In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply

Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]...

Full description

Saved in:
Bibliographic Details
Published inPlant and soil Vol. 465; no. 1/2; pp. 31 - 46
Main Authors Wen, Zhihui, Pang, Jiayin, Ryan, Megan H., Shen, Jianbo, Siddique, Kadambot H. M., Lambers, Hans
Format Journal Article
LanguageEnglish
Published Cham Springer Science + Business Media 01.08.2021
Springer International Publishing
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. Methods We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. Results For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R 2  = 0.36) and [Zn] (R 2  = 0.22), like leaf [Mn] (R 2  = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R 2  = 0.59, 0.59, 0.54, 0.72) than severely low P (R 2  = 0.39, 0.28, 0.20, 0.36) or sufficient P (R 2  = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. Conclusions In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
AbstractList Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R.sup.2 = 0.36) and [Zn] (R.sup.2 = 0.22), like leaf [Mn] (R.sup.2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R.sup.2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R.sup.2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R.sup.2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
AIMS: Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. METHODS: We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. RESULTS: For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R² = 0.36) and [Zn] (R² = 0.22), like leaf [Mn] (R² = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R² = 0.59, 0.59, 0.54, 0.72) than severely low P (R² = 0.39, 0.28, 0.20, 0.36) or sufficient P (R² = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. CONCLUSIONS: In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. Methods We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. Results For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R.sup.2 = 0.36) and [Zn] (R.sup.2 = 0.22), like leaf [Mn] (R.sup.2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R.sup.2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R.sup.2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R.sup.2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. Conclusions In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear. Methods We grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates. Results For 100 genotypes grown in river sand with low P supply, leaf [Fe] (R 2  = 0.36) and [Zn] (R 2  = 0.22), like leaf [Mn] (R 2  = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R 2  = 0.59, 0.59, 0.54, 0.72) than severely low P (R 2  = 0.39, 0.28, 0.20, 0.36) or sufficient P (R 2  = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments. Conclusions In addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
AimsPlants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a proxy for the amount of rhizosheath carboxylates. Whether the concentrations of other leaf micronutrient, such as iron ([Fe]), zinc ([Zn]) and copper ([Cu]), show a similar signal for rhizosheath carboxylates is unclear.MethodsWe grew a large number of chickpea genotypes in two glasshouse studies with different growth media, P sources and P levels. Seven weeks after sowing, we determined concentrations of micronutrients in mature leaves, and the quantity and composition of rhizosheath carboxylates.ResultsFor 100 genotypes grown in river sand with low P supply, leaf [Fe] (R2 = 0.36) and [Zn] (R2 = 0.22), like leaf [Mn] (R2 = 0.38), were positively correlated with the total amount of rhizosheath carboxylates. For 20 genotypes grown in a soil mixture, leaf [Fe], [Zn], [Cu] and [Mn] showed positive correlations with total rhizosheath carboxylates that were stronger under moderately low P (R2 = 0.59, 0.59, 0.54, 0.72) than severely low P (R2 = 0.39, 0.28, 0.20, 0.36) or sufficient P (R2 = 0.36, 0.00, 0.01, 0.50) supply. Malonate was the predominant carboxylate in the rhizosheath and was significantly correlated with leaf micronutrient concentrations in both experiments.ConclusionsIn addition to leaf [Mn], leaf [Fe] and [Zn] can be used as alternative and easily measurable proxies for belowground carboxylate-releasing processes in chickpea under low-P supply, particularly on moderately low-P soils.
Audience Academic
Author Wen, Zhihui
Lambers, Hans
Shen, Jianbo
Pang, Jiayin
Ryan, Megan H.
Siddique, Kadambot H. M.
Author_xml – sequence: 1
  givenname: Zhihui
  surname: Wen
  fullname: Wen, Zhihui
– sequence: 2
  givenname: Jiayin
  surname: Pang
  fullname: Pang, Jiayin
– sequence: 3
  givenname: Megan H.
  surname: Ryan
  fullname: Ryan, Megan H.
– sequence: 4
  givenname: Jianbo
  surname: Shen
  fullname: Shen, Jianbo
– sequence: 5
  givenname: Kadambot H. M.
  surname: Siddique
  fullname: Siddique, Kadambot H. M.
– sequence: 6
  givenname: Hans
  surname: Lambers
  fullname: Lambers, Hans
BookMark eNp9kt1qFDEUxwep4Lb6AoIQ8MYLp-ZjJplclqK1UPBGwbuQTU52s84mYzJTu32QPq-ZjlgsUkI4JPn9z1fOcXUUYoCqek3wKcFYfMiEENzUmJIaN7LravmsWpFWsLrFjB9VK4wZrbGQ319Uxznv8HwmfFXdXQakrfWjjwGNEbnYe53QXoeNDpABmRgMhDHpmXiP1nHcIp8KrINFtz4YNKR47S3M9sZDLi4SSlt_G_MWdKGNTut4c-j1WB59QGbrzY8BNJqChYT6-AsN25jLTlNGeRqG_vCyeu50n-HVH3tSffv08ev55_rqy8Xl-dlVbZqGjLV0IBzjmq-JxcLIxrXACbfAnNWSCMmcBKs1J0KDptSsMZaGAZaCgmWOnVTvFr8l-Z8T5FHtfTbQ96X4OGVFOeMd7TrSFPTtI3QXpxRKdoq2HDcdF1I8UBvdg_LBxdI6MztVZ1wQyWjb4UKd_ocqy8Lel46D8-X-HwFdBCbFnBM4NSS_1-mgCFbzBKhlAlSZAHU_AUoWUfdIZPx4_48lmu-flrJFmkucsIH0UOyTqjeLapfHmP6mSAWVrGUN-w0tNtOZ
CitedBy_id crossref_primary_10_1007_s11104_024_06783_8
crossref_primary_10_1111_1365_2435_14629
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1111_nph_17854
crossref_primary_10_3389_fmicb_2022_972587
crossref_primary_10_1111_nph_19082
crossref_primary_10_3390_f15030515
crossref_primary_10_1007_s11104_023_06126_z
crossref_primary_10_1007_s11356_024_31837_w
crossref_primary_10_1007_s13593_023_00916_6
crossref_primary_10_3390_agronomy14102368
crossref_primary_10_1038_s41598_022_23107_x
Cites_doi 10.1023/B:PLSO.0000035568.28893.f6
10.3389/fpls.2016.01939
10.1007/BF02374754
10.1023/a:1022304332313
10.3389/fpls.2016.01776
10.1007/s00442-017-3961-x
10.1023/a:1016311118034
10.1093/aob/mcl114
10.1093/jxb/erx465
10.1073/pnas.0804175105
10.1016/S0065-2113(02)77015-6
10.1071/Fp04084
10.1016/j.tplants.2015.12.005
10.1016/j.tree.2020.08.007
10.1007/s11104-007-9535-7
10.1111/j.1469-8137.2004.01070.x
10.1016/j.pbi.2009.04.008
10.1111/nph.13613
10.1016/j.rhisph.2018.06.004
10.1023/A:1022367312851
10.1111/1365-2435.13562
10.1007/BF02184546
10.1007/s11104-017-3534-0
10.1007/s11104-006-0064-6
10.1007/BF02374894
10.1111/nph.15200
10.1007/bf02374724
10.1016/B978-0-12-384905-2.00003-0
10.1007/s11104-017-3213-1
10.1104/pp.111.175232
10.1023/A:1004356007312
10.1007/s11104-017-3358-y
10.3390/agronomy10111716
10.1016/j.pbi.2013.01.003
10.1111/gfs.12006
10.1104/pp.111.183947
10.1111/jen.12056
10.1111/nph.13175
10.3389/fpls.2014.00106
10.1111/nph.15833
10.1080/00103628009367104
10.1111/j.1399-3054.1983.tb04167.x
10.1023/A:1020809400075
10.3389/fpls.2021.636056
10.1111/j.1438-8677.1995.tb00850.x
10.1111/nph.14477
10.1016/s0021-9673(03)01129-4
10.1111/nph.16499
10.1046/j.1365-2389.1998.4930447.x
10.1111/j.1365-3040.1989.tb01942.x
10.1016/j.plaphy.2011.08.012
10.1007/s11104-019-03972-8
10.1111/j.1469-8137.2006.01897.x
10.1016/bs.agron.2020.05.003
10.1007/s11104-012-1311-7
10.1016/j.tplants.2014.10.007
10.1016/B978-0-12-384905-2.00002-9
10.3389/fpls.2013.00374
10.1111/1365-2745.12196
10.1111/j.1399-3054.2005.00527.x
10.1007/bf02374894
10.1007/s10886-010-9748-8
10.1007/s11104-005-0140-3
10.2136/sssaj1978.03615995004200030009x
10.1111/pce.13762
10.1007/s11104-017-3232-y
10.1007/s11104-020-04690-2
10.1111/nph.17344
10.1016/S0065-2113(08)60887-1
10.1007/s11104-009-9953-9
10.1016/j.pbi.2017.06.014
10.1023/A:1004380832118
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
COPYRIGHT 2021 Springer
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
3V.
7SN
7ST
7T7
7X2
88A
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7S9
L.6
DOI 10.1007/s11104-021-04988-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Biology Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Agricultural Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Botany
Ecology
EISSN 1573-5036
EndPage 46
ExternalDocumentID A671932580
10_1007_s11104_021_04988_9
27293534
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFD0200200
– fundername: Chinese Scholarship Council
  grantid: 201706350205
– fundername: Australian Research Council Linkage Projects
  grantid: LP200100341
– fundername: National Natural Science Foundation of China
  grantid: 31772402; 31330070
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program) (CN)
  grantid: 2016YFE0101100
GroupedDBID -~C
-~X
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2XV
2~H
30V
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
B0M
BA0
BBNVY
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAG
IAO
IEP
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JLS
JST
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0K
M4Y
M7P
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PF0
PHGZM
PHGZT
PQQKQ
PROAC
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3A
S3B
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WJK
WK8
Y6R
YLTOR
Z45
ZMTXR
ZOVNA
~02
~8M
~EX
~KM
-4W
-56
-5G
-BR
-EM
-Y2
1SB
2.D
28-
2P1
2VQ
2~F
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABBHK
ABQSL
ABULA
ABXSQ
ACBXY
ACHIC
ACKIV
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AEKMD
AEUPB
AFEXP
AFFNX
AFGCZ
AGGDS
AIDBO
AJBLW
AQVQM
BBWZM
BDATZ
CAG
COF
DATOO
EJD
EN4
FINBP
FSGXE
GQ6
H13
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
KOW
M0L
N2Q
NDZJH
O9-
OVD
P0-
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SA0
SBY
SCLPG
T16
TEORI
UZXMN
VFIZW
WK6
XOL
Z5O
Z7U
Z7V
Z7W
Z7Y
Z83
Z86
Z8O
Z8P
Z8Q
Z8S
Z8W
Z92
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
AEIIB
PMFND
7SN
7ST
7T7
8FD
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQUKI
RC3
SOI
7S9
L.6
ID FETCH-LOGICAL-c441t-9fe7f36a6b1d07c94f5e616de3fda91793f9edaa617aea22cb009c3e0972ed3f3
IEDL.DBID BENPR
ISSN 0032-079X
IngestDate Fri Jul 11 00:56:11 EDT 2025
Wed Aug 13 05:56:02 EDT 2025
Tue Jun 17 21:40:46 EDT 2025
Tue Jun 10 20:33:57 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Tue Jul 01 01:47:13 EDT 2025
Fri Feb 21 02:47:42 EST 2025
Thu Jun 19 20:04:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords Organic anions
Phosphorus mobilisation
Phosphorus acquisition
Leaf micronutrients
Carboxylate exudation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-9fe7f36a6b1d07c94f5e616de3fda91793f9edaa617aea22cb009c3e0972ed3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8127-645X
PQID 2560486797
PQPubID 54098
PageCount 16
ParticipantIDs proquest_miscellaneous_2636828814
proquest_journals_2560486797
gale_infotracmisc_A671932580
gale_infotracacademiconefile_A671932580
crossref_primary_10_1007_s11104_021_04988_9
crossref_citationtrail_10_1007_s11104_021_04988_9
springer_journals_10_1007_s11104_021_04988_9
jstor_primary_27293534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210801
20210800
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210801
  day: 1
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal on Plant-Soil Relationships
PublicationTitle Plant and soil
PublicationTitleAbbrev Plant Soil
PublicationYear 2021
Publisher Springer Science + Business Media
Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Zhang, Zhang, Tang, Li, Zhang, Rengel, Whalley, Davies, Shen (CR71) 2016; 209
Oburger, Jones (CR39) 2018; 6
Epstein, Bloom (CR10) 2005
CR38
CR37
Shane, Lambers (CR50) 2005; 124
Prescott, Grayston, Helmisaari, Kaštovská, Körner, Lambers, Meier, Millard, Ostonen (CR45) 2020; 35
Oliveira, Galvao, de Campos, Eller, Pearse, Lambers (CR41) 2015; 205
CR31
Devi, Rao, Sharma, Sharma (CR7) 2014; 138
Saarnio, Wittenmayer, Merbach (CR48) 2004; 267
Sadras, Alston, Aphalo, Connor, Denison, Fischer, Gray, Hayman, Kirkegaard, Kirchmann, Kropff, Lafitte, Langridge, Lenne, Mínguez, Passioura, Porter, Reeves, Rodriguez, Ryan, Villalobos, Wood (CR49) 2020; 163
Lambers, Hayes, Laliberte, Oliveira, Turner (CR30) 2015; 20
Wang, Lambers (CR62) 2019; 447
Wen, Li, Shen, Tang, Xiong, Li, Pang, Ryan, Lambers, Shen (CR63) 2019; 223
Pang, Bansal, Zhao, Bohuon, Lambers, Ryan, Ranathunge, Siddique (CR43) 2018; 219
Dakora, Phillips (CR4) 2002; 245
Gardner, Parbery, Barber (CR14) 1982; 68
Leitenmaier, Küpper (CR32) 2013; 4
Lyu, Tang, Li, Zhang, Rengel, Whalley, Shen (CR35) 2016; 7
Tian, Lu, Labavitch, Yang, He, Hu, Sarangi, Newville, Commisso, Brown (CR58) 2011; 157
Andresen, Peiter, Kupper (CR1) 2018; 69
Dinkelaker, Römheld, Marschner (CR8) 1989; 12
Zhang, Zou, Chen, Liu, Liu, Yang, Deng, Chen (CR73) 2020; 10
Haldar, Mandal (CR17) 1981; 59
Wouterlood, Cawthray, Turner, Lambers, Veneklaas (CR68) 2004; 261
CR5
Stevenson, D'Cunha, Grzywacz (CR54) 2010; 36
White, Marschner (CR65) 2012
Touchton, Johnson, Cunfer (CR59) 1980; 11
Koundal, Sinha (CR28) 1983; 58
CR47
Wouterlood, Lambers, Veneklaas (CR69) 2005; 32
Suriyagoda, Lambers, Renton, Ryan (CR56) 2012; 358
Lambers, Shane, Cramer, Pearse, Veneklaas (CR29) 2006; 98
Wen, Pang, Tueux, Liu, Shen, Ryan, Lambers, Siddique (CR64) 2020; 34
Baxter, Vitek, Lahner, Muthukumar, Borghi, Morrissey, Guerinot, Salt (CR2) 2008; 105
Gardner, Barber, Parbery (CR15) 1983; 70
Cawthray (CR3) 2003; 1011
Dinkelaker, Hengeler, Marschner (CR9) 1995; 108
Thomine, Vert (CR57) 2013; 16
Fageria, Baligar, Clark (CR11) 2002; 77
Zhang, Chen, Liu, Liu, Chen, Zou (CR72) 2017; 413
Mimmo, Hann, Jaitz, Cesco, Gessa, Puschenreiter (CR36) 2011; 49
Wouterlood, Cawthray, Scanlon, Lambers, Veneklaas (CR67) 2004; 162
Huang, Hayes, Ryan, Pang, Lambers (CR20) 2017; 185
CR16
Pang, Ryan, Siddique, Simpson (CR42) 2017; 418
White, Marschner (CR66) 2012
Hayes, Turner, Lambers, Laliberté (CR18) 2014; 102
Sun, Zhou, Jin (CR55) 2006; 285
Jones, Dennis, Owen, van Hees (CR25) 2003; 248
Lindsay, Norvell (CR33) 1978; 42
Shen, Yuan, Zhang, Li, Bai, Chen, Zhang, Zhang (CR52) 2011; 156
Zhou, Du, Ahmed, Liu, Ren, Liu, Yang (CR74) 2016; 7
Delgado, Zúñiga-Feest, Reyes-Díaz, Barra, Ruiz, Bertin-Benavides, Valle, Pereira, Lambers (CR6) 2021; 12
Jones, Brassington (CR24) 1998; 49
Kidd, Ryan, Hahne, Haling, Lambers, Sandral, Simpson, Cawthray (CR27) 2018; 424
Yu, Li, Xiao, Lambers, Li (CR70) 2020; 226
Shane, Lambers, Cawthray, Kuhn, Schurr (CR51) 2008; 304
Oburger, Schmidt (CR40) 2016; 21
He, Fan, Zhu, Guan, Liu, Zhang, Jin (CR19) 2017; 416
Lindström, Frankow-Lindberg, Dahlin, Wivstad, Watson (CR34) 2013; 68
Jones (CR23) 1998; 205
Gardner, Boundy (CR12) 1983; 70
CR22
Pearse, Veneklaas, Cawthray, Bolland, Lambers (CR44) 2007; 173
CR21
Karagiannidis, Hadjisavva-Zinoviadi (CR26) 1998; 52
Socha, Guerinot (CR53) 2014; 5
Gardner, Parbery, Barber (CR13) 1982; 68
Zhou, Neuhauser, Neumann, Ludewig (CR75) 2020; 43
Veneklaas, Stevens, Cawthray, Turner, Grigg, Lambers (CR61) 2003; 248
Tsai, Schmidt (CR60) 2017; 214
Puig, Peñarrubia (CR46) 2009; 12
M Haldar (4988_CR17) 1981; 59
Y Lyu (4988_CR35) 2016; 7
RP Yu (4988_CR70) 2020; 226
M Wouterlood (4988_CR69) 2005; 32
M Wouterlood (4988_CR67) 2004; 162
DR Kidd (4988_CR27) 2018; 424
PJ White (4988_CR66) 2012
G Huang (4988_CR20) 2017; 185
PC Stevenson (4988_CR54) 2010; 36
W Zhang (4988_CR72) 2017; 413
E Andresen (4988_CR1) 2018; 69
RL Sun (4988_CR55) 2006; 285
E Epstein (4988_CR10) 2005
4988_CR31
E Oburger (4988_CR40) 2016; 21
GR Cawthray (4988_CR3) 2003; 1011
4988_CR37
4988_CR38
T Zhou (4988_CR74) 2016; 7
S Saarnio (4988_CR48) 2004; 267
JT Touchton (4988_CR59) 1980; 11
S Tian (4988_CR58) 2011; 157
W Gardner (4988_CR13) 1982; 68
S Puig (4988_CR46) 2009; 12
N Karagiannidis (4988_CR26) 1998; 52
B Leitenmaier (4988_CR32) 2013; 4
VS Devi (4988_CR7) 2014; 138
M Wouterlood (4988_CR68) 2004; 261
E Oburger (4988_CR39) 2018; 6
NK Fageria (4988_CR11) 2002; 77
B Dinkelaker (4988_CR9) 1995; 108
BEM Lindström (4988_CR34) 2013; 68
W Gardner (4988_CR15) 1983; 70
4988_CR47
V Sadras (4988_CR49) 2020; 163
MW Shane (4988_CR51) 2008; 304
W Gardner (4988_CR14) 1982; 68
IR Baxter (4988_CR2) 2008; 105
D Zhang (4988_CR71) 2016; 209
S Thomine (4988_CR57) 2013; 16
Y Wang (4988_CR62) 2019; 447
J Shen (4988_CR52) 2011; 156
DL Jones (4988_CR23) 1998; 205
JY Pang (4988_CR42) 2017; 418
SJ Pearse (4988_CR44) 2007; 173
EJ Veneklaas (4988_CR61) 2003; 248
4988_CR16
WL Lindsay (4988_CR33) 1978; 42
CE Prescott (4988_CR45) 2020; 35
Z Wen (4988_CR63) 2019; 223
FD Dakora (4988_CR4) 2002; 245
PJ White (4988_CR65) 2012
Z Wen (4988_CR64) 2020; 34
DL Jones (4988_CR24) 1998; 49
H Lambers (4988_CR30) 2015; 20
J Pang (4988_CR43) 2018; 219
P Hayes (4988_CR18) 2014; 102
MW Shane (4988_CR50) 2005; 124
LDB Suriyagoda (4988_CR56) 2012; 358
H Lambers (4988_CR29) 2006; 98
T Mimmo (4988_CR36) 2011; 49
RS Oliveira (4988_CR41) 2015; 205
WK Gardner (4988_CR12) 1983; 70
DL Jones (4988_CR25) 2003; 248
AL Socha (4988_CR53) 2014; 5
M Delgado (4988_CR6) 2021; 12
4988_CR21
KR Koundal (4988_CR28) 1983; 58
Y Zhou (4988_CR75) 2020; 43
4988_CR22
W Zhang (4988_CR73) 2020; 10
B Dinkelaker (4988_CR8) 1989; 12
H-H Tsai (4988_CR60) 2017; 214
4988_CR5
XL He (4988_CR19) 2017; 416
References_xml – volume: 261
  start-page: 1
  year: 2004
  end-page: 10
  ident: CR68
  article-title: Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000035568.28893.f6
– ident: CR22
– volume: 7
  start-page: 1939
  year: 2016
  ident: CR35
  article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01939
– volume: 70
  start-page: 107
  year: 1983
  end-page: 124
  ident: CR15
  article-title: The acquisition of phosphorus by L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced
  publication-title: Plant Soil
  doi: 10.1007/BF02374754
– volume: 248
  start-page: 31
  year: 2003
  end-page: 41
  ident: CR25
  article-title: Organic acid behavior in soils – misconceptions and knowledge gaps
  publication-title: Plant Soil
  doi: 10.1023/a:1022304332313
– volume: 7
  start-page: 1776
  year: 2016
  ident: CR74
  article-title: Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01776
– ident: CR16
– volume: 185
  start-page: 387
  year: 2017
  end-page: 400
  ident: CR20
  article-title: Peppermint trees shift their phosphorus-acquisition strategy along a strong gradient of plant-available phosphorus by increasing their transpiration at very low phosphorus availability
  publication-title: Oecologia
  doi: 10.1007/s00442-017-3961-x
– volume: 52
  start-page: 1
  year: 1998
  end-page: 7
  ident: CR26
  article-title: The mycorrhizal fungus enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/a:1016311118034
– volume: 98
  start-page: 693
  year: 2006
  end-page: 713
  ident: CR29
  article-title: Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl114
– volume: 69
  start-page: 909
  year: 2018
  end-page: 954
  ident: CR1
  article-title: Trace metal metabolism in plants
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx465
– volume: 105
  start-page: 12081
  year: 2008
  end-page: 12086
  ident: CR2
  article-title: The leaf ionome as a multivariable system to detect a plant's physiological status
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804175105
– volume: 77
  start-page: 185
  year: 2002
  end-page: 268
  ident: CR11
  article-title: Micronutrients in crop production
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(02)77015-6
– volume: 32
  start-page: 153
  year: 2005
  end-page: 159
  ident: CR69
  article-title: Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea
  publication-title: Funct Plant Biol
  doi: 10.1071/Fp04084
– volume: 21
  start-page: 243
  year: 2016
  end-page: 255
  ident: CR40
  article-title: New methods to unravel rhizosphere processes
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.12.005
– volume: 35
  start-page: 1110
  year: 2020
  end-page: 1118
  ident: CR45
  article-title: Surplus carbon drives allocation and plant-soil interactions
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2020.08.007
– volume: 304
  start-page: 169
  year: 2008
  end-page: 178
  ident: CR51
  article-title: Impact of phosphorus mineral source (Al–P or Fe–P) and pH on cluster-root formation and carboxylate exudation in L
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9535-7
– volume: 162
  start-page: 745
  year: 2004
  end-page: 753
  ident: CR67
  article-title: Carboxylate concentrations in the rhizosphere of lateral roots of chickpea ( ) increase during plant development, but are not correlated with phosphorus status of soil or plants
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01070.x
– ident: CR21
– volume: 12
  start-page: 299
  year: 2009
  end-page: 306
  ident: CR46
  article-title: Placing metal micronutrients in context: transport and distribution in plants
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2009.04.008
– volume: 209
  start-page: 823
  year: 2016
  end-page: 831
  ident: CR71
  article-title: Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  ident: CR39
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 248
  start-page: 187
  year: 2003
  end-page: 197
  ident: CR61
  article-title: Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake
  publication-title: Plant Soil
  doi: 10.1023/A:1022367312851
– volume: 34
  start-page: 1311
  year: 2020
  end-page: 1324
  ident: CR64
  article-title: Contrasting patterns in biomass allocation, root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.13562
– volume: 59
  start-page: 415
  year: 1981
  end-page: 425
  ident: CR17
  article-title: Effect of phosphorus and zinc on the growth and phosphorus, zinc, copper, iron and manganese nutrition of rice
  publication-title: Plant Soil
  doi: 10.1007/BF02184546
– volume: 424
  start-page: 389
  year: 2018
  end-page: 403
  ident: CR27
  article-title: The carboxylate composition of rhizosheath and root exudates from twelve species of grassland and crop legumes with special reference to the occurrence of citramalate
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3534-0
– volume: 285
  start-page: 125
  year: 2006
  end-page: 134
  ident: CR55
  article-title: Cadmium accumulation in relation to organic acids in leaves of L. as a newly found cadmium hyperaccumulator
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0064-6
– volume: 68
  start-page: 33
  year: 1982
  end-page: 41
  ident: CR14
  article-title: The acquisition of phosphorus by L. II. The effect of varying phosphorus supply and soil type on some characteristics of the soil/root interface
  publication-title: Plant Soil
  doi: 10.1007/BF02374894
– volume: 219
  start-page: 518
  year: 2018
  end-page: 529
  ident: CR43
  article-title: The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply
  publication-title: New Phytol
  doi: 10.1111/nph.15200
– volume: 68
  start-page: 19
  year: 1982
  end-page: 32
  ident: CR13
  article-title: The acquisition of phosphorus by L. I. some characteristics of the soil/root interface
  publication-title: Plant Soil
  doi: 10.1007/bf02374724
– start-page: 49
  year: 2012
  end-page: 70
  ident: CR65
  article-title: Long-distance transport in the xylem and phloem
  publication-title: Marschner's mineral nutrition of higher plants
  doi: 10.1016/B978-0-12-384905-2.00003-0
– ident: CR5
– volume: 413
  start-page: 59
  year: 2017
  end-page: 71
  ident: CR72
  article-title: Zinc uptake by roots and accumulation in maize plants as affected by phosphorus application and arbuscular mycorrhizal colonization
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3213-1
– volume: 156
  start-page: 997
  year: 2011
  end-page: 1005
  ident: CR52
  article-title: Phosphorus dynamics: from soil to plant
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175232
– volume: 205
  start-page: 25
  year: 1998
  end-page: 44
  ident: CR23
  article-title: Organic acids in the rhizosphere – a critical review
  publication-title: Plant Soil
  doi: 10.1023/A:1004356007312
– volume: 418
  start-page: 129
  year: 2017
  end-page: 139
  ident: CR42
  article-title: Unwrapping the rhizosheath
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3358-y
– volume: 10
  start-page: 1716
  year: 2020
  ident: CR73
  article-title: Phosphorus application decreased copper concentration but not iron in maize grain
  publication-title: Agronomy
  doi: 10.3390/agronomy10111716
– volume: 16
  start-page: 322
  year: 2013
  end-page: 327
  ident: CR57
  article-title: Iron transport in plants: better be safe than sorry
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.01.003
– volume: 68
  start-page: 427
  year: 2013
  end-page: 436
  ident: CR34
  article-title: Micronutrient concentrations in common and novel forage species and varieties grown on two contrasting soils
  publication-title: Grass Forage Sci
  doi: 10.1111/gfs.12006
– start-page: 50
  year: 2005
  ident: CR10
  publication-title: Mineralnutrition of plants: principles andperspectives
– ident: CR47
– volume: 157
  start-page: 1914
  year: 2011
  end-page: 1925
  ident: CR58
  article-title: Cellular sequestration of cadmium in the hyperaccumulator plant species
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.183947
– volume: 138
  start-page: 289
  year: 2014
  end-page: 296
  ident: CR7
  article-title: Interaction of acid exudates in chickpea with biological activity of towards
  publication-title: J Appl Entomol
  doi: 10.1111/jen.12056
– volume: 205
  start-page: 1183
  year: 2015
  end-page: 1194
  ident: CR41
  article-title: Mineral nutrition of plant species on contrasting nutrient-impoverished soil types
  publication-title: New Phytol
  doi: 10.1111/nph.13175
– ident: CR37
– volume: 5
  start-page: 106
  year: 2014
  ident: CR53
  article-title: Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00106
– volume: 223
  start-page: 882
  year: 2019
  end-page: 895
  ident: CR63
  article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species
  publication-title: New Phytol
  doi: 10.1111/nph.15833
– volume: 11
  start-page: 1051
  year: 1980
  end-page: 1066
  ident: CR59
  article-title: The relationship between phosphorus and copper concentrations in wheat
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103628009367104
– volume: 58
  start-page: 189
  year: 1983
  end-page: 192
  ident: CR28
  article-title: Evaluation of the significance of malic-acid secretion in chickpea
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1983.tb04167.x
– volume: 245
  start-page: 35
  year: 2002
  end-page: 47
  ident: CR4
  article-title: Root exudates as mediators of mineral acquisition in low-nutrient environments
  publication-title: Plant Soil
  doi: 10.1023/A:1020809400075
– volume: 12
  start-page: 636056
  year: 2021
  ident: CR6
  article-title: Ecophysiological performance of proteaceae species from southern South America growing on substrates derived from young volcanic materials
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.636056
– volume: 108
  start-page: 183
  year: 1995
  end-page: 200
  ident: CR9
  article-title: Distribution and function of proteoid roots and other root clusters
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.1995.tb00850.x
– volume: 214
  start-page: 500
  year: 2017
  end-page: 505
  ident: CR60
  article-title: One way. Or another? Iron uptake in plants
  publication-title: New Phytol
  doi: 10.1111/nph.14477
– volume: 1011
  start-page: 233
  year: 2003
  end-page: 240
  ident: CR3
  article-title: An improved reversed-phase liquid chromatographic method for the analysis of low-molecular mass organic acids in plant root exudates
  publication-title: J Chromatogr A
  doi: 10.1016/s0021-9673(03)01129-4
– volume: 226
  start-page: 1285
  year: 2020
  end-page: 1298
  ident: CR70
  article-title: Phosphorus facilitation and covariation of root traits in steppe species
  publication-title: New Phytol
  doi: 10.1111/nph.16499
– volume: 49
  start-page: 447
  year: 1998
  end-page: 455
  ident: CR24
  article-title: Sorption of organic acids in acid soils and its implications in the rhizosphere
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.1998.4930447.x
– volume: 12
  start-page: 285
  year: 1989
  end-page: 292
  ident: CR8
  article-title: Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin ( L.)
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1989.tb01942.x
– volume: 49
  start-page: 1272
  year: 2011
  end-page: 1278
  ident: CR36
  article-title: Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.08.012
– volume: 447
  start-page: 135
  year: 2019
  end-page: 156
  ident: CR62
  article-title: Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-03972-8
– volume: 173
  start-page: 181
  year: 2007
  end-page: 190
  ident: CR44
  article-title: Carboxylate composition of root exudates does not relate consistently to a crop species' ability to use phosphorus from aluminium, iron or calcium phosphate sources
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01897.x
– volume: 163
  start-page: 153
  year: 2020
  end-page: 177
  ident: CR49
  article-title: Making science more effective for agriculture
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2020.05.003
– volume: 358
  start-page: 100
  year: 2012
  end-page: 112
  ident: CR56
  article-title: Growth, carboxylate exudates and nutrient dynamics in three herbaceous perennial plant species under low, moderate and high phosphorus supply
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1311-7
– volume: 20
  start-page: 83
  year: 2015
  end-page: 90
  ident: CR30
  article-title: Leaf manganese accumulation and phosphorus-acquisition efficiency
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.10.007
– ident: CR38
– start-page: 7
  year: 2012
  end-page: 44
  ident: CR66
  article-title: Ion uptake mechanisms of individual cells and roots: short-distance transport
  publication-title: Marschner's mineral nutrition of higher plants
  doi: 10.1016/B978-0-12-384905-2.00002-9
– ident: CR31
– volume: 4
  start-page: 374
  year: 2013
  ident: CR32
  article-title: Compartmentation and complexation of metals in hyperaccumulator plants
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00374
– volume: 102
  start-page: 396
  year: 2014
  end-page: 410
  ident: CR18
  article-title: Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12196
– volume: 124
  start-page: 441
  year: 2005
  end-page: 450
  ident: CR50
  article-title: Manganese accumulation in leaves of (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2005.00527.x
– volume: 70
  start-page: 391
  year: 1983
  end-page: 402
  ident: CR12
  article-title: The acquisition of phosphorus by L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species
  publication-title: Plant Soil
  doi: 10.1007/bf02374894
– volume: 36
  start-page: 227
  year: 2010
  end-page: 235
  ident: CR54
  article-title: Inactivation of baculovirus by isoflavonoids on chickpea ( ) leaf surfaces reduces the efficacy of nucleopolyhedrovirus against
  publication-title: J Chem Ecol
  doi: 10.1007/s10886-010-9748-8
– volume: 267
  start-page: 343
  year: 2004
  end-page: 355
  ident: CR48
  article-title: Rhizospheric exudation of L. – potential link to methanogenesis
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-0140-3
– volume: 42
  start-page: 421
  year: 1978
  end-page: 428
  ident: CR33
  article-title: Development of a DTPA soil test for zinc, iron, manganese, and copper
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1978.03615995004200030009x
– volume: 43
  start-page: 1691
  year: 2020
  end-page: 1706
  ident: CR75
  article-title: LaALMT1 mediates malate release from phosphorus-deficient white lupin root tips and metal root to shoot translocation
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13762
– volume: 416
  start-page: 453
  year: 2017
  end-page: 462
  ident: CR19
  article-title: Iron supply prevents cd uptake in Arabidopsis by inhibiting IRT1 expression and favoring competition between Fe and cd uptake
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3232-y
– volume: 16
  start-page: 322
  year: 2013
  ident: 4988_CR57
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2013.01.003
– volume: 416
  start-page: 453
  year: 2017
  ident: 4988_CR19
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3232-y
– volume: 7
  start-page: 1939
  year: 2016
  ident: 4988_CR35
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01939
– volume: 304
  start-page: 169
  year: 2008
  ident: 4988_CR51
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9535-7
– volume: 77
  start-page: 185
  year: 2002
  ident: 4988_CR11
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(02)77015-6
– volume: 5
  start-page: 106
  year: 2014
  ident: 4988_CR53
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00106
– volume: 59
  start-page: 415
  year: 1981
  ident: 4988_CR17
  publication-title: Plant Soil
  doi: 10.1007/BF02184546
– ident: 4988_CR31
  doi: 10.1007/s11104-020-04690-2
– volume: 163
  start-page: 153
  year: 2020
  ident: 4988_CR49
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2020.05.003
– volume: 70
  start-page: 391
  year: 1983
  ident: 4988_CR12
  publication-title: Plant Soil
  doi: 10.1007/bf02374894
– volume: 43
  start-page: 1691
  year: 2020
  ident: 4988_CR75
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13762
– volume: 49
  start-page: 1272
  year: 2011
  ident: 4988_CR36
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2011.08.012
– volume: 138
  start-page: 289
  year: 2014
  ident: 4988_CR7
  publication-title: J Appl Entomol
  doi: 10.1111/jen.12056
– start-page: 50
  volume-title: Mineralnutrition of plants: principles andperspectives
  year: 2005
  ident: 4988_CR10
– volume: 98
  start-page: 693
  year: 2006
  ident: 4988_CR29
  publication-title: Ann Bot
  doi: 10.1093/aob/mcl114
– volume: 105
  start-page: 12081
  year: 2008
  ident: 4988_CR2
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0804175105
– volume: 185
  start-page: 387
  year: 2017
  ident: 4988_CR20
  publication-title: Oecologia
  doi: 10.1007/s00442-017-3961-x
– volume: 12
  start-page: 636056
  year: 2021
  ident: 4988_CR6
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.636056
– volume: 70
  start-page: 107
  year: 1983
  ident: 4988_CR15
  publication-title: Plant Soil
  doi: 10.1007/BF02374754
– volume: 35
  start-page: 1110
  year: 2020
  ident: 4988_CR45
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2020.08.007
– ident: 4988_CR16
  doi: 10.1111/nph.17344
– volume: 205
  start-page: 1183
  year: 2015
  ident: 4988_CR41
  publication-title: New Phytol
  doi: 10.1111/nph.13175
– volume: 34
  start-page: 1311
  year: 2020
  ident: 4988_CR64
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.13562
– volume: 58
  start-page: 189
  year: 1983
  ident: 4988_CR28
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.1983.tb04167.x
– volume: 36
  start-page: 227
  year: 2010
  ident: 4988_CR54
  publication-title: J Chem Ecol
  doi: 10.1007/s10886-010-9748-8
– ident: 4988_CR5
– volume: 68
  start-page: 19
  year: 1982
  ident: 4988_CR13
  publication-title: Plant Soil
  doi: 10.1007/bf02374724
– volume: 157
  start-page: 1914
  year: 2011
  ident: 4988_CR58
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.183947
– ident: 4988_CR21
  doi: 10.1016/S0065-2113(08)60887-1
– volume: 261
  start-page: 1
  year: 2004
  ident: 4988_CR68
  publication-title: Plant Soil
  doi: 10.1023/B:PLSO.0000035568.28893.f6
– volume: 214
  start-page: 500
  year: 2017
  ident: 4988_CR60
  publication-title: New Phytol
  doi: 10.1111/nph.14477
– volume: 413
  start-page: 59
  year: 2017
  ident: 4988_CR72
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3213-1
– volume: 6
  start-page: 116
  year: 2018
  ident: 4988_CR39
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.06.004
– volume: 447
  start-page: 135
  year: 2019
  ident: 4988_CR62
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-03972-8
– volume: 68
  start-page: 33
  year: 1982
  ident: 4988_CR14
  publication-title: Plant Soil
  doi: 10.1007/BF02374894
– volume: 173
  start-page: 181
  year: 2007
  ident: 4988_CR44
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2006.01897.x
– start-page: 7
  volume-title: Marschner's mineral nutrition of higher plants
  year: 2012
  ident: 4988_CR66
  doi: 10.1016/B978-0-12-384905-2.00002-9
– volume: 11
  start-page: 1051
  year: 1980
  ident: 4988_CR59
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103628009367104
– volume: 10
  start-page: 1716
  year: 2020
  ident: 4988_CR73
  publication-title: Agronomy
  doi: 10.3390/agronomy10111716
– volume: 42
  start-page: 421
  year: 1978
  ident: 4988_CR33
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1978.03615995004200030009x
– volume: 267
  start-page: 343
  year: 2004
  ident: 4988_CR48
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-0140-3
– volume: 69
  start-page: 909
  year: 2018
  ident: 4988_CR1
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erx465
– ident: 4988_CR47
– start-page: 49
  volume-title: Marschner's mineral nutrition of higher plants
  year: 2012
  ident: 4988_CR65
  doi: 10.1016/B978-0-12-384905-2.00003-0
– volume: 102
  start-page: 396
  year: 2014
  ident: 4988_CR18
  publication-title: J Ecol
  doi: 10.1111/1365-2745.12196
– volume: 248
  start-page: 31
  year: 2003
  ident: 4988_CR25
  publication-title: Plant Soil
  doi: 10.1023/a:1022304332313
– volume: 205
  start-page: 25
  year: 1998
  ident: 4988_CR23
  publication-title: Plant Soil
  doi: 10.1023/A:1004356007312
– volume: 21
  start-page: 243
  year: 2016
  ident: 4988_CR40
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2015.12.005
– volume: 108
  start-page: 183
  year: 1995
  ident: 4988_CR9
  publication-title: Plant Biol
  doi: 10.1111/j.1438-8677.1995.tb00850.x
– ident: 4988_CR38
  doi: 10.1007/s11104-009-9953-9
– volume: 219
  start-page: 518
  year: 2018
  ident: 4988_CR43
  publication-title: New Phytol
  doi: 10.1111/nph.15200
– volume: 156
  start-page: 997
  year: 2011
  ident: 4988_CR52
  publication-title: Plant Physiol
  doi: 10.1104/pp.111.175232
– volume: 424
  start-page: 389
  year: 2018
  ident: 4988_CR27
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3534-0
– volume: 4
  start-page: 374
  year: 2013
  ident: 4988_CR32
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00374
– volume: 1011
  start-page: 233
  year: 2003
  ident: 4988_CR3
  publication-title: J Chromatogr A
  doi: 10.1016/s0021-9673(03)01129-4
– volume: 52
  start-page: 1
  year: 1998
  ident: 4988_CR26
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/a:1016311118034
– volume: 32
  start-page: 153
  year: 2005
  ident: 4988_CR69
  publication-title: Funct Plant Biol
  doi: 10.1071/Fp04084
– volume: 245
  start-page: 35
  year: 2002
  ident: 4988_CR4
  publication-title: Plant Soil
  doi: 10.1023/A:1020809400075
– volume: 226
  start-page: 1285
  year: 2020
  ident: 4988_CR70
  publication-title: New Phytol
  doi: 10.1111/nph.16499
– volume: 68
  start-page: 427
  year: 2013
  ident: 4988_CR34
  publication-title: Grass Forage Sci
  doi: 10.1111/gfs.12006
– volume: 418
  start-page: 129
  year: 2017
  ident: 4988_CR42
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3358-y
– volume: 223
  start-page: 882
  year: 2019
  ident: 4988_CR63
  publication-title: New Phytol
  doi: 10.1111/nph.15833
– volume: 12
  start-page: 285
  year: 1989
  ident: 4988_CR8
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.1989.tb01942.x
– volume: 209
  start-page: 823
  year: 2016
  ident: 4988_CR71
  publication-title: New Phytol
  doi: 10.1111/nph.13613
– volume: 7
  start-page: 1776
  year: 2016
  ident: 4988_CR74
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01776
– volume: 358
  start-page: 100
  year: 2012
  ident: 4988_CR56
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1311-7
– volume: 162
  start-page: 745
  year: 2004
  ident: 4988_CR67
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2004.01070.x
– volume: 248
  start-page: 187
  year: 2003
  ident: 4988_CR61
  publication-title: Plant Soil
  doi: 10.1023/A:1022367312851
– ident: 4988_CR22
  doi: 10.1016/j.pbi.2017.06.014
– volume: 49
  start-page: 447
  year: 1998
  ident: 4988_CR24
  publication-title: Eur J Soil Sci
  doi: 10.1046/j.1365-2389.1998.4930447.x
– volume: 124
  start-page: 441
  year: 2005
  ident: 4988_CR50
  publication-title: Physiol Plant
  doi: 10.1111/j.1399-3054.2005.00527.x
– volume: 285
  start-page: 125
  year: 2006
  ident: 4988_CR55
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-0064-6
– volume: 20
  start-page: 83
  year: 2015
  ident: 4988_CR30
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2014.10.007
– ident: 4988_CR37
  doi: 10.1023/A:1004380832118
– volume: 12
  start-page: 299
  year: 2009
  ident: 4988_CR46
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2009.04.008
SSID ssj0003216
Score 2.4307578
Snippet Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]...
Aims Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]...
Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is a...
AimsPlants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn] is...
AIMS: Plants deploying a phosphorus (P)-mobilising strategy via carboxylate release have relatively high leaf manganese concentrations ([Mn]). Thus, leaf [Mn]...
SourceID proquest
gale
crossref
springer
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 31
SubjectTerms Agriculture
Analysis
Biomedical and Life Sciences
Carboxylases
Carboxylates
Chemical properties
Chickpea
Chickpeas
Copper
Correlation
Ecology
Flowers & plants
Genetic aspects
Genotypes
Greenhouses
Growth media
Iron
Leaves
Life Sciences
Manganese
Micronutrients
Nutritional aspects
Phosphorus
Phosphorus content
Plant Physiology
Plant Sciences
Planting
Proxies
Regular Article
REGULAR ARTICLES
rivers
sand
soil
Soil mixtures
Soil Science & Conservation
Soils
Structure
Zinc
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9NAEF70VNAH0eph9ZQRBB-8QLKbbJLHKnecgj5Z6FvY7I-7cnVTkhav_iH-vc6km5aKCj6UFLKZtJmd2W_JfN8w9gaREI-ttpE2OINTbnRUp6SEaRIpXa547Yjv_PmLvJimn2bZLJDCuqHafXgl2WfqPdkNV6o0opICRLXo3_I2u5Ph3p0KuaZ8ssu_gvcNT-lLFOflLFBl_mzjYDkKSXlbmHgAOX97S9ovPueP2MOAGmGydfNjdsv6EXswuWyDcoYdsbvvG8R5mxG7d9YLUW-esJ8fPVC9ED17WDXgmsVctfBN-UtFjSdBE2fRB-HcU6jRa0C0N1DewI-51xCIenS8wT01mmihpTK9jpL4FWjV1s3NZkGIFeYeqLPK9dIqIG5aC4vmOyyvmg4_7bqDjlqIbp6y6fnZ1w8XUejDEGkES6uodDZ3QipZJybOdZm6zMpEGiucUSVFuCutUQrBkLKKc42hXGphSRnIGuHEMTvyjbfPGLgiNaXOeaqKOq1zUwgrjCh0oV2sJK_HLBncUekgUk69MhbVXl6ZXFihC6vehVU5Zu921yy3Eh3_HP2WvFxR_KJlrQINAX8fKWFVE5kTps2KeMxODkZi3OmD08f9PNndk-M-RWQixeuGiVOFhNBVhCx7ccN8zF7vTpNJKnLztlnjGCkkboCLBE2cDhNub-Lv_-n5_w1_we7zPgSojPGEHa3atX2J0GpVv-oj6ReljRuf
  priority: 102
  providerName: Springer Nature
Title In addition to foliar manganese concentration, both iron and zinc provide proxies for rhizosheath carboxylates in chickpea under low phosphorus supply
URI https://www.jstor.org/stable/27293534
https://link.springer.com/article/10.1007/s11104-021-04988-9
https://www.proquest.com/docview/2560486797
https://www.proquest.com/docview/2636828814
Volume 465
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF7RhAMcEBSqhpZokZA4UIt411nbJ-RAQgFRIUSkcLLW-2gjwjq1E9HwQ_i9zDibREGiB8uWvB47mcd-a898Q8gLQEKsZ5QJlAYLjphWQREhE6YOhbCxZIXFeufPF-J8HH2c9Cf-hVvt0yo3MbEJ1LpU-I78NU7NDTtc_GZ-HWDXKPy66ltoHJA2hOAkaZH2YHjx5es2FnPWND_Fg6AXpxNfNrMunoOZLwowRQFQMthLujc1-QC9TlLcg5__fDFtJqLRQ_LAI0iarVX-iNwx7pDczy4rz6JhDsndQQmYb_WY_PngKGYM4b9PFyW15WwqK_pTukuJrSepwqpF56lzz2gBeqNY-Eal0_T31CnqS_VwfwOrahBR0QoT9WoM41dUyaoob1YzxKx06ij2VvkxN5JidVpFZ-UvOr8qa9iqZU1rbCK6ekLGo-G3t-eB78QQKIBLiyC1JrZcSFGEuherNLJ9I0KhDbdapujjNjVaSoBD0kjGFDhzqrhBbiCjueVHpOVKZ44JtUmkUxWzSCZFVMQ64YZrnqhE2Z4UrOiQcKOEXHmacuyWMct3BMuouBwUlzeKy9MOebW9Zr4m6bh19EvUbY4eDJKV9IUI8HzIhZVnIkZU2096HXK6NxI8T-2dPmqsY3tPBisV3ucRXLcxl9yHhDrfGXCHPN-eRpGY5uZMuYQxggtYAichiDjbmNlOxP9_09Pb73hC7rHG0DFx8ZS0FtXSPAMwtSi6pJ0N3g1GuH___dOw6z2oSw7GLPsLTrshLw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFAk4IChUBAosEogDtbB3nbV9QCiFVgltI4RaKTd3vT9tRLCDnagND8Jj8IzMOOtEQaK3Hixb8npsa76dmbXnmyHkNURCzDfKeEoDgkOmlZeFWAlTB0LYSLLMIt_5eCB6p-GXYWe4Qf40XBhMq2xsYm2odaHwG_l7dM11dbjo4-Snh12j8O9q00JjAYtDM7-EJVv1of8Z9PuGsYP9k089z3UV8BS4_qmXWBNZLqTIAu1HKgltx4hAaMOtlgni1SZGSwmuXRrJGLawTxQ3WOfGaG45yL1FNkMufNYim3v7g6_flrafs7rZKh54fpQMHU1nQdYDTxt6mBIBUTngM1lzhc4hLJIi18Ldf_7Q1o7v4AG57yJW2l1A7CHZMPkWudc9L13VDrNFbu8VEGPOH5Hf_ZxihhJqm04LaovxSJb0h8zPJba6pApZkrkr1btLM8AJRaIdlbmmv0a5oo4aiPsrWMWDiJKWmBhYodu4oEqWWXE1H2OMTEc5xV4u3ydGUmTDlXRcXNLJRVHBVs4qWmHT0vljcnojOtomrbzIzRNCbRzqREUslHEWZpGOueGaxypW1peCZW0SNEpIlSuLjt05xumqoDMqLgXFpbXi0qRN3i2vmSyKglw7-i3qNkWLAZKVdMQHeD6svZV2RYRRdCf222RnbSTMdLV2ertGx_KeDFZGvMNDuK6BS-pMUJWuJkybvFqeRpGYVpebYgZjBBew5I4DELHbwGwl4v_v9PT6O74kd3onx0fpUX9w-IzcZTXoMWlyh7Sm5cw8h0Bumr1ws4eSs5uesH8BV6db0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFCE4IChUBAosEogDtWrvOmv7gFBKGzUUogpRKTd3vT9tRLCDnagND8LD8HTMOOtEQaK3HiJH8noca77ZmYnnmyHkNURCzDfKeEoDgkOmlZeF2AlTB0LYSLLMIt_5y0AcnYafhp3hBvnTcGGwrLLZE-uNWhcK_yPfQ9dcd4eL9qwrizg56H2Y_PRwghS-aW3GaSwgcmzml5C-Ve_7B6DrN4z1Dr99PPLchAFPQRgw9RJrIsuFFFmg_Ugloe0YEQhtuNUyQezaxGgpwc1LIxnDcfaJ4gZ73hjNLQe5t8hmhFlRi2zuHw5Ovi79AGf14FX84vlRMnSUnQVxD7xu6GF5BETogNVkzS0657AokFwLff95W1s7wd4Dct9Fr7S7gNtDsmHyLXKve166Dh5mi9zeLyDenD8iv_s5xWol1DydFtQW45Es6Q-Zn0sce0kVMiZz17Z3l2aAGYqkOypzTX-NckUdTRCPV5DRg4iSllgkWKELuaBKlllxNR9jvExHOcW5Lt8nRlJkxpV0XFzSyUVRwaecVbTCAabzx-T0RnS0TVp5kZsnhNo41ImKWCjjLMwiHXPDNY9VrKwvBcvaJGiUkCrXIh0ndYzTVXNnVFwKiktrxaVJm7xbXjNZNAi5dvVb1G2KuwdIVtKRIOD3YR-utCsijKg7sd8mO2srwerV2untGh3LezLIkniHh3BdA5fUbUdVujKeNnm1PI0iscQuN8UM1gguIP2OAxCx28BsJeL_z_T0-ju-JHfAUNPP_cHxM3KX1ZjH-skd0pqWM_McYrpp9sIZDyVnN22vfwGORGAI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+addition+to+foliar+manganese+concentration%2C+both+iron+and+zinc+provide+proxies+for+rhizosheath+carboxylates+in+chickpea+under+low+phosphorus+supply&rft.jtitle=Plant+and+soil&rft.au=Wen%2C+Zhihui&rft.au=Pang%2C+Jiayin&rft.au=Ryan%2C+Megan+H&rft.au=Shen%2C+Jianbo&rft.date=2021-08-01&rft.pub=Springer&rft.issn=0032-079X&rft.volume=465&rft.issue=1-2&rft.spage=31&rft_id=info:doi/10.1007%2Fs11104-021-04988-9&rft.externalDocID=A671932580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon