In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply
Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]...
Saved in:
Published in | Plant and soil Vol. 465; no. 1/2; pp. 31 - 46 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer Science + Business Media
01.08.2021
Springer International Publishing Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aims
Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear.
Methods
We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates.
Results
For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R
2
= 0.36) and [Zn] (R
2
= 0.22), like leaf [Mn] (R
2
= 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R
2
= 0.59, 0.59, 0.54, 0.72) than severely low P (R
2
= 0.39, 0.28, 0.20, 0.36) or sufficient P (R
2
= 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments.
Conclusions
In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. |
---|---|
AbstractList | Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R.sup.2 = 0.36) and [Zn] (R.sup.2 = 0.22), like leaf [Mn] (R.sup.2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R.sup.2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R.sup.2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R.sup.2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. AIMS: Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. METHODS: We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. RESULTS: For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R² = 0.36) and [Zn] (R² = 0.22), like leaf [Mn] (R² = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R² = 0.59, 0.59, 0.54, 0.72) than severely low P (R² = 0.39, 0.28, 0.20, 0.36) or sufficient P (R² = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. CONCLUSIONS: In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. Methods We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. Results For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R.sup.2 = 0.36) and [Zn] (R.sup.2 = 0.22), like leaf [Mn] (R.sup.2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R.sup.2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R.sup.2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R.sup.2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. Conclusions In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. Methods We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. Results For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R 2 = 0.36) and [Zn] (R 2 = 0.22), like leaf [Mn] (R 2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R 2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R 2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R 2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. Conclusions In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. AimsPlants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear.MethodsWe grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates.ResultsFor 100 genotypes grown in river sand with low P supply, leaf [Fe] (R2 = 0.36) and [Zn] (R2 = 0.22), like leaf [Mn] (R2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments.ConclusionsIn addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils. |
Audience | Academic |
Author | Wen, Zhihui Lambers, Hans Shen, Jianbo Pang, Jiayin Ryan, Megan H. Siddique, Kadambot H. M. |
Author_xml | – sequence: 1 givenname: Zhihui surname: Wen fullname: Wen, Zhihui – sequence: 2 givenname: Jiayin surname: Pang fullname: Pang, Jiayin – sequence: 3 givenname: Megan H. surname: Ryan fullname: Ryan, Megan H. – sequence: 4 givenname: Jianbo surname: Shen fullname: Shen, Jianbo – sequence: 5 givenname: Kadambot H. M. surname: Siddique fullname: Siddique, Kadambot H. M. – sequence: 6 givenname: Hans surname: Lambers fullname: Lambers, Hans |
BookMark | eNp9kt1qFDEUxwep4Lb6AoIQ8MYLp-ZjJplclqK1UPBGwbuQTU52s84mYzJTu32QPq-ZjlgsUkI4JPn9z1fOcXUUYoCqek3wKcFYfMiEENzUmJIaN7LravmsWpFWsLrFjB9VK4wZrbGQ319Uxznv8HwmfFXdXQakrfWjjwGNEbnYe53QXoeNDpABmRgMhDHpmXiP1nHcIp8KrINFtz4YNKR47S3M9sZDLi4SSlt_G_MWdKGNTut4c-j1WB59QGbrzY8BNJqChYT6-AsN25jLTlNGeRqG_vCyeu50n-HVH3tSffv08ev55_rqy8Xl-dlVbZqGjLV0IBzjmq-JxcLIxrXACbfAnNWSCMmcBKs1J0KDptSsMZaGAZaCgmWOnVTvFr8l-Z8T5FHtfTbQ96X4OGVFOeMd7TrSFPTtI3QXpxRKdoq2HDcdF1I8UBvdg_LBxdI6MztVZ1wQyWjb4UKd_ocqy8Lel46D8-X-HwFdBCbFnBM4NSS_1-mgCFbzBKhlAlSZAHU_AUoWUfdIZPx4_48lmu-flrJFmkucsIH0UOyTqjeLapfHmP6mSAWVrGUN-w0tNtOZ |
CitedBy_id | crossref_primary_10_1007_s11104_024_06783_8 crossref_primary_10_1111_1365_2435_14629 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1111_nph_17854 crossref_primary_10_3389_fmicb_2022_972587 crossref_primary_10_1111_nph_19082 crossref_primary_10_3390_f15030515 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1007_s11356_024_31837_w crossref_primary_10_1007_s13593_023_00916_6 crossref_primary_10_3390_agronomy14102368 crossref_primary_10_1038_s41598_022_23107_x |
Cites_doi | 10.1023/B:PLSO.0000035568.28893.f6 10.3389/fpls.2016.01939 10.1007/BF02374754 10.1023/a:1022304332313 10.3389/fpls.2016.01776 10.1007/s00442-017-3961-x 10.1023/a:1016311118034 10.1093/aob/mcl114 10.1093/jxb/erx465 10.1073/pnas.0804175105 10.1016/S0065-2113(02)77015-6 10.1071/Fp04084 10.1016/j.tplants.2015.12.005 10.1016/j.tree.2020.08.007 10.1007/s11104-007-9535-7 10.1111/j.1469-8137.2004.01070.x 10.1016/j.pbi.2009.04.008 10.1111/nph.13613 10.1016/j.rhisph.2018.06.004 10.1023/A:1022367312851 10.1111/1365-2435.13562 10.1007/BF02184546 10.1007/s11104-017-3534-0 10.1007/s11104-006-0064-6 10.1007/BF02374894 10.1111/nph.15200 10.1007/bf02374724 10.1016/B978-0-12-384905-2.00003-0 10.1007/s11104-017-3213-1 10.1104/pp.111.175232 10.1023/A:1004356007312 10.1007/s11104-017-3358-y 10.3390/agronomy10111716 10.1016/j.pbi.2013.01.003 10.1111/gfs.12006 10.1104/pp.111.183947 10.1111/jen.12056 10.1111/nph.13175 10.3389/fpls.2014.00106 10.1111/nph.15833 10.1080/00103628009367104 10.1111/j.1399-3054.1983.tb04167.x 10.1023/A:1020809400075 10.3389/fpls.2021.636056 10.1111/j.1438-8677.1995.tb00850.x 10.1111/nph.14477 10.1016/s0021-9673(03)01129-4 10.1111/nph.16499 10.1046/j.1365-2389.1998.4930447.x 10.1111/j.1365-3040.1989.tb01942.x 10.1016/j.plaphy.2011.08.012 10.1007/s11104-019-03972-8 10.1111/j.1469-8137.2006.01897.x 10.1016/bs.agron.2020.05.003 10.1007/s11104-012-1311-7 10.1016/j.tplants.2014.10.007 10.1016/B978-0-12-384905-2.00002-9 10.3389/fpls.2013.00374 10.1111/1365-2745.12196 10.1111/j.1399-3054.2005.00527.x 10.1007/bf02374894 10.1007/s10886-010-9748-8 10.1007/s11104-005-0140-3 10.2136/sssaj1978.03615995004200030009x 10.1111/pce.13762 10.1007/s11104-017-3232-y 10.1007/s11104-020-04690-2 10.1111/nph.17344 10.1016/S0065-2113(08)60887-1 10.1007/s11104-009-9953-9 10.1016/j.pbi.2017.06.014 10.1023/A:1004380832118 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 COPYRIGHT 2021 Springer The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: COPYRIGHT 2021 Springer – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-021-04988-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 46 |
ExternalDocumentID | A671932580 10_1007_s11104_021_04988_9 27293534 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFD0200200 – fundername: Chinese Scholarship Council grantid: 201706350205 – fundername: Australian Research Council Linkage Projects grantid: LP200100341 – fundername: National Natural Science Foundation of China grantid: 31772402; 31330070 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program) (CN) grantid: 2016YFE0101100 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JLS JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 2~F 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABBHK ABQSL ABULA ABXSQ ACBXY ACHIC ACKIV ADINQ ADULT ADYPR AEBTG AEFIE AEKMD AEUPB AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW AQVQM BBWZM BDATZ CAG COF DATOO EJD EN4 FINBP FSGXE GQ6 H13 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SA0 SBY SCLPG T16 TEORI UZXMN VFIZW WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION AEIIB PMFND 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-9fe7f36a6b1d07c94f5e616de3fda91793f9edaa617aea22cb009c3e0972ed3f3 |
IEDL.DBID | BENPR |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 00:56:11 EDT 2025 Wed Aug 13 05:56:02 EDT 2025 Tue Jun 17 21:40:46 EDT 2025 Tue Jun 10 20:33:57 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Tue Jul 01 01:47:13 EDT 2025 Fri Feb 21 02:47:42 EST 2025 Thu Jun 19 20:04:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Organic anions Phosphorus mobilisation Phosphorus acquisition Leaf micronutrients Carboxylate exudation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-9fe7f36a6b1d07c94f5e616de3fda91793f9edaa617aea22cb009c3e0972ed3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8127-645X |
PQID | 2560486797 |
PQPubID | 54098 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636828814 proquest_journals_2560486797 gale_infotracmisc_A671932580 gale_infotracacademiconefile_A671932580 crossref_primary_10_1007_s11104_021_04988_9 crossref_citationtrail_10_1007_s11104_021_04988_9 springer_journals_10_1007_s11104_021_04988_9 jstor_primary_27293534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210801 20210800 2021-08-00 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210801 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2021 |
Publisher | Springer Science + Business Media Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Zhang, Zhang, Tang, Li, Zhang, Rengel, Whalley, Davies, Shen (CR71) 2016; 209 Oburger, Jones (CR39) 2018; 6 Epstein, Bloom (CR10) 2005 CR38 CR37 Shane, Lambers (CR50) 2005; 124 Prescott, Grayston, Helmisaari, Kaštovská, Körner, Lambers, Meier, Millard, Ostonen (CR45) 2020; 35 Oliveira, Galvao, de Campos, Eller, Pearse, Lambers (CR41) 2015; 205 CR31 Devi, Rao, Sharma, Sharma (CR7) 2014; 138 Saarnio, Wittenmayer, Merbach (CR48) 2004; 267 Sadras, Alston, Aphalo, Connor, Denison, Fischer, Gray, Hayman, Kirkegaard, Kirchmann, Kropff, Lafitte, Langridge, Lenne, Mínguez, Passioura, Porter, Reeves, Rodriguez, Ryan, Villalobos, Wood (CR49) 2020; 163 Lambers, Hayes, Laliberte, Oliveira, Turner (CR30) 2015; 20 Wang, Lambers (CR62) 2019; 447 Wen, Li, Shen, Tang, Xiong, Li, Pang, Ryan, Lambers, Shen (CR63) 2019; 223 Pang, Bansal, Zhao, Bohuon, Lambers, Ryan, Ranathunge, Siddique (CR43) 2018; 219 Dakora, Phillips (CR4) 2002; 245 Gardner, Parbery, Barber (CR14) 1982; 68 Leitenmaier, Küpper (CR32) 2013; 4 Lyu, Tang, Li, Zhang, Rengel, Whalley, Shen (CR35) 2016; 7 Tian, Lu, Labavitch, Yang, He, Hu, Sarangi, Newville, Commisso, Brown (CR58) 2011; 157 Andresen, Peiter, Kupper (CR1) 2018; 69 Dinkelaker, Römheld, Marschner (CR8) 1989; 12 Zhang, Zou, Chen, Liu, Liu, Yang, Deng, Chen (CR73) 2020; 10 Haldar, Mandal (CR17) 1981; 59 Wouterlood, Cawthray, Turner, Lambers, Veneklaas (CR68) 2004; 261 CR5 Stevenson, D'Cunha, Grzywacz (CR54) 2010; 36 White, Marschner (CR65) 2012 Touchton, Johnson, Cunfer (CR59) 1980; 11 Koundal, Sinha (CR28) 1983; 58 CR47 Wouterlood, Lambers, Veneklaas (CR69) 2005; 32 Suriyagoda, Lambers, Renton, Ryan (CR56) 2012; 358 Lambers, Shane, Cramer, Pearse, Veneklaas (CR29) 2006; 98 Wen, Pang, Tueux, Liu, Shen, Ryan, Lambers, Siddique (CR64) 2020; 34 Baxter, Vitek, Lahner, Muthukumar, Borghi, Morrissey, Guerinot, Salt (CR2) 2008; 105 Gardner, Barber, Parbery (CR15) 1983; 70 Cawthray (CR3) 2003; 1011 Dinkelaker, Hengeler, Marschner (CR9) 1995; 108 Thomine, Vert (CR57) 2013; 16 Fageria, Baligar, Clark (CR11) 2002; 77 Zhang, Chen, Liu, Liu, Chen, Zou (CR72) 2017; 413 Mimmo, Hann, Jaitz, Cesco, Gessa, Puschenreiter (CR36) 2011; 49 Wouterlood, Cawthray, Scanlon, Lambers, Veneklaas (CR67) 2004; 162 Huang, Hayes, Ryan, Pang, Lambers (CR20) 2017; 185 CR16 Pang, Ryan, Siddique, Simpson (CR42) 2017; 418 White, Marschner (CR66) 2012 Hayes, Turner, Lambers, Laliberté (CR18) 2014; 102 Sun, Zhou, Jin (CR55) 2006; 285 Jones, Dennis, Owen, van Hees (CR25) 2003; 248 Lindsay, Norvell (CR33) 1978; 42 Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (CR52) 2011; 156 Zhou, Du, Ahmed, Liu, Ren, Liu, Yang (CR74) 2016; 7 Delgado, Zúñiga-Feest, Reyes-Díaz, Barra, Ruiz, Bertin-Benavides, Valle, Pereira, Lambers (CR6) 2021; 12 Jones, Brassington (CR24) 1998; 49 Kidd, Ryan, Hahne, Haling, Lambers, Sandral, Simpson, Cawthray (CR27) 2018; 424 Yu, Li, Xiao, Lambers, Li (CR70) 2020; 226 Shane, Lambers, Cawthray, Kuhn, Schurr (CR51) 2008; 304 Oburger, Schmidt (CR40) 2016; 21 He, Fan, Zhu, Guan, Liu, Zhang, Jin (CR19) 2017; 416 Lindström, Frankow-Lindberg, Dahlin, Wivstad, Watson (CR34) 2013; 68 Jones (CR23) 1998; 205 Gardner, Boundy (CR12) 1983; 70 CR22 Pearse, Veneklaas, Cawthray, Bolland, Lambers (CR44) 2007; 173 CR21 Karagiannidis, Hadjisavva-Zinoviadi (CR26) 1998; 52 Socha, Guerinot (CR53) 2014; 5 Gardner, Parbery, Barber (CR13) 1982; 68 Zhou, Neuhauser, Neumann, Ludewig (CR75) 2020; 43 Veneklaas, Stevens, Cawthray, Turner, Grigg, Lambers (CR61) 2003; 248 Tsai, Schmidt (CR60) 2017; 214 Puig, Peñarrubia (CR46) 2009; 12 M Haldar (4988_CR17) 1981; 59 Y Lyu (4988_CR35) 2016; 7 RP Yu (4988_CR70) 2020; 226 M Wouterlood (4988_CR69) 2005; 32 M Wouterlood (4988_CR67) 2004; 162 DR Kidd (4988_CR27) 2018; 424 PJ White (4988_CR66) 2012 G Huang (4988_CR20) 2017; 185 PC Stevenson (4988_CR54) 2010; 36 W Zhang (4988_CR72) 2017; 413 E Andresen (4988_CR1) 2018; 69 RL Sun (4988_CR55) 2006; 285 E Epstein (4988_CR10) 2005 4988_CR31 E Oburger (4988_CR40) 2016; 21 GR Cawthray (4988_CR3) 2003; 1011 4988_CR37 4988_CR38 T Zhou (4988_CR74) 2016; 7 S Saarnio (4988_CR48) 2004; 267 JT Touchton (4988_CR59) 1980; 11 S Tian (4988_CR58) 2011; 157 W Gardner (4988_CR13) 1982; 68 S Puig (4988_CR46) 2009; 12 N Karagiannidis (4988_CR26) 1998; 52 B Leitenmaier (4988_CR32) 2013; 4 VS Devi (4988_CR7) 2014; 138 M Wouterlood (4988_CR68) 2004; 261 E Oburger (4988_CR39) 2018; 6 NK Fageria (4988_CR11) 2002; 77 B Dinkelaker (4988_CR9) 1995; 108 BEM Lindström (4988_CR34) 2013; 68 W Gardner (4988_CR15) 1983; 70 4988_CR47 V Sadras (4988_CR49) 2020; 163 MW Shane (4988_CR51) 2008; 304 W Gardner (4988_CR14) 1982; 68 IR Baxter (4988_CR2) 2008; 105 D Zhang (4988_CR71) 2016; 209 S Thomine (4988_CR57) 2013; 16 Y Wang (4988_CR62) 2019; 447 J Shen (4988_CR52) 2011; 156 DL Jones (4988_CR23) 1998; 205 JY Pang (4988_CR42) 2017; 418 SJ Pearse (4988_CR44) 2007; 173 EJ Veneklaas (4988_CR61) 2003; 248 4988_CR16 WL Lindsay (4988_CR33) 1978; 42 CE Prescott (4988_CR45) 2020; 35 Z Wen (4988_CR63) 2019; 223 FD Dakora (4988_CR4) 2002; 245 PJ White (4988_CR65) 2012 Z Wen (4988_CR64) 2020; 34 DL Jones (4988_CR24) 1998; 49 H Lambers (4988_CR30) 2015; 20 J Pang (4988_CR43) 2018; 219 P Hayes (4988_CR18) 2014; 102 MW Shane (4988_CR50) 2005; 124 LDB Suriyagoda (4988_CR56) 2012; 358 H Lambers (4988_CR29) 2006; 98 T Mimmo (4988_CR36) 2011; 49 RS Oliveira (4988_CR41) 2015; 205 WK Gardner (4988_CR12) 1983; 70 DL Jones (4988_CR25) 2003; 248 AL Socha (4988_CR53) 2014; 5 M Delgado (4988_CR6) 2021; 12 4988_CR21 KR Koundal (4988_CR28) 1983; 58 Y Zhou (4988_CR75) 2020; 43 4988_CR22 W Zhang (4988_CR73) 2020; 10 B Dinkelaker (4988_CR8) 1989; 12 H-H Tsai (4988_CR60) 2017; 214 4988_CR5 XL He (4988_CR19) 2017; 416 |
References_xml | – volume: 261 start-page: 1 year: 2004 end-page: 10 ident: CR68 article-title: Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type publication-title: Plant Soil doi: 10.1023/B:PLSO.0000035568.28893.f6 – ident: CR22 – volume: 7 start-page: 1939 year: 2016 ident: CR35 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01939 – volume: 70 start-page: 107 year: 1983 end-page: 124 ident: CR15 article-title: The acquisition of phosphorus by L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced publication-title: Plant Soil doi: 10.1007/BF02374754 – volume: 248 start-page: 31 year: 2003 end-page: 41 ident: CR25 article-title: Organic acid behavior in soils – misconceptions and knowledge gaps publication-title: Plant Soil doi: 10.1023/a:1022304332313 – volume: 7 start-page: 1776 year: 2016 ident: CR74 article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01776 – ident: CR16 – volume: 185 start-page: 387 year: 2017 end-page: 400 ident: CR20 article-title: Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability publication-title: Oecologia doi: 10.1007/s00442-017-3961-x – volume: 52 start-page: 1 year: 1998 end-page: 7 ident: CR26 article-title: The mycorrhizal fungus enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils publication-title: Nutr Cycl Agroecosyst doi: 10.1023/a:1016311118034 – volume: 98 start-page: 693 year: 2006 end-page: 713 ident: CR29 article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits publication-title: Ann Bot doi: 10.1093/aob/mcl114 – volume: 69 start-page: 909 year: 2018 end-page: 954 ident: CR1 article-title: Trace metal metabolism in plants publication-title: J Exp Bot doi: 10.1093/jxb/erx465 – volume: 105 start-page: 12081 year: 2008 end-page: 12086 ident: CR2 article-title: The leaf ionome as a multivariable system to detect a plant's physiological status publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804175105 – volume: 77 start-page: 185 year: 2002 end-page: 268 ident: CR11 article-title: Micronutrients in crop production publication-title: Adv Agron doi: 10.1016/S0065-2113(02)77015-6 – volume: 32 start-page: 153 year: 2005 end-page: 159 ident: CR69 article-title: Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea publication-title: Funct Plant Biol doi: 10.1071/Fp04084 – volume: 21 start-page: 243 year: 2016 end-page: 255 ident: CR40 article-title: New methods to unravel rhizosphere processes publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.12.005 – volume: 35 start-page: 1110 year: 2020 end-page: 1118 ident: CR45 article-title: Surplus carbon drives allocation and plant-soil interactions publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2020.08.007 – volume: 304 start-page: 169 year: 2008 end-page: 178 ident: CR51 article-title: Impact of phosphorus mineral source (Al–P or Fe–P) and pH on cluster-root formation and carboxylate exudation in L publication-title: Plant Soil doi: 10.1007/s11104-007-9535-7 – volume: 162 start-page: 745 year: 2004 end-page: 753 ident: CR67 article-title: Carboxylate concentrations in the rhizosphere of lateral roots of chickpea ( ) increase during plant development, but are not correlated with phosphorus status of soil or plants publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01070.x – ident: CR21 – volume: 12 start-page: 299 year: 2009 end-page: 306 ident: CR46 article-title: Placing metal micronutrients in context: transport and distribution in plants publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.04.008 – volume: 209 start-page: 823 year: 2016 end-page: 831 ident: CR71 article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize publication-title: New Phytol doi: 10.1111/nph.13613 – volume: 6 start-page: 116 year: 2018 end-page: 133 ident: CR39 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.004 – volume: 248 start-page: 187 year: 2003 end-page: 197 ident: CR61 article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake publication-title: Plant Soil doi: 10.1023/A:1022367312851 – volume: 34 start-page: 1311 year: 2020 end-page: 1324 ident: CR64 article-title: Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates publication-title: Funct Ecol doi: 10.1111/1365-2435.13562 – volume: 59 start-page: 415 year: 1981 end-page: 425 ident: CR17 article-title: Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice publication-title: Plant Soil doi: 10.1007/BF02184546 – volume: 424 start-page: 389 year: 2018 end-page: 403 ident: CR27 article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate publication-title: Plant Soil doi: 10.1007/s11104-017-3534-0 – volume: 285 start-page: 125 year: 2006 end-page: 134 ident: CR55 article-title: Cadmium accumulation in relation to organic acids in leaves of L. as a newly found cadmium hyperaccumulator publication-title: Plant Soil doi: 10.1007/s11104-006-0064-6 – volume: 68 start-page: 33 year: 1982 end-page: 41 ident: CR14 article-title: The acquisition of phosphorus by L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface publication-title: Plant Soil doi: 10.1007/BF02374894 – volume: 219 start-page: 518 year: 2018 end-page: 529 ident: CR43 article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytol doi: 10.1111/nph.15200 – volume: 68 start-page: 19 year: 1982 end-page: 32 ident: CR13 article-title: The acquisition of phosphorus by L. I. some characteristics of the soil/root interface publication-title: Plant Soil doi: 10.1007/bf02374724 – start-page: 49 year: 2012 end-page: 70 ident: CR65 article-title: Long-distance transport in the xylem and phloem publication-title: Marschner's mineral nutrition of higher plants doi: 10.1016/B978-0-12-384905-2.00003-0 – ident: CR5 – volume: 413 start-page: 59 year: 2017 end-page: 71 ident: CR72 article-title: Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization publication-title: Plant Soil doi: 10.1007/s11104-017-3213-1 – volume: 156 start-page: 997 year: 2011 end-page: 1005 ident: CR52 article-title: Phosphorus dynamics: from soil to plant publication-title: Plant Physiol doi: 10.1104/pp.111.175232 – volume: 205 start-page: 25 year: 1998 end-page: 44 ident: CR23 article-title: Organic acids in the rhizosphere – a critical review publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 418 start-page: 129 year: 2017 end-page: 139 ident: CR42 article-title: Unwrapping the rhizosheath publication-title: Plant Soil doi: 10.1007/s11104-017-3358-y – volume: 10 start-page: 1716 year: 2020 ident: CR73 article-title: Phosphorus application decreased copper concentration but not iron in maize grain publication-title: Agronomy doi: 10.3390/agronomy10111716 – volume: 16 start-page: 322 year: 2013 end-page: 327 ident: CR57 article-title: Iron transport in plants: better be safe than sorry publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.01.003 – volume: 68 start-page: 427 year: 2013 end-page: 436 ident: CR34 article-title: Micronutrient concentrations in common and novel forage species and varieties grown on two contrasting soils publication-title: Grass Forage Sci doi: 10.1111/gfs.12006 – start-page: 50 year: 2005 ident: CR10 publication-title: Mineralnutrition of plants: principles andperspectives – ident: CR47 – volume: 157 start-page: 1914 year: 2011 end-page: 1925 ident: CR58 article-title: Cellular sequestration of cadmium in the hyperaccumulator plant species publication-title: Plant Physiol doi: 10.1104/pp.111.183947 – volume: 138 start-page: 289 year: 2014 end-page: 296 ident: CR7 article-title: Interaction of acid exudates in chickpea with biological activity of towards publication-title: J Appl Entomol doi: 10.1111/jen.12056 – volume: 205 start-page: 1183 year: 2015 end-page: 1194 ident: CR41 article-title: Mineral nutrition of plant species on contrasting nutrient-impoverished soil types publication-title: New Phytol doi: 10.1111/nph.13175 – ident: CR37 – volume: 5 start-page: 106 year: 2014 ident: CR53 article-title: Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00106 – volume: 223 start-page: 882 year: 2019 end-page: 895 ident: CR63 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species publication-title: New Phytol doi: 10.1111/nph.15833 – volume: 11 start-page: 1051 year: 1980 end-page: 1066 ident: CR59 article-title: The relationship between phosphorus and copper concentrations in wheat publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103628009367104 – volume: 58 start-page: 189 year: 1983 end-page: 192 ident: CR28 article-title: Evaluation of the significance of malic-acid secretion in chickpea publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1983.tb04167.x – volume: 245 start-page: 35 year: 2002 end-page: 47 ident: CR4 article-title: Root exudates as mediators of mineral acquisition in low-nutrient environments publication-title: Plant Soil doi: 10.1023/A:1020809400075 – volume: 12 start-page: 636056 year: 2021 ident: CR6 article-title: Ecophysiological performance of proteaceae species from southern South America growing on substrates derived from young volcanic materials publication-title: Front Plant Sci doi: 10.3389/fpls.2021.636056 – volume: 108 start-page: 183 year: 1995 end-page: 200 ident: CR9 article-title: Distribution and function of proteoid roots and other root clusters publication-title: Plant Biol doi: 10.1111/j.1438-8677.1995.tb00850.x – volume: 214 start-page: 500 year: 2017 end-page: 505 ident: CR60 article-title: One way. Or another? Iron uptake in plants publication-title: New Phytol doi: 10.1111/nph.14477 – volume: 1011 start-page: 233 year: 2003 end-page: 240 ident: CR3 article-title: An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates publication-title: J Chromatogr A doi: 10.1016/s0021-9673(03)01129-4 – volume: 226 start-page: 1285 year: 2020 end-page: 1298 ident: CR70 article-title: Phosphorus facilitation and covariation of root traits in steppe species publication-title: New Phytol doi: 10.1111/nph.16499 – volume: 49 start-page: 447 year: 1998 end-page: 455 ident: CR24 article-title: Sorption of organic acids in acid soils and its implications in the rhizosphere publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.1998.4930447.x – volume: 12 start-page: 285 year: 1989 end-page: 292 ident: CR8 article-title: Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin ( L.) publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1989.tb01942.x – volume: 49 start-page: 1272 year: 2011 end-page: 1278 ident: CR36 article-title: Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2011.08.012 – volume: 447 start-page: 135 year: 2019 end-page: 156 ident: CR62 article-title: Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives publication-title: Plant Soil doi: 10.1007/s11104-019-03972-8 – volume: 173 start-page: 181 year: 2007 end-page: 190 ident: CR44 article-title: Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01897.x – volume: 163 start-page: 153 year: 2020 end-page: 177 ident: CR49 article-title: Making science more effective for agriculture publication-title: Adv Agron doi: 10.1016/bs.agron.2020.05.003 – volume: 358 start-page: 100 year: 2012 end-page: 112 ident: CR56 article-title: Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply publication-title: Plant Soil doi: 10.1007/s11104-012-1311-7 – volume: 20 start-page: 83 year: 2015 end-page: 90 ident: CR30 article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.10.007 – ident: CR38 – start-page: 7 year: 2012 end-page: 44 ident: CR66 article-title: Ion uptake mechanisms of individual cells and roots: short-distance transport publication-title: Marschner's mineral nutrition of higher plants doi: 10.1016/B978-0-12-384905-2.00002-9 – ident: CR31 – volume: 4 start-page: 374 year: 2013 ident: CR32 article-title: Compartmentation and complexation of metals in hyperaccumulator plants publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00374 – volume: 102 start-page: 396 year: 2014 end-page: 410 ident: CR18 article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence publication-title: J Ecol doi: 10.1111/1365-2745.12196 – volume: 124 start-page: 441 year: 2005 end-page: 450 ident: CR50 article-title: Manganese accumulation in leaves of (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2005.00527.x – volume: 70 start-page: 391 year: 1983 end-page: 402 ident: CR12 article-title: The acquisition of phosphorus by L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species publication-title: Plant Soil doi: 10.1007/bf02374894 – volume: 36 start-page: 227 year: 2010 end-page: 235 ident: CR54 article-title: Inactivation of baculovirus by isoflavonoids on chickpea ( ) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against publication-title: J Chem Ecol doi: 10.1007/s10886-010-9748-8 – volume: 267 start-page: 343 year: 2004 end-page: 355 ident: CR48 article-title: Rhizospheric exudation of L. – potential link to methanogenesis publication-title: Plant Soil doi: 10.1007/s11104-005-0140-3 – volume: 42 start-page: 421 year: 1978 end-page: 428 ident: CR33 article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1978.03615995004200030009x – volume: 43 start-page: 1691 year: 2020 end-page: 1706 ident: CR75 article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation publication-title: Plant Cell Environ doi: 10.1111/pce.13762 – volume: 416 start-page: 453 year: 2017 end-page: 462 ident: CR19 article-title: Iron supply prevents cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and cd uptake publication-title: Plant Soil doi: 10.1007/s11104-017-3232-y – volume: 16 start-page: 322 year: 2013 ident: 4988_CR57 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.01.003 – volume: 416 start-page: 453 year: 2017 ident: 4988_CR19 publication-title: Plant Soil doi: 10.1007/s11104-017-3232-y – volume: 7 start-page: 1939 year: 2016 ident: 4988_CR35 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01939 – volume: 304 start-page: 169 year: 2008 ident: 4988_CR51 publication-title: Plant Soil doi: 10.1007/s11104-007-9535-7 – volume: 77 start-page: 185 year: 2002 ident: 4988_CR11 publication-title: Adv Agron doi: 10.1016/S0065-2113(02)77015-6 – volume: 5 start-page: 106 year: 2014 ident: 4988_CR53 publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00106 – volume: 59 start-page: 415 year: 1981 ident: 4988_CR17 publication-title: Plant Soil doi: 10.1007/BF02184546 – ident: 4988_CR31 doi: 10.1007/s11104-020-04690-2 – volume: 163 start-page: 153 year: 2020 ident: 4988_CR49 publication-title: Adv Agron doi: 10.1016/bs.agron.2020.05.003 – volume: 70 start-page: 391 year: 1983 ident: 4988_CR12 publication-title: Plant Soil doi: 10.1007/bf02374894 – volume: 43 start-page: 1691 year: 2020 ident: 4988_CR75 publication-title: Plant Cell Environ doi: 10.1111/pce.13762 – volume: 49 start-page: 1272 year: 2011 ident: 4988_CR36 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2011.08.012 – volume: 138 start-page: 289 year: 2014 ident: 4988_CR7 publication-title: J Appl Entomol doi: 10.1111/jen.12056 – start-page: 50 volume-title: Mineralnutrition of plants: principles andperspectives year: 2005 ident: 4988_CR10 – volume: 98 start-page: 693 year: 2006 ident: 4988_CR29 publication-title: Ann Bot doi: 10.1093/aob/mcl114 – volume: 105 start-page: 12081 year: 2008 ident: 4988_CR2 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0804175105 – volume: 185 start-page: 387 year: 2017 ident: 4988_CR20 publication-title: Oecologia doi: 10.1007/s00442-017-3961-x – volume: 12 start-page: 636056 year: 2021 ident: 4988_CR6 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.636056 – volume: 70 start-page: 107 year: 1983 ident: 4988_CR15 publication-title: Plant Soil doi: 10.1007/BF02374754 – volume: 35 start-page: 1110 year: 2020 ident: 4988_CR45 publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2020.08.007 – ident: 4988_CR16 doi: 10.1111/nph.17344 – volume: 205 start-page: 1183 year: 2015 ident: 4988_CR41 publication-title: New Phytol doi: 10.1111/nph.13175 – volume: 34 start-page: 1311 year: 2020 ident: 4988_CR64 publication-title: Funct Ecol doi: 10.1111/1365-2435.13562 – volume: 58 start-page: 189 year: 1983 ident: 4988_CR28 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1983.tb04167.x – volume: 36 start-page: 227 year: 2010 ident: 4988_CR54 publication-title: J Chem Ecol doi: 10.1007/s10886-010-9748-8 – ident: 4988_CR5 – volume: 68 start-page: 19 year: 1982 ident: 4988_CR13 publication-title: Plant Soil doi: 10.1007/bf02374724 – volume: 157 start-page: 1914 year: 2011 ident: 4988_CR58 publication-title: Plant Physiol doi: 10.1104/pp.111.183947 – ident: 4988_CR21 doi: 10.1016/S0065-2113(08)60887-1 – volume: 261 start-page: 1 year: 2004 ident: 4988_CR68 publication-title: Plant Soil doi: 10.1023/B:PLSO.0000035568.28893.f6 – volume: 214 start-page: 500 year: 2017 ident: 4988_CR60 publication-title: New Phytol doi: 10.1111/nph.14477 – volume: 413 start-page: 59 year: 2017 ident: 4988_CR72 publication-title: Plant Soil doi: 10.1007/s11104-017-3213-1 – volume: 6 start-page: 116 year: 2018 ident: 4988_CR39 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.06.004 – volume: 447 start-page: 135 year: 2019 ident: 4988_CR62 publication-title: Plant Soil doi: 10.1007/s11104-019-03972-8 – volume: 68 start-page: 33 year: 1982 ident: 4988_CR14 publication-title: Plant Soil doi: 10.1007/BF02374894 – volume: 173 start-page: 181 year: 2007 ident: 4988_CR44 publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01897.x – start-page: 7 volume-title: Marschner's mineral nutrition of higher plants year: 2012 ident: 4988_CR66 doi: 10.1016/B978-0-12-384905-2.00002-9 – volume: 11 start-page: 1051 year: 1980 ident: 4988_CR59 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103628009367104 – volume: 10 start-page: 1716 year: 2020 ident: 4988_CR73 publication-title: Agronomy doi: 10.3390/agronomy10111716 – volume: 42 start-page: 421 year: 1978 ident: 4988_CR33 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1978.03615995004200030009x – volume: 267 start-page: 343 year: 2004 ident: 4988_CR48 publication-title: Plant Soil doi: 10.1007/s11104-005-0140-3 – volume: 69 start-page: 909 year: 2018 ident: 4988_CR1 publication-title: J Exp Bot doi: 10.1093/jxb/erx465 – ident: 4988_CR47 – start-page: 49 volume-title: Marschner's mineral nutrition of higher plants year: 2012 ident: 4988_CR65 doi: 10.1016/B978-0-12-384905-2.00003-0 – volume: 102 start-page: 396 year: 2014 ident: 4988_CR18 publication-title: J Ecol doi: 10.1111/1365-2745.12196 – volume: 248 start-page: 31 year: 2003 ident: 4988_CR25 publication-title: Plant Soil doi: 10.1023/a:1022304332313 – volume: 205 start-page: 25 year: 1998 ident: 4988_CR23 publication-title: Plant Soil doi: 10.1023/A:1004356007312 – volume: 21 start-page: 243 year: 2016 ident: 4988_CR40 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2015.12.005 – volume: 108 start-page: 183 year: 1995 ident: 4988_CR9 publication-title: Plant Biol doi: 10.1111/j.1438-8677.1995.tb00850.x – ident: 4988_CR38 doi: 10.1007/s11104-009-9953-9 – volume: 219 start-page: 518 year: 2018 ident: 4988_CR43 publication-title: New Phytol doi: 10.1111/nph.15200 – volume: 156 start-page: 997 year: 2011 ident: 4988_CR52 publication-title: Plant Physiol doi: 10.1104/pp.111.175232 – volume: 424 start-page: 389 year: 2018 ident: 4988_CR27 publication-title: Plant Soil doi: 10.1007/s11104-017-3534-0 – volume: 4 start-page: 374 year: 2013 ident: 4988_CR32 publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00374 – volume: 1011 start-page: 233 year: 2003 ident: 4988_CR3 publication-title: J Chromatogr A doi: 10.1016/s0021-9673(03)01129-4 – volume: 52 start-page: 1 year: 1998 ident: 4988_CR26 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/a:1016311118034 – volume: 32 start-page: 153 year: 2005 ident: 4988_CR69 publication-title: Funct Plant Biol doi: 10.1071/Fp04084 – volume: 245 start-page: 35 year: 2002 ident: 4988_CR4 publication-title: Plant Soil doi: 10.1023/A:1020809400075 – volume: 226 start-page: 1285 year: 2020 ident: 4988_CR70 publication-title: New Phytol doi: 10.1111/nph.16499 – volume: 68 start-page: 427 year: 2013 ident: 4988_CR34 publication-title: Grass Forage Sci doi: 10.1111/gfs.12006 – volume: 418 start-page: 129 year: 2017 ident: 4988_CR42 publication-title: Plant Soil doi: 10.1007/s11104-017-3358-y – volume: 223 start-page: 882 year: 2019 ident: 4988_CR63 publication-title: New Phytol doi: 10.1111/nph.15833 – volume: 12 start-page: 285 year: 1989 ident: 4988_CR8 publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.1989.tb01942.x – volume: 209 start-page: 823 year: 2016 ident: 4988_CR71 publication-title: New Phytol doi: 10.1111/nph.13613 – volume: 7 start-page: 1776 year: 2016 ident: 4988_CR74 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01776 – volume: 358 start-page: 100 year: 2012 ident: 4988_CR56 publication-title: Plant Soil doi: 10.1007/s11104-012-1311-7 – volume: 162 start-page: 745 year: 2004 ident: 4988_CR67 publication-title: New Phytol doi: 10.1111/j.1469-8137.2004.01070.x – volume: 248 start-page: 187 year: 2003 ident: 4988_CR61 publication-title: Plant Soil doi: 10.1023/A:1022367312851 – ident: 4988_CR22 doi: 10.1016/j.pbi.2017.06.014 – volume: 49 start-page: 447 year: 1998 ident: 4988_CR24 publication-title: Eur J Soil Sci doi: 10.1046/j.1365-2389.1998.4930447.x – volume: 124 start-page: 441 year: 2005 ident: 4988_CR50 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.2005.00527.x – volume: 285 start-page: 125 year: 2006 ident: 4988_CR55 publication-title: Plant Soil doi: 10.1007/s11104-006-0064-6 – volume: 20 start-page: 83 year: 2015 ident: 4988_CR30 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2014.10.007 – ident: 4988_CR37 doi: 10.1023/A:1004380832118 – volume: 12 start-page: 299 year: 2009 ident: 4988_CR46 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2009.04.008 |
SSID | ssj0003216 |
Score | 2.4307578 |
Snippet | Aims
Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]... Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]... Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a... AimsPlants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is... AIMS: Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]... |
SourceID | proquest gale crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 31 |
SubjectTerms | Agriculture Analysis Biomedical and Life Sciences Carboxylases Carboxylates Chemical properties Chickpea Chickpeas Copper Correlation Ecology Flowers & plants Genetic aspects Genotypes Greenhouses Growth media Iron Leaves Life Sciences Manganese Micronutrients Nutritional aspects Phosphorus Phosphorus content Plant Physiology Plant Sciences Planting Proxies Regular Article REGULAR ARTICLES rivers sand soil Soil mixtures Soil Science & Conservation Soils Structure Zinc |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9NAEF70VNAH0eph9ZQRBB-8QLKbbJLHKnecgj5Z6FvY7I-7cnVTkhav_iH-vc6km5aKCj6UFLKZtJmd2W_JfN8w9gaREI-ttpE2OINTbnRUp6SEaRIpXa547Yjv_PmLvJimn2bZLJDCuqHafXgl2WfqPdkNV6o0opICRLXo3_I2u5Ph3p0KuaZ8ssu_gvcNT-lLFOflLFBl_mzjYDkKSXlbmHgAOX97S9ovPueP2MOAGmGydfNjdsv6EXswuWyDcoYdsbvvG8R5mxG7d9YLUW-esJ8fPVC9ED17WDXgmsVctfBN-UtFjSdBE2fRB-HcU6jRa0C0N1DewI-51xCIenS8wT01mmihpTK9jpL4FWjV1s3NZkGIFeYeqLPK9dIqIG5aC4vmOyyvmg4_7bqDjlqIbp6y6fnZ1w8XUejDEGkES6uodDZ3QipZJybOdZm6zMpEGiucUSVFuCutUQrBkLKKc42hXGphSRnIGuHEMTvyjbfPGLgiNaXOeaqKOq1zUwgrjCh0oV2sJK_HLBncUekgUk69MhbVXl6ZXFihC6vehVU5Zu921yy3Eh3_HP2WvFxR_KJlrQINAX8fKWFVE5kTps2KeMxODkZi3OmD08f9PNndk-M-RWQixeuGiVOFhNBVhCx7ccN8zF7vTpNJKnLztlnjGCkkboCLBE2cDhNub-Lv_-n5_w1_we7zPgSojPGEHa3atX2J0GpVv-oj6ReljRuf priority: 102 providerName: Springer Nature |
Title | In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply |
URI | https://www.jstor.org/stable/27293534 https://link.springer.com/article/10.1007/s11104-021-04988-9 https://www.proquest.com/docview/2560486797 https://www.proquest.com/docview/2636828814 |
Volume | 465 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7RhAMcEBSqhpZokZA4UIt411nbJ-RAQgFRIUSkcLLW-2gjwjq1E9HwQ_i9zDibREGiB8uWvB47mcd-a898Q8gLQEKsZ5QJlAYLjphWQREhE6YOhbCxZIXFeufPF-J8HH2c9Cf-hVvt0yo3MbEJ1LpU-I78NU7NDTtc_GZ-HWDXKPy66ltoHJA2hOAkaZH2YHjx5es2FnPWND_Fg6AXpxNfNrMunoOZLwowRQFQMthLujc1-QC9TlLcg5__fDFtJqLRQ_LAI0iarVX-iNwx7pDczy4rz6JhDsndQQmYb_WY_PngKGYM4b9PFyW15WwqK_pTukuJrSepwqpF56lzz2gBeqNY-Eal0_T31CnqS_VwfwOrahBR0QoT9WoM41dUyaoob1YzxKx06ij2VvkxN5JidVpFZ-UvOr8qa9iqZU1rbCK6ekLGo-G3t-eB78QQKIBLiyC1JrZcSFGEuherNLJ9I0KhDbdapujjNjVaSoBD0kjGFDhzqrhBbiCjueVHpOVKZ44JtUmkUxWzSCZFVMQ64YZrnqhE2Z4UrOiQcKOEXHmacuyWMct3BMuouBwUlzeKy9MOebW9Zr4m6bh19EvUbY4eDJKV9IUI8HzIhZVnIkZU2096HXK6NxI8T-2dPmqsY3tPBisV3ucRXLcxl9yHhDrfGXCHPN-eRpGY5uZMuYQxggtYAichiDjbmNlOxP9_09Pb73hC7rHG0DFx8ZS0FtXSPAMwtSi6pJ0N3g1GuH___dOw6z2oSw7GLPsLTrshLw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFAk4IChUBAosEogDtbB3nbV9QCiFVgltI4RaKTd3vT9tRLCDnagND8Jj8IzMOOtEQaK3Hixb8npsa76dmbXnmyHkNURCzDfKeEoDgkOmlZeFWAlTB0LYSLLMIt_5eCB6p-GXYWe4Qf40XBhMq2xsYm2odaHwG_l7dM11dbjo4-Snh12j8O9q00JjAYtDM7-EJVv1of8Z9PuGsYP9k089z3UV8BS4_qmXWBNZLqTIAu1HKgltx4hAaMOtlgni1SZGSwmuXRrJGLawTxQ3WOfGaG45yL1FNkMufNYim3v7g6_flrafs7rZKh54fpQMHU1nQdYDTxt6mBIBUTngM1lzhc4hLJIi18Ldf_7Q1o7v4AG57yJW2l1A7CHZMPkWudc9L13VDrNFbu8VEGPOH5Hf_ZxihhJqm04LaovxSJb0h8zPJba6pApZkrkr1btLM8AJRaIdlbmmv0a5oo4aiPsrWMWDiJKWmBhYodu4oEqWWXE1H2OMTEc5xV4u3ydGUmTDlXRcXNLJRVHBVs4qWmHT0vljcnojOtomrbzIzRNCbRzqREUslHEWZpGOueGaxypW1peCZW0SNEpIlSuLjt05xumqoDMqLgXFpbXi0qRN3i2vmSyKglw7-i3qNkWLAZKVdMQHeD6svZV2RYRRdCf222RnbSTMdLV2ertGx_KeDFZGvMNDuK6BS-pMUJWuJkybvFqeRpGYVpebYgZjBBew5I4DELHbwGwl4v_v9PT6O74kd3onx0fpUX9w-IzcZTXoMWlyh7Sm5cw8h0Bumr1ws4eSs5uesH8BV6db0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFCE4IChUBAosEogDtWrvOmv7gFBKGzUUogpRKTd3vT9tRLCDnagND8LD8HTMOOtEQaK3HiJH8noca77ZmYnnmyHkNURCzDfKeEoDgkOmlZeF2AlTB0LYSLLMIt_5y0AcnYafhp3hBvnTcGGwrLLZE-uNWhcK_yPfQ9dcd4eL9qwrizg56H2Y_PRwghS-aW3GaSwgcmzml5C-Ve_7B6DrN4z1Dr99PPLchAFPQRgw9RJrIsuFFFmg_Ugloe0YEQhtuNUyQezaxGgpwc1LIxnDcfaJ4gZ73hjNLQe5t8hmhFlRi2zuHw5Ovi79AGf14FX84vlRMnSUnQVxD7xu6GF5BETogNVkzS0657AokFwLff95W1s7wd4Dct9Fr7S7gNtDsmHyLXKve166Dh5mi9zeLyDenD8iv_s5xWol1DydFtQW45Es6Q-Zn0sce0kVMiZz17Z3l2aAGYqkOypzTX-NckUdTRCPV5DRg4iSllgkWKELuaBKlllxNR9jvExHOcW5Lt8nRlJkxpV0XFzSyUVRwaecVbTCAabzx-T0RnS0TVp5kZsnhNo41ImKWCjjLMwiHXPDNY9VrKwvBcvaJGiUkCrXIh0ndYzTVXNnVFwKiktrxaVJm7xbXjNZNAi5dvVb1G2KuwdIVtKRIOD3YR-utCsijKg7sd8mO2srwerV2untGh3LezLIkniHh3BdA5fUbUdVujKeNnm1PI0iscQuN8UM1gguIP2OAxCx28BsJeL_z_T0-ju-JHfAUNPP_cHxM3KX1ZjH-skd0pqWM_McYrpp9sIZDyVnN22vfwGORGAI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+addition+to+foliar+manganese+concentration%2C+both+iron+and+zinc+provide+proxies+for+rhizosheath+carboxylates+in+chickpea+under+low+phosphorus+supply&rft.jtitle=Plant+and+soil&rft.au=Wen%2C+Zhihui&rft.au=Pang%2C+Jiayin&rft.au=Ryan%2C+Megan+H&rft.au=Shen%2C+Jianbo&rft.date=2021-08-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=465&rft.issue=1-2&rft.spage=31&rft_id=info:doi/10.1007%2Fs11104-021-04988-9&rft.externalDocID=A671932580 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |