Statistical inference of assortative community structures
We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modular...
Saved in:
Published in | Physical review research Vol. 2; no. 4; p. 043271 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
23.11.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modularity maximization, which systematically overfits both in artificial as well as in empirical examples. In addition, we show that our method is not subject to an appreciable resolution limit, and can uncover an arbitrarily large number of communities, as long as there is statistical evidence for them. Our formulation is amenable to model selection procedures, which allow us to compare it to more general approaches based on the stochastic block model, and in this way reveal whether assortativity is in fact the dominating large-scale mixing pattern. We perform this comparison with several empirical networks and identify numerous cases where the network's assortativity is exaggerated by traditional community detection methods, and we show how a more faithful degree of assortativity can be identified. |
---|---|
AbstractList | We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model. We show that this approach succeeds in finding statistically significant assortative modules in networks, unlike alternatives such as modularity maximization, which systematically overfits both in artificial as well as in empirical examples. In addition, we show that our method is not subject to an appreciable resolution limit, and can uncover an arbitrarily large number of communities, as long as there is statistical evidence for them. Our formulation is amenable to model selection procedures, which allow us to compare it to more general approaches based on the stochastic block model, and in this way reveal whether assortativity is in fact the dominating large-scale mixing pattern. We perform this comparison with several empirical networks and identify numerous cases where the network's assortativity is exaggerated by traditional community detection methods, and we show how a more faithful degree of assortativity can be identified. |
ArticleNumber | 043271 |
Author | Zhang, Lizhi Peixoto, Tiago P. |
Author_xml | – sequence: 1 givenname: Lizhi surname: Zhang fullname: Zhang, Lizhi – sequence: 2 givenname: Tiago P. orcidid: 0000-0002-4505-0517 surname: Peixoto fullname: Peixoto, Tiago P. |
BookMark | eNqFkNtKAzEQhoNUsNa-w77A1iSbZLM3ghQPhYJS9TpMsolN2W4kSQt9e3tQkN54NcMM8_HPd40GfegtQgXBE0Jwdfu63KWF3S5sshDNckInmFW0JhdoSAWrSsIFG_zpr9A4pRXGmHJCmORD1LxlyD5lb6ArfO9stL2xRXAFpBTiYbm1hQnr9ab3eVekHDcmb6JNN-jSQZfs-KeO0Mfjw_v0uZy_PM2m9_PSMEZyCbKWkhhqNWjTMEd0y8EI5mirndRYWAFScEolJlK2zgjXcKGpJMRI60Q1QrMTtw2wUl_RryHuVACvjoMQPxXEff7OKsZboKKmldGUsaYGRyvNdUNAA6aa71l3J5aJIaVonTL-8GLocwTfKYLVwas686qoOnndA-QZ4DfQv6ffeYSG-w |
CitedBy_id | crossref_primary_10_1016_j_chaos_2024_114849 crossref_primary_10_1103_PhysRevResearch_6_013170 crossref_primary_10_1007_s10816_023_09625_6 crossref_primary_10_1186_s12859_021_04489_7 crossref_primary_10_1016_j_physrep_2021_10_005 crossref_primary_10_1038_s41598_022_19181_w crossref_primary_10_1177_09717218231160441 crossref_primary_10_1103_PhysRevE_104_054309 crossref_primary_10_1103_PhysRevE_108_054308 crossref_primary_10_1016_j_neucom_2022_09_013 crossref_primary_10_1007_s11077_024_09553_6 crossref_primary_10_1016_j_aei_2024_102594 crossref_primary_10_1016_j_heliyon_2024_e32968 crossref_primary_10_1007_s10936_024_10059_8 crossref_primary_10_1073_pnas_2320177121 crossref_primary_10_1016_j_ocecoaman_2024_107351 crossref_primary_10_1016_j_jtrangeo_2023_103619 crossref_primary_10_1080_10618600_2024_2409789 crossref_primary_10_3390_bioengineering11121284 crossref_primary_10_1103_PhysRevResearch_4_043117 crossref_primary_10_1038_s41598_022_20142_6 crossref_primary_10_1093_bioinformatics_btae300 crossref_primary_10_1016_j_gpb_2022_09_011 crossref_primary_10_1016_j_ocecoaman_2024_107102 crossref_primary_10_1016_j_poetic_2024_101947 crossref_primary_10_1016_j_apenergy_2024_122854 crossref_primary_10_1371_journal_pcbi_1012300 crossref_primary_10_1007_s42001_025_00372_0 crossref_primary_10_1103_PhysRevE_110_044315 crossref_primary_10_1038_s42005_024_01819_y crossref_primary_10_1103_PhysRevE_108_024309 crossref_primary_10_1126_sciadv_abh1303 crossref_primary_10_1002_pra2_731 crossref_primary_10_1103_PhysRevResearch_6_033307 crossref_primary_10_1007_s13278_024_01312_y |
Cites_doi | 10.1063/1.1699114 10.1103/PhysRevE.94.052315 10.1007/BF02579448 10.1038/35075138 10.1073/pnas.0605965104 10.1016/j.physrep.2009.11.002 10.1103/PhysRevLett.115.088701 10.1103/PhysRevE.84.066122 10.1145/1217299.1217301 10.1038/ncomms1063 10.1088/1367-2630/10/5/053039 10.1103/PhysRevLett.110.148701 10.1088/1742-5468/2008/10/P10008 10.1103/PhysRevE.84.066106 10.1016/j.endm.2013.07.063 10.7551/mitpress/7287.001.0001 10.1073/pnas.122653799 10.1103/PhysRevE.80.016109 10.1103/PhysRevE.85.066118 10.1093/biomet/57.1.97 10.1016/0378-8733(87)90015-3 10.1007/s00265-003-0651-y 10.1038/nphys2162 10.1109/TKDE.2019.2911585 10.1016/0196-6774(89)90001-1 10.1103/PhysRevE.102.012305 10.7551/mitpress/4643.001.0001 10.1073/pnas.1409770111 10.1103/PhysRevE.70.025101 10.5210/fm.v7i4.941 10.1093/comnet/cnx046 10.1103/PhysRevE.81.046106 10.1088/1742-5468/2015/01/P01001 10.1103/PhysRevE.91.032803 10.1103/PhysRevE.83.016107 10.1073/pnas.0601602103 10.1140/epjb/e2007-00340-y 10.1103/PhysRevE.95.012317 10.1126/science.1073374 10.1103/PhysRevE.102.032309 10.1103/PhysRevX.4.011047 10.1002/1098-2418(200103)18:2%3C116::AID-RSA1001%3E3.0.CO;2-2 10.1038/nature03288 10.1103/PhysRevE.74.016110 10.1093/bioinformatics/btg033 10.1016/j.physrep.2016.09.002 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.2.043271 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_45da26723cb24497af23b5b91aba02b5 10_1103_PhysRevResearch_2_043271 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c441t-a87881c2ebabc94f1bd5ac64f2dbf8b06e6a8652280188dfc6f956b2811c8ef63 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:21:31 EDT 2025 Tue Jul 01 02:05:41 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-a87881c2ebabc94f1bd5ac64f2dbf8b06e6a8652280188dfc6f956b2811c8ef63 |
ORCID | 0000-0002-4505-0517 |
OpenAccessLink | https://doaj.org/article/45da26723cb24497af23b5b91aba02b5 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_45da26723cb24497af23b5b91aba02b5 crossref_citationtrail_10_1103_PhysRevResearch_2_043271 crossref_primary_10_1103_PhysRevResearch_2_043271 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-23 |
PublicationDateYYYYMMDD | 2020-11-23 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2020 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.2.043271Cc2R1 PhysRevResearch.2.043271Cc30R1 PhysRevResearch.2.043271Cc51R1 PhysRevResearch.2.043271Cc4R1 PhysRevResearch.2.043271Cc53R1 PhysRevResearch.2.043271Cc6R1 PhysRevResearch.2.043271Cc34R1 PhysRevResearch.2.043271Cc8R1 PhysRevResearch.2.043271Cc36R1 PhysRevResearch.2.043271Cc57R1 PhysRevResearch.2.043271Cc38R1 PhysRevResearch.2.043271Cc13R1 PhysRevResearch.2.043271Cc11R1 L. A. Adamic (PhysRevResearch.2.043271Cc48R1) 2005 PhysRevResearch.2.043271Cc41R1 PhysRevResearch.2.043271Cc20R1 PhysRevResearch.2.043271Cc22R1 PhysRevResearch.2.043271Cc45R1 PhysRevResearch.2.043271Cc24R1 PhysRevResearch.2.043271Cc19R1 PhysRevResearch.2.043271Cc26R1 PhysRevResearch.2.043271Cc49R1 PhysRevResearch.2.043271Cc17R1 Tiago P. Peixoto (PhysRevResearch.2.043271Cc15R1) 2019 PhysRevResearch.2.043271Cc1R1 PhysRevResearch.2.043271Cc3R1 PhysRevResearch.2.043271Cc5R1 PhysRevResearch.2.043271Cc31R1 PhysRevResearch.2.043271Cc54R1 PhysRevResearch.2.043271Cc33R1 PhysRevResearch.2.043271Cc56R1 PhysRevResearch.2.043271Cc9R1 PhysRevResearch.2.043271Cc35R1 S. Decker (PhysRevResearch.2.043271Cc52R1) 1991 PhysRevResearch.2.043271Cc37R1 PhysRevResearch.2.043271Cc16R1 PhysRevResearch.2.043271Cc28R1 PhysRevResearch.2.043271Cc14R1 PhysRevResearch.2.043271Cc12R1 PhysRevResearch.2.043271Cc10R1 M. A. Porter (PhysRevResearch.2.043271Cc7R1) 2009 C. Fellbaum (PhysRevResearch.2.043271Cc50R1) 1998 PhysRevResearch.2.043271Cc21R1 PhysRevResearch.2.043271Cc23R1 PhysRevResearch.2.043271Cc25R1 PhysRevResearch.2.043271Cc46R1 PhysRevResearch.2.043271Cc18R1 PhysRevResearch.2.043271Cc27R1 PhysRevResearch.2.043271Cc39R1 J. Kunegis (PhysRevResearch.2.043271Cc40R1) 2013 P. D. Grünwald (PhysRevResearch.2.043271Cc29R1) 2007 |
References_xml | – ident: PhysRevResearch.2.043271Cc30R1 doi: 10.1063/1.1699114 – ident: PhysRevResearch.2.043271Cc21R1 doi: 10.1103/PhysRevE.94.052315 – volume-title: St. Louis Homicide Project: Local Responses to a National Problem year: 1991 ident: PhysRevResearch.2.043271Cc52R1 – ident: PhysRevResearch.2.043271Cc16R1 doi: 10.1007/BF02579448 – ident: PhysRevResearch.2.043271Cc49R1 doi: 10.1038/35075138 – ident: PhysRevResearch.2.043271Cc19R1 doi: 10.1073/pnas.0605965104 – ident: PhysRevResearch.2.043271Cc1R1 doi: 10.1016/j.physrep.2009.11.002 – ident: PhysRevResearch.2.043271Cc57R1 doi: 10.1103/PhysRevLett.115.088701 – ident: PhysRevResearch.2.043271Cc35R1 doi: 10.1103/PhysRevE.84.066122 – ident: PhysRevResearch.2.043271Cc51R1 doi: 10.1145/1217299.1217301 – ident: PhysRevResearch.2.043271Cc56R1 doi: 10.1038/ncomms1063 – ident: PhysRevResearch.2.043271Cc33R1 doi: 10.1088/1367-2630/10/5/053039 – ident: PhysRevResearch.2.043271Cc38R1 doi: 10.1103/PhysRevLett.110.148701 – volume-title: Proceedings of the 22nd International Conference on World Wide Web year: 2013 ident: PhysRevResearch.2.043271Cc40R1 – ident: PhysRevResearch.2.043271Cc22R1 doi: 10.1088/1742-5468/2008/10/P10008 – ident: PhysRevResearch.2.043271Cc37R1 doi: 10.1103/PhysRevE.84.066106 – ident: PhysRevResearch.2.043271Cc14R1 doi: 10.1016/j.endm.2013.07.063 – volume-title: WordNet: An Electronic Lexical Database year: 1998 ident: PhysRevResearch.2.043271Cc50R1 doi: 10.7551/mitpress/7287.001.0001 – ident: PhysRevResearch.2.043271Cc41R1 doi: 10.1073/pnas.122653799 – ident: PhysRevResearch.2.043271Cc34R1 doi: 10.1103/PhysRevE.80.016109 – volume-title: Proceedings of the 3rd International Workshop on Link Discovery year: 2005 ident: PhysRevResearch.2.043271Cc48R1 – ident: PhysRevResearch.2.043271Cc13R1 doi: 10.1103/PhysRevE.85.066118 – ident: PhysRevResearch.2.043271Cc31R1 doi: 10.1093/biomet/57.1.97 – ident: PhysRevResearch.2.043271Cc3R1 doi: 10.1016/0378-8733(87)90015-3 – ident: PhysRevResearch.2.043271Cc46R1 doi: 10.1007/s00265-003-0651-y – ident: PhysRevResearch.2.043271Cc6R1 doi: 10.1038/nphys2162 – ident: PhysRevResearch.2.043271Cc28R1 doi: 10.1109/TKDE.2019.2911585 – ident: PhysRevResearch.2.043271Cc17R1 doi: 10.1016/0196-6774(89)90001-1 – ident: PhysRevResearch.2.043271Cc23R1 doi: 10.1103/PhysRevE.102.012305 – volume-title: The Minimum Description Length Principle year: 2007 ident: PhysRevResearch.2.043271Cc29R1 doi: 10.7551/mitpress/4643.001.0001 – ident: PhysRevResearch.2.043271Cc20R1 doi: 10.1073/pnas.1409770111 – ident: PhysRevResearch.2.043271Cc11R1 doi: 10.1103/PhysRevE.70.025101 – ident: PhysRevResearch.2.043271Cc45R1 doi: 10.5210/fm.v7i4.941 – ident: PhysRevResearch.2.043271Cc12R1 doi: 10.1093/comnet/cnx046 – ident: PhysRevResearch.2.043271Cc27R1 doi: 10.1103/PhysRevE.81.046106 – ident: PhysRevResearch.2.043271Cc36R1 doi: 10.1088/1742-5468/2015/01/P01001 – ident: PhysRevResearch.2.043271Cc54R1 doi: 10.1103/PhysRevE.91.032803 – volume-title: Communities in Networks year: 2009 ident: PhysRevResearch.2.043271Cc7R1 – ident: PhysRevResearch.2.043271Cc5R1 doi: 10.1103/PhysRevE.83.016107 – volume-title: Advances in Network Clustering and Blockmodeling year: 2019 ident: PhysRevResearch.2.043271Cc15R1 – ident: PhysRevResearch.2.043271Cc25R1 doi: 10.1073/pnas.0601602103 – ident: PhysRevResearch.2.043271Cc4R1 doi: 10.1140/epjb/e2007-00340-y – ident: PhysRevResearch.2.043271Cc24R1 doi: 10.1103/PhysRevE.95.012317 – ident: PhysRevResearch.2.043271Cc9R1 doi: 10.1126/science.1073374 – ident: PhysRevResearch.2.043271Cc53R1 doi: 10.1103/PhysRevE.102.032309 – ident: PhysRevResearch.2.043271Cc39R1 doi: 10.1103/PhysRevX.4.011047 – ident: PhysRevResearch.2.043271Cc18R1 doi: 10.1002/1098-2418(200103)18:2%3C116::AID-RSA1001%3E3.0.CO;2-2 – ident: PhysRevResearch.2.043271Cc8R1 doi: 10.1038/nature03288 – ident: PhysRevResearch.2.043271Cc26R1 doi: 10.1103/PhysRevE.74.016110 – ident: PhysRevResearch.2.043271Cc10R1 doi: 10.1093/bioinformatics/btg033 – ident: PhysRevResearch.2.043271Cc2R1 doi: 10.1016/j.physrep.2016.09.002 |
SSID | ssj0002511485 |
Score | 2.375929 |
Snippet | We develop a principled methodology to infer assortative communities in networks based on a nonparametric Bayesian formulation of the planted partition model.... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 043271 |
Title | Statistical inference of assortative community structures |
URI | https://doaj.org/article/45da26723cb24497af23b5b91aba02b5 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELyIT6wv9uB1202yeR1VLEWoB7HQ25InCNIK1oIXf7uTZLdUL3rwsoclWXa_WWa-SSbfIHSlrHKSCV1yiI1lXGMotXTgDLETRILTDCGuQ04e-Hha38_YbKPVV6wJy_LAGbhhzZwmXBBqDUQiJXQg1DCjsDa6Iiapl0LM20imog-OxLmWrCvdqegwFlQ--lVXzzYggyhGJ_C3eLQh25_iy2gP7bbEsLjOL7SPtvz8AG2nAk37dohUZIVJVBkGPXen9IpFKID9LtKG-soXNh_3WH4UWRf2HZLpIzQd3T3djsu27UFpgZssAaso8W6JN9pYVQdsHNOW14E4E6SpuOdachZ1bLCULlgeIMkxgCy20gdOj1Fvvpj7E1T4JD9HhXK1rLVXSivFXKhsFRwlpuoj0X18Y1tN8Nia4qVJuUFFmx-wNaTJsPURXs98zboYf5hzE_Fdj4_K1ukG2Ltp7d38Zu_T_3jIGdohMW_GuCT0HPXAJP4CyMXSXKb_CK6Tz7svRl7QZw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+inference+of+assortative+community+structures&rft.jtitle=Physical+review+research&rft.au=Zhang%2C+Lizhi&rft.au=Peixoto%2C+Tiago+P.&rft.date=2020-11-23&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=2&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevResearch.2.043271&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_2_043271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |