Wafer-scale single-crystal monolayer graphene grown on sapphire substrate
The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene...
Saved in:
Published in | Nature materials Vol. 21; no. 7; pp. 740 - 747 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al
2
O
3
(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al
2
O
3
(0001) by multi-cycle plasma etching-assisted–chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.
High-quality wafer-scale single-crystal monolayer graphene is achieved on sapphire substrate, by epitaxially growing graphene at the Cu(111)/sapphire interface and then detaching Cu film via immersion in liquid nitrogen and rapid heating. |
---|---|
AbstractList | The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al
2
O
3
(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al
2
O
3
(0001) by multi-cycle plasma etching-assisted–chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.
High-quality wafer-scale single-crystal monolayer graphene is achieved on sapphire substrate, by epitaxially growing graphene at the Cu(111)/sapphire interface and then detaching Cu film via immersion in liquid nitrogen and rapid heating. The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al O (0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al O (0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices. The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted-chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices. The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging due to the lack of metal catalysis. Here we demonstrate the wafer-scale synthesis of adlayer-free ultra-flat single-crystal monolayer graphene on sapphire substrates. We converted polycrystalline Cu foil placed on Al2O3(0001) into single-crystal Cu(111) film via annealing, and then achieved epitaxial growth of graphene at the interface between Cu(111) and Al2O3(0001) by multi-cycle plasma etching-assisted–chemical vapour deposition. Immersion in liquid nitrogen followed by rapid heating causes the Cu(111) film to bulge and peel off easily, while the graphene film remains on the sapphire substrate without degradation. Field-effect transistors fabricated on as-grown graphene exhibited good electronic transport properties with high carrier mobilities. This work breaks a bottleneck of synthesizing wafer-scale single-crystal monolayer graphene on insulating substrates and could contribute to next-generation graphene-based nanodevices.High-quality wafer-scale single-crystal monolayer graphene is achieved on sapphire substrate, by epitaxially growing graphene at the Cu(111)/sapphire interface and then detaching Cu film via immersion in liquid nitrogen and rapid heating. |
Author | Zhang, Xixiang Dong, Haocong Han, Yu Jiang, Xiaochuan Li, Junzhu Schwingenschlögl, Udo Samad, Abdus Chen, Cailing Domke, Jari Chen, Mingguang Ray, Avijeet Zhang, Junwei Tian, Bo Fritz, Torsten Ruoff, Rodney S. |
Author_xml | – sequence: 1 givenname: Junzhu surname: Li fullname: Li, Junzhu organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Eleven-Dimensional Nanomaterial Research Institute – sequence: 2 givenname: Mingguang surname: Chen fullname: Chen, Mingguang organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Abdus orcidid: 0000-0003-1018-7078 surname: Samad fullname: Samad, Abdus organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Haocong surname: Dong fullname: Dong, Haocong organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Eleven-Dimensional Nanomaterial Research Institute – sequence: 5 givenname: Avijeet surname: Ray fullname: Ray, Avijeet organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: School of Materials and Energy, Electron Microscopy Centre of Lanzhou University and Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University – sequence: 7 givenname: Xiaochuan surname: Jiang fullname: Jiang, Xiaochuan organization: Eleven-Dimensional Nanomaterial Research Institute, Department of Physics, Xiamen University – sequence: 8 givenname: Udo orcidid: 0000-0003-4179-7231 surname: Schwingenschlögl fullname: Schwingenschlögl, Udo organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 9 givenname: Jari orcidid: 0000-0001-9339-0711 surname: Domke fullname: Domke, Jari organization: Institute of Solid State Physics (IFK), Friedrich Schiller University Jena – sequence: 10 givenname: Cailing surname: Chen fullname: Chen, Cailing organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 11 givenname: Yu orcidid: 0000-0003-1462-1118 surname: Han fullname: Han, Yu organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) – sequence: 12 givenname: Torsten orcidid: 0000-0001-6904-1909 surname: Fritz fullname: Fritz, Torsten organization: Institute of Solid State Physics (IFK), Friedrich Schiller University Jena – sequence: 13 givenname: Rodney S. orcidid: 0000-0002-6599-6764 surname: Ruoff fullname: Ruoff, Rodney S. organization: Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), School of Chemical Engineering and Energy Science, Ulsan National Institute of Science and Technology (UNIST) – sequence: 14 givenname: Bo orcidid: 0000-0002-1575-0491 surname: Tian fullname: Tian, Bo email: bo.tian@kaust.edu.sa organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Eleven-Dimensional Nanomaterial Research Institute – sequence: 15 givenname: Xixiang orcidid: 0000-0002-3478-6414 surname: Zhang fullname: Zhang, Xixiang email: xixiang.zhang@kaust.edu.sa organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35058609$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKxDAUhoMoXkZfwIUU3LiJ5tqkSxFvILhRXIY0PR0rnaQmLTJvb8aZQXDhKmfxfYc_5z9Cuz54QOiUkktKuL5KgsqSY8IoJpQqgekOOqRClViUJdndzJQydoCOUvogmZSy3EcHXBKpS1Idosc320LEydkeitT5eQ_YxWUabV8sgg-9XUIs5tEO7-AhD-HLF8EXyQ7DexezM9VpjHaEY7TX2j7Byeadode725ebB_z0fP94c_2EnRB0xBWAa7ioG8Eb1zRCVEIppV1LWqhoVSuu20pRx5l2FSFSEJA1CM2YlG1VOz5DF-u9QwyfE6TRLLrkoO-thzAlw0rGmC65ohk9_4N-hCn6nC5TmhEqNVeZOttQU72AxgyxW9i4NNsjZUCvARdDShFa47rRjl3w-eNdbygxqz7Mug-Tr2x--jCrBOyPut3-r8TXUsqwn0P8jf2P9Q0--Zv2 |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00302 crossref_primary_10_1021_acssensors_2c02790 crossref_primary_10_1002_adma_202308802 crossref_primary_10_1002_adfm_202404885 crossref_primary_10_1002_admi_202200409 crossref_primary_10_1021_acsanm_4c01124 crossref_primary_10_1039_D3NR06041A crossref_primary_10_1002_cssc_202300865 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1088_2752_5724_acf9ba crossref_primary_10_1039_D3NH00246B crossref_primary_10_1002_adma_202211536 crossref_primary_10_1002_EXP_20210233 crossref_primary_10_35848_1882_0786_acde41 crossref_primary_10_1016_j_rinp_2023_106714 crossref_primary_10_1016_j_susmat_2023_e00736 crossref_primary_10_1021_acs_nanolett_2c00820 crossref_primary_10_3390_ma16051777 crossref_primary_10_1038_s41928_025_01353_x crossref_primary_10_1126_sciadv_add9627 crossref_primary_10_1016_j_apsusc_2024_159375 crossref_primary_10_1016_j_cplett_2024_141388 crossref_primary_10_1038_s41578_024_00728_4 crossref_primary_10_1038_s41598_023_34020_2 crossref_primary_10_1002_admi_202300482 crossref_primary_10_1021_acsami_3c04012 crossref_primary_10_1039_D3CS00817G crossref_primary_10_1021_acs_jpclett_4c03481 crossref_primary_10_1038_s41467_023_42696_3 crossref_primary_10_1134_S1027451024010166 crossref_primary_10_1088_1361_6463_ad865f crossref_primary_10_1088_1361_6528_ad3254 crossref_primary_10_1016_j_apsusc_2023_156498 crossref_primary_10_1016_j_engfracmech_2023_109798 crossref_primary_10_1021_acsami_4c03902 crossref_primary_10_3390_nano14201635 crossref_primary_10_1002_smll_202402668 crossref_primary_10_1016_j_ceramint_2023_08_018 crossref_primary_10_1088_1361_6463_ac928d crossref_primary_10_1021_acssensors_2c02090 crossref_primary_10_1002_adfm_202300376 crossref_primary_10_1039_D2CS00657J crossref_primary_10_1016_j_est_2024_111004 crossref_primary_10_1002_pssr_202300391 crossref_primary_10_1007_s12274_023_6193_x crossref_primary_10_1021_acsomega_2c02159 crossref_primary_10_1016_j_foodres_2024_114775 crossref_primary_10_1002_adfm_202202469 crossref_primary_10_1039_D4NR00956H crossref_primary_10_1126_science_adg8017 crossref_primary_10_1016_j_carbon_2024_119551 crossref_primary_10_6023_A22120513 crossref_primary_10_1088_2631_7990_acd88d crossref_primary_10_1039_D3NJ03345G crossref_primary_10_3390_ma16165603 crossref_primary_10_1021_acs_chemrev_3c00618 crossref_primary_10_1021_acsnano_3c11856 crossref_primary_10_1088_1674_1056_ac921f crossref_primary_10_1038_s41467_023_42270_x crossref_primary_10_1021_acs_nanolett_3c04465 crossref_primary_10_1039_D2NR05660G crossref_primary_10_1002_adma_202305044 crossref_primary_10_1039_D4NR01339E crossref_primary_10_1039_D3NA00382E crossref_primary_10_1021_acsami_4c16003 crossref_primary_10_1038_s41563_023_01516_1 crossref_primary_10_1016_j_jmrt_2024_11_091 crossref_primary_10_1038_s41928_023_01075_y crossref_primary_10_3389_fbioe_2023_1306184 crossref_primary_10_1021_acsanm_3c03533 crossref_primary_10_1016_j_vacuum_2025_114275 crossref_primary_10_1002_adma_202206389 crossref_primary_10_1007_s11664_024_11117_6 crossref_primary_10_1038_s41467_024_44970_4 crossref_primary_10_31857_S1028096024020166 crossref_primary_10_1002_inc2_12015 crossref_primary_10_1016_j_cossms_2024_101176 crossref_primary_10_1016_j_mtchem_2023_101612 crossref_primary_10_1360_TB_2024_0125 crossref_primary_10_1016_j_scib_2024_07_016 crossref_primary_10_1016_j_apsusc_2023_158542 crossref_primary_10_1038_s44221_025_00397_9 crossref_primary_10_1038_s44287_024_00045_6 crossref_primary_10_1088_1361_6528_ac87b6 crossref_primary_10_1016_j_mattod_2024_11_002 crossref_primary_10_1063_5_0198648 crossref_primary_10_1038_s41467_023_38419_3 crossref_primary_10_1038_s41467_024_53573_y crossref_primary_10_1021_acs_nanolett_2c04535 crossref_primary_10_1039_D4SD00317A crossref_primary_10_1126_science_ads4149 crossref_primary_10_1063_5_0130037 crossref_primary_10_1016_j_jcrysgro_2024_127825 crossref_primary_10_1039_D3NR01581E crossref_primary_10_1002_appl_202400143 crossref_primary_10_1002_adma_202310921 crossref_primary_10_1007_s11426_023_1769_y crossref_primary_10_1039_D3CP04568D crossref_primary_10_1016_j_jmat_2022_11_007 crossref_primary_10_1016_j_apsadv_2022_100286 crossref_primary_10_1016_j_jmrt_2024_11_076 crossref_primary_10_35848_1347_4065_acea0b crossref_primary_10_1002_adma_202206080 crossref_primary_10_1016_j_matt_2022_10_016 crossref_primary_10_1002_adma_202305115 crossref_primary_10_1021_acsanm_4c00411 crossref_primary_10_1360_TB_2024_1186 crossref_primary_10_1088_2632_959X_acbc91 crossref_primary_10_1002_smtd_202300156 crossref_primary_10_1007_s12598_024_03040_w crossref_primary_10_1016_j_mtphys_2024_101396 crossref_primary_10_1039_D2CS00067A crossref_primary_10_1002_adfm_202210771 crossref_primary_10_1002_adma_202209755 crossref_primary_10_1007_s11467_023_1290_6 crossref_primary_10_1038_s41467_024_48958_y crossref_primary_10_1016_j_matpr_2023_03_801 crossref_primary_10_1360_TB_2024_0929 crossref_primary_10_1021_acsnano_4c00590 crossref_primary_10_1039_D2CP04123E crossref_primary_10_1002_smll_202303115 crossref_primary_10_1021_acs_nanolett_3c04372 crossref_primary_10_1002_adma_202201916 crossref_primary_10_1002_adfm_202203191 crossref_primary_10_1038_s41377_024_01735_4 crossref_primary_10_1016_j_chip_2023_100080 crossref_primary_10_1016_j_mtcomm_2023_106127 crossref_primary_10_3390_nano13131952 crossref_primary_10_1063_5_0196890 crossref_primary_10_1039_D3NR06678A crossref_primary_10_1016_j_cej_2024_154716 crossref_primary_10_1002_adfm_202304409 crossref_primary_10_1002_admi_202201334 |
Cites_doi | 10.1039/C5CS00542F 10.1088/2053-1583/aaba9c 10.1038/s41586-019-1573-9 10.1103/PhysRevLett.45.2021 10.1038/nature26154 10.1002/adma.201902431 10.1021/ja2063633 10.1016/S0378-4371(00)00491-X 10.1002/adma.201603428 10.1021/nl201362n 10.1021/nn202643t 10.1063/1.3077021 10.1103/PhysRevB.54.11169 10.1126/science.aao3373 10.3762/bjnano.11.101 10.1098/rspa.1927.0111 10.1063/1.4774110 10.1016/j.ultramic.2013.04.005 10.1021/nn402847w 10.1002/adma.201706504 10.1021/acsnano.8b02444 10.1002/smll.201402483 10.1006/jcph.2000.6459 10.1016/S0166-1280(00)00789-2 10.1038/nmat4477 10.1038/s41586-020-2009-2 10.1016/S0924-4247(98)00307-0 10.1126/science.1158877 10.1002/smll.201904906 10.1063/1.3382344 10.1038/s41563-018-0019-3 10.1038/nature26160 10.1016/j.carbon.2013.08.036 10.1038/nature11458 10.1038/s41586-021-03753-3 10.1126/science.1171245 10.1103/PhysRevLett.97.187401 10.1002/adma.201903615 10.1103/PhysRevLett.78.1396 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-021-01174-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database ProQuest Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 747 |
ExternalDocumentID | 35058609 10_1038_s41563_021_01174_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2018-CRG7-3717; OSR-2016-CRG5-2996 funderid: https://doi.org/10.13039/501100004052 – fundername: Institute for Basic Science (IBS) grantid: IBS-R-019-D1 funderid: https://doi.org/10.13039/501100010446 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2016-CRG5-2996 – fundername: Institute for Basic Science (IBS) grantid: IBS-R-019-D1 – fundername: King Abdullah University of Science and Technology (KAUST) grantid: OSR-2018-CRG7-3717 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c441t-9eecd34bd43dcdd44947778cf0fe919b738f971c328c900540e5be482255f9bc3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri Jul 11 04:25:06 EDT 2025 Sat Aug 23 12:48:59 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Tue Jul 01 02:14:03 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Fri Feb 21 02:40:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-9eecd34bd43dcdd44947778cf0fe919b738f971c328c900540e5be482255f9bc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3478-6414 0000-0002-1575-0491 0000-0001-9339-0711 0000-0003-1018-7078 0000-0001-6904-1909 0000-0003-4179-7231 0000-0003-1462-1118 0000-0002-6599-6764 |
PMID | 35058609 |
PQID | 2682015837 |
PQPubID | 27576 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2622286371 proquest_journals_2682015837 pubmed_primary_35058609 crossref_citationtrail_10_1038_s41563_021_01174_1 crossref_primary_10_1038_s41563_021_01174_1 springer_journals_10_1038_s41563_021_01174_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Chen (CR15) 2011; 133 Geim (CR1) 2009; 324 Chen (CR16) 2017; 29 CR38 Li (CR6) 2009; 324 CR11 Novoselov (CR2) 2012; 490 Grimme, Antony, Ehrlich, Krieg (CR40) 2010; 132 Wu (CR24) 2016; 15 Akinwande (CR3) 2019; 573 Huang (CR9) 2018; 12 Wang (CR14) 2021; 596 Su (CR18) 2011; 11 Kurganov, Tadmor (CR33) 2000; 160 Kim (CR19) 2013; 7 Sojka, Meissner, Zwick, Forker, Fritz (CR29) 2013; 84 Sojka (CR30) 2013; 133 Fuks (CR26) 2001; 539 Schaal (CR31) 2020; 11 Cao (CR4) 2018; 556 Cao (CR5) 2018; 556 Jin (CR13) 2018; 362 Kim (CR7) 2018; 5 Li (CR8) 2019; 31 Kresse, Furthmüller (CR39) 1996; 54 Constable (CR23) 1927; 115 Zhao (CR25) 2015; 11 Fanton (CR37) 2011; 5 Morgan, Whitten, Bardsley (CR27) 1980; 45 Chen (CR22) 2020; 579 Chen, Wu, Liu (CR36) 2016; 45 Li (CR21) 2018; 30 Kim (CR35) 2009; 94 Paradisi, Cesari, Mainardi, Tampieri (CR34) 2001; 293 Berner (CR32) 1999; 74 Mishra (CR20) 2019; 15 Pan (CR17) 2013; 65 Vlassiouk (CR12) 2018; 17 Ferrari (CR28) 2006; 97 Wu (CR10) 2016; 15 H Kim (1174_CR19) 2013; 7 FH Constable (1174_CR23) 1927; 115 M Wang (1174_CR14) 2021; 596 M Schaal (1174_CR31) 2020; 11 A Berner (1174_CR32) 1999; 74 MA Fanton (1174_CR37) 2011; 5 CY Su (1174_CR18) 2011; 11 N Mishra (1174_CR20) 2019; 15 Y Kim (1174_CR7) 2018; 5 GH Pan (1174_CR17) 2013; 65 M Huang (1174_CR9) 2018; 12 S Jin (1174_CR13) 2018; 362 BW Li (1174_CR21) 2018; 30 D Fuks (1174_CR26) 2001; 539 A Kurganov (1174_CR33) 2000; 160 T Wu (1174_CR24) 2016; 15 AC Ferrari (1174_CR28) 2006; 97 X Li (1174_CR6) 2009; 324 AK Geim (1174_CR1) 2009; 324 S Grimme (1174_CR40) 2010; 132 J Li (1174_CR8) 2019; 31 KS Novoselov (1174_CR2) 2012; 490 XD Chen (1174_CR16) 2017; 29 F Sojka (1174_CR29) 2013; 84 WL Morgan (1174_CR27) 1980; 45 1174_CR38 TA Chen (1174_CR22) 2020; 579 D Akinwande (1174_CR3) 2019; 573 1174_CR11 F Sojka (1174_CR30) 2013; 133 T Wu (1174_CR10) 2016; 15 J Chen (1174_CR15) 2011; 133 Y Cao (1174_CR4) 2018; 556 P Paradisi (1174_CR34) 2001; 293 X Chen (1174_CR36) 2016; 45 IV Vlassiouk (1174_CR12) 2018; 17 Y Cao (1174_CR5) 2018; 556 G Kresse (1174_CR39) 1996; 54 Z Zhao (1174_CR25) 2015; 11 S Kim (1174_CR35) 2009; 94 |
References_xml | – volume: 45 start-page: 2057 year: 2016 end-page: 2074 ident: CR36 article-title: Direct preparation of high quality graphene on dielectric substrates publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00542F – volume: 5 start-page: 035008 year: 2018 ident: CR7 article-title: Synthesis of high quality graphene on capped (111) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates publication-title: 2D Mater. doi: 10.1088/2053-1583/aaba9c – volume: 573 start-page: 507 year: 2019 end-page: 518 ident: CR3 article-title: Graphene and two-dimensional materials for silicon technology publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 45 start-page: 2021 year: 1980 end-page: 2024 ident: CR27 article-title: Plasma shielding effects on ionic recombination publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.2021 – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR4 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 31 start-page: 1902431 year: 2019 ident: CR8 article-title: Fractal‐theory‐based control of the shape and quality of CVD‐grown 2D materials publication-title: Adv. Mater. doi: 10.1002/adma.201902431 – volume: 133 start-page: 17548 year: 2011 end-page: 17551 ident: CR15 article-title: Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2063633 – volume: 293 start-page: 130 year: 2001 end-page: 142 ident: CR34 article-title: The fractional Fick’s law for non-local transport processes publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/S0378-4371(00)00491-X – volume: 29 start-page: 1603428 year: 2017 ident: CR16 article-title: Fast growth and broad applications of 25-inch uniform graphene glass publication-title: Adv. Mater. doi: 10.1002/adma.201603428 – volume: 11 start-page: 3612 year: 2011 end-page: 3616 ident: CR18 article-title: Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl201362n – volume: 5 start-page: 8062 year: 2011 end-page: 8069 ident: CR37 article-title: Characterization of graphene films and transistors grown on sapphire by metal-free chemical vapor deposition publication-title: ACS Nano doi: 10.1021/nn202643t – volume: 94 start-page: 062107 year: 2009 ident: CR35 article-title: Realization of a high mobility dual-gated graphene field-effect transistor with Al O dielectric publication-title: Appl. Phys. Lett. doi: 10.1063/1.3077021 – volume: 54 start-page: 11169 year: 1996 ident: CR39 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 362 start-page: 1021 year: 2018 end-page: 1025 ident: CR13 article-title: Colossal grain growth yields single-crystal metal foils by contact-free annealing publication-title: Science doi: 10.1126/science.aao3373 – volume: 11 start-page: 1168 year: 2020 end-page: 1177 ident: CR31 article-title: Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111) publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.11.101 – volume: 115 start-page: 570 year: 1927 end-page: 588 ident: CR23 article-title: The cause of the colours shown during the oxidation of metallic copper publication-title: Proc. R. Soc. Lond., Ser. A doi: 10.1098/rspa.1927.0111 – volume: 84 start-page: 015111 year: 2013 ident: CR29 article-title: Determination and correction of distortions and systematic errors in low-energy electron diffraction publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4774110 – volume: 133 start-page: 35 year: 2013 end-page: 40 ident: CR30 article-title: To tilt or not to tilt: correction of the distortion caused by inclined sample surfaces in low-energy electron diffraction publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.04.005 – volume: 7 start-page: 6575 year: 2013 end-page: 6582 ident: CR19 article-title: Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate publication-title: ACS Nano doi: 10.1021/nn402847w – volume: 30 start-page: 1706504 year: 2018 ident: CR21 article-title: Orientation-dependent strain relaxation and chemical functionalization of graphene on a Cu(111) foil publication-title: Adv. Mater. doi: 10.1002/adma.201706504 – volume: 12 start-page: 6117 year: 2018 end-page: 6127 ident: CR9 article-title: Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil publication-title: ACS Nano doi: 10.1021/acsnano.8b02444 – volume: 11 start-page: 1418 year: 2015 end-page: 1422 ident: CR25 article-title: Study on the diffusion mechanism of graphene grown on copper pockets publication-title: Small doi: 10.1002/smll.201402483 – volume: 160 start-page: 241 year: 2000 end-page: 282 ident: CR33 article-title: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6459 – volume: 539 start-page: 199 year: 2001 end-page: 214 ident: CR26 article-title: Carbon in copper and silver: diffusion and mechanical properties publication-title: J. Mol. Struct. Theochem doi: 10.1016/S0166-1280(00)00789-2 – volume: 15 start-page: 43 year: 2016 end-page: 47 ident: CR24 article-title: Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys publication-title: Nat. Mater. doi: 10.1038/nmat4477 – volume: 579 start-page: 219 year: 2020 end-page: 223 ident: CR22 article-title: Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111) publication-title: Nature doi: 10.1038/s41586-020-2009-2 – volume: 74 start-page: 86 year: 1999 end-page: 90 ident: CR32 article-title: Microstructure of Cu-C interface in Cu-based metal matrix composite publication-title: Sens. Actuator A. Phys. doi: 10.1016/S0924-4247(98)00307-0 – ident: CR38 – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: CR1 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – ident: CR11 – volume: 15 start-page: 1904906 year: 2019 ident: CR20 article-title: Wafer‐scale synthesis of graphene on sapphire: toward fab‐compatible graphene publication-title: Small doi: 10.1002/smll.201904906 – volume: 132 start-page: 154104 year: 2010 ident: CR40 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 17 start-page: 318 year: 2018 end-page: 322 ident: CR12 article-title: Evolutionary selection growth of two-dimensional materials on polycrystalline substrates publication-title: Nat. Mater. doi: 10.1038/s41563-018-0019-3 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR5 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 65 start-page: 349 year: 2013 end-page: 358 ident: CR17 article-title: Transfer-free growth of graphene on SiO insulator substrate from sputtered carbon and nickel films publication-title: Carbon doi: 10.1016/j.carbon.2013.08.036 – volume: 490 start-page: 192 year: 2012 end-page: 200 ident: CR2 article-title: A roadmap for graphene publication-title: Nature doi: 10.1038/nature11458 – volume: 596 start-page: 519 year: 2021 end-page: 524 ident: CR14 article-title: Single-crystal, large-area, fold-free monolayer graphene publication-title: Nature doi: 10.1038/s41586-021-03753-3 – volume: 15 start-page: 43 year: 2016 end-page: 47 ident: CR10 article-title: Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu-Ni alloys publication-title: Nat. Mater. doi: 10.1038/nmat4477 – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: CR6 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: Science doi: 10.1126/science.1171245 – volume: 97 start-page: 187401 year: 2006 ident: CR28 article-title: Raman spectrum of graphene and graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 556 start-page: 43 year: 2018 ident: 1174_CR5 publication-title: Nature doi: 10.1038/nature26160 – volume: 74 start-page: 86 year: 1999 ident: 1174_CR32 publication-title: Sens. Actuator A. Phys. doi: 10.1016/S0924-4247(98)00307-0 – volume: 65 start-page: 349 year: 2013 ident: 1174_CR17 publication-title: Carbon doi: 10.1016/j.carbon.2013.08.036 – ident: 1174_CR11 doi: 10.1002/adma.201903615 – volume: 15 start-page: 1904906 year: 2019 ident: 1174_CR20 publication-title: Small doi: 10.1002/smll.201904906 – volume: 115 start-page: 570 year: 1927 ident: 1174_CR23 publication-title: Proc. R. Soc. Lond., Ser. A doi: 10.1098/rspa.1927.0111 – volume: 11 start-page: 3612 year: 2011 ident: 1174_CR18 publication-title: Nano Lett. doi: 10.1021/nl201362n – volume: 30 start-page: 1706504 year: 2018 ident: 1174_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201706504 – volume: 133 start-page: 35 year: 2013 ident: 1174_CR30 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2013.04.005 – volume: 5 start-page: 8062 year: 2011 ident: 1174_CR37 publication-title: ACS Nano doi: 10.1021/nn202643t – volume: 84 start-page: 015111 year: 2013 ident: 1174_CR29 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4774110 – volume: 15 start-page: 43 year: 2016 ident: 1174_CR24 publication-title: Nat. Mater. doi: 10.1038/nmat4477 – volume: 31 start-page: 1902431 year: 2019 ident: 1174_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201902431 – volume: 94 start-page: 062107 year: 2009 ident: 1174_CR35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3077021 – volume: 29 start-page: 1603428 year: 2017 ident: 1174_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201603428 – volume: 54 start-page: 11169 year: 1996 ident: 1174_CR39 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.54.11169 – volume: 17 start-page: 318 year: 2018 ident: 1174_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0019-3 – volume: 324 start-page: 1530 year: 2009 ident: 1174_CR1 publication-title: Science doi: 10.1126/science.1158877 – volume: 45 start-page: 2021 year: 1980 ident: 1174_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.2021 – volume: 7 start-page: 6575 year: 2013 ident: 1174_CR19 publication-title: ACS Nano doi: 10.1021/nn402847w – volume: 160 start-page: 241 year: 2000 ident: 1174_CR33 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6459 – volume: 362 start-page: 1021 year: 2018 ident: 1174_CR13 publication-title: Science doi: 10.1126/science.aao3373 – volume: 573 start-page: 507 year: 2019 ident: 1174_CR3 publication-title: Nature doi: 10.1038/s41586-019-1573-9 – volume: 97 start-page: 187401 year: 2006 ident: 1174_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 11 start-page: 1168 year: 2020 ident: 1174_CR31 publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.11.101 – volume: 45 start-page: 2057 year: 2016 ident: 1174_CR36 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00542F – volume: 579 start-page: 219 year: 2020 ident: 1174_CR22 publication-title: Nature doi: 10.1038/s41586-020-2009-2 – volume: 490 start-page: 192 year: 2012 ident: 1174_CR2 publication-title: Nature doi: 10.1038/nature11458 – volume: 132 start-page: 154104 year: 2010 ident: 1174_CR40 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 556 start-page: 80 year: 2018 ident: 1174_CR4 publication-title: Nature doi: 10.1038/nature26154 – volume: 11 start-page: 1418 year: 2015 ident: 1174_CR25 publication-title: Small doi: 10.1002/smll.201402483 – volume: 12 start-page: 6117 year: 2018 ident: 1174_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.8b02444 – volume: 293 start-page: 130 year: 2001 ident: 1174_CR34 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/S0378-4371(00)00491-X – volume: 539 start-page: 199 year: 2001 ident: 1174_CR26 publication-title: J. Mol. Struct. Theochem doi: 10.1016/S0166-1280(00)00789-2 – volume: 596 start-page: 519 year: 2021 ident: 1174_CR14 publication-title: Nature doi: 10.1038/s41586-021-03753-3 – volume: 133 start-page: 17548 year: 2011 ident: 1174_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2063633 – volume: 324 start-page: 1312 year: 2009 ident: 1174_CR6 publication-title: Science doi: 10.1126/science.1171245 – volume: 5 start-page: 035008 year: 2018 ident: 1174_CR7 publication-title: 2D Mater. doi: 10.1088/2053-1583/aaba9c – volume: 15 start-page: 43 year: 2016 ident: 1174_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat4477 – ident: 1174_CR38 doi: 10.1103/PhysRevLett.78.1396 |
SSID | ssj0021556 |
Score | 2.6694348 |
Snippet | The growth of inch-scale high-quality graphene on insulating substrates is desirable for electronic and optoelectronic applications, but remains challenging... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 740 |
SubjectTerms | 140/133 142/126 639/301/357/1018 639/301/357/551 639/301/357/918/1055 Aluminum oxide Biomaterials Catalysis Chemical vapor deposition Chemistry and Materials Science Condensed Matter Physics Crystal growth Crystals Electron transport Epitaxial growth Field effect transistors Graphene Heating Liquid nitrogen Materials Science Metal foils Monolayers Nanotechnology Nanotechnology devices Nitrogen Optical and Electronic Materials Optoelectronics Plasma etching Sapphire Semiconductor devices Single crystals Submerging Substrates Transport properties Work breaks |
Title | Wafer-scale single-crystal monolayer graphene grown on sapphire substrate |
URI | https://link.springer.com/article/10.1038/s41563-021-01174-1 https://www.ncbi.nlm.nih.gov/pubmed/35058609 https://www.proquest.com/docview/2682015837 https://www.proquest.com/docview/2622286371 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9NADLdge4EHBIyPwjYFaW9wWtP7fkLrtLJNopomJvoW5S7OU5WWpnvgv8e-pC1oYi9JpFwulu_O_tm-swFOKq2iVXEooqtQKFIZwjta7h6tRmNUMDX7Ib9PzeWdup7pWe9wa_ttlRuZmAR1tYjsIz8dGdZVmuypr8tfgqtGcXS1L6HxFPY5dRnPajvbGVykK7vTRdYIwhWj_tDMULrTlg0XjmCyMU2oXOT_KqYHaPNBpDQpoMlLeNEjx-ysG-pX8ASb1_D8r3yCB3D1s6xxJVriO2bsBJijiKvfBADnGdFPViwB7CzlqCYRRw9kgmeLJmvL5ZKd1FlLYiSlq30Dd5OLH-eXoq-VICIBmjXxFmMlVaiUrGJVKeWVtdbFelijz32w0tXe5lGOXPQJp6EOqAgeaF37EOVb2GsWDb6HLMegbUlIwKJTZUAnZTARde1I3dnaDiDfMKqIfSJxrmcxL1JAW7qiY25BzC0Sc4t8AJ-33yy7NBqPtj7c8L_ol1Rb7CbAAD5tX9Ni4AhH2eDintuwQ8tIS12868Zt-ztJWM-ZoR_Al81A7jr_Py0fHqflIzwb8YGItIH3EPbWq3s8IpiyDsdpLtLVTb4dw_7ZZDye0n18Mb25_QMlAeSn |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiGdZKGAkOIHVTfw-IISAZZc-Tq3oLcTO5LTKLputUP8Uv5Gxk2xBFb31FimOY83Y_r6Z8YwBXldKBiPDmAdbIZcEGdxZWu4OjUKtpdd19EMeHunpifx2qk634PeQCxOPVQ57Ytqoq0WIPvK9XEesUmRPfVj-5PHWqBhdHa7Q6KbFPp7_IpOtfT_7TPp9k-eTL8efpry_VYAHgv41jQJDJaSvpKhCVUnppDHGhnpco8ucN8LWzmRB5Da4xGhQeZQEpErVzgdB_d6Am1IQksfM9MnXjYFH2NxlMxnNicfkfZLOWNi9NhpKMWIajXeyAnj2LxBeYreXIrMJ8Cb34G7PVNnHbmrdhy1sHsCdv-oXPoTZ97LGFW9Jz8ii02GOPKzOiXDOGcmLrGYi9CzVxKYtlR7I5GeLhrXlchmd4qylbSuVx30EJ9cixcew3SwafAIsQ69MSczDoJWlRyuE1wFVbQleTW1GkA2CKkJfuDzenzEvUgBd2KITbkHCLZJwi2wEbzffLLuyHVe23h3kX_RLuC0uJtwIXm1e0-KLEZWywcVZbBMdaFoY6mKn09vmd4K4pdVjN4J3gyIvOv__WJ5ePZaXcGt6fHhQHMyO9p_B7TwmY6TDw7uwvV6d4XOiSGv_Is1LBj-ueyH8AYqkHZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMp7oQUjwQms3cSOHwdUFdpVl8KqQlT05ibO5LRKls1WVf8av45xHltQRW-9RYrjWDMezzcznhmAt3kivZZ-zL3JkUtSGdwaEneLOkGlZKaK4If8NlOHJ_LLaXK6Ab_7XJhwrbI_E5uDOq988JGPYhV0VUL21KjorkUc7092F7946CAVIq19O412ixzh5QWZb_XH6T7x-l0cTw5-fD7kXYcB7gkGrGhF6HMhs1yK3Oe5lFZqrY0vxgXayGZamMLqyIvYeNugG0wylKRUk6SwmRc07x3Y1MEqGsDmp4PZ8fe1uUeaus1t0ooTqom7lJ2xMKM6mE0hfhpMebIJePSvWryGda_FaRv1N9mCBx1uZXvtRnsIG1g-gvt_VTN8DNOfaYFLXhPXkQUXxBy5X14S_JwzohjZ0ATvWVMhmw5YeqguSlaVrE4Xi-AiZzUdYk2x3Cdwcit0fAqDsirxObAIs0SnhEM0GplmaITIlMekMKRsdaGHEPWEcr4rYx66acxdE04XxrXEdURc1xDXRUN4v_5m0RbxuHH0dk9_1wl07a623xDerF-TKIb4SlpidR7GBHeaEpqmeNbybf07QUjTqLEdwoeekVeT_38tL25ey2u4S0Lgvk5nRy_hXhwyM5qbxNswWC3PcYfw0ip71W1MBme3LQt_ANb_Iy4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wafer-scale+single-crystal+monolayer+graphene+grown+on+sapphire+substrate&rft.jtitle=Nature+materials&rft.au=Li%2C+Junzhu&rft.au=Chen%2C+Mingguang&rft.au=Samad%2C+Abdus&rft.au=Dong%2C+Haocong&rft.date=2022-07-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=21&rft.issue=7&rft.spage=740&rft.epage=747&rft_id=info:doi/10.1038%2Fs41563-021-01174-1&rft.externalDocID=10_1038_s41563_021_01174_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |