EHD-based load controllers for R134a convective boiling heat exchangers

•EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control....

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 134; pp. 125 - 132
Main Authors Nangle-Smith, S., Cotton, J.S.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control. The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition.
AbstractList •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control. The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition.
The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition.
Author Cotton, J.S.
Nangle-Smith, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Nangle-Smith
  fullname: Nangle-Smith, S.
– sequence: 2
  givenname: J.S.
  surname: Cotton
  fullname: Cotton, J.S.
  email: cottonjs@mcmaster.ca
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28886841$$DView record in Pascal Francis
BookMark eNqFkMFq3DAQhkVIIZu0rxB8KfRiV2N5ZRl6aEnTpBAolPYsxtJ4o0WRtpKzJG9fmU1yyCWnGYbv_xm-U3YcYiDGzoE3wEF-3ja4o0Bp89i0HLqG9w2XcMRWoPq2HgDUMVtxwWXdShhO2GnOW855Cy1fsavL6-_1iJls5SPaysQwp-g9pVxNMVW_QXS4XPdkZrenaozOu7Cpbgnnih7MLYZNgd-zdxP6TB-e5hn7--Pyz8V1ffPr6ufFt5vadB3M9dBb7M3ytkICsiShHQacuEIrubCTAClGy43qJGE_jXZad90ocA3rsqzFGft06N2l-O-e8qzvXDbkPQaK91m3pVuIQQy8oB-fUMwG_ZQwGJf1Lrk7TI-6VUpJ1UHh5IEzKeacaHpBgOvlVb3Vz4b1YljzXhfDJfjlVdC4GWe3KETn345_PcSp-No7SjobR8GQdanI1ja6tyr-A191nTs
CODEN APENDX
CitedBy_id crossref_primary_10_1016_j_ast_2019_105525
crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_067
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125895
crossref_primary_10_3390_mi14020321
crossref_primary_10_1016_j_euromechflu_2023_03_002
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_043
crossref_primary_10_1080_10407782_2017_1386512
crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_011
crossref_primary_10_1108_HFF_08_2017_0308
crossref_primary_10_1016_j_applthermaleng_2024_124721
crossref_primary_10_1016_j_csite_2021_101650
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120828
crossref_primary_10_1016_j_ijthermalsci_2023_108346
crossref_primary_10_1016_j_ijft_2021_100076
crossref_primary_10_1016_j_sna_2024_116187
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_076
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_019
crossref_primary_10_1016_j_csite_2024_104324
crossref_primary_10_1016_j_applthermaleng_2016_09_016
crossref_primary_10_1016_j_expthermflusci_2016_07_003
Cites_doi 10.1115/1.1316782
10.1016/j.apenergy.2011.01.015
10.1016/j.elstat.2007.08.008
10.1016/0017-9310(65)90055-4
10.1016/j.expthermflusci.2005.12.003
10.1115/1.4003901
10.1016/j.apenergy.2012.12.060
10.1016/1359-4311(96)00012-9
10.1016/j.apenergy.2010.07.023
10.1016/S0301-9322(99)00090-7
10.1016/j.applthermaleng.2012.04.059
10.1016/j.ijheatmasstransfer.2005.05.032
10.1016/j.cep.2010.06.007
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.apenergy.2014.07.061
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1872-9118
EndPage 132
ExternalDocumentID 28886841
10_1016_j_apenergy_2014_07_061
S0306261914007442
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
ABTAH
IQODW
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c441t-97da7c10168ae1ede61299af08ad603df3163bd0c846ea7fbdf544b3a51554453
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Tue Aug 05 10:42:19 EDT 2025
Wed Apr 02 08:10:22 EDT 2025
Thu Apr 24 23:13:20 EDT 2025
Tue Jul 01 03:05:24 EDT 2025
Fri Feb 23 02:36:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Control
Flow pattern
Convective boiling
Load following
Heat exchanger
Electrohydrodynamics
Boiling
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-97da7c10168ae1ede61299af08ad603df3163bd0c846ea7fbdf544b3a51554453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2101339390
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2101339390
pascalfrancis_primary_28886841
crossref_primary_10_1016_j_apenergy_2014_07_061
crossref_citationtrail_10_1016_j_apenergy_2014_07_061
elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_07_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Applied energy
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Horst, Rottengruber, Seifert, Ringler (b0020) 2013; 105
Sadek, Cotton, Ching, Shoukri (b0060) 2008; 66
Collier (b0080) 1973
Kweon, Kim (b0100) 2000; 26
(accessed 17.11.13).
Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (b0005) 2011; 88
Bergles, Newell (b0035) 1965; 8
Ng, Ching, Cotton (b0110) 2011; 133
Manglik (b0040) 2003
Lee, Yeoh, Timchenko, Reizes (b0030) 2012; 48
LabVIEW NI. PID and fuzzy logic toolkit user manual; 2009.
Tisseau Y, Boldo P, Gondrexon N, Bontemps A. Conception et étude préliminaire d’un échangeur de chaleur tubes et calandre assisté par ultrasons. In: Proceedings of the 18ème Congrès Francais de Mécanique, Grenoble, France; 2007.
Gondrexon, Rousselet, Legay, Boldo, Le Person, Bontemps (b0045) 2010; 49
(accessed 04.12.13).
Webb (b0025) 1994
Yabe ATTH, Taketani T, Maki H, Takahashi K, Nakadai Y. Experimental study of electrohydrodynamically (EHD) enhanced evaporator for nonazeotropic mixtures. In: ASHRAE winter meeting, Anaheim, CA, USA, 01/25-29/92; 1992. p. 455–60.
Nangle-Smith, Sadek, Cotton (b0115) 2012; 7
Pandiyarajan, Chinna Pandian, Malan, Velraj, Seeniraj (b0010) 2011; 88
Cotton JS. Mechanisms of electrohydrodynamic flow and heat transfer in horizontal convective boiling channels. Ph.D. thesis. McMaster University, Hamilton, Ontario; 2000.
Dong, Li, Yu, Yan (b0105) 2006; 30
Singh A. Electrohydrodynamic (EHD) enhancement of in-tube boiling and condensation of alternate (non-CFC) refrigerants. Ph.D. thesis. University of Maryland, College Park, Maryland; 1995.
Cotton, Robinson, Shoukri, Chang (b0075) 2005; 48
Bryan, Seyed-Yagoobi (b0090) 2001; 123
Landau, Lifshitz, Pitaevskii (b0065) 1984; 8
Cummins Inc. SuperTruck yields exciting fuel mileage numbers during testing; 2013.
Eames, Sabir (b0055) 1997; 17
Cotton (10.1016/j.apenergy.2014.07.061_b0075) 2005; 48
Webb (10.1016/j.apenergy.2014.07.061_b0025) 1994
10.1016/j.apenergy.2014.07.061_b0070
Quoilin (10.1016/j.apenergy.2014.07.061_b0005) 2011; 88
10.1016/j.apenergy.2014.07.061_b0050
10.1016/j.apenergy.2014.07.061_b0095
Pandiyarajan (10.1016/j.apenergy.2014.07.061_b0010) 2011; 88
10.1016/j.apenergy.2014.07.061_b0085
10.1016/j.apenergy.2014.07.061_b0120
Lee (10.1016/j.apenergy.2014.07.061_b0030) 2012; 48
Dong (10.1016/j.apenergy.2014.07.061_b0105) 2006; 30
Bergles (10.1016/j.apenergy.2014.07.061_b0035) 1965; 8
Sadek (10.1016/j.apenergy.2014.07.061_b0060) 2008; 66
10.1016/j.apenergy.2014.07.061_b0015
Gondrexon (10.1016/j.apenergy.2014.07.061_b0045) 2010; 49
Landau (10.1016/j.apenergy.2014.07.061_b0065) 1984; 8
Nangle-Smith (10.1016/j.apenergy.2014.07.061_b0115) 2012; 7
Eames (10.1016/j.apenergy.2014.07.061_b0055) 1997; 17
Ng (10.1016/j.apenergy.2014.07.061_b0110) 2011; 133
Bryan (10.1016/j.apenergy.2014.07.061_b0090) 2001; 123
Kweon (10.1016/j.apenergy.2014.07.061_b0100) 2000; 26
Horst (10.1016/j.apenergy.2014.07.061_b0020) 2013; 105
Collier (10.1016/j.apenergy.2014.07.061_b0080) 1973
Manglik (10.1016/j.apenergy.2014.07.061_b0040) 2003
References_xml – volume: 88
  start-page: 77
  year: 2011
  end-page: 87
  ident: b0010
  article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system
  publication-title: Appl Energy
– reference: >. (accessed 17.11.13).
– volume: 17
  start-page: 79
  year: 1997
  end-page: 92
  ident: b0055
  article-title: Potential benefits of electrohydrodynamic enhancement of two-phase heat transfer in the design of refrigeration systems
  publication-title: Appl Therm Eng
– year: 1973
  ident: b0080
  article-title: Convective boiling and condensation
– reference: Singh A. Electrohydrodynamic (EHD) enhancement of in-tube boiling and condensation of alternate (non-CFC) refrigerants. Ph.D. thesis. University of Maryland, College Park, Maryland; 1995.
– volume: 7
  start-page: 64
  year: 2012
  end-page: 70
  ident: b0115
  article-title: The influence of the electrophoretic and polarization forces on two phase flow redistribution in a horizontal annular tube
  publication-title: Int J Plasma Environ Sci Technol, IJPEST
– volume: 105
  start-page: 293
  year: 2013
  end-page: 303
  ident: b0020
  article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems
  publication-title: Appl Energy
– volume: 26
  start-page: 1351
  year: 2000
  end-page: 1368
  ident: b0100
  article-title: Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field
  publication-title: Int J Multiphase Flow
– volume: 48
  start-page: 275
  year: 2012
  end-page: 288
  ident: b0030
  article-title: Heat transfer enhancement in micro-channel with multiple synthetic jets
  publication-title: Appl Therm Eng
– volume: 88
  start-page: 2183
  year: 2011
  end-page: 2190
  ident: b0005
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles
  publication-title: Appl Energy
– volume: 8
  start-page: 45
  year: 1984
  end-page: 47
  ident: b0065
  article-title: Electrodynamics of continuous media
  publication-title: Course Theor Phys
– year: 1994
  ident: b0025
  article-title: Principles of enhanced heat transfer
– reference: >. (accessed 04.12.13).
– year: 2003
  ident: b0040
  article-title: Heat transfer enhancement
  publication-title: Heat transfer handbook
– reference: Yabe ATTH, Taketani T, Maki H, Takahashi K, Nakadai Y. Experimental study of electrohydrodynamically (EHD) enhanced evaporator for nonazeotropic mixtures. In: ASHRAE winter meeting, Anaheim, CA, USA, 01/25-29/92; 1992. p. 455–60.
– reference: LabVIEW NI. PID and fuzzy logic toolkit user manual; 2009. <
– volume: 66
  start-page: 25
  year: 2008
  end-page: 31
  ident: b0060
  article-title: Effect of frequency on two-phase flow regimes under high-voltage AC electric fields
  publication-title: J Electrostat
– volume: 123
  start-page: 355
  year: 2001
  end-page: 367
  ident: b0090
  article-title: Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling
  publication-title: J Heat Transfer
– volume: 8
  start-page: 1273
  year: 1965
  end-page: 1280
  ident: b0035
  article-title: The influence of ultrasonic vibrations on heat transfer to water flowing in annuli
  publication-title: Int J Heat Mass Transfer
– volume: 30
  start-page: 579
  year: 2006
  end-page: 586
  ident: b0105
  article-title: An investigation of behaviours of a single bubble in a uniform electric field
  publication-title: Exp Therm Fluid Sci
– reference: Cotton JS. Mechanisms of electrohydrodynamic flow and heat transfer in horizontal convective boiling channels. Ph.D. thesis. McMaster University, Hamilton, Ontario; 2000.
– volume: 49
  start-page: 936
  year: 2010
  end-page: 942
  ident: b0045
  article-title: Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound
  publication-title: Chem Eng Process
– reference: Tisseau Y, Boldo P, Gondrexon N, Bontemps A. Conception et étude préliminaire d’un échangeur de chaleur tubes et calandre assisté par ultrasons. In: Proceedings of the 18ème Congrès Francais de Mécanique, Grenoble, France; 2007.
– reference: Cummins Inc. SuperTruck yields exciting fuel mileage numbers during testing; 2013. <
– volume: 48
  start-page: 5563
  year: 2005
  end-page: 5579
  ident: b0075
  article-title: A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis
  publication-title: Int J Heat Mass Transfer
– volume: 133
  start-page: 091501
  year: 2011
  ident: b0110
  article-title: Transient two-phase flow patterns by application of a high voltage pulse width modulated signal and the effect on condensation heat transfer
  publication-title: J Heat Transfer
– volume: 123
  start-page: 355
  year: 2001
  ident: 10.1016/j.apenergy.2014.07.061_b0090
  article-title: Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling
  publication-title: J Heat Transfer
  doi: 10.1115/1.1316782
– volume: 88
  start-page: 2183
  issue: 6
  year: 2011
  ident: 10.1016/j.apenergy.2014.07.061_b0005
  article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.015
– year: 1994
  ident: 10.1016/j.apenergy.2014.07.061_b0025
– volume: 66
  start-page: 25
  issue: 1–2
  year: 2008
  ident: 10.1016/j.apenergy.2014.07.061_b0060
  article-title: Effect of frequency on two-phase flow regimes under high-voltage AC electric fields
  publication-title: J Electrostat
  doi: 10.1016/j.elstat.2007.08.008
– volume: 8
  start-page: 1273
  year: 1965
  ident: 10.1016/j.apenergy.2014.07.061_b0035
  article-title: The influence of ultrasonic vibrations on heat transfer to water flowing in annuli
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/0017-9310(65)90055-4
– volume: 30
  start-page: 579
  issue: 6
  year: 2006
  ident: 10.1016/j.apenergy.2014.07.061_b0105
  article-title: An investigation of behaviours of a single bubble in a uniform electric field
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2005.12.003
– volume: 133
  start-page: 091501
  year: 2011
  ident: 10.1016/j.apenergy.2014.07.061_b0110
  article-title: Transient two-phase flow patterns by application of a high voltage pulse width modulated signal and the effect on condensation heat transfer
  publication-title: J Heat Transfer
  doi: 10.1115/1.4003901
– ident: 10.1016/j.apenergy.2014.07.061_b0015
– volume: 105
  start-page: 293
  year: 2013
  ident: 10.1016/j.apenergy.2014.07.061_b0020
  article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.060
– ident: 10.1016/j.apenergy.2014.07.061_b0095
– volume: 17
  start-page: 79
  issue: 1
  year: 1997
  ident: 10.1016/j.apenergy.2014.07.061_b0055
  article-title: Potential benefits of electrohydrodynamic enhancement of two-phase heat transfer in the design of refrigeration systems
  publication-title: Appl Therm Eng
  doi: 10.1016/1359-4311(96)00012-9
– ident: 10.1016/j.apenergy.2014.07.061_b0070
– volume: 7
  start-page: 64
  issue: 1
  year: 2012
  ident: 10.1016/j.apenergy.2014.07.061_b0115
  article-title: The influence of the electrophoretic and polarization forces on two phase flow redistribution in a horizontal annular tube
  publication-title: Int J Plasma Environ Sci Technol, IJPEST
– volume: 88
  start-page: 77
  issue: 1
  year: 2011
  ident: 10.1016/j.apenergy.2014.07.061_b0010
  article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.07.023
– volume: 26
  start-page: 1351
  issue: 8
  year: 2000
  ident: 10.1016/j.apenergy.2014.07.061_b0100
  article-title: Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field
  publication-title: Int J Multiphase Flow
  doi: 10.1016/S0301-9322(99)00090-7
– year: 2003
  ident: 10.1016/j.apenergy.2014.07.061_b0040
  article-title: Heat transfer enhancement
– year: 1973
  ident: 10.1016/j.apenergy.2014.07.061_b0080
– ident: 10.1016/j.apenergy.2014.07.061_b0050
– volume: 8
  start-page: 45
  year: 1984
  ident: 10.1016/j.apenergy.2014.07.061_b0065
  article-title: Electrodynamics of continuous media
  publication-title: Course Theor Phys
– volume: 48
  start-page: 275
  year: 2012
  ident: 10.1016/j.apenergy.2014.07.061_b0030
  article-title: Heat transfer enhancement in micro-channel with multiple synthetic jets
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2012.04.059
– ident: 10.1016/j.apenergy.2014.07.061_b0085
– ident: 10.1016/j.apenergy.2014.07.061_b0120
– volume: 48
  start-page: 5563
  issue: 25–26
  year: 2005
  ident: 10.1016/j.apenergy.2014.07.061_b0075
  article-title: A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis
  publication-title: Int J Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2005.05.032
– volume: 49
  start-page: 936
  issue: 9
  year: 2010
  ident: 10.1016/j.apenergy.2014.07.061_b0045
  article-title: Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound
  publication-title: Chem Eng Process
  doi: 10.1016/j.cep.2010.06.007
SSID ssj0002120
Score 2.2222564
Snippet •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of...
The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems....
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 125
SubjectTerms Applied sciences
boiling
Control
controllers
Convective boiling
Devices using thermal energy
electric power
Electrohydrodynamics
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Flow pattern
Heat exchanger
heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
Load following
Title EHD-based load controllers for R134a convective boiling heat exchangers
URI https://dx.doi.org/10.1016/j.apenergy.2014.07.061
https://www.proquest.com/docview/2101339390
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5EL4qIr2J9lAheY7e76W72KFqtih58gLeQbBJoKW2xFTz5253ZzfpAxIPHXWbYZJLMfGG_mQE4SqkqUWQ0T3PjuZB5xk0sLdfSxdZonxhHucM3t2n_UVw9dZ8W4LTOhSFaZfD9lU8vvXV40w7WbE8Hg_Y9oV3C_x1q7S0E-WEhMtrlx2-fNI84lGZEYU7SX7KEh8d66soMO6J4ibKIZ9r5LUCtTvUMzearfhc_XHcZj87XYS0ASXZSjXUDFtx4E1a-lBfchEbvM4sNRcMxnm3BRa9_xil-WTaaaMsCX32EUJAhiGV3nURoVhLSS3fIzGRAaeuMPDdzryFbeLYNj-e9h9M-Dx0VeIGwZ87zzOqsoMlL7TrOOsQ3ea59JLVNo8T6BOGZsVGBqMTpzBvru0KYRFMjGCG6SQMWx5Ox2wHmdZZ6alEd-0i41BiJ4bBInDTeobxsQrc2oypCuXHqejFSNa9sqGrzKzK_ijKF5m9C-0NvWhXc-FMjr1dJfds6CqPCn7qtb8v68clYSpnilJpwWK-zwoNHf1P02E1eZgrvyni_z5M82v3HAPZgmZ4qgsw-LM6fX9wBwpy5aZX7uAVLJ5fX_dt37nb-Lw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6h9gHQhICBVtiYJ-3VNE2cxHmsWCEM6MMGEm-WHdtSUdVWa5H253OXOB1oQjzwmvgU-87-7rNyPwC-Z1SVKDKaZ4XxXMgi5yaWlmvpYmu0T4yj3OGbcVbeiZ_36f0GnLW5MBRWGbC_wfQarcOTftBmfzGZ9H8T2yX-P6DW3kIgDnepOlXage7w8qocrwE5DtUZcTwngWeJwg-neuHqJDuK8hJ1Hc9s8JqP-rDQS9Scb1pe_IfetUs634WdwCXZsJnuHmy42T5sP6swuA-Ho3-JbDg0nOTlR7gYlT84uTDLpnNtWQhZnyIbZMhj2a9BIjSrY9JrRGRmPqHMdUbgzdzfkDC8PIC789HtWclDUwVeIfNZ8SK3Oq9o8VK7gbMOKU5RaB9JbbMosT5BhmZsVCExcTr3xvpUCJNo6gUjRJocQmc2n7lPwLzOM09dqmMfCZcZI9EjVomTxjscL3uQtmpUVag4To0vpqoNLXtQrfoVqV9FuUL196C_lls0NTfelChaK6kXu0ehY3hT9uSFWdefjKWUGS6pB99aOys8e_RDRc_c_HGp8LqMV_wiKaKjd0zgK2yWtzfX6vpyfHUMW_SmiZf5DJ3Vn0f3BVnPypyEXf0End0A7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EHD-based+load+controllers+for+R134a+convective+boiling+heat+exchangers&rft.jtitle=Applied+energy&rft.au=NANGLE-SMITH%2C+S&rft.au=COTTON%2C+J.+S&rft.date=2014-12-01&rft.pub=Elsevier&rft.issn=0306-2619&rft.volume=134&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.apenergy.2014.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=28886841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon