552115 – volume: 8 start-page: 193 year: 2008 ident: 529_CR227 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2342 – volume: 74 start-page: 21 year: 2018 ident: 529_CR105 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.014 – volume: 6 start-page: 6 year: 2020 ident: 529_CR159 publication-title: Cell Discov. doi: 10.1038/s41421-020-0141-7 – year: 2020 ident: 529_CR249 publication-title: Curr. Genet. doi: 10.1007/s00294-020-01059-x – volume: 445 start-page: 245 year: 2008 ident: 529_CR19 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-59745-157-4_16 – volume: 26 start-page: 630 year: 2019 ident: 529_CR52 publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0266-5 – volume: 592 start-page: 1291 year: 2018 ident: 529_CR79 publication-title: FEBS Lett. doi: 10.1002/1873-3468.12996 – volume: 146 start-page: 37 year: 2011 ident: 529_CR200 publication-title: Cell doi: 10.1016/j.cell.2011.06.001 – volume: 135 start-page: 2169 year: 2012 ident: 529_CR253 publication-title: Brain doi: 10.1093/brain/aws143 – volume: 81 start-page: 1337 year: 2021 ident: 529_CR121 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.01.009 – volume: 30 start-page: 3481 year: 2011 ident: 529_CR104 publication-title: EMBO J. doi: 10.1038/emboj.2011.286 – volume: 26 start-page: 869 year: 2016 ident: 529_CR134 publication-title: Cell Res. doi: 10.1038/cr.2016.86 – volume: 20 start-page: 21 year: 2013 ident: 529_CR146 publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.72 – volume: 9 start-page: 228 year: 2017 ident: 529_CR196 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00228 – volume: 37 start-page: 806 year: 2005 ident: 529_CR191 publication-title: Nat. Genet. doi: 10.1038/ng1609 – volume: 529 start-page: 582 year: 2020 ident: 529_CR225 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.05.168 – volume: 36 start-page: 219 year: 1981 ident: 529_CR12 publication-title: Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. doi: 10.1007/BF02912068 – volume: 7 start-page: 673 year: 2011 ident: 529_CR10 publication-title: Autophagy doi: 10.4161/auto.7.7.14733 – volume: 294 start-page: 5590 year: 2019 ident: 529_CR251 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005698 – volume: 2 start-page: 125 year: 2018 ident: 529_CR34 publication-title: Liver Res. doi: 10.1016/j.livres.2018.09.005 – volume: 11 start-page: 1927 year: 2015 ident: 529_CR136 publication-title: Autophagy doi: 10.1080/15548627.2015.1078961 – volume: 33 start-page: 2142 year: 2014 ident: 529_CR233 publication-title: EMBO J. doi: 10.15252/embj.201488104 – year: 2020 ident: 529_CR118 publication-title: J. Cell Biol. doi: 10.1083/jcb.201902127 – volume: 107 start-page: 1129 year: 2020 ident: 529_CR194 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2020.10.012 – volume: 3 start-page: 329 year: 2007 ident: 529_CR30 publication-title: Autophagy doi: 10.4161/auto.4034 – volume: 1763 start-page: 1767 year: 2006 ident: 529_CR94 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2006.08.023 – volume: 294 start-page: 20009 year: 2019 ident: 529_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.008709 – volume: 19 year: 2021 ident: 529_CR73 publication-title: BMC Biol. doi: 10.1186/s12915-021-01048-7 – volume: 88 start-page: 735 year: 2015 ident: 529_CR109 publication-title: Neuron doi: 10.1016/j.neuron.2015.10.012 – volume: 11 start-page: 210091 year: 2021 ident: 529_CR179 publication-title: Open. Biol. doi: 10.1098/rsob.210091 – volume: 12 start-page: 685 year: 2012 ident: 529_CR220 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3365 – volume: 9 start-page: 1167 year: 2013 ident: 529_CR63 publication-title: Autophagy doi: 10.4161/auto.24880 – volume: 22 start-page: 973 year: 2020 ident: 529_CR172 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-0549-1 – volume: 3 start-page: 85 year: 2007 ident: 529_CR55 publication-title: Autophagy doi: 10.4161/auto.3586 – year: 2018 ident: 529_CR169 publication-title: EMBO J. doi: 10.15252/embj.201798804 – volume: 10 year: 2019 ident: 529_CR51 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12991-z – volume: 460 start-page: 281 year: 2015 ident: 529_CR64 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.03.025 – volume: 76 start-page: 268 year: 2019 ident: 529_CR23 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.005 – year: 2018 ident: 529_CR48 publication-title: EMBO J. doi: 10.15252/embj.201899259 – volume: 114 start-page: E4612 year: 2017 ident: 529_CR59 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1705499114 – volume: 192 start-page: 229 year: 2011 ident: 529_CR244 publication-title: J. Cell Biol. doi: 10.1083/jcb.201008121 – year: 2020 ident: 529_CR102 publication-title: Autophagy doi: 10.1080/15548627.2020.1783833 – volume: 42 start-page: 873 year: 2017 ident: 529_CR132 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2017.09.002 – volume: 31 start-page: 141 year: 2021 ident: 529_CR43 publication-title: Cell Res. doi: 10.1038/s41422-020-00416-2 – volume: 75 start-page: 128 year: 2015 ident: 529_CR68 publication-title: Methods doi: 10.1016/j.ymeth.2014.12.014 – volume: 40 year: 2021 ident: 529_CR213 publication-title: EMBO J. doi: 10.15252/embj.2021108863 – volume: 27 start-page: 843 year: 2020 ident: 529_CR212 publication-title: Cell Death Differ. doi: 10.1038/s41418-019-0474-7 – volume: 158 start-page: 549 year: 2014 ident: 529_CR254 publication-title: Cell doi: 10.1016/j.cell.2014.05.048 – volume: 72 start-page: 2677 year: 2015 ident: 529_CR80 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-015-1903-5 – volume: 143 start-page: 1136 year: 2010 ident: 529_CR127 publication-title: Cell doi: 10.1016/j.cell.2010.11.034 – volume: 17 start-page: 313 year: 2008 ident: 529_CR192 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm309 – volume: 584 start-page: 1367 year: 2010 ident: 529_CR93 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.01.019 – volume: 21 start-page: 70 year: 2020 ident: 529_CR142 publication-title: BMC Mol. Cell Biol. doi: 10.1186/s12860-020-00314-w – volume: 128 start-page: 232 year: 2015 ident: 529_CR202 publication-title: J. Cell Sci. – volume: 8 start-page: 214 year: 2020 ident: 529_CR240 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00214 – volume: 4 start-page: 18 year: 2015 ident: 529_CR168 publication-title: Transl. Neurodegener. doi: 10.1186/s40035-015-0041-1 – volume: 59 start-page: 1035 year: 2015 ident: 529_CR111 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.034 – volume: 6 start-page: 1058 year: 2005 ident: 529_CR115 publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00337.x – volume: 109 start-page: 3910 year: 2018 ident: 529_CR224 publication-title: Cancer Sci. doi: 10.1111/cas.13824 – volume: 13 start-page: 37 year: 2013 ident: 529_CR217 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3409 – volume: 29 start-page: 44 year: 2019 ident: 529_CR124 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2018.08.005 – volume: 30 start-page: 384 year: 2020 ident: 529_CR41 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.001 – volume: 279 start-page: 39068 year: 2004 ident: 529_CR31 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406960200 – volume: 3 year: 2012 ident: 529_CR178 publication-title: Nat. Commun. doi: 10.1038/ncomms2069 – volume: 15 start-page: 58 year: 2004 ident: 529_CR96 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e03-05-0340 – volume: 81 start-page: 2013 year: 2021 ident: 529_CR157 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.03.001 – volume: 4 start-page: 6 year: 2015 ident: 529_CR27 publication-title: Redox Biol. doi: 10.1016/j.redox.2014.11.006 – volume: 14 start-page: 515 year: 2004 ident: 529_CR95 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.07.014 – volume: 16 year: 2020 ident: 529_CR250 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008631 – year: 2019 ident: 529_CR71 publication-title: J. Cell Sci. doi: 10.1242/jcs.222984 – volume: 17 start-page: 2040 year: 2021 ident: 529_CR9 publication-title: Autophagy doi: 10.1080/15548627.2021.1935007 – volume: 35 start-page: 584 year: 2015 ident: 529_CR83 publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.11.010 – volume: 17 start-page: 626 year: 2021 ident: 529_CR53 publication-title: Autophagy doi: 10.1080/15548627.2020.1725402 – volume: 458 start-page: 1131 year: 2009 ident: 529_CR75 publication-title: Nature doi: 10.1038/nature07976 – volume: 37 start-page: 2887 year: 2020 ident: 529_CR116 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa127 – volume: 432 start-page: 231 year: 2020 ident: 529_CR69 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2019.08.010 – volume: 116 start-page: 10402 year: 2019 ident: 529_CR218 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1903506116 – volume: 184 start-page: 2696 year: 2021 ident: 529_CR185 publication-title: Cell doi: 10.1016/j.cell.2021.03.048 – volume: 260 start-page: 5847 year: 1985 ident: 529_CR14 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)89099-8 – volume: 4 year: 2016 ident: 529_CR222 publication-title: Oncogenesis doi: 10.1038/oncsis.2015.43 – volume: 305 start-page: 1292 year: 2004 ident: 529_CR180 publication-title: Science doi: 10.1126/science.1101738 – volume: 20 start-page: 4 year: 2008 ident: 529_CR243 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2007.12.002 – volume: 285 start-page: 13621 year: 2010 ident: 529_CR181 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.074617 – volume: 19 start-page: 365 year: 2018 ident: 529_CR8 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0001-6 – volume: 278 start-page: 12513 year: 2003 ident: 529_CR149 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210843200 – volume: 137 start-page: 191 year: 1982 ident: 529_CR3 publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(82)90020-9 – volume: 5 start-page: 128 year: 2021 ident: 529_CR151 publication-title: Cell Stress. doi: 10.15698/cst2021.09.255 – volume: 141 start-page: 625 year: 1998 ident: 529_CR90 publication-title: J. Cell Biol. doi: 10.1083/jcb.141.3.625 – volume: 6 start-page: 40 year: 2019 ident: 529_CR135 publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00040 – volume: 151 start-page: 1256 year: 2012 ident: 529_CR50 publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 44 start-page: 1260 year: 2012 ident: 529_CR193 publication-title: Nat. Genet. doi: 10.1038/ng.2425 – volume: 294 start-page: 12610 year: 2019 ident: 529_CR158 publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC119.009977 – year: 2020 ident: 529_CR234 publication-title: J. Clin. Med. doi: 10.3390/jcm9051440 – volume: 243 start-page: 641 year: 1986 ident: 529_CR15 publication-title: Cell Tissue Res. doi: 10.1007/BF00218073 – volume: 115 start-page: E5317 year: 2018 ident: 529_CR126 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1804091115 – volume: 12 start-page: 401 year: 2012 ident: 529_CR214 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3262 – volume: 6 year: 2011 ident: 529_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016060 – volume: 67 start-page: 1074 year: 2006 ident: 529_CR190 publication-title: Neurology doi: 10.1212/01.wnl.0000231510.89311.8b – volume: 161 start-page: 197 year: 2015 ident: 529_CR167 publication-title: Cell doi: 10.1016/j.cell.2015.03.046 – volume: 132 start-page: jcs232850 year: 2019 ident: 529_CR40 publication-title: J. Cell Sci. doi: 10.1242/jcs.232850 – volume: 113 start-page: E7490 year: 2016 ident: 529_CR137 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1615455113 – volume: 20 start-page: 521 year: 2018 ident: 529_CR6 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0092-5 – volume: 217 start-page: 3640 year: 2018 ident: 529_CR119 publication-title: J. Cell Biol. doi: 10.1083/jcb.201711002 – volume: 180 start-page: 633 year: 2020 ident: 529_CR112 publication-title: Cell doi: 10.1016/j.cell.2020.01.027 – volume: 216 start-page: 1199 year: 2019 ident: 529_CR60 publication-title: J. Exp. Med. doi: 10.1084/jem.20181329 – volume: 117 start-page: 32443 year: 2020 ident: 529_CR86 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2011442117 – volume: 289 start-page: 18137 year: 2014 ident: 529_CR187 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.529461 – volume: 1649 start-page: 181 year: 2016 ident: 529_CR209 publication-title: Brain Res. doi: 10.1016/j.brainres.2016.03.035 – volume: 28 start-page: 439 year: 2021 ident: 529_CR147 publication-title: Cell Death Differ. doi: 10.1038/s41418-020-00667-x – year: 2016 ident: 529_CR236 publication-title: eLife doi: 10.7554/eLife.13943 – volume: 20 start-page: 14 year: 2019 ident: 529_CR216 publication-title: iScience doi: 10.1016/j.isci.2019.09.009 – volume: 9 start-page: 403 year: 2013 ident: 529_CR62 publication-title: Autophagy doi: 10.4161/auto.23002 – volume: 73 start-page: 325 year: 2019 ident: 529_CR144 publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.040 – volume: 16 start-page: 4941 year: 2005 ident: 529_CR97 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e05-02-0143 – volume: 106 start-page: 145 year: 2001 ident: 529_CR150 publication-title: Cell doi: 10.1016/S0092-8674(01)00434-2 – volume: 33 start-page: 5626 year: 2019 ident: 529_CR101 publication-title: FASEB J. doi: 10.1096/fj.201802102R – volume: 14 start-page: 365 year: 2008 ident: 529_CR98 publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.12.011 – year: 2021 ident: 529_CR229 publication-title: FEBS J. doi: 10.1111/febs.16281 – volume: 15 start-page: 240 year: 2012 ident: 529_CR129 publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.12.017 – volume: 548 start-page: 461 year: 2017 ident: 529_CR58 publication-title: Nature doi: 10.1038/nature23449 – volume: 10 year: 2019 ident: 529_CR162 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09253-3 – year: 2021 ident: 529_CR22 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00392-4 – volume: 22 start-page: 1252 year: 2020 ident: 529_CR173 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00583-9 – volume: 33 start-page: 2291 year: 2012 ident: 529_CR252 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.11.009 – volume: 5 year: 2015 ident: 529_CR221 publication-title: Sci. Rep. doi: 10.1038/srep12472 – volume: 13 start-page: 218 year: 2017 ident: 529_CR66 publication-title: Autophagy doi: 10.1080/15548627.2016.1248019 – volume: 47 start-page: 523 year: 1982 ident: 529_CR11 publication-title: Lab. Invest. – year: 2019 ident: 529_CR177 publication-title: J. Cell Sci. doi: 10.1242/jcs.222406 – volume: 9 year: 2019 ident: 529_CR223 publication-title: Sci. Rep. doi: 10.1038/s41598-019-39563-x – year: 2020 ident: 529_CR85 publication-title: Biochim. Biophys. Acta Biomembr. doi: 10.1016/j.bbamem.2020.183416 – volume: 5 start-page: 539 year: 2003 ident: 529_CR4 publication-title: Dev. Cell doi: 10.1016/S1534-5807(03)00296-X – volume: 45 start-page: 58 year: 2020 ident: 529_CR29 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2019.08.002 – volume: 127 start-page: 4078 year: 2014 ident: 529_CR20 publication-title: J. Cell Sci. – volume: 25 start-page: 290 year: 2014 ident: 529_CR81 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e13-08-0448 – volume: 280 start-page: 4970 year: 2013 ident: 529_CR32 publication-title: FEBS J. doi: 10.1111/febs.12468 – volume: 108 start-page: 17004 year: 2011 ident: 529_CR188 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1109356108 – year: 2020 ident: 529_CR237 publication-title: J. Cell Biol. doi: 10.1083/jcb.202002144 – volume: 29 start-page: 500 year: 2019 ident: 529_CR164 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.02.004 – volume: 28 start-page: R170 year: 2018 ident: 529_CR28 publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.004 – volume: 10 start-page: 1353 year: 1999 ident: 529_CR92 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.10.5.1353 – year: 2021 ident: 529_CR61 publication-title: Autophagy doi: 10.1080/15548627.2021.1899440 – volume: 7 start-page: 75 year: 2002 ident: 529_CR89 publication-title: Genes Cell doi: 10.1046/j.1356-9597.2001.00499.x – volume: 7 year: 2012 ident: 529_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030767 – volume: 28 start-page: 337 year: 2012 ident: 529_CR175 publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-092910-154152 – volume: 13 year: 2019 ident: 529_CR207 publication-title: Hum. Genomics doi: 10.1186/s40246-019-0203-9 – volume: 14 start-page: 788 year: 2013 ident: 529_CR238 publication-title: EMBO Rep. doi: 10.1038/embor.2013.114 – volume: 22 start-page: 135 year: 2012 ident: 529_CR235 publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.11.057 – volume: 54 start-page: 153 year: 2019 ident: 529_CR49 publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409238.2019.1610351 – volume: 1 start-page: 213 year: 2010 ident: 529_CR56 publication-title: Nucleus doi: 10.4161/nucl.11738 – volume: 12 start-page: 565 year: 2016 ident: 529_CR65 publication-title: Autophagy doi: 10.1080/15548627.2016.1145325 – volume: 41 start-page: 55 year: 2018 ident: 529_CR88 publication-title: Mol. Cell – volume: 39 start-page: 8 year: 2016 ident: 529_CR161 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2016.01.006 – volume: 38 start-page: 1184 year: 2006 ident: 529_CR205 publication-title: Nat. Genet. doi: 10.1038/ng1884 – volume: 12 start-page: 61 year: 2017 ident: 529_CR195 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0203-y – volume: 17 start-page: 98 year: 2009 ident: 529_CR239 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.06.014 – volume: 11 start-page: 515 year: 2020 ident: 529_CR26 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00515 – volume: 2 start-page: 749 year: 2014 ident: 529_CR33 publication-title: Redox Biol. doi: 10.1016/j.redox.2014.06.004 – volume: 12 year: 2021 ident: 529_CR114 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22501-9 – volume: 15 year: 2019 ident: 529_CR138 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008387 – volume: 68 start-page: 1557 year: 2007 ident: 529_CR206 publication-title: Neurology doi: 10.1212/01.wnl.0000260963.08711.08 – volume: 110 start-page: E1817 year: 2013 ident: 529_CR201 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1305623110 – volume: 178 start-page: 536 year: 2019 ident: 529_CR153 publication-title: Cell doi: 10.1016/j.cell.2019.05.056 – volume: 216 start-page: 3263 year: 2017 ident: 529_CR117 publication-title: J. Cell Biol. doi: 10.1083/jcb.201611029 – volume: 17 start-page: 1592 year: 2021 ident: 529_CR130 publication-title: Autophagy doi: 10.1080/15548627.2020.1757955 – volume: 39 start-page: 61 year: 2014 ident: 529_CR21 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2013.12.001 – volume: 93 start-page: 144 year: 1982 ident: 529_CR2 publication-title: J. Cell Biol. doi: 10.1083/jcb.93.1.144 – volume: 24 start-page: 9 year: 2014 ident: 529_CR5 publication-title: Cell Res. doi: 10.1038/cr.2013.169 – volume: 55 start-page: 289 year: 2020 ident: 529_CR70 publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.08.008 – volume: 18 start-page: 4153 year: 2009 ident: 529_CR113 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddp367 – volume: 7 start-page: 185 year: 2019 ident: 529_CR76 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00185 |
SSID | ssj0016175 |
Score | 2.721291 |
SecondaryResourceType | review_article |
Snippet | ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to... 'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 186 |
SubjectTerms | 631/80/39 631/80/474/1624 Animals Autophagy Biochemistry Biomedical and Life Sciences Cancer Research Cell Biology Cell Communication Degradation Developmental Biology Endosomes Humans Life Sciences Lysosomes Lysosomes - metabolism Macroautophagy Mammalian cells Mammals Microautophagy Molecular modelling Neurodegenerative diseases Organelles Proteins Regulatory mechanisms (biology) Review Article Stem Cells Yeast |
Title | The emerging mechanisms and functions of microautophagy |
URI | https://link.springer.com/article/10.1038/s41580-022-00529-z https://www.ncbi.nlm.nih.gov/pubmed/36097284 https://www.proquest.com/docview/2779273872 https://www.proquest.com/docview/2714059675 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8PADwRfx2-ocFXzTYNs0S_ckm2yI4BBxsLeSJqkIrlO7Peiv9y7tNkT0pX1I0oa7XO77DuBc5nHYznmb6VBaFhspmWrxmIUiUYnJYi2cKft-0LodxncjMaoNbmUdVjm_E91FbSaabORXkZRtSiOR0fXbO6OuUeRdrVtorMI6lS6jkC45WihcJLoLl10kUWUOZFQnzQQ8uSqRcSUBo1h25-xiXz8Z0y9p85en1DGg_jZs1ZKj36lQvQMrttiFjaqX5OceSES4T9m-1HXIH1vK6H0px6WvCuMT93IHzJ_k_phi8NSMKgqo5899GPZ7Tze3rO6KwDSKLlOm8HqSGmnPRkGustzoLIuFRE3HCBNmkTFCcG1ypEWrpWkFHAcyFKR4QIW4NT-AtWJS2CPwqRq9SHKcppB2QzJ_BJlFocGaKA9j7UE4B0mq65Lh1LniNXWua56kFRhTBGPqwJh-eXCxWPNWFcz4d3ZjDum0Jp4yXaLag7PFMB578mWowk5mNAc1Q9FGdceDwwpDi9_xFtUkSmIPLucoW378770c_7-XE9ikVvNV_FkD1qYfM3uKAsk0a7pTh8_kJmzCeqff7Q7w3e0NHh6_Ad9K3Sg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVW5VNAXaaF1pfbUWiRxvE4OCEEBLQVWVQUSN-PYToXEZoHsqlp-VH9jZ_JYVKFy42zHsWY-e2Y8L4BPqkiirBAZt5HyPHFKcdMXCY9kalKXJ1bWT9nHw_7gNPl-Js8W4E-XC0Nhld2dWF_UbmzpjXwjViqjNBIVb11dc-oaRd7VroVGA4tDP_uNJlu1ebCL_P0cx_t7J98GvO0qwC2K_gk3eLyVRez6OCxMXjib54lUaCk46aI8dk5KYV2BWPZWuX4ocCBHRUSEVMjaClz3CSwmAk2ZHizu7A1__Jz7LVAfkHU-k0IjPVRxm6YTinSjQlGZhpyi52v3Gr_9VxTe02_v-WZrkbe_DM9bXZVtN-BagQVfvoCnTffK2UtQCDFG-cXU54iNPOUQX1SjipnSMZKXNaTZuGAjivozU6phYH7NXsHpo1DsNfTKcelXgVH9e5kWOM3gbRHRg0uYe1RTvIuLKLEBRB1JtG2LlFOvjEtdO8tFqhsyaiSjrsmobwP4Mv_mqinR8eDstY7Suj2ulb4DVwAf58N40Mh7Yko_ntIctEVlhgZWAG8aDs1_h1jIFAr6AL52LLtb_P97efvwXj7As8HJ8ZE-OhgevoMlanTfRL-tQW9yM_XrqA5N8vctBhmcPzbs_wLLbhhZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXRHmUQCmuBCewNonjdfZQIURZ9S0OVNqbcfxASGy2kF2h7U_j13XGSbZCFb31GjtONP7GM-N5AbxRochGQYy4zZTnhVOKm6EoeCZLU7qqsDJeZZ-cDvfPisOJnKzB3z4XhsIq-zMxHtRuZumOfJArNaI0EpUPQhcW8WVv_OH8F6cOUuRp7dtptBA58ss_aL41uwd7uNdv83z8-eunfd51GOAW1YA5N8jqyiKOfZ4GUwVnq6qQCq0GJ11W5c5JKawLiGtvlRumAgcqVEpESkWtrcB178BdJfAJ8pKarIw9MhtkzGxSaK6nKu8SdlJRDhoUmmXKKY4-Otr4xb9C8Zqme81LG4Xf-BE87LRW9rGF2Qas-fox3Gv7WC6fgEKwMco0po5HbOopm_hHM22YqR0jyRnBzWaBTSn-zyyomoH5vnwKZ7dCr2ewXs9q_xwYVcKXZcBpBs-NjK5e0sqjwuJdHrLCJpD1JNG2K1dOXTN-6ug2F6VuyaiRjDqSUV8k8G71znlbrOPG2Vs9pXXHuI2-glkCO6thZDnyo5jazxY0B61SOUJTK4HNdodWnxNDqodUFgm877fsavH__8uLm__lNdxHsOvjg9Ojl_CAOt63YXBbsD7_vfCvUC-aV9sRgAy-3TbiLwEI5hsp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+mechanisms+and+functions+of+microautophagy&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Wang%2C+Liming&rft.au=Klionsky%2C+Daniel+J.&rft.au=Shen%2C+Han-Ming&rft.date=2023-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=24&rft.issue=3&rft.spage=186&rft.epage=203&rft_id=info:doi/10.1038%2Fs41580-022-00529-z&rft.externalDocID=10_1038_s41580_022_00529_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon |