Statistical inference of assortative community structures

We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modular...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 2; no. 4; p. 043271
Main Authors Zhang, Lizhi, Peixoto, Tiago P.
Format Journal Article
LanguageEnglish
Published American Physical Society 23.11.2020
Online AccessGet full text

Cover

Loading…
Abstract We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modularity maximization, which systematically overfits both in artificial as well as in empirical examples. In addition, we show that our method is not subject to an appreciable resolution limit, and can uncover an arbitrarily large number of communities, as long as there is statistical evidence for them. Our formulation is amenable to model selection procedures, which allow us to compare it to more general approaches based on the stochastic block model, and in this way reveal whether assortativity is in fact the dominating large-scale mixing pattern. We perform this comparison with several empirical networks and identify numerous cases where the network's assortativity is exaggerated by traditional community detection methods, and we show how a more faithful degree of assortativity can be identified.
AbstractList We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modularity maximization, which systematically overfits both in artificial as well as in empirical examples. In addition, we show that our method is not subject to an appreciable resolution limit, and can uncover an arbitrarily large number of communities, as long as there is statistical evidence for them. Our formulation is amenable to model selection procedures, which allow us to compare it to more general approaches based on the stochastic block model, and in this way reveal whether assortativity is in fact the dominating large-scale mixing pattern. We perform this comparison with several empirical networks and identify numerous cases where the network's assortativity is exaggerated by traditional community detection methods, and we show how a more faithful degree of assortativity can be identified.
ArticleNumber 043271
Author Zhang, Lizhi
Peixoto, Tiago P.
Author_xml – sequence: 1
  givenname: Lizhi
  surname: Zhang
  fullname: Zhang, Lizhi
– sequence: 2
  givenname: Tiago P.
  orcidid: 0000-0002-4505-0517
  surname: Peixoto
  fullname: Peixoto, Tiago P.
BookMark eNqFkNtKAzEQhoNUsNa-w77A1iSbZLM3ghQPhYJS9TpMsolN2W4kSQt9e3tQkN54NcMM8_HPd40GfegtQgXBE0Jwdfu63KWF3S5sshDNckInmFW0JhdoSAWrSsIFG_zpr9A4pRXGmHJCmORD1LxlyD5lb6ArfO9stL2xRXAFpBTiYbm1hQnr9ab3eVekHDcmb6JNN-jSQZfs-KeO0Mfjw_v0uZy_PM2m9_PSMEZyCbKWkhhqNWjTMEd0y8EI5mirndRYWAFScEolJlK2zgjXcKGpJMRI60Q1QrMTtw2wUl_RryHuVACvjoMQPxXEff7OKsZboKKmldGUsaYGRyvNdUNAA6aa71l3J5aJIaVonTL-8GLocwTfKYLVwas686qoOnndA-QZ4DfQv6ffeYSG-w
CitedBy_id crossref_primary_10_1016_j_chaos_2024_114849
crossref_primary_10_1103_PhysRevResearch_6_013170
crossref_primary_10_1007_s10816_023_09625_6
crossref_primary_10_1186_s12859_021_04489_7
crossref_primary_10_1016_j_physrep_2021_10_005
crossref_primary_10_1038_s41598_022_19181_w
crossref_primary_10_1177_09717218231160441
crossref_primary_10_1103_PhysRevE_104_054309
crossref_primary_10_1103_PhysRevE_108_054308
crossref_primary_10_1016_j_neucom_2022_09_013
crossref_primary_10_1007_s11077_024_09553_6
crossref_primary_10_1016_j_aei_2024_102594
crossref_primary_10_1016_j_heliyon_2024_e32968
crossref_primary_10_1007_s10936_024_10059_8
crossref_primary_10_1073_pnas_2320177121
crossref_primary_10_1016_j_ocecoaman_2024_107351
crossref_primary_10_1016_j_jtrangeo_2023_103619
crossref_primary_10_1080_10618600_2024_2409789
crossref_primary_10_3390_bioengineering11121284
crossref_primary_10_1103_PhysRevResearch_4_043117
crossref_primary_10_1038_s41598_022_20142_6
crossref_primary_10_1093_bioinformatics_btae300
crossref_primary_10_1016_j_gpb_2022_09_011
crossref_primary_10_1016_j_ocecoaman_2024_107102
crossref_primary_10_1016_j_poetic_2024_101947
crossref_primary_10_1016_j_apenergy_2024_122854
crossref_primary_10_1371_journal_pcbi_1012300
crossref_primary_10_1007_s42001_025_00372_0
crossref_primary_10_1103_PhysRevE_110_044315
crossref_primary_10_1038_s42005_024_01819_y
crossref_primary_10_1103_PhysRevE_108_024309
crossref_primary_10_1126_sciadv_abh1303
crossref_primary_10_1002_pra2_731
crossref_primary_10_1103_PhysRevResearch_6_033307
crossref_primary_10_1007_s13278_024_01312_y
Cites_doi 10.1063/1.1699114
10.1103/PhysRevE.94.052315
10.1007/BF02579448
10.1038/35075138
10.1073/pnas.0605965104
10.1016/j.physrep.2009.11.002
10.1103/PhysRevLett.115.088701
10.1103/PhysRevE.84.066122
10.1145/1217299.1217301
10.1038/ncomms1063
10.1088/1367-2630/10/5/053039
10.1103/PhysRevLett.110.148701
10.1088/1742-5468/2008/10/P10008
10.1103/PhysRevE.84.066106
10.1016/j.endm.2013.07.063
10.7551/mitpress/7287.001.0001
10.1073/pnas.122653799
10.1103/PhysRevE.80.016109
10.1103/PhysRevE.85.066118
10.1093/biomet/57.1.97
10.1016/0378-8733(87)90015-3
10.1007/s00265-003-0651-y
10.1038/nphys2162
10.1109/TKDE.2019.2911585
10.1016/0196-6774(89)90001-1
10.1103/PhysRevE.102.012305
10.7551/mitpress/4643.001.0001
10.1073/pnas.1409770111
10.1103/PhysRevE.70.025101
10.5210/fm.v7i4.941
10.1093/comnet/cnx046
10.1103/PhysRevE.81.046106
10.1088/1742-5468/2015/01/P01001
10.1103/PhysRevE.91.032803
10.1103/PhysRevE.83.016107
10.1073/pnas.0601602103
10.1140/epjb/e2007-00340-y
10.1103/PhysRevE.95.012317
10.1126/science.1073374
10.1103/PhysRevE.102.032309
10.1103/PhysRevX.4.011047
10.1002/1098-2418(200103)18:2%3C116::AID-RSA1001%3E3.0.CO;2-2
10.1038/nature03288
10.1103/PhysRevE.74.016110
10.1093/bioinformatics/btg033
10.1016/j.physrep.2016.09.002
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.2.043271
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_45da26723cb24497af23b5b91aba02b5
10_1103_PhysRevResearch_2_043271
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c441t-a87881c2ebabc94f1bd5ac64f2dbf8b06e6a8652280188dfc6f956b2811c8ef63
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:21:31 EDT 2025
Tue Jul 01 02:05:41 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-a87881c2ebabc94f1bd5ac64f2dbf8b06e6a8652280188dfc6f956b2811c8ef63
ORCID 0000-0002-4505-0517
OpenAccessLink https://doaj.org/article/45da26723cb24497af23b5b91aba02b5
ParticipantIDs doaj_primary_oai_doaj_org_article_45da26723cb24497af23b5b91aba02b5
crossref_citationtrail_10_1103_PhysRevResearch_2_043271
crossref_primary_10_1103_PhysRevResearch_2_043271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-23
PublicationDateYYYYMMDD 2020-11-23
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-23
  day: 23
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2020
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.2.043271Cc2R1
PhysRevResearch.2.043271Cc30R1
PhysRevResearch.2.043271Cc51R1
PhysRevResearch.2.043271Cc4R1
PhysRevResearch.2.043271Cc53R1
PhysRevResearch.2.043271Cc6R1
PhysRevResearch.2.043271Cc34R1
PhysRevResearch.2.043271Cc8R1
PhysRevResearch.2.043271Cc36R1
PhysRevResearch.2.043271Cc57R1
PhysRevResearch.2.043271Cc38R1
PhysRevResearch.2.043271Cc13R1
PhysRevResearch.2.043271Cc11R1
L. A. Adamic (PhysRevResearch.2.043271Cc48R1) 2005
PhysRevResearch.2.043271Cc41R1
PhysRevResearch.2.043271Cc20R1
PhysRevResearch.2.043271Cc22R1
PhysRevResearch.2.043271Cc45R1
PhysRevResearch.2.043271Cc24R1
PhysRevResearch.2.043271Cc19R1
PhysRevResearch.2.043271Cc26R1
PhysRevResearch.2.043271Cc49R1
PhysRevResearch.2.043271Cc17R1
Tiago P. Peixoto (PhysRevResearch.2.043271Cc15R1) 2019
PhysRevResearch.2.043271Cc1R1
PhysRevResearch.2.043271Cc3R1
PhysRevResearch.2.043271Cc5R1
PhysRevResearch.2.043271Cc31R1
PhysRevResearch.2.043271Cc54R1
PhysRevResearch.2.043271Cc33R1
PhysRevResearch.2.043271Cc56R1
PhysRevResearch.2.043271Cc9R1
PhysRevResearch.2.043271Cc35R1
S. Decker (PhysRevResearch.2.043271Cc52R1) 1991
PhysRevResearch.2.043271Cc37R1
PhysRevResearch.2.043271Cc16R1
PhysRevResearch.2.043271Cc28R1
PhysRevResearch.2.043271Cc14R1
PhysRevResearch.2.043271Cc12R1
PhysRevResearch.2.043271Cc10R1
M. A. Porter (PhysRevResearch.2.043271Cc7R1) 2009
C. Fellbaum (PhysRevResearch.2.043271Cc50R1) 1998
PhysRevResearch.2.043271Cc21R1
PhysRevResearch.2.043271Cc23R1
PhysRevResearch.2.043271Cc25R1
PhysRevResearch.2.043271Cc46R1
PhysRevResearch.2.043271Cc18R1
PhysRevResearch.2.043271Cc27R1
PhysRevResearch.2.043271Cc39R1
J. Kunegis (PhysRevResearch.2.043271Cc40R1) 2013
P. D. Grünwald (PhysRevResearch.2.043271Cc29R1) 2007
References_xml – ident: PhysRevResearch.2.043271Cc30R1
  doi: 10.1063/1.1699114
– ident: PhysRevResearch.2.043271Cc21R1
  doi: 10.1103/PhysRevE.94.052315
– volume-title: St. Louis Homicide Project: Local Responses to a National Problem
  year: 1991
  ident: PhysRevResearch.2.043271Cc52R1
– ident: PhysRevResearch.2.043271Cc16R1
  doi: 10.1007/BF02579448
– ident: PhysRevResearch.2.043271Cc49R1
  doi: 10.1038/35075138
– ident: PhysRevResearch.2.043271Cc19R1
  doi: 10.1073/pnas.0605965104
– ident: PhysRevResearch.2.043271Cc1R1
  doi: 10.1016/j.physrep.2009.11.002
– ident: PhysRevResearch.2.043271Cc57R1
  doi: 10.1103/PhysRevLett.115.088701
– ident: PhysRevResearch.2.043271Cc35R1
  doi: 10.1103/PhysRevE.84.066122
– ident: PhysRevResearch.2.043271Cc51R1
  doi: 10.1145/1217299.1217301
– ident: PhysRevResearch.2.043271Cc56R1
  doi: 10.1038/ncomms1063
– ident: PhysRevResearch.2.043271Cc33R1
  doi: 10.1088/1367-2630/10/5/053039
– ident: PhysRevResearch.2.043271Cc38R1
  doi: 10.1103/PhysRevLett.110.148701
– volume-title: Proceedings of the 22nd International Conference on World Wide Web
  year: 2013
  ident: PhysRevResearch.2.043271Cc40R1
– ident: PhysRevResearch.2.043271Cc22R1
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: PhysRevResearch.2.043271Cc37R1
  doi: 10.1103/PhysRevE.84.066106
– ident: PhysRevResearch.2.043271Cc14R1
  doi: 10.1016/j.endm.2013.07.063
– volume-title: WordNet: An Electronic Lexical Database
  year: 1998
  ident: PhysRevResearch.2.043271Cc50R1
  doi: 10.7551/mitpress/7287.001.0001
– ident: PhysRevResearch.2.043271Cc41R1
  doi: 10.1073/pnas.122653799
– ident: PhysRevResearch.2.043271Cc34R1
  doi: 10.1103/PhysRevE.80.016109
– volume-title: Proceedings of the 3rd International Workshop on Link Discovery
  year: 2005
  ident: PhysRevResearch.2.043271Cc48R1
– ident: PhysRevResearch.2.043271Cc13R1
  doi: 10.1103/PhysRevE.85.066118
– ident: PhysRevResearch.2.043271Cc31R1
  doi: 10.1093/biomet/57.1.97
– ident: PhysRevResearch.2.043271Cc3R1
  doi: 10.1016/0378-8733(87)90015-3
– ident: PhysRevResearch.2.043271Cc46R1
  doi: 10.1007/s00265-003-0651-y
– ident: PhysRevResearch.2.043271Cc6R1
  doi: 10.1038/nphys2162
– ident: PhysRevResearch.2.043271Cc28R1
  doi: 10.1109/TKDE.2019.2911585
– ident: PhysRevResearch.2.043271Cc17R1
  doi: 10.1016/0196-6774(89)90001-1
– ident: PhysRevResearch.2.043271Cc23R1
  doi: 10.1103/PhysRevE.102.012305
– volume-title: The Minimum Description Length Principle
  year: 2007
  ident: PhysRevResearch.2.043271Cc29R1
  doi: 10.7551/mitpress/4643.001.0001
– ident: PhysRevResearch.2.043271Cc20R1
  doi: 10.1073/pnas.1409770111
– ident: PhysRevResearch.2.043271Cc11R1
  doi: 10.1103/PhysRevE.70.025101
– ident: PhysRevResearch.2.043271Cc45R1
  doi: 10.5210/fm.v7i4.941
– ident: PhysRevResearch.2.043271Cc12R1
  doi: 10.1093/comnet/cnx046
– ident: PhysRevResearch.2.043271Cc27R1
  doi: 10.1103/PhysRevE.81.046106
– ident: PhysRevResearch.2.043271Cc36R1
  doi: 10.1088/1742-5468/2015/01/P01001
– ident: PhysRevResearch.2.043271Cc54R1
  doi: 10.1103/PhysRevE.91.032803
– volume-title: Communities in Networks
  year: 2009
  ident: PhysRevResearch.2.043271Cc7R1
– ident: PhysRevResearch.2.043271Cc5R1
  doi: 10.1103/PhysRevE.83.016107
– volume-title: Advances in Network Clustering and Blockmodeling
  year: 2019
  ident: PhysRevResearch.2.043271Cc15R1
– ident: PhysRevResearch.2.043271Cc25R1
  doi: 10.1073/pnas.0601602103
– ident: PhysRevResearch.2.043271Cc4R1
  doi: 10.1140/epjb/e2007-00340-y
– ident: PhysRevResearch.2.043271Cc24R1
  doi: 10.1103/PhysRevE.95.012317
– ident: PhysRevResearch.2.043271Cc9R1
  doi: 10.1126/science.1073374
– ident: PhysRevResearch.2.043271Cc53R1
  doi: 10.1103/PhysRevE.102.032309
– ident: PhysRevResearch.2.043271Cc39R1
  doi: 10.1103/PhysRevX.4.011047
– ident: PhysRevResearch.2.043271Cc18R1
  doi: 10.1002/1098-2418(200103)18:2%3C116::AID-RSA1001%3E3.0.CO;2-2
– ident: PhysRevResearch.2.043271Cc8R1
  doi: 10.1038/nature03288
– ident: PhysRevResearch.2.043271Cc26R1
  doi: 10.1103/PhysRevE.74.016110
– ident: PhysRevResearch.2.043271Cc10R1
  doi: 10.1093/bioinformatics/btg033
– ident: PhysRevResearch.2.043271Cc2R1
  doi: 10.1016/j.physrep.2016.09.002
SSID ssj0002511485
Score 2.375929
Snippet We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 043271
Title Statistical inference of assortative community structures
URI https://doaj.org/article/45da26723cb24497af23b5b91aba02b5
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wv9uB1202yeR1VLEWoB7HQ25InCNIK1oIXf7uTZLdUL3rwsoclWXa_WWa-SSbfIHSlrHKSCV1yiI1lXGMotXTgDLETRILTDCGuQ04e-Hha38_YbKPVV6wJy_LAGbhhzZwmXBBqDUQiJXQg1DCjsDa6Iiapl0LM20imog-OxLmWrCvdqegwFlQ--lVXzzYggyhGJ_C3eLQh25_iy2gP7bbEsLjOL7SPtvz8AG2nAk37dohUZIVJVBkGPXen9IpFKID9LtKG-soXNh_3WH4UWRf2HZLpIzQd3T3djsu27UFpgZssAaso8W6JN9pYVQdsHNOW14E4E6SpuOdachZ1bLCULlgeIMkxgCy20gdOj1Fvvpj7E1T4JD9HhXK1rLVXSivFXKhsFRwlpuoj0X18Y1tN8Nia4qVJuUFFmx-wNaTJsPURXs98zboYf5hzE_Fdj4_K1ukG2Ltp7d38Zu_T_3jIGdohMW_GuCT0HPXAJP4CyMXSXKb_CK6Tz7svRl7QZw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+of+assortative+community+structures&rft.jtitle=Physical+review+research&rft.au=Zhang%2C+Lizhi&rft.au=Peixoto%2C+Tiago+P.&rft.date=2020-11-23&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevResearch.2.043271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_2_043271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon