The emerging mechanisms and functions of microautophagy

‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to d...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Molecular cell biology Vol. 24; no. 3; pp. 186 - 203
Main Authors Wang, Liming, Klionsky, Daniel J., Shen, Han-Ming
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases. Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge.
AbstractList 'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases. Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge.
‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.Microautophagy involves direct engulfment of cytoplasmic components, including proteins and organelles, by lysosomes and late endosomes for degradation. Although it is one of three main types of autophagy — along with macroautophagy and chaperone-mediated autophagy — its mechanisms and physiological roles have only recently begun to emerge.
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Author Wang, Liming
Klionsky, Daniel J.
Shen, Han-Ming
Author_xml – sequence: 1
  givenname: Liming
  orcidid: 0000-0002-5444-2424
  surname: Wang
  fullname: Wang, Liming
  organization: School of Biomedical Sciences, Hunan University
– sequence: 2
  givenname: Daniel J.
  orcidid: 0000-0002-7828-8118
  surname: Klionsky
  fullname: Klionsky, Daniel J.
  email: klionsky@umich.edu
  organization: Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan
– sequence: 3
  givenname: Han-Ming
  orcidid: 0000-0001-7369-5227
  surname: Shen
  fullname: Shen, Han-Ming
  email: hmshen@um.edu.mo
  organization: Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36097284$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAURS1URD_gDzCgSCwsgWcnruMRVXxJlVjKbDm2k6ZqnGInQ_vrcUkLUodOtuVzr947YzSwjTUI3WJ4xJBkTz7FNIMYCIkBKOHx7gKNcMpweGYw-LszMkRj71cAeIoZvULDZAqckSwdIbZYmsjUxpWVLaPaqKW0la99JK2Ois6qtmqsj5oiqivlGtm1zWYpy-01uizk2pubwzlBX68vi9l7PP98-5g9z2OVpriNJceYKUjBEChkXmiV5yllOOWaapwTrSlNlC4IZUYxPYUkfOSc4gS4NFwlE_TQ925c890Z34q68sqs19KapvOChC6gfMpoQO9P0FXTORumCxTjhCUZI4G6O1BdXhstNq6qpduKo5IAZD0Q1vXemUKoqpV7Da2T1VpgEHv7orcvgn3xa1_sQpScRI_tZ0NJH_IBtqVx_2OfSf0A9-OWiA
CitedBy_id crossref_primary_10_1016_j_cmet_2024_02_004
crossref_primary_10_1016_j_phrs_2024_107120
crossref_primary_10_1073_pnas_2321612121
crossref_primary_10_3390_cells12030475
crossref_primary_10_3389_fphar_2022_999017
crossref_primary_10_1016_j_tim_2023_04_001
crossref_primary_10_1097_FJC_0000000000001646
crossref_primary_10_1007_s12035_024_04642_2
crossref_primary_10_1002_alz_70048
crossref_primary_10_1038_s41420_023_01496_w
crossref_primary_10_1186_s12967_023_04114_6
crossref_primary_10_3389_fimmu_2024_1488020
crossref_primary_10_1016_j_tcb_2024_09_002
crossref_primary_10_1016_j_celrep_2024_114619
crossref_primary_10_1016_j_molcel_2025_02_022
crossref_primary_10_1016_j_prp_2023_154899
crossref_primary_10_31083_j_fbl2906231
crossref_primary_10_4103_NRR_NRR_D_23_01948
crossref_primary_10_1016_j_bbrc_2024_151219
crossref_primary_10_3389_fmolb_2023_1155521
crossref_primary_10_1016_j_fsi_2023_109068
crossref_primary_10_1097_MCC_0000000000001056
crossref_primary_10_3389_fnagi_2023_1281338
crossref_primary_10_1016_j_fsi_2024_110109
crossref_primary_10_1080_15548627_2023_2230837
crossref_primary_10_3389_fphar_2023_1275792
crossref_primary_10_3390_cells13020183
crossref_primary_10_1002_advs_202401676
crossref_primary_10_1016_j_tcb_2023_11_005
crossref_primary_10_3389_fendo_2024_1291389
crossref_primary_10_1021_acs_analchem_3c04520
crossref_primary_10_1111_cns_14548
crossref_primary_10_1152_ajprenal_00415_2023
crossref_primary_10_1080_15548627_2025_2455158
crossref_primary_10_1021_acsomega_4c03738
crossref_primary_10_1038_s41467_024_45206_1
crossref_primary_10_1038_s41401_024_01334_4
crossref_primary_10_3389_fcell_2023_1297024
crossref_primary_10_3389_fendo_2024_1374644
crossref_primary_10_15252_embr_202357265
crossref_primary_10_4049_jimmunol_2300406
crossref_primary_10_3390_genes14081550
crossref_primary_10_3389_fimmu_2024_1343987
crossref_primary_10_3389_fphar_2024_1416781
crossref_primary_10_1152_physrev_00025_2023
crossref_primary_10_1038_s41392_024_02095_6
crossref_primary_10_1007_s12672_024_01250_3
crossref_primary_10_3390_ijms252211932
crossref_primary_10_3389_fcell_2023_1158279
crossref_primary_10_1007_s10753_024_02049_8
crossref_primary_10_3389_fnmol_2024_1498459
crossref_primary_10_1021_acschembio_4c00835
crossref_primary_10_3389_fimmu_2023_1118449
crossref_primary_10_1038_s41420_023_01753_y
crossref_primary_10_1016_j_jmb_2024_168473
crossref_primary_10_1002_cbf_3984
crossref_primary_10_1016_j_canlet_2024_216728
crossref_primary_10_3389_fphar_2023_1273511
crossref_primary_10_1080_15548627_2024_2447207
crossref_primary_10_1016_j_phymed_2025_156389
crossref_primary_10_1089_ars_2022_0202
crossref_primary_10_32604_biocell_2023_045591
crossref_primary_10_1166_jbn_2024_3827
crossref_primary_10_1096_fba_2024_00035
crossref_primary_10_1007_s10616_024_00689_0
crossref_primary_10_3390_ijms252011112
crossref_primary_10_3389_fcell_2024_1520949
crossref_primary_10_3389_fcimb_2023_1289170
crossref_primary_10_1016_j_jhazmat_2024_135952
crossref_primary_10_1016_j_jare_2024_10_026
crossref_primary_10_3748_wjg_v30_i24_3036
crossref_primary_10_1016_j_intimp_2023_110712
crossref_primary_10_3389_fcell_2025_1518991
crossref_primary_10_3389_fendo_2024_1298423
crossref_primary_10_1038_s41467_024_48597_3
crossref_primary_10_3389_fcell_2024_1347857
crossref_primary_10_3390_ph16050671
crossref_primary_10_1128_msphere_00460_23
crossref_primary_10_1038_s41598_024_59367_y
crossref_primary_10_4103_NRR_NRR_D_23_01195
crossref_primary_10_1002_mba2_47
crossref_primary_10_3389_fnmol_2023_1168948
crossref_primary_10_1016_j_ecoenv_2024_117426
crossref_primary_10_1038_s41569_025_01142_1
crossref_primary_10_4254_wjh_v15_i12_1272
crossref_primary_10_3390_ijms25105569
crossref_primary_10_3390_ijms25169035
crossref_primary_10_2491_jjsth_35_675
crossref_primary_10_3390_ijms26020806
crossref_primary_10_3390_cells12060947
crossref_primary_10_1080_15548627_2025_2457925
crossref_primary_10_3390_antiox13010115
crossref_primary_10_1038_s41401_024_01356_y
crossref_primary_10_1186_s13287_024_03813_1
crossref_primary_10_1002_1873_3468_14796
crossref_primary_10_1016_j_lfs_2024_123088
crossref_primary_10_1016_j_scitotenv_2024_171230
crossref_primary_10_1097_MD_0000000000039999
crossref_primary_10_4103_NRR_NRR_D_24_00432
crossref_primary_10_1016_j_arr_2023_101917
crossref_primary_10_1016_j_tplants_2024_12_012
crossref_primary_10_1016_j_arr_2024_102629
crossref_primary_10_1038_s41401_024_01416_3
crossref_primary_10_1016_j_ijbiomac_2024_139057
crossref_primary_10_2147_CCID_S462294
crossref_primary_10_1042_BSR20240137
crossref_primary_10_1051_bioconf_20237202009
crossref_primary_10_3390_cells13191611
crossref_primary_10_1016_j_canlet_2025_217532
crossref_primary_10_3390_jof9101003
crossref_primary_10_3389_fmed_2024_1491009
crossref_primary_10_1371_journal_pone_0312694
crossref_primary_10_3390_cells13020123
crossref_primary_10_1016_j_jlr_2024_100639
crossref_primary_10_3389_fendo_2023_1142805
crossref_primary_10_1016_j_scitotenv_2024_175880
crossref_primary_10_1038_s41392_023_01437_0
crossref_primary_10_1016_j_jhazmat_2024_133854
crossref_primary_10_1021_acs_analchem_3c02878
crossref_primary_10_1016_j_virol_2024_110371
crossref_primary_10_1080_01635581_2023_2270215
crossref_primary_10_1002_advs_202409425
crossref_primary_10_3390_cells12060956
crossref_primary_10_4103_AGINGADV_AGINGADV_D_24_00002
crossref_primary_10_3390_cancers15092622
crossref_primary_10_1152_ajprenal_00012_2023
crossref_primary_10_1007_s44307_024_00040_w
crossref_primary_10_1016_j_yexcr_2025_114478
crossref_primary_10_1002_biof_1980
crossref_primary_10_3390_brainsci14010096
crossref_primary_10_1080_15548627_2024_2319901
crossref_primary_10_1016_j_phrs_2024_107063
crossref_primary_10_3390_cells14040282
crossref_primary_10_1186_s12929_024_01089_4
crossref_primary_10_1038_s41576_022_00562_w
crossref_primary_10_3390_ijms242417254
crossref_primary_10_1111_imr_13410
crossref_primary_10_3389_fphar_2023_1266311
crossref_primary_10_1242_jcs_261028
crossref_primary_10_1016_j_bioorg_2024_107466
crossref_primary_10_1016_j_csbj_2023_09_036
crossref_primary_10_1038_s41589_024_01741_y
crossref_primary_10_1038_s41556_023_01197_7
crossref_primary_10_1002_jex2_165
crossref_primary_10_3390_ijms25126793
crossref_primary_10_1038_s41368_024_00297_w
crossref_primary_10_3390_biom14121517
crossref_primary_10_15252_embr_202357300
crossref_primary_10_1080_15548627_2023_2287932
crossref_primary_10_1136_egastro_2023_100057
crossref_primary_10_3389_fphar_2024_1364616
crossref_primary_10_3390_cells12050810
crossref_primary_10_3389_fphar_2024_1469830
crossref_primary_10_3389_fnins_2022_1075141
crossref_primary_10_3390_cells13040325
crossref_primary_10_1038_s41586_024_07835_w
crossref_primary_10_1016_j_bcp_2024_116277
crossref_primary_10_1016_j_pharmr_2025_100053
crossref_primary_10_3390_cimb45110546
crossref_primary_10_1016_j_envint_2024_109193
crossref_primary_10_1016_j_medidd_2024_100188
crossref_primary_10_3390_cells11244062
crossref_primary_10_1186_s13020_023_00824_7
crossref_primary_10_1016_j_semcdb_2024_02_001
crossref_primary_10_1186_s11658_024_00626_1
crossref_primary_10_4252_wjsc_v16_i12_990
crossref_primary_10_1016_j_neuron_2024_09_015
crossref_primary_10_1038_s41581_023_00692_2
crossref_primary_10_1080_27694127_2024_2320605
crossref_primary_10_3390_cells12131779
crossref_primary_10_3390_pathogens13110980
crossref_primary_10_1016_j_bbrc_2024_151244
crossref_primary_10_1093_burnst_tkad029
crossref_primary_10_1080_15548627_2025_2471736
crossref_primary_10_1111_jcmm_18278
crossref_primary_10_1272_jnms_JNMS_2024_91_102
crossref_primary_10_1016_j_apsb_2024_04_020
crossref_primary_10_3389_fphar_2024_1449831
crossref_primary_10_1002_advs_202413280
crossref_primary_10_1016_j_heliyon_2024_e35299
crossref_primary_10_1016_j_celrep_2023_112343
crossref_primary_10_1016_j_bbadis_2024_167263
crossref_primary_10_1002_mco2_70024
crossref_primary_10_3390_cells13060500
crossref_primary_10_3892_ijmm_2024_5440
crossref_primary_10_1080_15548627_2024_2439657
crossref_primary_10_3390_ijms26031321
crossref_primary_10_1016_j_celrep_2025_115282
crossref_primary_10_3389_fvets_2025_1543459
crossref_primary_10_1039_D4MH01137F
crossref_primary_10_1016_j_neuint_2024_105827
crossref_primary_10_1002_cmdc_202400866
crossref_primary_10_61474_ncs_2023_00011
crossref_primary_10_1093_ndt_gfad024
crossref_primary_10_1016_j_tcb_2025_02_005
crossref_primary_10_3390_nu16193305
crossref_primary_10_1098_rspb_2023_1305
crossref_primary_10_3390_ijms252413413
crossref_primary_10_1016_j_biopha_2024_117557
crossref_primary_10_3389_fnins_2023_1219441
crossref_primary_10_1016_j_canlet_2023_216590
crossref_primary_10_3389_fimmu_2024_1486627
crossref_primary_10_1016_j_bbrc_2024_151102
crossref_primary_10_3390_ijms242316880
crossref_primary_10_3389_fcell_2023_1149409
crossref_primary_10_3390_biom14050573
crossref_primary_10_1016_j_celrep_2023_113529
crossref_primary_10_1016_j_bcp_2024_116075
crossref_primary_10_1093_femsyr_foae022
crossref_primary_10_31083_j_fbl2911393
crossref_primary_10_1080_08916934_2024_2351872
crossref_primary_10_1016_j_ijbiomac_2024_136978
crossref_primary_10_37349_emed_2023_00157
crossref_primary_10_4103_1673_5374_385848
crossref_primary_10_3390_cells11233813
Cites_doi 10.1101/cshperspect.a016808
10.1016/j.celrep.2019.08.059
10.1002/bies.201800008
10.1371/journal.pgen.1008387
10.1083/jcb.201008121
10.1016/j.molcel.2019.09.005
10.1038/s41580-019-0180-9
10.1080/15548627.2021.1935007
10.1038/s41556-018-0092-5
10.1111/febs.12468
10.1186/s40035-015-0041-1
10.1038/s41467-019-12991-z
10.1038/ng1609
10.1080/15548627.2016.1248019
10.4161/nucl.11738
10.1016/j.semcdb.2017.08.020
10.1084/jem.20181329
10.1080/15548627.2021.1899440
10.1080/15548627.2015.1078961
10.1080/10409238.2019.1610351
10.1146/annurev-cellbio-092910-154152
10.1007/BF00218073
10.1016/j.devcel.2015.11.010
10.1093/hmg/ddm309
10.1093/hmg/ddv314
10.1093/nar/gkaa393
10.1073/pnas.1804091115
10.1016/j.cmet.2011.12.017
10.1038/cdd.2012.72
10.1038/s41467-021-22501-9
10.1016/j.tcb.2019.02.004
10.7554/eLife.21690
10.1073/pnas.1305623110
10.1096/fj.201802102R
10.1242/jcs.259393
10.1038/s41556-020-00583-9
10.1016/j.devcel.2009.06.014
10.1093/brain/aws143
10.1038/s41598-017-01246-w
10.1016/j.tcb.2004.07.014
10.1073/pnas.1615455113
10.1242/jcs.222406
10.1073/pnas.1903506116
10.1016/j.ceb.2016.01.006
10.15252/embj.2021108863
10.1016/j.neurobiolaging.2011.11.009
10.1016/j.cub.2017.09.015
10.1212/01.wnl.0000231510.89311.8b
10.1073/pnas.1820161116
10.1038/s41556-020-0549-1
10.3389/fphys.2020.00515
10.1242/jcs.215210
10.1038/cdd.2012.63
10.1091/mbc.e05-02-0143
10.1038/nrc2342
10.3389/fcimb.2020.583137
10.4161/auto.4034
10.7554/eLife.07736
10.1083/jcb.201711002
10.1016/S1534-5807(03)00296-X
10.1016/j.ymeth.2014.12.014
10.1371/journal.pone.0016060
10.1212/01.wnl.0000260963.08711.08
10.1046/j.1356-9597.2001.00499.x
10.1242/jcs.232850
10.1016/j.cell.2020.01.027
10.1038/ng1884
10.1016/S0021-9258(18)69235-X
10.7554/eLife.13943
10.1080/15548627.2016.1145325
10.1242/jcs.208017
10.1074/jbc.M210843200
10.1016/j.cell.2021.03.048
10.3389/fcell.2020.00214
10.1016/S0021-9258(18)89099-8
10.1038/s41556-019-0391-5
10.1016/j.molcel.2018.10.040
10.1074/jbc.M109.074617
10.1016/j.livres.2018.09.005
10.1038/cr.2013.169
10.1016/j.brainres.2016.03.035
10.1038/oncsis.2015.43
10.1038/nrm1552
10.3389/fmolb.2019.00040
10.12703/P6-97
10.1016/j.isci.2019.09.009
10.1098/rsob.210091
10.1038/s41556-021-00798-4
10.1074/jbc.AC119.009977
10.15252/embj.201798804
10.1038/nature25486
10.1186/s12915-021-01048-7
10.1016/j.bbrc.2019.11.064
10.1073/pnas.1113421108
10.1073/pnas.1814552115
10.1016/j.molcel.2021.01.009
10.1038/ncomms2069
10.1074/jbc.M406960200
10.1080/15548627.2020.1783833
10.1038/nrc3262
10.1038/s41580-018-0001-6
10.1038/s41422-020-00416-2
10.1016/j.tcb.2018.08.005
10.1038/nrc3365
10.1073/pnas.1109356108
10.1016/j.neuroscience.2014.01.001
10.1016/0014-4800(85)90020-6
10.1091/mbc.10.5.1353
10.1186/s12860-020-00314-w
10.1016/j.cell.2017.05.016
10.1091/mbc.e03-05-0340
10.15252/embj.201488104
10.1007/s00294-019-00982-y
10.1016/j.cell.2019.05.056
10.4161/auto.3586
10.1038/s41580-021-00392-4
10.1016/j.bbamem.2020.183416
10.1186/s13024-017-0203-y
10.4161/auto.6398
10.1016/j.redox.2014.11.006
10.1038/s41556-019-0450-y
10.1242/jcs.108.1.25
10.1016/j.cell.2017.04.023
10.1080/15548627.2016.1208887
10.4161/auto.7.7.14733
10.1080/15548627.2020.1757955
10.1016/j.tibs.2017.09.002
10.1016/j.ceb.2007.12.002
10.1016/j.molcel.2015.07.034
10.1038/s41418-018-0266-5
10.1128/jb.177.2.357-363.1995
10.1016/j.bbrc.2020.01.129
10.1007/978-981-10-4567-7_10
10.1146/annurev.cellbio.23.090506.123319
10.1016/j.redox.2014.06.004
10.1038/s41598-018-35811-8
10.1016/j.devcel.2017.02.016
10.1111/febs.16281
10.1016/j.celrep.2017.09.028
10.5483/BMBRep.2016.49.6.212
10.7554/eLife.25960
10.1002/1873-3468.12996
10.1371/journal.pbio.3001361
10.1083/jcb.201404115
10.1038/nature23449
10.1007/s00018-015-1903-5
10.1016/j.tcb.2020.02.001
10.1111/cas.13824
10.1038/s41418-019-0474-7
10.1007/s00018-021-04017-z
10.1038/s41467-022-31213-7
10.1016/j.bbrc.2015.03.025
10.1093/hmg/ddy066
10.1038/s41586-020-1968-7
10.1016/j.bbamcr.2006.08.023
10.1016/j.molcel.2021.08.039
10.1083/jcb.201611029
10.1016/j.jphs.2019.05.007
10.1016/j.cell.2016.07.002
10.1038/s41467-019-09253-3
10.1016/j.devcel.2020.11.016
10.1016/j.tibs.2019.08.002
10.1038/cr.2016.86
10.1038/nature07976
10.1016/j.molcel.2021.03.001
10.1038/emboj.2011.286
10.1523/JNEUROSCI.2898-12.2013
10.1016/j.cub.2011.11.057
10.1016/j.cell.2014.05.048
10.1083/jcb.141.3.625
10.1093/molbev/msaa127
10.15698/cst2021.09.255
10.15252/embj.201899259
10.1038/nrm.2017.76
10.1073/pnas.80.8.2179
10.1016/j.cub.2018.01.004
10.1016/0014-4827(82)90020-9
10.3389/fcell.2019.00185
10.1242/jcs.113.19.3365
10.1074/jbc.M113.529461
10.1038/s41418-020-00667-x
10.1016/j.devcel.2010.12.003
10.1016/j.bbrc.2020.05.168
10.4161/auto.24880
10.1007/s00294-020-01059-x
10.1016/j.jmb.2019.08.010
10.1111/j.1600-0854.2005.00337.x
10.1016/j.cell.2016.05.039
10.1111/cas.13208
10.1007/978-1-59745-157-4_16
10.1016/j.devcel.2020.08.008
10.1083/jcb.201603105
10.1101/cshperspect.a016766
10.1091/mbc.e13-08-0448
10.1016/j.tibs.2013.12.001
10.4161/auto.23002
10.1016/j.cell.2011.06.001
10.1016/j.molcel.2005.05.020
10.1242/jcs.222984
10.1091/mbc.e02-08-0483
10.1016/j.febslet.2010.01.019
10.1073/pnas.1705499114
10.3389/fnagi.2017.00228
10.1073/pnas.2011442117
10.1083/jcb.202002144
10.1016/j.devcel.2007.12.011
10.1080/15548627.2020.1712109
10.1016/j.cell.2010.11.034
10.1016/S0092-8674(01)00434-2
10.4161/15548627.2014.984277
10.1186/s40246-019-0203-9
10.1083/jcb.202009128
10.1111/acel.12692
10.1038/cr.2013.168
10.1016/j.semcdb.2017.08.014
10.1007/BF02912068
10.1093/hmg/ddp367
10.1002/1873-3468.13571
10.1083/jcb.201902127
10.1038/ng.2425
10.1016/j.bbalip.2017.06.008
10.1016/j.cell.2015.03.046
10.1038/nrc3409
10.1074/jbc.M116.736744
10.1038/embor.2013.114
10.15252/embj.2019102586
10.1083/jcb.93.1.144
10.1371/journal.pgen.1008631
10.1126/science.1101738
10.1016/j.cell.2010.05.008
10.1016/j.devcel.2021.06.003
10.1371/journal.pone.0030767
10.1016/j.neuron.2015.10.012
10.15252/embj.2019102539
10.3390/jcm9051440
10.3390/ijms21020578
10.1074/jbc.RA119.008709
10.1038/srep12472
10.1007/s00436-020-06718-z
10.1016/j.ajhg.2020.10.012
10.1074/jbc.RA118.005698
10.1080/15548627.2020.1725402
10.1016/j.cell.2011.03.035
10.1371/journal.pone.0016054
10.1038/s41421-020-0141-7
10.1016/j.cell.2012.11.001
10.1016/j.tcb.2012.05.006
10.1038/s41598-019-39563-x
10.1042/BCJ20200917
ContentType Journal Article
Copyright Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. Springer Nature Limited.
Copyright_xml – notice: Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7RV
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
DOI 10.1038/s41580-022-00529-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-0080
EndPage 203
ExternalDocumentID 36097284
10_1038_s41580_022_00529_z
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
ID FETCH-LOGICAL-c441t-a9117c040e20fabfdcbb457149d5d1b2dd553cdf257ec7d6039d5b951309ae9c3
IEDL.DBID 7X7
ISSN 1471-0072
1471-0080
IngestDate Fri Jul 11 04:25:21 EDT 2025
Sat Aug 23 12:50:47 EDT 2025
Thu Apr 03 06:57:02 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Tue Jul 01 04:30:53 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2022. Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-a9117c040e20fabfdcbb457149d5d1b2dd553cdf257ec7d6039d5b951309ae9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7828-8118
0000-0001-7369-5227
0000-0002-5444-2424
PMID 36097284
PQID 2779273872
PQPubID 27585
PageCount 18
ParticipantIDs proquest_miscellaneous_2714059675
proquest_journals_2779273872
pubmed_primary_36097284
crossref_citationtrail_10_1038_s41580_022_00529_z
crossref_primary_10_1038_s41580_022_00529_z
springer_journals_10_1038_s41580_022_00529_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAbbrev Nat Rev Mol Cell Biol
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hockey (CR202) 2015; 128
Kaushik, Cuervo (CR110) 2012; 22
Schulze, Sathyanarayan, Mashek (CR77) 2017; 1862
Kovács, Reith, Seglen (CR3) 1982; 137
Germain, Kim (CR87) 2020
van der Zee (CR192) 2008; 17
Ciechanover (CR131) 2005; 6
Hasegawa, Maejima, Iwamoto, Yoshimori (CR68) 2015; 75
Lescat (CR116) 2020; 37
Kvam, Goldfarb (CR55) 2007; 3
Quiles, Gustafsson (CR26) 2020; 11
Bache, Raiborg, Mehlum, Stenmark (CR149) 2003; 278
Kitamura (CR36) 2011; 6
Wang (CR80) 2015; 72
Aizawa (CR65) 2016; 12
Skibinski (CR191) 2005; 37
Ganesan, Cai (CR247) 2021; 478
Nguyen (CR157) 2021; 81
Wong, Ysselstein, Krainc (CR39) 2018; 554
Cuervo, Stefanis, Fredenburg, Lansbury, Sulzer (CR180) 2004; 305
Caballero (CR182) 2018
Kaushik, Cuervo (CR8) 2018; 19
Marshall, Vierstra (CR135) 2019; 6
Yim, Mizushima (CR159) 2020; 6
Hao (CR165) 2018
Mukaiyama (CR89) 2002; 7
Zhao (CR61) 2021
Heckmann, Green (CR71) 2019
Farré, Subramani (CR95) 2004; 14
Itakura, Kishi-Itakura, Mizushima (CR50) 2012; 151
Hatakeyama (CR144) 2019; 73
Sakai, Oku, van der Klei, Kiel (CR94) 2006; 1763
Mukherjee, Patel, Koga, Cuervo, Jenny (CR103) 2016; 12
Tan (CR230) 2022; 13
Ahlberg, Berkenstam, Henell, Glaumann (CR14) 1985; 260
He (CR73) 2021; 19
Morshed, Tasnin, Ushimaru (CR142) 2020; 21
Willén (CR195) 2017; 12
Welter (CR32) 2013; 280
Schulze (CR86) 2020; 117
Yang, Wang, Ren, Chen, Chen (CR59) 2017; 114
Kwon, Ciechanover (CR132) 2017; 42
Mostofa (CR57) 2019; 28
Albrecht, Ploper, Tejeda-Muñoz, De Robertis (CR126) 2018; 115
Shaid, Brandts, Serve, Dikic (CR146) 2013; 20
Yang (CR118) 2020
Müller (CR107) 2015; 4
Bourdenx, Gavathiotis, Cuervo (CR9) 2021; 17
Roger, Muñoz-Gómez, Kamikawa (CR25) 2017; 27
Mijaljica, Prescott, Devenish (CR10) 2011; 7
Parkinson (CR190) 2006; 67
Ryan (CR232) 2020; 39
Nguyen (CR216) 2019; 20
Cho, Kim, Jo, Choe, Jo (CR88) 2018; 41
Lemasters (CR33) 2014; 2
Taelman (CR127) 2010; 143
Huotari, Helenius (CR104) 2011; 30
Caballero (CR114) 2021; 12
Lu, Psakhye, Jentsch (CR254) 2014; 158
Zhang (CR72) 2021; 19
Cohen-Kaplan (CR137) 2016; 113
Xu, Camfield, Gorski (CR106) 2018
Tsuneki, Nakamura, Kinjo, Nakanishi, Arakawa (CR221) 2015; 5
Hughes, Hughes, Henderson, Yazvenko, Gottschling (CR236) 2016
Coffey, Beckel, Laties, Mitchell (CR197) 2014; 263
Sakai, Koller, Rangell, Keller, Subramani (CR90) 1998; 141
Huber, Teis (CR161) 2016; 39
Wallace (CR220) 2012; 12
Shen, Mizushima (CR21) 2014; 39
Soubannier (CR235) 2012; 22
Singh (CR75) 2009; 458
Bhattacharya, Qi (CR40) 2019; 132
Kawamura (CR178) 2012; 3
Nusse, Clevers (CR125) 2017; 169
Bourdenx (CR185) 2021; 184
Mortimore, Lardeux, Adams (CR16) 1988; 263
Chino, Mizushima (CR41) 2020; 30
Kurokawa (CR85) 2020
Tofaris (CR188) 2011; 108
Henne, Stenmark, Emr (CR242) 2013
Henry (CR203) 2015; 24
Brady (CR215) 2011; 145
Jin, Strunk, Weisman (CR167) 2015; 161
Agrotis (CR158) 2019; 294
Park, Kim, Yoon (CR183) 2016; 49
Boassa (CR186) 2013; 33
Hatakeyama, De Virgilio (CR143) 2019; 65
Schafer (CR42) 2020; 39
Kanki, Wang, Cao, Baba, Klionsky (CR239) 2009; 17
Eskelinen (CR115) 2005; 6
Chauhan (CR101) 2019; 33
Huang (CR184) 2014; 127
Martinez (CR152) 2011; 108
Iwama, Ohsumi (CR251) 2019; 294
Mackenzie (CR58) 2017; 548
Linares (CR120) 2021
Marzella, Ahlberg, Glaumann (CR2) 1982; 93
Zechner, Madeo, Kratky (CR74) 2017; 18
Mazzulli (CR200) 2011; 146
De Leonibus, Cinque, Settembre (CR46) 2019; 593
Tuttle, Dunn (CR99) 1995; 108
Zheng (CR130) 2021; 17
Ramirez (CR205) 2006; 38
Seo (CR84) 2017
Wang (CR113) 2009; 18
Kounakis, Chaniotakis, Markaki, Tavernarakis (CR76) 2019; 7
Henne (CR166) 2017; 997
Mak, McCormack, Manning-Bog, Cuervo, Di Monte (CR181) 2010; 285
Ohsumi (CR5) 2014; 24
Lin (CR255) 2020; 10
Roberts (CR54) 2003; 14
Latifkar, Hur, Sanchez, Cerione, Antonyak (CR177) 2019
Papadopoulos, Kravic, Meyer (CR69) 2020; 432
Farré, Manjithaya, Mathewson, Subramani (CR98) 2008; 14
White (CR214) 2012; 12
Li, Breker, Graham, Schuldiner, Hochstrasser (CR138) 2019; 15
Li (CR240) 2020; 8
Piper, Dikic, Lukacs (CR245) 2014
Anding, Baehrecke (CR24) 2017; 41
Into (CR123) 2017; 7
König (CR231) 2021
Ni, Williams, Ding (CR27) 2015; 4
Sano (CR225) 2020; 529
Kumar, Jia, Deretic (CR151) 2021; 5
Coyne (CR189) 2017; 21
Oku (CR117) 2017; 216
Morozova (CR108) 2016; 291
Graef (CR79) 2018; 592
Zellner, Schifferer, Behrends (CR121) 2021; 81
Tejeda-Munoz, Albrecht, Bui, De Robertis (CR218) 2019; 116
Ahlberg, Marzella, Glaumann (CR11) 1982; 47
Mulcahy Levy, Thorburn (CR212) 2020; 27
Hanson, Cashikar (CR175) 2012; 28
Wang, Qi, Tang, Shen (CR29) 2020; 45
Hoffmann (CR199) 2019; 9
Spataro (CR207) 2019; 13
Puertollano, Ferguson, Brugarolas, Ballabio (CR169) 2018
Lefebvre, Legouis, Culetto (CR105) 2018; 74
Deguine, Barton (CR122) 2014; 6
Noguchi, Shimizu (CR229) 2021
Decressac (CR201) 2013; 110
Vyas, Zaganjor, Haigis (CR219) 2016; 166
Uttenweiler, Mayer (CR19) 2008; 445
Lim (CR211) 2019; 21
Nakamura, Arakawa (CR38) 2017; 108
Schultz, Krus, Lieberman (CR209) 2016; 1649
Tsuji (CR208) 2017
Stringer, Piper (CR244) 2011; 192
Kanki (CR238) 2013; 14
McLelland, Soubannier, Chen, McBride, Fon (CR148) 2014; 33
Lee, Lamech, Johns, Overholtzer (CR70) 2020; 55
van Zutphen (CR81) 2014; 25
Livneh, Cohen-Kaplan, Cohen-Rosenzweig, Avni, Ciechanover (CR134) 2016; 26
Sahu (CR100) 2011; 20
Xu (CR43) 2021; 31
Mejlvang (CR119) 2018; 217
Vevea (CR83) 2015; 35
Guo (CR196) 2017; 9
Manjithaya, Nazarko, Farré, Subramani (CR93) 2010; 584
Sugiura, McLelland, Fon, McBride (CR233) 2014; 33
Klionsky (CR1) 2008; 4
Aizawa (CR66) 2017; 13
Heckmann (CR153) 2019; 178
Galluzzi, Spranger, Fuchs, López-Soto (CR124) 2019; 29
Mizushima (CR6) 2018; 20
Yang, Bedford (CR217) 2013; 13
Schaeffer (CR253) 2012; 135
Krüger, Wang, Kumar, Mandelkow (CR252) 2012; 33
Otto, Thumm (CR53) 2021; 17
Moon (CR129) 2012; 15
Dan (CR226) 2020; 48
Picca (CR234) 2020
Gorrell, Omari, Makareeva, Leikin (CR47) 2021; 78
Schuck, Gallagher, Walter (CR20) 2014; 127
Matheoud (CR241) 2016; 166
Mukaiyama (CR96) 2004; 15
Nakamura (CR37) 2012; 7
Prinz, Toulmay, Balla (CR163) 2020; 21
Omari (CR45) 2018; 115
Okuyama (CR223) 2019; 9
de Waal, Vreeling-Sindelarova, Schellens, Houtkooper, James (CR15) 1986; 243
Pickles, Vigie, Youle (CR28) 2018; 28
Sharmin, Morshed, Ushimaru (CR140) 2020; 524
Fujiwara (CR62) 2013; 9
Liao, Duan, Zhang, Zhang, Xia (CR44) 2019; 294
Kumar (CR172) 2020; 22
Le Guerroué, Youle (CR147) 2021; 28
Papandreou, Tavernarakis (CR52) 2019; 26
Wong, Kim, Peng, Krainc (CR164) 2019; 29
Mesquita, Glenn, Jenny (CR102) 2020
Albrecht, Bui, De Robertis (CR128) 2019; 116
Morshed, Sharmin, Ushimaru (CR141) 2020; 522
Gratia (CR60) 2019; 216
Scorrano (CR162) 2019; 10
De Falco, Restucci, Urraro, Roperto (CR171) 2020; 119
Marzella, Ahlberg, Glaumann (CR12) 1981; 36
Fujiwara, Hase, Wada, Kabuta (CR64) 2015; 460
Marshall, Vierstra (CR136) 2015; 11
Wang, Miao, Chang (CR82) 2014; 206
Mijaljica, Prescott, Devenish (CR56) 2010; 1
Rodger (CR194) 2020; 107
van Veen (CR204) 2020; 578
Klionsky (CR4) 2003; 5
Kamino (CR222) 2016; 4
Loi, Raimondi, Morone, Molinari (CR51) 2019; 10
Cuttler, Hassan, Carr, Cloete, Bardien (CR179) 2021; 11
Frankel, Audhya (CR176) 2018; 74
Ahlberg, Glaumann (CR13) 1985; 42
Titorenko, Keizer, Harder, Veenhuis (CR91) 1995; 177
Towers (CR228) 2021; 56
Miyamoto (CR35) 2011; 6
Chang (CR97) 2005; 16
Sato (CR170) 2019; 140
Leibiger (CR248) 2018; 27
Fujiwara (CR63) 2013; 9
Dubouloz, Deloche, Wanke, Cameroni, De Virgilio (CR145) 2005; 19
Liu, Czaja (CR78) 2013; 20
Collins, Goldberg (CR133) 2017; 169
Sugeno (CR187) 2014; 289
Davis (CR210) 2021; 56
Fregno (CR48) 2018
Denzer, Kleijmeer, Heijnen, Stoorvogel, Geuze (CR246) 2000; 113
Segev (CR250) 2020; 16
Fischer, Wang, Padman, Lazarou, Youle (CR156) 2020
Nakamura (CR173) 2020; 22
Zhao, Codogno, Zhang (CR22) 2021
Lee (CR198) 2010; 141
Gaowa (CR224) 2018; 109
Feng, He, Yao, Klionsky (CR7) 2014; 24
Mortimore, Hutson, Surmacz (CR17) 1983; 80
Klionsky (CR213) 2021; 40
Yuan, Stromhaug, Dunn (CR92) 1999; 10
Hurley (CR243) 2008; 20
Mochida (CR193) 2012; 44
Li, Hochstrasser (CR249) 2020
Kissová (CR30) 2007; 3
Li, Hochstrasser (CR139) 2022
Lemasters, Zhong (CR34) 2018; 2
Uytterhoeven (CR109) 2015; 88
Katzmann, Babst, Emr (CR150) 2001; 106
Liu (CR111) 2015; 59
Florey, Gammoh, Kim, Jiang, Overholtzer (CR155) 2015; 11
McLelland, Lee, McBride, Fon (CR160) 2016; 214
Hase (CR67) 2020
Oku, Sakai (CR18) 2018; 40
Helleday, Petermann, Lundin, Hodgson, Sharma (CR227) 2008; 8
Kissová, Deffieu, Manon, Camougrand (CR31) 2004; 279
Leidal (CR154) 2020; 22
Kirkin, Rogov (CR23) 2019; 76
Di Fonzo (CR206) 2007; 68
English (CR237) 2020
Piper, Katzmann (CR174) 2007; 23
Fregno, Molinari (CR49) 2019; 54
Arakhamia (CR112) 2020; 180
Hu, Dammer, Ren, Wang (CR168) 2015; 4
M Zhao (529_CR61) 2021
R Sahu (529_CR100) 2011; 20
YB Hu (529_CR168) 2015; 4
S Kaushik (529_CR8) 2018; 19
R Puertollano (529_CR169) 2018
R Iwama (529_CR251) 2019; 294
R Zechner (529_CR74) 2017; 18
N Sugeno (529_CR187) 2014; 289
S Pickles (529_CR28) 2018; 28
ZG Zheng (529_CR130) 2021; 17
E White (529_CR214) 2012; 12
P Roberts (529_CR54) 2003; 14
H Chino (529_CR41) 2020; 30
K Kounakis (529_CR76) 2019; 7
M Oku (529_CR117) 2017; 216
RJ Schulze (529_CR86) 2020; 117
AL Anding (529_CR24) 2017; 41
LN Hockey (529_CR202) 2015; 128
EL Eskelinen (529_CR115) 2005; 6
M Oku (529_CR18) 2018; 40
RS Marshall (529_CR135) 2019; 6
YG Zhao (529_CR22) 2021
R Hatakeyama (529_CR144) 2019; 73
B Li (529_CR240) 2020; 8
Y Wang (529_CR113) 2009; 18
GE Mortimore (529_CR16) 1988; 263
A Picca (529_CR234) 2020
I Livneh (529_CR134) 2016; 26
Y Kurokawa (529_CR85) 2020
DH Cho (529_CR88) 2018; 41
M Bourdenx (529_CR185) 2021; 184
JC Farré (529_CR98) 2008; 14
V Cohen-Kaplan (529_CR137) 2016; 113
JS Park (529_CR183) 2016; 49
F Dubouloz (529_CR145) 2005; 19
I Kissová (529_CR30) 2007; 3
G Skibinski (529_CR191) 2005; 37
GK Tofaris (529_CR188) 2011; 108
I Fregno (529_CR49) 2019; 54
R Singh (529_CR75) 2009; 458
AJ Roger (529_CR25) 2017; 27
EJ de Waal (529_CR15) 1986; 243
S Kumar (529_CR172) 2020; 22
K Cuttler (529_CR179) 2021; 11
RC Piper (529_CR245) 2014
E Itakura (529_CR50) 2012; 151
S Shaid (529_CR146) 2013; 20
B Caballero (529_CR182) 2018
CW Wang (529_CR82) 2014; 206
WW-Y Yim (529_CR159) 2020; 6
S Kumar (529_CR151) 2021; 5
LV Albrecht (529_CR128) 2019; 116
A Bhattacharya (529_CR40) 2019; 132
DJ Katzmann (529_CR150) 2001; 106
V Kirkin (529_CR23) 2019; 76
K Willén (529_CR195) 2017; 12
AG Henry (529_CR203) 2015; 24
L Marzella (529_CR12) 1981; 36
J Mejlvang (529_CR119) 2018; 217
T Kanki (529_CR239) 2009; 17
S Morshed (529_CR141) 2020; 522
T Chang (529_CR97) 2005; 16
M Graef (529_CR79) 2018; 592
BL Heckmann (529_CR71) 2019
AM Leidal (529_CR154) 2020; 22
JF Linares (529_CR120) 2021
TA Ryan (529_CR232) 2020; 39
JJ Lemasters (529_CR33) 2014; 2
GL McLelland (529_CR148) 2014; 33
K Hase (529_CR67) 2020
A Mukherjee (529_CR103) 2016; 12
J Deguine (529_CR122) 2014; 6
U Krüger (529_CR252) 2012; 33
T König (529_CR231) 2021
A Di Fonzo (529_CR206) 2007; 68
CA Brady (529_CR215) 2011; 145
Y Feng (529_CR7) 2014; 24
VI Titorenko (529_CR91) 1995; 177
O Florey (529_CR155) 2015; 11
M Tsuneki (529_CR221) 2015; 5
LV Albrecht (529_CR126) 2018; 115
KJ Mackenzie (529_CR58) 2017; 548
L Gorrell (529_CR47) 2021; 78
D Mijaljica (529_CR56) 2010; 1
F Hao (529_CR165) 2018
JM Mulcahy Levy (529_CR212) 2020; 27
D Ganesan (529_CR247) 2021; 478
A Agrotis (529_CR158) 2019; 294
DL Tuttle (529_CR99) 1995; 108
A Ramirez (529_CR205) 2006; 38
F Le Guerroué (529_CR147) 2021; 28
J Li (529_CR138) 2019; 15
S Schuck (529_CR20) 2014; 127
R Manjithaya (529_CR93) 2010; 584
VF Taelman (529_CR127) 2010; 143
M Bourdenx (529_CR9) 2021; 17
D Mijaljica (529_CR10) 2011; 7
PI Hanson (529_CR175) 2012; 28
L Marzella (529_CR2) 1982; 93
X Yang (529_CR118) 2020
JR Mazzulli (529_CR200) 2011; 146
A Latifkar (529_CR177) 2019
N Tejeda-Munoz (529_CR218) 2019; 116
R Nusse (529_CR125) 2017; 169
WM Henne (529_CR242) 2013
J Ahlberg (529_CR14) 1985; 260
Y Sakai (529_CR94) 2006; 1763
C Papadopoulos (529_CR69) 2020; 432
C Lee (529_CR70) 2020; 55
Y Fujiwara (529_CR64) 2015; 460
Y Jin (529_CR167) 2015; 161
OB Davis (529_CR210) 2021; 56
N Kitamura (529_CR36) 2011; 6
Y Sakai (529_CR90) 1998; 141
Y Miyamoto (529_CR35) 2011; 6
F De Falco (529_CR171) 2020; 119
AS Chauhan (529_CR101) 2019; 33
T Arakhamia (529_CR112) 2020; 180
TN Nguyen (529_CR157) 2021; 81
H Kamino (529_CR222) 2016; 4
MG Mostofa (529_CR57) 2019; 28
D Boassa (529_CR186) 2013; 33
Y Fujiwara (529_CR62) 2013; 9
X Dan (529_CR226) 2020; 48
N Mizushima (529_CR6) 2018; 20
R Spataro (529_CR207) 2019; 13
V Uytterhoeven (529_CR109) 2015; 88
CW He (529_CR73) 2021; 19
I Kissová (529_CR31) 2004; 279
RJ Schulze (529_CR77) 2017; 1862
XM Liu (529_CR111) 2015; 59
S van Veen (529_CR204) 2020; 578
JA Schafer (529_CR42) 2020; 39
DJ Klionsky (529_CR4) 2003; 5
AY Seo (529_CR84) 2017
TD Fischer (529_CR156) 2020
JH Lee (529_CR198) 2010; 141
D Matheoud (529_CR241) 2016; 166
N Kawamura (529_CR178) 2012; 3
F Xu (529_CR43) 2021; 31
T Into (529_CR123) 2017; 7
EB Frankel (529_CR176) 2018; 74
JH Hurley (529_CR243) 2008; 20
K Okuyama (529_CR223) 2019; 9
J Huotari (529_CR104) 2011; 30
S Nakamura (529_CR173) 2020; 22
A Uttenweiler (529_CR19) 2008; 445
KG Bache (529_CR149) 2003; 278
C De Leonibus (529_CR46) 2019; 593
C Lefebvre (529_CR105) 2018; 74
JM Quiles (529_CR26) 2020; 11
JD Vevea (529_CR83) 2015; 35
W Yuan (529_CR92) 1999; 10
X Guo (529_CR196) 2017; 9
Y Nakamura (529_CR37) 2012; 7
H Sano (529_CR225) 2020; 529
WM Henne (529_CR166) 2017; 997
H Mukaiyama (529_CR96) 2004; 15
HM Shen (529_CR21) 2014; 39
YC Wong (529_CR164) 2019; 29
A Sugiura (529_CR233) 2014; 33
M Loi (529_CR51) 2019; 10
M Gratia (529_CR60) 2019; 216
YT Kwon (529_CR132) 2017; 42
L Wang (529_CR29) 2020; 45
AN Coyne (529_CR189) 2017; 21
L Galluzzi (529_CR124) 2019; 29
CY Lin (529_CR255) 2020; 10
DJ Klionsky (529_CR213) 2021; 40
J Xu (529_CR106) 2018
CC Huang (529_CR184) 2014; 127
ML Schultz (529_CR209) 2016; 1649
GE Mortimore (529_CR17) 1983; 80
Y Nakamura (529_CR38) 2017; 108
S Omari (529_CR45) 2018; 115
M Müller (529_CR107) 2015; 4
I Fregno (529_CR48) 2018
S Aizawa (529_CR65) 2016; 12
FB Otto (529_CR53) 2021; 17
AL Kovács (529_CR3) 1982; 137
K Morozova (529_CR108) 2016; 291
WA Prinz (529_CR163) 2020; 21
AM Cuervo (529_CR180) 2004; 305
RC Piper (529_CR174) 2007; 23
C Rodger (529_CR194) 2020; 107
K Lu (529_CR254) 2014; 158
SK Mak (529_CR181) 2010; 285
S Aizawa (529_CR66) 2017; 13
A Mesquita (529_CR102) 2020
Y Fujiwara (529_CR63) 2013; 9
GA Collins (529_CR133) 2017; 169
S Vyas (529_CR219) 2016; 166
A Ciechanover (529_CR131) 2005; 6
J Ahlberg (529_CR13) 1985; 42
CW Wang (529_CR80) 2015; 72
YC Wong (529_CR39) 2018; 554
J Li (529_CR139) 2022
M Sato (529_CR170) 2019; 140
B Caballero (529_CR114) 2021; 12
L Scorrano (529_CR162) 2019; 10
DJ Klionsky (529_CR1) 2008; 4
K Germain (529_CR87) 2020
S Zellner (529_CR121) 2021; 81
M Decressac (529_CR201) 2013; 110
RS Marshall (529_CR136) 2015; 11
CY Lim (529_CR211) 2019; 21
S Morshed (529_CR142) 2020; 21
H Mukaiyama (529_CR89) 2002; 7
DC Wallace (529_CR220) 2012; 12
S Noguchi (529_CR229) 2021
S Gaowa (529_CR224) 2018; 109
HWS Tan (529_CR230) 2022; 13
T Tsuji (529_CR208) 2017
J Hasegawa (529_CR68) 2015; 75
Y Yang (529_CR217) 2013; 13
HM Ni (529_CR27) 2015; 4
L Lescat (529_CR116) 2020; 37
W Zhang (529_CR72) 2021; 19
EE Coffey (529_CR197) 2014; 263
J Martinez (529_CR152) 2011; 108
AM English (529_CR237) 2020
Y Liao (529_CR44) 2019; 294
N Segev (529_CR250) 2020; 16
JJ Lemasters (529_CR34) 2018; 2
T Sharmin (529_CR140) 2020; 524
K Denzer (529_CR246) 2000; 113
V Soubannier (529_CR235) 2012; 22
DK Stringer (529_CR244) 2011; 192
J Li (529_CR249) 2020
T Kanki (529_CR238) 2013; 14
H Yang (529_CR59) 2017; 114
J Ahlberg (529_CR11) 1982; 47
ME Papandreou (529_CR52) 2019; 26
BL Heckmann (529_CR153) 2019; 178
N Parkinson (529_CR190) 2006; 67
R Hatakeyama (529_CR143) 2019; 65
E Kvam (529_CR55) 2007; 3
JC Farré (529_CR95) 2004; 14
S Kaushik (529_CR110) 2012; 22
TA Nguyen (529_CR216) 2019; 20
AL Hughes (529_CR236) 2016
LA Huber (529_CR161) 2016; 39
T Helleday (529_CR227) 2008; 8
C Leibiger (529_CR248) 2018; 27
J van der Zee (529_CR192) 2008; 17
E Welter (529_CR32) 2013; 280
K Liu (529_CR78) 2013; 20
AC Hoffmann (529_CR199) 2019; 9
YA Moon (529_CR129) 2012; 15
Y Ohsumi (529_CR5) 2014; 24
GH Mochida (529_CR193) 2012; 44
GL McLelland (529_CR160) 2016; 214
CG Towers (529_CR228) 2021; 56
V Schaeffer (529_CR253) 2012; 135
T van Zutphen (529_CR81) 2014; 25
References_xml – year: 2014
  ident: CR245
  article-title: Ubiquitin-dependent sorting in endocytosis
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016808
– volume: 28
  start-page: 3423
  year: 2019
  end-page: 3434.e3422
  ident: CR57
  article-title: rDNA Condensation promotes rDNA separation from nucleolar proteins degraded for nucleophagy after TORC1 inactivation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.059
– volume: 40
  year: 2018
  ident: CR18
  article-title: Three distinct types of microautophagy based on membrane dynamics and molecular machineries
  publication-title: Bioessays
  doi: 10.1002/bies.201800008
– volume: 15
  year: 2019
  ident: CR138
  article-title: AMPK regulates ESCRT-dependent microautophagy of proteasomes concomitant with proteasome storage granule assembly during glucose starvation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008387
– volume: 192
  start-page: 229
  year: 2011
  end-page: 242
  ident: CR244
  article-title: A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008121
– volume: 76
  start-page: 268
  year: 2019
  end-page: 285
  ident: CR23
  article-title: A diversity of selective autophagy receptors determines the specificity of the autophagy pathway
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.005
– volume: 21
  start-page: 7
  year: 2020
  end-page: 24
  ident: CR163
  article-title: The functional universe of membrane contact sites
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0180-9
– volume: 17
  start-page: 2040
  year: 2021
  end-page: 2042
  ident: CR9
  article-title: Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1935007
– volume: 20
  start-page: 521
  year: 2018
  end-page: 527
  ident: CR6
  article-title: A brief history of autophagy from cell biology to physiology and disease
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0092-5
– volume: 280
  start-page: 4970
  year: 2013
  end-page: 4982
  ident: CR32
  article-title: Uth1 is a mitochondrial inner membrane protein dispensable for post-log-phase and rapamycin-induced mitophagy
  publication-title: FEBS J.
  doi: 10.1111/febs.12468
– volume: 4
  start-page: 18
  year: 2015
  ident: CR168
  article-title: The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration
  publication-title: Transl. Neurodegener.
  doi: 10.1186/s40035-015-0041-1
– volume: 10
  year: 2019
  ident: CR51
  article-title: ESCRT-III-driven piecemeal micro-ER-phagy remodels the ER during recovery from ER stress
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12991-z
– volume: 37
  start-page: 806
  year: 2005
  end-page: 808
  ident: CR191
  article-title: Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia
  publication-title: Nat. Genet.
  doi: 10.1038/ng1609
– volume: 13
  start-page: 218
  year: 2017
  end-page: 222
  ident: CR66
  article-title: Lysosomal membrane protein SIDT2 mediates the direct uptake of DNA by lysosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1248019
– volume: 1
  start-page: 213
  year: 2010
  end-page: 223
  ident: CR56
  article-title: The intricacy of nuclear membrane dynamics during nucleophagy
  publication-title: Nucleus
  doi: 10.4161/nucl.11738
– volume: 74
  start-page: 4
  year: 2018
  end-page: 10
  ident: CR176
  article-title: ESCRT-dependent cargo sorting at multivesicular endosomes
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.020
– volume: 216
  start-page: 1199
  year: 2019
  end-page: 1213
  ident: CR60
  article-title: Bloom syndrome protein restrains innate immune sensing of micronuclei by cGAS
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20181329
– year: 2021
  ident: CR61
  article-title: CGAS is a micronucleophagy receptor for the clearance of micronuclei
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1899440
– volume: 11
  start-page: 1927
  year: 2015
  end-page: 1928
  ident: CR136
  article-title: Eat or be eaten: the autophagic plight of inactive 26S proteasomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1078961
– volume: 33
  start-page: 282
  year: 2014
  end-page: 295
  ident: CR148
  article-title: Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control
  publication-title: EMBO J.
– volume: 54
  start-page: 153
  year: 2019
  end-page: 163
  ident: CR49
  article-title: Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2019.1610351
– volume: 28
  start-page: 337
  year: 2012
  end-page: 362
  ident: CR175
  article-title: Multivesicular body morphogenesis
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154152
– volume: 243
  start-page: 641
  year: 1986
  end-page: 648
  ident: CR15
  article-title: Quantitative changes in the lysosomal vacuolar system of rat hepatocytes during short-term starvation. A morphometric analysis with special reference to macro- and microautophagy
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00218073
– volume: 35
  start-page: 584
  year: 2015
  end-page: 599
  ident: CR83
  article-title: Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.11.010
– volume: 17
  start-page: 313
  year: 2008
  end-page: 322
  ident: CR192
  article-title: CHMP2B C-truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm309
– volume: 24
  start-page: 6013
  year: 2015
  end-page: 6028
  ident: CR203
  article-title: Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv314
– volume: 48
  start-page: 6611
  year: 2020
  end-page: 6623
  ident: CR226
  article-title: DNA damage invokes mitophagy through a pathway involving Spata18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa393
– volume: 115
  start-page: E5317
  year: 2018
  end-page: E5325
  ident: CR126
  article-title: Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1804091115
– volume: 15
  start-page: 240
  year: 2012
  end-page: 246
  ident: CR129
  article-title: The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.12.017
– volume: 20
  start-page: 21
  year: 2013
  end-page: 30
  ident: CR146
  article-title: Ubiquitination and selective autophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.72
– volume: 12
  year: 2021
  ident: CR114
  article-title: Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22501-9
– volume: 29
  start-page: 500
  year: 2019
  end-page: 513
  ident: CR164
  article-title: Regulation and function of mitochondria-lysosome membrane contact sites in cellular homeostasis
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.02.004
– year: 2017
  ident: CR84
  article-title: AMPK and vacuole-associated Atg14p orchestrate μ-lipophagy for energy production and long-term survival under glucose starvation
  publication-title: eLife
  doi: 10.7554/eLife.21690
– volume: 110
  start-page: E1817
  year: 2013
  end-page: E1826
  ident: CR201
  article-title: TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1305623110
– volume: 33
  start-page: 5626
  year: 2019
  end-page: 5640
  ident: CR101
  article-title: Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways
  publication-title: FASEB J.
  doi: 10.1096/fj.201802102R
– year: 2022
  ident: CR139
  article-title: Selective microautophagy of proteasomes is initiated by ESCRT-0 and is promoted by proteasome ubiquitylation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.259393
– volume: 22
  start-page: 1252
  year: 2020
  end-page: 1263
  ident: CR173
  article-title: LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00583-9
– volume: 17
  start-page: 98
  year: 2009
  end-page: 109
  ident: CR239
  article-title: Atg32 is a mitochondrial protein that confers selectivity during mitophagy
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.06.014
– volume: 135
  start-page: 2169
  year: 2012
  end-page: 2177
  ident: CR253
  article-title: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy
  publication-title: Brain
  doi: 10.1093/brain/aws143
– volume: 7
  year: 2017
  ident: CR123
  article-title: Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01246-w
– volume: 14
  start-page: 515
  year: 2004
  end-page: 523
  ident: CR95
  article-title: Peroxisome turnover by micropexophagy: an autophagy-related process
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.07.014
– volume: 113
  start-page: E7490
  year: 2016
  end-page: E7499
  ident: CR137
  article-title: p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1615455113
– year: 2019
  ident: CR177
  article-title: New insights into extracellular vesicle biogenesis and function
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.222406
– volume: 116
  start-page: 10402
  year: 2019
  end-page: 10411
  ident: CR218
  article-title: Wnt canonical pathway activates macropinocytosis and lysosomal degradation of extracellular proteins
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1903506116
– volume: 39
  start-page: 8
  year: 2016
  end-page: 14
  ident: CR161
  article-title: Lysosomal signaling in control of degradation pathways
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.01.006
– volume: 40
  year: 2021
  ident: CR213
  article-title: Autophagy in major human diseases
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108863
– volume: 33
  start-page: 2291
  year: 2012
  end-page: 2305
  ident: CR252
  article-title: Autophagic degradation of tau in primary neurons and its enhancement by trehalose
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.11.009
– volume: 27
  start-page: R1177
  year: 2017
  end-page: R1192
  ident: CR25
  article-title: The origin and diversification of mitochondria
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.09.015
– volume: 67
  start-page: 1074
  year: 2006
  end-page: 1077
  ident: CR190
  article-title: ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B)
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000231510.89311.8b
– volume: 116
  start-page: 2987
  year: 2019
  end-page: 2995
  ident: CR128
  article-title: Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1820161116
– volume: 22
  start-page: 973
  year: 2020
  end-page: 985
  ident: CR172
  article-title: Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0549-1
– volume: 11
  start-page: 515
  year: 2020
  ident: CR26
  article-title: Mitochondrial quality control and cellular proteostasis: two sides of the same coin
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00515
– year: 2018
  ident: CR106
  article-title: The interplay between exosomes and autophagy - partners in crime
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.215210
– volume: 20
  start-page: 3
  year: 2013
  end-page: 11
  ident: CR78
  article-title: Regulation of lipid stores and metabolism by lipophagy
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.63
– volume: 16
  start-page: 4941
  year: 2005
  end-page: 4953
  ident: CR97
  article-title: PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-02-0143
– volume: 8
  start-page: 193
  year: 2008
  end-page: 204
  ident: CR227
  article-title: DNA repair pathways as targets for cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2342
– volume: 10
  start-page: 583137
  year: 2020
  ident: CR255
  article-title: Autophagy receptor tollip facilitates bacterial autophagy by recruiting galectin-7 in response to group A infection
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2020.583137
– volume: 3
  start-page: 329
  year: 2007
  end-page: 336
  ident: CR30
  article-title: Selective and non-selective autophagic degradation of mitochondria in yeast
  publication-title: Autophagy
  doi: 10.4161/auto.4034
– volume: 4
  year: 2015
  ident: CR107
  article-title: The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation
  publication-title: eLife
  doi: 10.7554/eLife.07736
– volume: 217
  start-page: 3640
  year: 2018
  end-page: 3655
  ident: CR119
  article-title: Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201711002
– volume: 5
  start-page: 539
  year: 2003
  end-page: 545
  ident: CR4
  article-title: A unified nomenclature for yeast autophagy-related genes
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(03)00296-X
– volume: 75
  start-page: 128
  year: 2015
  end-page: 132
  ident: CR68
  article-title: Selective autophagy: lysophagy
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.12.014
– volume: 6
  year: 2011
  ident: CR36
  article-title: Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016060
– volume: 68
  start-page: 1557
  year: 2007
  end-page: 1562
  ident: CR206
  article-title: ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000260963.08711.08
– volume: 7
  start-page: 75
  year: 2002
  end-page: 90
  ident: CR89
  article-title: Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy
  publication-title: Genes Cell
  doi: 10.1046/j.1356-9597.2001.00499.x
– volume: 132
  start-page: jcs232850
  year: 2019
  ident: CR40
  article-title: ER-associated degradation in health and disease - from substrate to organism
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.232850
– volume: 180
  start-page: 633
  year: 2020
  end-page: 644.e612
  ident: CR112
  article-title: Posttranslational modifications mediate the structural diversity of tauopathy strains
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.027
– volume: 38
  start-page: 1184
  year: 2006
  end-page: 1191
  ident: CR205
  article-title: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase
  publication-title: Nat. Genet.
  doi: 10.1038/ng1884
– volume: 263
  start-page: 2506
  year: 1988
  end-page: 2512
  ident: CR16
  article-title: Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)69235-X
– year: 2016
  ident: CR236
  article-title: Selective sorting and destruction of mitochondrial membrane proteins in aged yeast
  publication-title: eLife
  doi: 10.7554/eLife.13943
– volume: 12
  start-page: 565
  year: 2016
  end-page: 578
  ident: CR65
  article-title: Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1145325
– year: 2018
  ident: CR165
  article-title: Rheb localized on the Golgi membrane activates lysosome-localized mTORC1 at the Golgi-lysosome contact site
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.208017
– volume: 278
  start-page: 12513
  year: 2003
  end-page: 12521
  ident: CR149
  article-title: STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210843200
– volume: 184
  start-page: 2696
  year: 2021
  end-page: 2714.e2625
  ident: CR185
  article-title: Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.048
– volume: 8
  start-page: 214
  year: 2020
  ident: CR240
  article-title: Mitochondrial-derived vesicles protect cardiomyocytes against hypoxic damage
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00214
– volume: 260
  start-page: 5847
  year: 1985
  end-page: 5854
  ident: CR14
  article-title: Degradation of short and long lived proteins in isolated rat liver lysosomes. Effects of pH, temperature, and proteolytic inhibitors
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)89099-8
– volume: 21
  start-page: 1206
  year: 2019
  end-page: 1218
  ident: CR211
  article-title: ER-lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann-Pick type C
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0391-5
– volume: 73
  start-page: 325
  year: 2019
  end-page: 338.e328
  ident: CR144
  article-title: Spatially distinct pools of TORC1 balance protein homeostasis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.040
– volume: 285
  start-page: 13621
  year: 2010
  end-page: 13629
  ident: CR181
  article-title: Lysosomal degradation of alpha-synuclein in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.074617
– volume: 2
  start-page: 125
  year: 2018
  end-page: 132
  ident: CR34
  article-title: Mitophagy in hepatocytes: types, initiators and role in adaptive ethanol metabolism
  publication-title: Liver Res.
  doi: 10.1016/j.livres.2018.09.005
– volume: 24
  start-page: 9
  year: 2014
  end-page: 23
  ident: CR5
  article-title: Historical landmarks of autophagy research
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.169
– volume: 1649
  start-page: 181
  year: 2016
  end-page: 188
  ident: CR209
  article-title: Lysosome and endoplasmic reticulum quality control pathways in Niemann-Pick type C disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.03.035
– volume: 4
  year: 2016
  ident: CR222
  article-title: Mieap-regulated mitochondrial quality control is frequently inactivated in human colorectal cancer
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2015.43
– volume: 6
  start-page: 79
  year: 2005
  end-page: 87
  ident: CR131
  article-title: Proteolysis: from the lysosome to ubiquitin and the proteasome
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1552
– volume: 6
  start-page: 40
  year: 2019
  ident: CR135
  article-title: Dynamic regulation of the 26S proteasome: from synthesis to degradation
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00040
– volume: 6
  start-page: 97
  year: 2014
  ident: CR122
  article-title: MyD88: a central player in innate immune signaling
  publication-title: F1000Prime Rep.
  doi: 10.12703/P6-97
– volume: 20
  start-page: 14
  year: 2019
  end-page: 24
  ident: CR216
  article-title: SIDT2 RNA transporter promotes lung and gastrointestinal tumor development
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.009
– volume: 11
  start-page: 210091
  year: 2021
  ident: CR179
  article-title: Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders
  publication-title: Open. Biol.
  doi: 10.1098/rsob.210091
– year: 2021
  ident: CR231
  article-title: MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00798-4
– volume: 294
  start-page: 12610
  year: 2019
  end-page: 12621
  ident: CR158
  article-title: Human ATG4 autophagy proteases counteract attachment of ubiquitin-like LC3/GABARAP proteins to other cellular proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC119.009977
– year: 2018
  ident: CR169
  article-title: The complex relationship between TFEB transcription factor phosphorylation and subcellular localization
  publication-title: EMBO J.
  doi: 10.15252/embj.201798804
– volume: 554
  start-page: 382
  year: 2018
  end-page: 386
  ident: CR39
  article-title: Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis
  publication-title: Nature
  doi: 10.1038/nature25486
– volume: 19
  year: 2021
  ident: CR73
  article-title: Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase
  publication-title: BMC Biol.
  doi: 10.1186/s12915-021-01048-7
– volume: 522
  start-page: 88
  year: 2020
  end-page: 94
  ident: CR141
  article-title: TORC1 regulates ESCRT-0 complex formation on the vacuolar membrane and microautophagy induction in yeast
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.11.064
– volume: 108
  start-page: 17396
  year: 2011
  end-page: 17401
  ident: CR152
  article-title: Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113421108
– volume: 115
  start-page: E10099
  year: 2018
  end-page: E10108
  ident: CR45
  article-title: Noncanonical autophagy at ER exit sites regulates procollagen turnover
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814552115
– volume: 81
  start-page: 1337
  year: 2021
  end-page: 1354.e1338
  ident: CR121
  article-title: Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.01.009
– volume: 3
  year: 2012
  ident: CR178
  article-title: Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2069
– volume: 279
  start-page: 39068
  year: 2004
  end-page: 39074
  ident: CR31
  article-title: Uth1p is involved in the autophagic degradation of mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406960200
– year: 2020
  ident: CR102
  article-title: Differential activation of eMI by distinct forms of cellular stress
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1783833
– volume: 12
  start-page: 401
  year: 2012
  end-page: 410
  ident: CR214
  article-title: Deconvoluting the context-dependent role for autophagy in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3262
– volume: 19
  start-page: 365
  year: 2018
  end-page: 381
  ident: CR8
  article-title: The coming of age of chaperone-mediated autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0001-6
– volume: 31
  start-page: 141
  year: 2021
  end-page: 156
  ident: CR43
  article-title: COPII mitigates ER stress by promoting formation of ER whorls
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00416-2
– volume: 29
  start-page: 44
  year: 2019
  end-page: 65
  ident: CR124
  article-title: WNT signaling in cancer immunosurveillance
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.08.005
– volume: 12
  start-page: 685
  year: 2012
  end-page: 698
  ident: CR220
  article-title: Mitochondria and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3365
– volume: 127
  start-page: 3024
  year: 2014
  end-page: 3038
  ident: CR184
  article-title: Metabolism and mis-metabolism of the neuropathological signature protein TDP-43
  publication-title: J. Cell Sci.
– volume: 108
  start-page: 17004
  year: 2011
  end-page: 17009
  ident: CR188
  article-title: Ubiquitin ligase Nedd4 promotes alpha-synuclein degradation by the endosomal-lysosomal pathway
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1109356108
– volume: 263
  start-page: 111
  year: 2014
  end-page: 124
  ident: CR197
  article-title: Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.01.001
– volume: 42
  start-page: 78
  year: 1985
  end-page: 88
  ident: CR13
  article-title: Uptake–microautophagy–and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/0014-4800(85)90020-6
– volume: 10
  start-page: 1353
  year: 1999
  end-page: 1366
  ident: CR92
  article-title: Glucose-induced autophagy of peroxisomes in Pichia pastoris requires a unique E1-like protein
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.5.1353
– volume: 21
  start-page: 70
  year: 2020
  ident: CR142
  article-title: ESCRT machinery plays a role in microautophagy in yeast
  publication-title: BMC Mol. Cell Biol.
  doi: 10.1186/s12860-020-00314-w
– volume: 169
  start-page: 985
  year: 2017
  end-page: 999
  ident: CR125
  article-title: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.016
– volume: 15
  start-page: 58
  year: 2004
  end-page: 70
  ident: CR96
  article-title: Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-05-0340
– volume: 127
  start-page: 4078
  year: 2014
  end-page: 4088
  ident: CR20
  article-title: ER-phagy mediates selective degradation of endoplasmic reticulum independently of the core autophagy machinery
  publication-title: J. Cell Sci.
– volume: 33
  start-page: 2142
  year: 2014
  end-page: 2156
  ident: CR233
  article-title: A new pathway for mitochondrial quality control: mitochondrial-derived vesicles
  publication-title: EMBO J.
  doi: 10.15252/embj.201488104
– volume: 65
  start-page: 1243
  year: 2019
  end-page: 1249
  ident: CR143
  article-title: TORC1 specifically inhibits microautophagy through ESCRT-0
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-019-00982-y
– volume: 178
  start-page: 536
  year: 2019
  end-page: 551.e514
  ident: CR153
  article-title: LC3-associated endocytosis facilitates β-amyloid clearance and mitigates neurodegeneration in murine Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.056
– volume: 3
  start-page: 85
  year: 2007
  end-page: 92
  ident: CR55
  article-title: Nucleus-vacuole junctions and piecemeal microautophagy of the nucleus in S. cerevisiae
  publication-title: Autophagy
  doi: 10.4161/auto.3586
– year: 2021
  ident: CR22
  article-title: Machinery, regulation and pathophysiological implications of autophagosome maturation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00392-4
– year: 2020
  ident: CR85
  article-title: Microautophagy in the yeast vacuole depends on the activities of phosphatidylinositol 4-kinases, Stt4p and Pik1p
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2020.183416
– volume: 12
  start-page: 61
  year: 2017
  ident: CR195
  article-title: Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0203-y
– volume: 4
  start-page: 740
  year: 2008
  end-page: 743
  ident: CR1
  article-title: Autophagy revisited: a conversation with Christian de Duve
  publication-title: Autophagy
  doi: 10.4161/auto.6398
– volume: 4
  start-page: 6
  year: 2015
  end-page: 13
  ident: CR27
  article-title: Mitochondrial dynamics and mitochondrial quality control
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.11.006
– volume: 22
  start-page: 187
  year: 2020
  end-page: 199
  ident: CR154
  article-title: The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0450-y
– volume: 108
  start-page: 25
  year: 1995
  end-page: 35
  ident: CR99
  article-title: Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108.1.25
– volume: 169
  start-page: 792
  year: 2017
  end-page: 806
  ident: CR133
  article-title: The logic of the 26S proteasome
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.023
– volume: 12
  start-page: 1984
  year: 2016
  end-page: 1999
  ident: CR103
  article-title: Selective endosomal microautophagy is starvation-inducible in Drosophila
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1208887
– volume: 7
  start-page: 673
  year: 2011
  end-page: 682
  ident: CR10
  article-title: Microautophagy in mammalian cells: revisiting a 40-year-old conundrum
  publication-title: Autophagy
  doi: 10.4161/auto.7.7.14733
– volume: 17
  start-page: 1592
  year: 2021
  end-page: 1613
  ident: CR130
  article-title: Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1757955
– volume: 42
  start-page: 873
  year: 2017
  end-page: 886
  ident: CR132
  article-title: The ubiquitin code in the ubiquitin-proteasome system and autophagy
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2017.09.002
– volume: 20
  start-page: 4
  year: 2008
  end-page: 11
  ident: CR243
  article-title: ESCRT complexes and the biogenesis of multivesicular bodies
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2007.12.002
– volume: 59
  start-page: 1035
  year: 2015
  end-page: 1042
  ident: CR111
  article-title: ESCRTs cooperate with a selective autophagy receptor to mediate vacuolar targeting of soluble cargos
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.034
– volume: 26
  start-page: 630
  year: 2019
  end-page: 639
  ident: CR52
  article-title: Nucleophagy: from homeostasis to disease
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0266-5
– volume: 177
  start-page: 357
  year: 1995
  end-page: 363
  ident: CR91
  article-title: Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.2.357-363.1995
– volume: 524
  start-page: 614
  year: 2020
  end-page: 620
  ident: CR140
  article-title: PP2A promotes ESCRT-0 complex formation on vacuolar membranes and microautophagy induction after TORC1 inactivation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.01.129
– volume: 997
  start-page: 135
  year: 2017
  end-page: 147
  ident: CR166
  article-title: Discovery and roles of ER-endolysosomal contact sites in disease
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-4567-7_10
– volume: 23
  start-page: 519
  year: 2007
  end-page: 547
  ident: CR174
  article-title: Biogenesis and function of multivesicular bodies
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123319
– volume: 2
  start-page: 749
  year: 2014
  end-page: 754
  ident: CR33
  article-title: Variants of mitochondrial autophagy: types 1 and 2 mitophagy and micromitophagy (type 3)
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.06.004
– volume: 9
  year: 2019
  ident: CR199
  article-title: Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35811-8
– volume: 41
  start-page: 10
  year: 2017
  end-page: 22
  ident: CR24
  article-title: Cleaning house: selective autophagy of organelles
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.02.016
– year: 2021
  ident: CR229
  article-title: Molecular mechanisms and biological roles of GOMED
  publication-title: FEBS J.
  doi: 10.1111/febs.16281
– volume: 21
  start-page: 110
  year: 2017
  end-page: 125
  ident: CR189
  article-title: Post-transcriptional inhibition of Hsc70-4/HSPA8 expression leads to synaptic vesicle cycling defects in multiple models of ALS
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.028
– volume: 49
  start-page: 337
  year: 2016
  end-page: 342
  ident: CR183
  article-title: Regulation of amyloid precursor protein processing by its KFERQ motif
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2016.49.6.212
– year: 2017
  ident: CR208
  article-title: Niemann-Pick type C proteins promote microautophagy by expanding raft-like membrane domains in the yeast vacuole
  publication-title: eLife
  doi: 10.7554/eLife.25960
– volume: 47
  start-page: 523
  year: 1982
  end-page: 532
  ident: CR11
  article-title: Uptake and degradation of proteins by isolated rat liver lysosomes. Suggestion of a microautophagic pathway of proteolysis
  publication-title: Lab. Invest.
– volume: 592
  start-page: 1291
  year: 2018
  end-page: 1303
  ident: CR79
  article-title: Lipid droplet-mediated lipid and protein homeostasis in budding yeast
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12996
– volume: 19
  year: 2021
  ident: CR72
  article-title: A conserved ubiquitin- and ESCRT-dependent pathway internalizes human lysosomal membrane proteins for degradation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001361
– volume: 206
  start-page: 357
  year: 2014
  end-page: 366
  ident: CR82
  article-title: A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404115
– volume: 548
  start-page: 461
  year: 2017
  end-page: 465
  ident: CR58
  article-title: cGAS surveillance of micronuclei links genome instability to innate immunity
  publication-title: Nature
  doi: 10.1038/nature23449
– volume: 72
  start-page: 2677
  year: 2015
  end-page: 2695
  ident: CR80
  article-title: Lipid droplet dynamics in budding yeast
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-015-1903-5
– volume: 30
  start-page: 384
  year: 2020
  end-page: 398
  ident: CR41
  article-title: ER-Phagy: quality control and turnover of endoplasmic reticulum
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.001
– volume: 109
  start-page: 3910
  year: 2018
  end-page: 3920
  ident: CR224
  article-title: Possible role of p53/Mieap-regulated mitochondrial quality control as a tumor suppressor in human breast cancer
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13824
– volume: 27
  start-page: 843
  year: 2020
  end-page: 857
  ident: CR212
  article-title: Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0474-7
– volume: 78
  start-page: 8283
  year: 2021
  end-page: 8300
  ident: CR47
  article-title: Noncanonical ER-Golgi trafficking and autophagy of endogenous procollagen in osteoblasts
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-021-04017-z
– volume: 13
  start-page: 3720
  year: 2022
  ident: CR230
  article-title: A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31213-7
– volume: 460
  start-page: 281
  year: 2015
  end-page: 286
  ident: CR64
  article-title: An RNautophagy/DNautophagy receptor, LAMP2C, possesses an arginine-rich motif that mediates RNA/DNA-binding
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.03.025
– volume: 27
  start-page: 1593
  year: 2018
  end-page: 1607
  ident: CR248
  article-title: TDP-43 controls lysosomal pathways thereby determining its own clearance and cytotoxicity
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy066
– volume: 578
  start-page: 419
  year: 2020
  end-page: 424
  ident: CR204
  article-title: ATP13A2 deficiency disrupts lysosomal polyamine export
  publication-title: Nature
  doi: 10.1038/s41586-020-1968-7
– volume: 41
  start-page: 55
  year: 2018
  end-page: 64
  ident: CR88
  article-title: Pexophagy: molecular mechanisms and implications for health and diseases
  publication-title: Mol. Cell
– volume: 1763
  start-page: 1767
  year: 2006
  end-page: 1775
  ident: CR94
  article-title: Pexophagy: autophagic degradation of peroxisomes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.08.023
– year: 2021
  ident: CR120
  article-title: PKCλ/ι inhibition activates an ULK2-mediated interferon response to repress tumorigenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.08.039
– volume: 216
  start-page: 3263
  year: 2017
  end-page: 3274
  ident: CR117
  article-title: Evidence for ESCRT- and clathrin-dependent microautophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611029
– volume: 140
  start-page: 201
  year: 2019
  end-page: 204
  ident: CR170
  article-title: Rapamycin activates mammalian microautophagy
  publication-title: J. Pharmacol. Sci.
  doi: 10.1016/j.jphs.2019.05.007
– volume: 166
  start-page: 555
  year: 2016
  end-page: 566
  ident: CR219
  article-title: Mitochondria and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 10
  year: 2019
  ident: CR162
  article-title: Coming together to define membrane contact sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09253-3
– volume: 56
  start-page: 260
  year: 2021
  end-page: 276.e267
  ident: CR210
  article-title: NPC1-mTORC1 signaling couples cholesterol sensing to organelle homeostasis and is a targetable pathway in Niemann-Pick type C
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.11.016
– volume: 45
  start-page: 58
  year: 2020
  end-page: 75
  ident: CR29
  article-title: Post-translational modifications of key machinery in the control of mitophagy
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2019.08.002
– volume: 26
  start-page: 869
  year: 2016
  end-page: 885
  ident: CR134
  article-title: The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.86
– volume: 458
  start-page: 1131
  year: 2009
  end-page: 1135
  ident: CR75
  article-title: Autophagy regulates lipid metabolism
  publication-title: Nature
  doi: 10.1038/nature07976
– volume: 81
  start-page: 2013
  year: 2021
  end-page: 2030.e2019
  ident: CR157
  article-title: ATG4 family proteins drive phagophore growth independently of the LC3/GABARAP lipidation system
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.03.001
– volume: 30
  start-page: 3481
  year: 2011
  end-page: 3500
  ident: CR104
  article-title: Endosome maturation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.286
– volume: 33
  start-page: 2605
  year: 2013
  end-page: 2615
  ident: CR186
  article-title: Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2898-12.2013
– volume: 22
  start-page: 135
  year: 2012
  end-page: 141
  ident: CR235
  article-title: A vesicular transport pathway shuttles cargo from mitochondria to lysosomes
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.11.057
– volume: 158
  start-page: 549
  year: 2014
  end-page: 563
  ident: CR254
  article-title: Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.048
– volume: 141
  start-page: 625
  year: 1998
  end-page: 636
  ident: CR90
  article-title: Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.3.625
– volume: 37
  start-page: 2887
  year: 2020
  end-page: 2899
  ident: CR116
  article-title: Chaperone-mediated autophagy in the light of evolution: insight from fish
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa127
– volume: 5
  start-page: 128
  year: 2021
  end-page: 142
  ident: CR151
  article-title: Atg8ylation as a general membrane stress and remodeling response
  publication-title: Cell Stress.
  doi: 10.15698/cst2021.09.255
– year: 2018
  ident: CR48
  article-title: ER-to-lysosome-associated degradation of proteasome-resistant ATZ polymers occurs via receptor-mediated vesicular transport
  publication-title: EMBO J.
  doi: 10.15252/embj.201899259
– volume: 18
  start-page: 671
  year: 2017
  end-page: 684
  ident: CR74
  article-title: Cytosolic lipolysis and lipophagy: two sides of the same coin
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.76
– volume: 80
  start-page: 2179
  year: 1983
  end-page: 2183
  ident: CR17
  article-title: Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.8.2179
– volume: 28
  start-page: R170
  year: 2018
  end-page: R185
  ident: CR28
  article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.004
– volume: 137
  start-page: 191
  year: 1982
  end-page: 201
  ident: CR3
  article-title: Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(82)90020-9
– volume: 7
  start-page: 185
  year: 2019
  ident: CR76
  article-title: Emerging roles of lipophagy in health and disease
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00185
– volume: 113
  start-page: 3365
  year: 2000
  end-page: 3374
  ident: CR246
  article-title: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.19.3365
– volume: 289
  start-page: 18137
  year: 2014
  end-page: 18151
  ident: CR187
  article-title: Lys-63-linked ubiquitination by E3 ubiquitin ligase Nedd4-1 facilitates endosomal sequestration of internalized α-synuclein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.529461
– volume: 28
  start-page: 439
  year: 2021
  end-page: 454
  ident: CR147
  article-title: Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-00667-x
– volume: 20
  start-page: 131
  year: 2011
  end-page: 139
  ident: CR100
  article-title: Microautophagy of cytosolic proteins by late endosomes
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.12.003
– volume: 529
  start-page: 582
  year: 2020
  end-page: 589
  ident: CR225
  article-title: p53/Mieap-regulated mitochondrial quality control plays an important role as a tumor suppressor in gastric and esophageal cancers
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.05.168
– volume: 9
  start-page: 1167
  year: 2013
  end-page: 1171
  ident: CR63
  article-title: Direct uptake and degradation of DNA by lysosomes
  publication-title: Autophagy
  doi: 10.4161/auto.24880
– year: 2020
  ident: CR249
  article-title: Microautophagy regulates proteasome homeostasis
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-020-01059-x
– volume: 432
  start-page: 231
  year: 2020
  end-page: 239
  ident: CR69
  article-title: Repair or lysophagy: dealing with damaged lysosomes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.08.010
– volume: 6
  start-page: 1058
  year: 2005
  end-page: 1061
  ident: CR115
  article-title: Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00337.x
– volume: 166
  start-page: 314
  year: 2016
  end-page: 327
  ident: CR241
  article-title: Parkinson’s disease-related proteins PINK1 and parkin repress mitochondrial antigen presentation
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.039
– volume: 108
  start-page: 809
  year: 2017
  end-page: 817
  ident: CR38
  article-title: Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13208
– volume: 445
  start-page: 245
  year: 2008
  end-page: 259
  ident: CR19
  article-title: Microautophagy in the yeast Saccharomyces cerevisiae
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-157-4_16
– volume: 55
  start-page: 289
  year: 2020
  end-page: 297.e284
  ident: CR70
  article-title: Selective lysosome membrane turnover is induced by nutrient starvation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.08.008
– volume: 214
  start-page: 275
  year: 2016
  end-page: 291
  ident: CR160
  article-title: Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201603105
– year: 2013
  ident: CR242
  article-title: Molecular mechanisms of the membrane sculpting ESCRT pathway
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016766
– volume: 25
  start-page: 290
  year: 2014
  end-page: 301
  ident: CR81
  article-title: Lipid droplet autophagy in the yeast Saccharomyces cerevisiae
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-08-0448
– volume: 39
  start-page: 61
  year: 2014
  end-page: 71
  ident: CR21
  article-title: At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.12.001
– volume: 128
  start-page: 232
  year: 2015
  end-page: 238
  ident: CR202
  article-title: Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by TPC2 inhibition
  publication-title: J. Cell Sci.
– volume: 9
  start-page: 403
  year: 2013
  end-page: 409
  ident: CR62
  article-title: Discovery of a novel type of autophagy targeting RNA
  publication-title: Autophagy
  doi: 10.4161/auto.23002
– volume: 146
  start-page: 37
  year: 2011
  end-page: 52
  ident: CR200
  article-title: Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.001
– volume: 19
  start-page: 15
  year: 2005
  end-page: 26
  ident: CR145
  article-title: The TOR and EGO protein complexes orchestrate microautophagy in yeast
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.05.020
– year: 2019
  ident: CR71
  article-title: LC3-associated phagocytosis at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.222984
– volume: 14
  start-page: 129
  year: 2003
  end-page: 141
  ident: CR54
  article-title: Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-08-0483
– volume: 584
  start-page: 1367
  year: 2010
  end-page: 1373
  ident: CR93
  article-title: Molecular mechanism and physiological role of pexophagy
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.01.019
– volume: 114
  start-page: E4612
  year: 2017
  end-page: E4620
  ident: CR59
  article-title: cGAS is essential for cellular senescence
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1705499114
– volume: 9
  start-page: 228
  year: 2017
  ident: CR196
  article-title: Amyloid β-induced redistribution of transcriptional factor EB and lysosomal dysfunction in primary microglial cells
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00228
– volume: 117
  start-page: 32443
  year: 2020
  end-page: 32452
  ident: CR86
  article-title: Direct lysosome-based autophagy of lipid droplets in hepatocytes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2011442117
– year: 2020
  ident: CR237
  article-title: ER-mitochondria contacts promote mitochondrial-derived compartment biogenesis
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202002144
– volume: 14
  start-page: 365
  year: 2008
  end-page: 376
  ident: CR98
  article-title: PpAtg30 tags peroxisomes for turnover by selective autophagy
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.12.011
– year: 2020
  ident: CR67
  article-title: Cytosolic domain of SIDT2 carries an arginine-rich motif that binds to RNA/DNA and is important for the direct transport of nucleic acids into lysosomes
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1712109
– volume: 143
  start-page: 1136
  year: 2010
  end-page: 1148
  ident: CR127
  article-title: Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.034
– volume: 106
  start-page: 145
  year: 2001
  end-page: 155
  ident: CR150
  article-title: Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00434-2
– volume: 11
  start-page: 88
  year: 2015
  end-page: 99
  ident: CR155
  article-title: V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984277
– volume: 13
  year: 2019
  ident: CR207
  article-title: Mutations in ATP13A2 (PARK9) are associated with an amyotrophic lateral sclerosis-like phenotype, implicating this locus in further phenotypic expansion
  publication-title: Hum. Genomics
  doi: 10.1186/s40246-019-0203-9
– year: 2020
  ident: CR156
  article-title: STING induces LC3B lipidation onto single-membrane vesicles via the V-ATPase and ATG16L1-WD40 domain
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202009128
– year: 2018
  ident: CR182
  article-title: Interplay of pathogenic forms of human tau with different autophagic pathways
  publication-title: Aging Cell
  doi: 10.1111/acel.12692
– volume: 24
  start-page: 24
  year: 2014
  end-page: 41
  ident: CR7
  article-title: The machinery of macroautophagy
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.168
– volume: 74
  start-page: 21
  year: 2018
  end-page: 28
  ident: CR105
  article-title: ESCRT and autophagies: endosomal functions and beyond
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.014
– volume: 36
  start-page: 219
  year: 1981
  end-page: 234
  ident: CR12
  article-title: Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation
  publication-title: Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.
  doi: 10.1007/BF02912068
– volume: 18
  start-page: 4153
  year: 2009
  end-page: 4170
  ident: CR113
  article-title: Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp367
– volume: 593
  start-page: 2319
  year: 2019
  end-page: 2329
  ident: CR46
  article-title: Emerging lysosomal pathways for quality control at the endoplasmic reticulum
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13571
– year: 2020
  ident: CR118
  article-title: TORC1 regulates vacuole membrane composition through ubiquitin- and ESCRT-dependent microautophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201902127
– volume: 44
  start-page: 1260
  year: 2012
  end-page: 1264
  ident: CR193
  article-title: CHMP1A encodes an essential regulator of BMI1-INK4A in cerebellar development
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2425
– volume: 1862
  start-page: 1178
  year: 2017
  end-page: 1187
  ident: CR77
  article-title: Breaking fat: the regulation and mechanisms of lipophagy
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2017.06.008
– volume: 161
  start-page: 197
  year: 2015
  end-page: 198
  ident: CR167
  article-title: Close encounters of the lysosome-peroxisome kind
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.046
– volume: 13
  start-page: 37
  year: 2013
  end-page: 50
  ident: CR217
  article-title: Protein arginine methyltransferases and cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3409
– volume: 291
  start-page: 18096
  year: 2016
  end-page: 18106
  ident: CR108
  article-title: Structural and biological interaction of hsc-70 protein with phosphatidylserine in endosomal microautophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.736744
– volume: 14
  start-page: 788
  year: 2013
  end-page: 794
  ident: CR238
  article-title: Casein kinase 2 is essential for mitophagy
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.114
– volume: 39
  year: 2020
  ident: CR42
  article-title: ESCRT machinery mediates selective microautophagy of endoplasmic reticulum in yeast
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102586
– volume: 93
  start-page: 144
  year: 1982
  end-page: 154
  ident: CR2
  article-title: Isolation of autophagic vacuoles from rat liver: morphological and biochemical characterization
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.93.1.144
– volume: 16
  year: 2020
  ident: CR250
  article-title: ESCRTing proteasomes to the lysosome
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008631
– volume: 305
  start-page: 1292
  year: 2004
  end-page: 1295
  ident: CR180
  article-title: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy
  publication-title: Science
  doi: 10.1126/science.1101738
– volume: 141
  start-page: 1146
  year: 2010
  end-page: 1158
  ident: CR198
  article-title: Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.008
– volume: 56
  start-page: 2029
  year: 2021
  end-page: 2042.e2025
  ident: CR228
  article-title: Mitochondrial-derived vesicles compensate for loss of LC3-mediated mitophagy
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.06.003
– volume: 7
  year: 2012
  ident: CR37
  article-title: BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030767
– volume: 88
  start-page: 735
  year: 2015
  end-page: 748
  ident: CR109
  article-title: Hsc70-4 deforms membranes to promote synaptic protein turnover by endosomal microautophagy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.012
– volume: 39
  year: 2020
  ident: CR232
  article-title: Tollip coordinates Parkin-dependent trafficking of mitochondrial-derived vesicles
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102539
– year: 2020
  ident: CR234
  article-title: Generation and release of mitochondrial-derived vesicles in health, aging and disease
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9051440
– year: 2020
  ident: CR87
  article-title: Pexophagy: a model for selective autophagy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21020578
– volume: 294
  start-page: 20009
  year: 2019
  end-page: 20023
  ident: CR44
  article-title: Excessive ER-phagy mediated by the autophagy receptor FAM134B results in ER stress, the unfolded protein response, and cell death in HeLa cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.008709
– volume: 5
  year: 2015
  ident: CR221
  article-title: Mieap suppresses murine intestinal tumor via its mitochondrial quality control
  publication-title: Sci. Rep.
  doi: 10.1038/srep12472
– volume: 119
  start-page: 2245
  year: 2020
  end-page: 2255
  ident: CR171
  article-title: Microautophagy upregulation in cutaneous lymph nodes of dogs naturally infected by Leishmania infantum
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-020-06718-z
– volume: 107
  start-page: 1129
  year: 2020
  end-page: 1148
  ident: CR194
  article-title: De novo VPS4A mutations cause multisystem disease with abnormal neurodevelopment
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.10.012
– volume: 294
  start-page: 5590
  year: 2019
  end-page: 5603
  ident: CR251
  article-title: Analysis of autophagy activated during changes in carbon source availability in yeast cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005698
– volume: 17
  start-page: 626
  year: 2021
  end-page: 639
  ident: CR53
  article-title: Mechanistic dissection of macro- and micronucleophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1725402
– volume: 145
  start-page: 571
  year: 2011
  end-page: 583
  ident: CR215
  article-title: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.035
– volume: 6
  year: 2011
  ident: CR35
  article-title: Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016054
– volume: 6
  start-page: 6
  year: 2020
  ident: CR159
  article-title: Lysosome biology in autophagy
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-0141-7
– volume: 151
  start-page: 1256
  year: 2012
  end-page: 1269
  ident: CR50
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 22
  start-page: 407
  year: 2012
  end-page: 417
  ident: CR110
  article-title: Chaperone-mediated autophagy: a unique way to enter the lysosome world
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.05.006
– volume: 9
  year: 2019
  ident: CR223
  article-title: Mieap-induced accumulation of lysosomes within mitochondria (MALM) regulates gastric cancer cell invasion under hypoxia by suppressing reactive oxygen species accumulation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39563-x
– volume: 478
  start-page: 1959
  year: 2021
  end-page: 1976
  ident: CR247
  article-title: Understanding amphisomes
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200917
– volume: 6
  start-page: 97
  year: 2014
  ident: 529_CR122
  publication-title: F1000Prime Rep.
  doi: 10.12703/P6-97
– volume: 14
  start-page: 129
  year: 2003
  ident: 529_CR54
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-08-0483
– volume: 6
  year: 2011
  ident: 529_CR35
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016054
– year: 2014
  ident: 529_CR245
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016808
– volume: 578
  start-page: 419
  year: 2020
  ident: 529_CR204
  publication-title: Nature
  doi: 10.1038/s41586-020-1968-7
– year: 2022
  ident: 529_CR139
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.259393
– volume: 6
  start-page: 79
  year: 2005
  ident: 529_CR131
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1552
– year: 2018
  ident: 529_CR165
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.208017
– volume: 108
  start-page: 25
  year: 1995
  ident: 529_CR99
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.108.1.25
– year: 2021
  ident: 529_CR231
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-021-00798-4
– year: 2020
  ident: 529_CR156
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202009128
– volume: 291
  start-page: 18096
  year: 2016
  ident: 529_CR108
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.736744
– volume: 145
  start-page: 571
  year: 2011
  ident: 529_CR215
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.035
– volume: 39
  year: 2020
  ident: 529_CR232
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102539
– volume: 40
  year: 2018
  ident: 529_CR18
  publication-title: Bioessays
  doi: 10.1002/bies.201800008
– year: 2020
  ident: 529_CR67
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1712109
– volume: 108
  start-page: 809
  year: 2017
  ident: 529_CR38
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13208
– volume: 7
  year: 2017
  ident: 529_CR123
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01246-w
– volume: 27
  start-page: R1177
  year: 2017
  ident: 529_CR25
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.09.015
– year: 2018
  ident: 529_CR106
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.215210
– volume: 21
  start-page: 7
  year: 2020
  ident: 529_CR163
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0180-9
– volume: 119
  start-page: 2245
  year: 2020
  ident: 529_CR171
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-020-06718-z
– volume: 10
  start-page: 583137
  year: 2020
  ident: 529_CR255
  publication-title: Front. Cell Infect. Microbiol.
  doi: 10.3389/fcimb.2020.583137
– volume: 56
  start-page: 2029
  year: 2021
  ident: 529_CR228
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.06.003
– volume: 108
  start-page: 17396
  year: 2011
  ident: 529_CR152
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113421108
– volume: 18
  start-page: 671
  year: 2017
  ident: 529_CR74
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.76
– volume: 214
  start-page: 275
  year: 2016
  ident: 529_CR160
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201603105
– volume: 19
  year: 2021
  ident: 529_CR72
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001361
– volume: 80
  start-page: 2179
  year: 1983
  ident: 529_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.80.8.2179
– volume: 113
  start-page: 3365
  year: 2000
  ident: 529_CR246
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.19.3365
– volume: 593
  start-page: 2319
  year: 2019
  ident: 529_CR46
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13571
– volume: 13
  start-page: 3720
  year: 2022
  ident: 529_CR230
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31213-7
– year: 2021
  ident: 529_CR120
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.08.039
– year: 2017
  ident: 529_CR208
  publication-title: eLife
  doi: 10.7554/eLife.25960
– volume: 522
  start-page: 88
  year: 2020
  ident: 529_CR141
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.11.064
– volume: 478
  start-page: 1959
  year: 2021
  ident: 529_CR247
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20200917
– volume: 166
  start-page: 555
  year: 2016
  ident: 529_CR219
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 554
  start-page: 382
  year: 2018
  ident: 529_CR39
  publication-title: Nature
  doi: 10.1038/nature25486
– volume: 33
  start-page: 282
  year: 2014
  ident: 529_CR148
  publication-title: EMBO J.
– volume: 169
  start-page: 792
  year: 2017
  ident: 529_CR133
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.023
– volume: 9
  year: 2019
  ident: 529_CR199
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35811-8
– volume: 20
  start-page: 3
  year: 2013
  ident: 529_CR78
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.63
– volume: 127
  start-page: 3024
  year: 2014
  ident: 529_CR184
  publication-title: J. Cell Sci.
– volume: 39
  year: 2020
  ident: 529_CR42
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102586
– volume: 1862
  start-page: 1178
  year: 2017
  ident: 529_CR77
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2017.06.008
– year: 2013
  ident: 529_CR242
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016766
– volume: 141
  start-page: 1146
  year: 2010
  ident: 529_CR198
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.008
– year: 2017
  ident: 529_CR84
  publication-title: eLife
  doi: 10.7554/eLife.21690
– volume: 206
  start-page: 357
  year: 2014
  ident: 529_CR82
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404115
– volume: 27
  start-page: 1593
  year: 2018
  ident: 529_CR248
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddy066
– volume: 166
  start-page: 314
  year: 2016
  ident: 529_CR241
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.039
– volume: 169
  start-page: 985
  year: 2017
  ident: 529_CR125
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.016
– volume: 28
  start-page: 3423
  year: 2019
  ident: 529_CR57
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.059
– volume: 263
  start-page: 111
  year: 2014
  ident: 529_CR197
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.01.001
– volume: 78
  start-page: 8283
  year: 2021
  ident: 529_CR47
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-021-04017-z
– year: 2020
  ident: 529_CR87
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21020578
– volume: 177
  start-page: 357
  year: 1995
  ident: 529_CR91
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.2.357-363.1995
– volume: 22
  start-page: 187
  year: 2020
  ident: 529_CR154
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0450-y
– volume: 12
  start-page: 1984
  year: 2016
  ident: 529_CR103
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1208887
– volume: 997
  start-page: 135
  year: 2017
  ident: 529_CR166
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-4567-7_10
– volume: 19
  start-page: 15
  year: 2005
  ident: 529_CR145
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.05.020
– volume: 33
  start-page: 2605
  year: 2013
  ident: 529_CR186
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2898-12.2013
– volume: 41
  start-page: 10
  year: 2017
  ident: 529_CR24
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.02.016
– volume: 49
  start-page: 337
  year: 2016
  ident: 529_CR183
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2016.49.6.212
– volume: 48
  start-page: 6611
  year: 2020
  ident: 529_CR226
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa393
– volume: 65
  start-page: 1243
  year: 2019
  ident: 529_CR143
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-019-00982-y
– volume: 116
  start-page: 2987
  year: 2019
  ident: 529_CR128
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1820161116
– volume: 74
  start-page: 4
  year: 2018
  ident: 529_CR176
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.020
– volume: 524
  start-page: 614
  year: 2020
  ident: 529_CR140
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.01.129
– year: 2018
  ident: 529_CR182
  publication-title: Aging Cell
  doi: 10.1111/acel.12692
– volume: 140
  start-page: 201
  year: 2019
  ident: 529_CR170
  publication-title: J. Pharmacol. Sci.
  doi: 10.1016/j.jphs.2019.05.007
– volume: 24
  start-page: 6013
  year: 2015
  ident: 529_CR203
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddv314
– volume: 11
  start-page: 88
  year: 2015
  ident: 529_CR155
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984277
– volume: 56
  start-page: 260
  year: 2021
  ident: 529_CR210
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.11.016
– volume: 263
  start-page: 2506
  year: 1988
  ident: 529_CR16
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)69235-X
– volume: 21
  start-page: 110
  year: 2017
  ident: 529_CR189
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.028
– volume: 21
  start-page: 1206
  year: 2019
  ident: 529_CR211
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-019-0391-5
– volume: 22
  start-page: 407
  year: 2012
  ident: 529_CR110
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.05.006
– volume: 4
  start-page: 740
  year: 2008
  ident: 529_CR1
  publication-title: Autophagy
  doi: 10.4161/auto.6398
– volume: 24
  start-page: 24
  year: 2014
  ident: 529_CR7
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.168
– volume: 4
  year: 2015
  ident: 529_CR107
  publication-title: eLife
  doi: 10.7554/eLife.07736
– volume: 20
  start-page: 131
  year: 2011
  ident: 529_CR100
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2010.12.003
– volume: 23
  start-page: 519
  year: 2007
  ident: 529_CR174
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123319
– volume: 42
  start-page: 78
  year: 1985
  ident: 529_CR13
  publication-title: Exp. Mol. Pathol.
  doi: 10.1016/0014-4800(85)90020-6
– volume: 115
  start-page: E10099
  year: 2018
  ident: 529_CR45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814552115
– volume: 8
  start-page: 193
  year: 2008
  ident: 529_CR227
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2342
– volume: 74
  start-page: 21
  year: 2018
  ident: 529_CR105
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.014
– volume: 6
  start-page: 6
  year: 2020
  ident: 529_CR159
  publication-title: Cell Discov.
  doi: 10.1038/s41421-020-0141-7
– year: 2020
  ident: 529_CR249
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-020-01059-x
– volume: 445
  start-page: 245
  year: 2008
  ident: 529_CR19
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-157-4_16
– volume: 26
  start-page: 630
  year: 2019
  ident: 529_CR52
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0266-5
– volume: 592
  start-page: 1291
  year: 2018
  ident: 529_CR79
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12996
– volume: 146
  start-page: 37
  year: 2011
  ident: 529_CR200
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.001
– volume: 135
  start-page: 2169
  year: 2012
  ident: 529_CR253
  publication-title: Brain
  doi: 10.1093/brain/aws143
– volume: 81
  start-page: 1337
  year: 2021
  ident: 529_CR121
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.01.009
– volume: 30
  start-page: 3481
  year: 2011
  ident: 529_CR104
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.286
– volume: 26
  start-page: 869
  year: 2016
  ident: 529_CR134
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.86
– volume: 20
  start-page: 21
  year: 2013
  ident: 529_CR146
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.72
– volume: 9
  start-page: 228
  year: 2017
  ident: 529_CR196
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00228
– volume: 37
  start-page: 806
  year: 2005
  ident: 529_CR191
  publication-title: Nat. Genet.
  doi: 10.1038/ng1609
– volume: 529
  start-page: 582
  year: 2020
  ident: 529_CR225
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.05.168
– volume: 36
  start-page: 219
  year: 1981
  ident: 529_CR12
  publication-title: Virchows Arch. B Cell Pathol. Incl. Mol. Pathol.
  doi: 10.1007/BF02912068
– volume: 7
  start-page: 673
  year: 2011
  ident: 529_CR10
  publication-title: Autophagy
  doi: 10.4161/auto.7.7.14733
– volume: 294
  start-page: 5590
  year: 2019
  ident: 529_CR251
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005698
– volume: 2
  start-page: 125
  year: 2018
  ident: 529_CR34
  publication-title: Liver Res.
  doi: 10.1016/j.livres.2018.09.005
– volume: 11
  start-page: 1927
  year: 2015
  ident: 529_CR136
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1078961
– volume: 33
  start-page: 2142
  year: 2014
  ident: 529_CR233
  publication-title: EMBO J.
  doi: 10.15252/embj.201488104
– year: 2020
  ident: 529_CR118
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201902127
– volume: 107
  start-page: 1129
  year: 2020
  ident: 529_CR194
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.10.012
– volume: 3
  start-page: 329
  year: 2007
  ident: 529_CR30
  publication-title: Autophagy
  doi: 10.4161/auto.4034
– volume: 1763
  start-page: 1767
  year: 2006
  ident: 529_CR94
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2006.08.023
– volume: 294
  start-page: 20009
  year: 2019
  ident: 529_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.008709
– volume: 19
  year: 2021
  ident: 529_CR73
  publication-title: BMC Biol.
  doi: 10.1186/s12915-021-01048-7
– volume: 88
  start-page: 735
  year: 2015
  ident: 529_CR109
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.10.012
– volume: 11
  start-page: 210091
  year: 2021
  ident: 529_CR179
  publication-title: Open. Biol.
  doi: 10.1098/rsob.210091
– volume: 12
  start-page: 685
  year: 2012
  ident: 529_CR220
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3365
– volume: 9
  start-page: 1167
  year: 2013
  ident: 529_CR63
  publication-title: Autophagy
  doi: 10.4161/auto.24880
– volume: 22
  start-page: 973
  year: 2020
  ident: 529_CR172
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-0549-1
– volume: 3
  start-page: 85
  year: 2007
  ident: 529_CR55
  publication-title: Autophagy
  doi: 10.4161/auto.3586
– year: 2018
  ident: 529_CR169
  publication-title: EMBO J.
  doi: 10.15252/embj.201798804
– volume: 10
  year: 2019
  ident: 529_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12991-z
– volume: 460
  start-page: 281
  year: 2015
  ident: 529_CR64
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.03.025
– volume: 76
  start-page: 268
  year: 2019
  ident: 529_CR23
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.005
– year: 2018
  ident: 529_CR48
  publication-title: EMBO J.
  doi: 10.15252/embj.201899259
– volume: 114
  start-page: E4612
  year: 2017
  ident: 529_CR59
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1705499114
– volume: 192
  start-page: 229
  year: 2011
  ident: 529_CR244
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008121
– year: 2020
  ident: 529_CR102
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1783833
– volume: 42
  start-page: 873
  year: 2017
  ident: 529_CR132
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2017.09.002
– volume: 31
  start-page: 141
  year: 2021
  ident: 529_CR43
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-00416-2
– volume: 75
  start-page: 128
  year: 2015
  ident: 529_CR68
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.12.014
– volume: 40
  year: 2021
  ident: 529_CR213
  publication-title: EMBO J.
  doi: 10.15252/embj.2021108863
– volume: 27
  start-page: 843
  year: 2020
  ident: 529_CR212
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-019-0474-7
– volume: 158
  start-page: 549
  year: 2014
  ident: 529_CR254
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.048
– volume: 72
  start-page: 2677
  year: 2015
  ident: 529_CR80
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-015-1903-5
– volume: 143
  start-page: 1136
  year: 2010
  ident: 529_CR127
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.034
– volume: 17
  start-page: 313
  year: 2008
  ident: 529_CR192
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm309
– volume: 584
  start-page: 1367
  year: 2010
  ident: 529_CR93
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.01.019
– volume: 21
  start-page: 70
  year: 2020
  ident: 529_CR142
  publication-title: BMC Mol. Cell Biol.
  doi: 10.1186/s12860-020-00314-w
– volume: 128
  start-page: 232
  year: 2015
  ident: 529_CR202
  publication-title: J. Cell Sci.
– volume: 8
  start-page: 214
  year: 2020
  ident: 529_CR240
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00214
– volume: 4
  start-page: 18
  year: 2015
  ident: 529_CR168
  publication-title: Transl. Neurodegener.
  doi: 10.1186/s40035-015-0041-1
– volume: 59
  start-page: 1035
  year: 2015
  ident: 529_CR111
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.034
– volume: 6
  start-page: 1058
  year: 2005
  ident: 529_CR115
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00337.x
– volume: 109
  start-page: 3910
  year: 2018
  ident: 529_CR224
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13824
– volume: 13
  start-page: 37
  year: 2013
  ident: 529_CR217
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3409
– volume: 29
  start-page: 44
  year: 2019
  ident: 529_CR124
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2018.08.005
– volume: 30
  start-page: 384
  year: 2020
  ident: 529_CR41
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.001
– volume: 279
  start-page: 39068
  year: 2004
  ident: 529_CR31
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406960200
– volume: 3
  year: 2012
  ident: 529_CR178
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2069
– volume: 15
  start-page: 58
  year: 2004
  ident: 529_CR96
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e03-05-0340
– volume: 81
  start-page: 2013
  year: 2021
  ident: 529_CR157
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.03.001
– volume: 4
  start-page: 6
  year: 2015
  ident: 529_CR27
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.11.006
– volume: 14
  start-page: 515
  year: 2004
  ident: 529_CR95
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.07.014
– volume: 16
  year: 2020
  ident: 529_CR250
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008631
– year: 2019
  ident: 529_CR71
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.222984
– volume: 17
  start-page: 2040
  year: 2021
  ident: 529_CR9
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1935007
– volume: 35
  start-page: 584
  year: 2015
  ident: 529_CR83
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.11.010
– volume: 17
  start-page: 626
  year: 2021
  ident: 529_CR53
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1725402
– volume: 458
  start-page: 1131
  year: 2009
  ident: 529_CR75
  publication-title: Nature
  doi: 10.1038/nature07976
– volume: 37
  start-page: 2887
  year: 2020
  ident: 529_CR116
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa127
– volume: 432
  start-page: 231
  year: 2020
  ident: 529_CR69
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2019.08.010
– volume: 116
  start-page: 10402
  year: 2019
  ident: 529_CR218
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1903506116
– volume: 184
  start-page: 2696
  year: 2021
  ident: 529_CR185
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.048
– volume: 260
  start-page: 5847
  year: 1985
  ident: 529_CR14
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)89099-8
– volume: 4
  year: 2016
  ident: 529_CR222
  publication-title: Oncogenesis
  doi: 10.1038/oncsis.2015.43
– volume: 305
  start-page: 1292
  year: 2004
  ident: 529_CR180
  publication-title: Science
  doi: 10.1126/science.1101738
– volume: 20
  start-page: 4
  year: 2008
  ident: 529_CR243
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2007.12.002
– volume: 285
  start-page: 13621
  year: 2010
  ident: 529_CR181
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.074617
– volume: 19
  start-page: 365
  year: 2018
  ident: 529_CR8
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0001-6
– volume: 278
  start-page: 12513
  year: 2003
  ident: 529_CR149
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210843200
– volume: 137
  start-page: 191
  year: 1982
  ident: 529_CR3
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(82)90020-9
– volume: 5
  start-page: 128
  year: 2021
  ident: 529_CR151
  publication-title: Cell Stress.
  doi: 10.15698/cst2021.09.255
– volume: 141
  start-page: 625
  year: 1998
  ident: 529_CR90
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.141.3.625
– volume: 6
  start-page: 40
  year: 2019
  ident: 529_CR135
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00040
– volume: 151
  start-page: 1256
  year: 2012
  ident: 529_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 44
  start-page: 1260
  year: 2012
  ident: 529_CR193
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2425
– volume: 294
  start-page: 12610
  year: 2019
  ident: 529_CR158
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC119.009977
– year: 2020
  ident: 529_CR234
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9051440
– volume: 243
  start-page: 641
  year: 1986
  ident: 529_CR15
  publication-title: Cell Tissue Res.
  doi: 10.1007/BF00218073
– volume: 115
  start-page: E5317
  year: 2018
  ident: 529_CR126
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1804091115
– volume: 12
  start-page: 401
  year: 2012
  ident: 529_CR214
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3262
– volume: 6
  year: 2011
  ident: 529_CR36
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016060
– volume: 67
  start-page: 1074
  year: 2006
  ident: 529_CR190
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000231510.89311.8b
– volume: 161
  start-page: 197
  year: 2015
  ident: 529_CR167
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.046
– volume: 132
  start-page: jcs232850
  year: 2019
  ident: 529_CR40
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.232850
– volume: 113
  start-page: E7490
  year: 2016
  ident: 529_CR137
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1615455113
– volume: 20
  start-page: 521
  year: 2018
  ident: 529_CR6
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0092-5
– volume: 217
  start-page: 3640
  year: 2018
  ident: 529_CR119
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201711002
– volume: 180
  start-page: 633
  year: 2020
  ident: 529_CR112
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.027
– volume: 216
  start-page: 1199
  year: 2019
  ident: 529_CR60
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20181329
– volume: 117
  start-page: 32443
  year: 2020
  ident: 529_CR86
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2011442117
– volume: 289
  start-page: 18137
  year: 2014
  ident: 529_CR187
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.529461
– volume: 1649
  start-page: 181
  year: 2016
  ident: 529_CR209
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.03.035
– volume: 28
  start-page: 439
  year: 2021
  ident: 529_CR147
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-00667-x
– year: 2016
  ident: 529_CR236
  publication-title: eLife
  doi: 10.7554/eLife.13943
– volume: 20
  start-page: 14
  year: 2019
  ident: 529_CR216
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.009
– volume: 9
  start-page: 403
  year: 2013
  ident: 529_CR62
  publication-title: Autophagy
  doi: 10.4161/auto.23002
– volume: 73
  start-page: 325
  year: 2019
  ident: 529_CR144
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.040
– volume: 16
  start-page: 4941
  year: 2005
  ident: 529_CR97
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-02-0143
– volume: 106
  start-page: 145
  year: 2001
  ident: 529_CR150
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00434-2
– volume: 33
  start-page: 5626
  year: 2019
  ident: 529_CR101
  publication-title: FASEB J.
  doi: 10.1096/fj.201802102R
– volume: 14
  start-page: 365
  year: 2008
  ident: 529_CR98
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.12.011
– year: 2021
  ident: 529_CR229
  publication-title: FEBS J.
  doi: 10.1111/febs.16281
– volume: 15
  start-page: 240
  year: 2012
  ident: 529_CR129
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.12.017
– volume: 548
  start-page: 461
  year: 2017
  ident: 529_CR58
  publication-title: Nature
  doi: 10.1038/nature23449
– volume: 10
  year: 2019
  ident: 529_CR162
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09253-3
– year: 2021
  ident: 529_CR22
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00392-4
– volume: 22
  start-page: 1252
  year: 2020
  ident: 529_CR173
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00583-9
– volume: 33
  start-page: 2291
  year: 2012
  ident: 529_CR252
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.11.009
– volume: 5
  year: 2015
  ident: 529_CR221
  publication-title: Sci. Rep.
  doi: 10.1038/srep12472
– volume: 13
  start-page: 218
  year: 2017
  ident: 529_CR66
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1248019
– volume: 47
  start-page: 523
  year: 1982
  ident: 529_CR11
  publication-title: Lab. Invest.
– year: 2019
  ident: 529_CR177
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.222406
– volume: 9
  year: 2019
  ident: 529_CR223
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39563-x
– year: 2020
  ident: 529_CR85
  publication-title: Biochim. Biophys. Acta Biomembr.
  doi: 10.1016/j.bbamem.2020.183416
– volume: 5
  start-page: 539
  year: 2003
  ident: 529_CR4
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(03)00296-X
– volume: 45
  start-page: 58
  year: 2020
  ident: 529_CR29
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2019.08.002
– volume: 127
  start-page: 4078
  year: 2014
  ident: 529_CR20
  publication-title: J. Cell Sci.
– volume: 25
  start-page: 290
  year: 2014
  ident: 529_CR81
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e13-08-0448
– volume: 280
  start-page: 4970
  year: 2013
  ident: 529_CR32
  publication-title: FEBS J.
  doi: 10.1111/febs.12468
– volume: 108
  start-page: 17004
  year: 2011
  ident: 529_CR188
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1109356108
– year: 2020
  ident: 529_CR237
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.202002144
– volume: 29
  start-page: 500
  year: 2019
  ident: 529_CR164
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.02.004
– volume: 28
  start-page: R170
  year: 2018
  ident: 529_CR28
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.004
– volume: 10
  start-page: 1353
  year: 1999
  ident: 529_CR92
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.5.1353
– year: 2021
  ident: 529_CR61
  publication-title: Autophagy
  doi: 10.1080/15548627.2021.1899440
– volume: 7
  start-page: 75
  year: 2002
  ident: 529_CR89
  publication-title: Genes Cell
  doi: 10.1046/j.1356-9597.2001.00499.x
– volume: 7
  year: 2012
  ident: 529_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030767
– volume: 28
  start-page: 337
  year: 2012
  ident: 529_CR175
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-092910-154152
– volume: 13
  year: 2019
  ident: 529_CR207
  publication-title: Hum. Genomics
  doi: 10.1186/s40246-019-0203-9
– volume: 14
  start-page: 788
  year: 2013
  ident: 529_CR238
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.114
– volume: 22
  start-page: 135
  year: 2012
  ident: 529_CR235
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.11.057
– volume: 54
  start-page: 153
  year: 2019
  ident: 529_CR49
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409238.2019.1610351
– volume: 1
  start-page: 213
  year: 2010
  ident: 529_CR56
  publication-title: Nucleus
  doi: 10.4161/nucl.11738
– volume: 12
  start-page: 565
  year: 2016
  ident: 529_CR65
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1145325
– volume: 41
  start-page: 55
  year: 2018
  ident: 529_CR88
  publication-title: Mol. Cell
– volume: 39
  start-page: 8
  year: 2016
  ident: 529_CR161
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2016.01.006
– volume: 38
  start-page: 1184
  year: 2006
  ident: 529_CR205
  publication-title: Nat. Genet.
  doi: 10.1038/ng1884
– volume: 12
  start-page: 61
  year: 2017
  ident: 529_CR195
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-017-0203-y
– volume: 17
  start-page: 98
  year: 2009
  ident: 529_CR239
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.06.014
– volume: 11
  start-page: 515
  year: 2020
  ident: 529_CR26
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00515
– volume: 2
  start-page: 749
  year: 2014
  ident: 529_CR33
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2014.06.004
– volume: 12
  year: 2021
  ident: 529_CR114
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22501-9
– volume: 15
  year: 2019
  ident: 529_CR138
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008387
– volume: 68
  start-page: 1557
  year: 2007
  ident: 529_CR206
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000260963.08711.08
– volume: 110
  start-page: E1817
  year: 2013
  ident: 529_CR201
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1305623110
– volume: 178
  start-page: 536
  year: 2019
  ident: 529_CR153
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.056
– volume: 216
  start-page: 3263
  year: 2017
  ident: 529_CR117
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201611029
– volume: 17
  start-page: 1592
  year: 2021
  ident: 529_CR130
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1757955
– volume: 39
  start-page: 61
  year: 2014
  ident: 529_CR21
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2013.12.001
– volume: 93
  start-page: 144
  year: 1982
  ident: 529_CR2
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.93.1.144
– volume: 24
  start-page: 9
  year: 2014
  ident: 529_CR5
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.169
– volume: 55
  start-page: 289
  year: 2020
  ident: 529_CR70
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.08.008
– volume: 18
  start-page: 4153
  year: 2009
  ident: 529_CR113
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddp367
– volume: 7
  start-page: 185
  year: 2019
  ident: 529_CR76
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00185
SSID ssj0016175
Score 2.721291
SecondaryResourceType review_article
Snippet ‘Autophagy’ refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to...
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms 631/80/39
631/80/474/1624
Animals
Autophagy
Biochemistry
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Communication
Degradation
Developmental Biology
Endosomes
Humans
Life Sciences
Lysosomes
Lysosomes - metabolism
Macroautophagy
Mammalian cells
Mammals
Microautophagy
Molecular modelling
Neurodegenerative diseases
Organelles
Proteins
Regulatory mechanisms (biology)
Review Article
Stem Cells
Yeast
Title The emerging mechanisms and functions of microautophagy
URI https://link.springer.com/article/10.1038/s41580-022-00529-z
https://www.ncbi.nlm.nih.gov/pubmed/36097284
https://www.proquest.com/docview/2779273872
https://www.proquest.com/docview/2714059675
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8PADwRfx2-ocFXzTYNs0S_ckm2yI4BBxsLeSJqkIrlO7Peiv9y7tNkT0pX1I0oa7XO77DuBc5nHYznmb6VBaFhspmWrxmIUiUYnJYi2cKft-0LodxncjMaoNbmUdVjm_E91FbSaabORXkZRtSiOR0fXbO6OuUeRdrVtorMI6lS6jkC45WihcJLoLl10kUWUOZFQnzQQ8uSqRcSUBo1h25-xiXz8Z0y9p85en1DGg_jZs1ZKj36lQvQMrttiFjaqX5OceSES4T9m-1HXIH1vK6H0px6WvCuMT93IHzJ_k_phi8NSMKgqo5899GPZ7Tze3rO6KwDSKLlOm8HqSGmnPRkGustzoLIuFRE3HCBNmkTFCcG1ypEWrpWkFHAcyFKR4QIW4NT-AtWJS2CPwqRq9SHKcppB2QzJ_BJlFocGaKA9j7UE4B0mq65Lh1LniNXWua56kFRhTBGPqwJh-eXCxWPNWFcz4d3ZjDum0Jp4yXaLag7PFMB578mWowk5mNAc1Q9FGdceDwwpDi9_xFtUkSmIPLucoW378770c_7-XE9ikVvNV_FkD1qYfM3uKAsk0a7pTh8_kJmzCeqff7Q7w3e0NHh6_Ad9K3Sg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVW5VNAXaaF1pfbUWiRxvE4OCEEBLQVWVQUSN-PYToXEZoHsqlp-VH9jZ_JYVKFy42zHsWY-e2Y8L4BPqkiirBAZt5HyPHFKcdMXCY9kalKXJ1bWT9nHw_7gNPl-Js8W4E-XC0Nhld2dWF_UbmzpjXwjViqjNBIVb11dc-oaRd7VroVGA4tDP_uNJlu1ebCL_P0cx_t7J98GvO0qwC2K_gk3eLyVRez6OCxMXjib54lUaCk46aI8dk5KYV2BWPZWuX4ocCBHRUSEVMjaClz3CSwmAk2ZHizu7A1__Jz7LVAfkHU-k0IjPVRxm6YTinSjQlGZhpyi52v3Gr_9VxTe02_v-WZrkbe_DM9bXZVtN-BagQVfvoCnTffK2UtQCDFG-cXU54iNPOUQX1SjipnSMZKXNaTZuGAjivozU6phYH7NXsHpo1DsNfTKcelXgVH9e5kWOM3gbRHRg0uYe1RTvIuLKLEBRB1JtG2LlFOvjEtdO8tFqhsyaiSjrsmobwP4Mv_mqinR8eDstY7Suj2ulb4DVwAf58N40Mh7Yko_ntIctEVlhgZWAG8aDs1_h1jIFAr6AL52LLtb_P97efvwXj7As8HJ8ZE-OhgevoMlanTfRL-tQW9yM_XrqA5N8vctBhmcPzbs_wLLbhhZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXRHmUQCmuBCewNonjdfZQIURZ9S0OVNqbcfxASGy2kF2h7U_j13XGSbZCFb31GjtONP7GM-N5AbxRochGQYy4zZTnhVOKm6EoeCZLU7qqsDJeZZ-cDvfPisOJnKzB3z4XhsIq-zMxHtRuZumOfJArNaI0EpUPQhcW8WVv_OH8F6cOUuRp7dtptBA58ss_aL41uwd7uNdv83z8-eunfd51GOAW1YA5N8jqyiKOfZ4GUwVnq6qQCq0GJ11W5c5JKawLiGtvlRumAgcqVEpESkWtrcB178BdJfAJ8pKarIw9MhtkzGxSaK6nKu8SdlJRDhoUmmXKKY4-Otr4xb9C8Zqme81LG4Xf-BE87LRW9rGF2Qas-fox3Gv7WC6fgEKwMco0po5HbOopm_hHM22YqR0jyRnBzWaBTSn-zyyomoH5vnwKZ7dCr2ewXs9q_xwYVcKXZcBpBs-NjK5e0sqjwuJdHrLCJpD1JNG2K1dOXTN-6ug2F6VuyaiRjDqSUV8k8G71znlbrOPG2Vs9pXXHuI2-glkCO6thZDnyo5jazxY0B61SOUJTK4HNdodWnxNDqodUFgm877fsavH__8uLm__lNdxHsOvjg9Ojl_CAOt63YXBbsD7_vfCvUC-aV9sRgAy-3TbiLwEI5hsp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+emerging+mechanisms+and+functions+of+microautophagy&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Wang%2C+Liming&rft.au=Klionsky%2C+Daniel+J.&rft.au=Shen%2C+Han-Ming&rft.date=2023-03-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1471-0072&rft.eissn=1471-0080&rft.volume=24&rft.issue=3&rft.spage=186&rft.epage=203&rft_id=info:doi/10.1038%2Fs41580-022-00529-z&rft.externalDocID=10_1038_s41580_022_00529_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon