EHD-based load controllers for R134a convective boiling heat exchangers
•EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control....
Saved in:
Published in | Applied energy Vol. 134; pp. 125 - 132 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control.
The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition. |
---|---|
AbstractList | •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of control.•Response characteristics and power requirements were compared.•EHD controllers could potentially be used for fast, low power load control.
The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition. The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems. Electrohydrodynamics (EHD) induces flow pattern redistribution, which directly influences the system performance. EHD can provide a low power (<1W), fast responding method of enhancing two phase flow systems such as heat exchangers. This study compares the use of EHD for load control with control via changing the refrigerant side flow rate in terms of required power, response time and effect on flow parameters. It was found that EHD responds faster and requires less power when a constant exit condition is required for the heat exchanger. Two EHD based controllers; PI controller and a Smith predictor were established using LabVIEW and compared in terms of their response time and regulation behaviour subject to dynamic loading. The Smith predictor resulted in less overshoot and approximately a 50% reduction in settling time in response to dynamic loading. It has been shown that this EHD based controller can regulate subject to ±25% deviation in load from the designed steady state load condition. |
Author | Cotton, J.S. Nangle-Smith, S. |
Author_xml | – sequence: 1 givenname: S. surname: Nangle-Smith fullname: Nangle-Smith, S. – sequence: 2 givenname: J.S. surname: Cotton fullname: Cotton, J.S. email: cottonjs@mcmaster.ca |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28886841$$DView record in Pascal Francis |
BookMark | eNqFkMFq3DAQhkVIIZu0rxB8KfRiV2N5ZRl6aEnTpBAolPYsxtJ4o0WRtpKzJG9fmU1yyCWnGYbv_xm-U3YcYiDGzoE3wEF-3ja4o0Bp89i0HLqG9w2XcMRWoPq2HgDUMVtxwWXdShhO2GnOW855Cy1fsavL6-_1iJls5SPaysQwp-g9pVxNMVW_QXS4XPdkZrenaozOu7Cpbgnnih7MLYZNgd-zdxP6TB-e5hn7--Pyz8V1ffPr6ufFt5vadB3M9dBb7M3ytkICsiShHQacuEIrubCTAClGy43qJGE_jXZad90ocA3rsqzFGft06N2l-O-e8qzvXDbkPQaK91m3pVuIQQy8oB-fUMwG_ZQwGJf1Lrk7TI-6VUpJ1UHh5IEzKeacaHpBgOvlVb3Vz4b1YljzXhfDJfjlVdC4GWe3KETn345_PcSp-No7SjobR8GQdanI1ja6tyr-A191nTs |
CODEN | APENDX |
CitedBy_id | crossref_primary_10_1016_j_ast_2019_105525 crossref_primary_10_1016_j_ijheatmasstransfer_2018_03_067 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125895 crossref_primary_10_3390_mi14020321 crossref_primary_10_1016_j_euromechflu_2023_03_002 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_043 crossref_primary_10_1080_10407782_2017_1386512 crossref_primary_10_1016_j_ijheatmasstransfer_2016_09_011 crossref_primary_10_1108_HFF_08_2017_0308 crossref_primary_10_1016_j_applthermaleng_2024_124721 crossref_primary_10_1016_j_csite_2021_101650 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120828 crossref_primary_10_1016_j_ijthermalsci_2023_108346 crossref_primary_10_1016_j_ijft_2021_100076 crossref_primary_10_1016_j_sna_2024_116187 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_076 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_019 crossref_primary_10_1016_j_csite_2024_104324 crossref_primary_10_1016_j_applthermaleng_2016_09_016 crossref_primary_10_1016_j_expthermflusci_2016_07_003 |
Cites_doi | 10.1115/1.1316782 10.1016/j.apenergy.2011.01.015 10.1016/j.elstat.2007.08.008 10.1016/0017-9310(65)90055-4 10.1016/j.expthermflusci.2005.12.003 10.1115/1.4003901 10.1016/j.apenergy.2012.12.060 10.1016/1359-4311(96)00012-9 10.1016/j.apenergy.2010.07.023 10.1016/S0301-9322(99)00090-7 10.1016/j.applthermaleng.2012.04.059 10.1016/j.ijheatmasstransfer.2005.05.032 10.1016/j.cep.2010.06.007 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.apenergy.2014.07.061 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1872-9118 |
EndPage | 132 |
ExternalDocumentID | 28886841 10_1016_j_apenergy_2014_07_061 S0306261914007442 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 ABTAH IQODW 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c441t-97da7c10168ae1ede61299af08ad603df3163bd0c846ea7fbdf544b3a51554453 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Tue Aug 05 10:42:19 EDT 2025 Wed Apr 02 08:10:22 EDT 2025 Thu Apr 24 23:13:20 EDT 2025 Tue Jul 01 03:05:24 EDT 2025 Fri Feb 23 02:36:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Control Flow pattern Convective boiling Load following Heat exchanger Electrohydrodynamics Boiling |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-97da7c10168ae1ede61299af08ad603df3163bd0c846ea7fbdf544b3a51554453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2101339390 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2101339390 pascalfrancis_primary_28886841 crossref_primary_10_1016_j_apenergy_2014_07_061 crossref_citationtrail_10_1016_j_apenergy_2014_07_061 elsevier_sciencedirect_doi_10_1016_j_apenergy_2014_07_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Applied energy |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Horst, Rottengruber, Seifert, Ringler (b0020) 2013; 105 Sadek, Cotton, Ching, Shoukri (b0060) 2008; 66 Collier (b0080) 1973 Kweon, Kim (b0100) 2000; 26 (accessed 17.11.13). Quoilin, Aumann, Grill, Schuster, Lemort, Spliethoff (b0005) 2011; 88 Bergles, Newell (b0035) 1965; 8 Ng, Ching, Cotton (b0110) 2011; 133 Manglik (b0040) 2003 Lee, Yeoh, Timchenko, Reizes (b0030) 2012; 48 LabVIEW NI. PID and fuzzy logic toolkit user manual; 2009. Tisseau Y, Boldo P, Gondrexon N, Bontemps A. Conception et étude préliminaire d’un échangeur de chaleur tubes et calandre assisté par ultrasons. In: Proceedings of the 18ème Congrès Francais de Mécanique, Grenoble, France; 2007. Gondrexon, Rousselet, Legay, Boldo, Le Person, Bontemps (b0045) 2010; 49 (accessed 04.12.13). Webb (b0025) 1994 Yabe ATTH, Taketani T, Maki H, Takahashi K, Nakadai Y. Experimental study of electrohydrodynamically (EHD) enhanced evaporator for nonazeotropic mixtures. In: ASHRAE winter meeting, Anaheim, CA, USA, 01/25-29/92; 1992. p. 455–60. Nangle-Smith, Sadek, Cotton (b0115) 2012; 7 Pandiyarajan, Chinna Pandian, Malan, Velraj, Seeniraj (b0010) 2011; 88 Cotton JS. Mechanisms of electrohydrodynamic flow and heat transfer in horizontal convective boiling channels. Ph.D. thesis. McMaster University, Hamilton, Ontario; 2000. Dong, Li, Yu, Yan (b0105) 2006; 30 Singh A. Electrohydrodynamic (EHD) enhancement of in-tube boiling and condensation of alternate (non-CFC) refrigerants. Ph.D. thesis. University of Maryland, College Park, Maryland; 1995. Cotton, Robinson, Shoukri, Chang (b0075) 2005; 48 Bryan, Seyed-Yagoobi (b0090) 2001; 123 Landau, Lifshitz, Pitaevskii (b0065) 1984; 8 Cummins Inc. SuperTruck yields exciting fuel mileage numbers during testing; 2013. Eames, Sabir (b0055) 1997; 17 Cotton (10.1016/j.apenergy.2014.07.061_b0075) 2005; 48 Webb (10.1016/j.apenergy.2014.07.061_b0025) 1994 10.1016/j.apenergy.2014.07.061_b0070 Quoilin (10.1016/j.apenergy.2014.07.061_b0005) 2011; 88 10.1016/j.apenergy.2014.07.061_b0050 10.1016/j.apenergy.2014.07.061_b0095 Pandiyarajan (10.1016/j.apenergy.2014.07.061_b0010) 2011; 88 10.1016/j.apenergy.2014.07.061_b0085 10.1016/j.apenergy.2014.07.061_b0120 Lee (10.1016/j.apenergy.2014.07.061_b0030) 2012; 48 Dong (10.1016/j.apenergy.2014.07.061_b0105) 2006; 30 Bergles (10.1016/j.apenergy.2014.07.061_b0035) 1965; 8 Sadek (10.1016/j.apenergy.2014.07.061_b0060) 2008; 66 10.1016/j.apenergy.2014.07.061_b0015 Gondrexon (10.1016/j.apenergy.2014.07.061_b0045) 2010; 49 Landau (10.1016/j.apenergy.2014.07.061_b0065) 1984; 8 Nangle-Smith (10.1016/j.apenergy.2014.07.061_b0115) 2012; 7 Eames (10.1016/j.apenergy.2014.07.061_b0055) 1997; 17 Ng (10.1016/j.apenergy.2014.07.061_b0110) 2011; 133 Bryan (10.1016/j.apenergy.2014.07.061_b0090) 2001; 123 Kweon (10.1016/j.apenergy.2014.07.061_b0100) 2000; 26 Horst (10.1016/j.apenergy.2014.07.061_b0020) 2013; 105 Collier (10.1016/j.apenergy.2014.07.061_b0080) 1973 Manglik (10.1016/j.apenergy.2014.07.061_b0040) 2003 |
References_xml | – volume: 88 start-page: 77 year: 2011 end-page: 87 ident: b0010 article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system publication-title: Appl Energy – reference: >. (accessed 17.11.13). – volume: 17 start-page: 79 year: 1997 end-page: 92 ident: b0055 article-title: Potential benefits of electrohydrodynamic enhancement of two-phase heat transfer in the design of refrigeration systems publication-title: Appl Therm Eng – year: 1973 ident: b0080 article-title: Convective boiling and condensation – reference: Singh A. Electrohydrodynamic (EHD) enhancement of in-tube boiling and condensation of alternate (non-CFC) refrigerants. Ph.D. thesis. University of Maryland, College Park, Maryland; 1995. – volume: 7 start-page: 64 year: 2012 end-page: 70 ident: b0115 article-title: The influence of the electrophoretic and polarization forces on two phase flow redistribution in a horizontal annular tube publication-title: Int J Plasma Environ Sci Technol, IJPEST – volume: 105 start-page: 293 year: 2013 end-page: 303 ident: b0020 article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems publication-title: Appl Energy – volume: 26 start-page: 1351 year: 2000 end-page: 1368 ident: b0100 article-title: Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field publication-title: Int J Multiphase Flow – volume: 48 start-page: 275 year: 2012 end-page: 288 ident: b0030 article-title: Heat transfer enhancement in micro-channel with multiple synthetic jets publication-title: Appl Therm Eng – volume: 88 start-page: 2183 year: 2011 end-page: 2190 ident: b0005 article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles publication-title: Appl Energy – volume: 8 start-page: 45 year: 1984 end-page: 47 ident: b0065 article-title: Electrodynamics of continuous media publication-title: Course Theor Phys – year: 1994 ident: b0025 article-title: Principles of enhanced heat transfer – reference: >. (accessed 04.12.13). – year: 2003 ident: b0040 article-title: Heat transfer enhancement publication-title: Heat transfer handbook – reference: Yabe ATTH, Taketani T, Maki H, Takahashi K, Nakadai Y. Experimental study of electrohydrodynamically (EHD) enhanced evaporator for nonazeotropic mixtures. In: ASHRAE winter meeting, Anaheim, CA, USA, 01/25-29/92; 1992. p. 455–60. – reference: LabVIEW NI. PID and fuzzy logic toolkit user manual; 2009. < – volume: 66 start-page: 25 year: 2008 end-page: 31 ident: b0060 article-title: Effect of frequency on two-phase flow regimes under high-voltage AC electric fields publication-title: J Electrostat – volume: 123 start-page: 355 year: 2001 end-page: 367 ident: b0090 article-title: Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling publication-title: J Heat Transfer – volume: 8 start-page: 1273 year: 1965 end-page: 1280 ident: b0035 article-title: The influence of ultrasonic vibrations on heat transfer to water flowing in annuli publication-title: Int J Heat Mass Transfer – volume: 30 start-page: 579 year: 2006 end-page: 586 ident: b0105 article-title: An investigation of behaviours of a single bubble in a uniform electric field publication-title: Exp Therm Fluid Sci – reference: Cotton JS. Mechanisms of electrohydrodynamic flow and heat transfer in horizontal convective boiling channels. Ph.D. thesis. McMaster University, Hamilton, Ontario; 2000. – volume: 49 start-page: 936 year: 2010 end-page: 942 ident: b0045 article-title: Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound publication-title: Chem Eng Process – reference: Tisseau Y, Boldo P, Gondrexon N, Bontemps A. Conception et étude préliminaire d’un échangeur de chaleur tubes et calandre assisté par ultrasons. In: Proceedings of the 18ème Congrès Francais de Mécanique, Grenoble, France; 2007. – reference: Cummins Inc. SuperTruck yields exciting fuel mileage numbers during testing; 2013. < – volume: 48 start-page: 5563 year: 2005 end-page: 5579 ident: b0075 article-title: A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis publication-title: Int J Heat Mass Transfer – volume: 133 start-page: 091501 year: 2011 ident: b0110 article-title: Transient two-phase flow patterns by application of a high voltage pulse width modulated signal and the effect on condensation heat transfer publication-title: J Heat Transfer – volume: 123 start-page: 355 year: 2001 ident: 10.1016/j.apenergy.2014.07.061_b0090 article-title: Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling publication-title: J Heat Transfer doi: 10.1115/1.1316782 – volume: 88 start-page: 2183 issue: 6 year: 2011 ident: 10.1016/j.apenergy.2014.07.061_b0005 article-title: Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.015 – year: 1994 ident: 10.1016/j.apenergy.2014.07.061_b0025 – volume: 66 start-page: 25 issue: 1–2 year: 2008 ident: 10.1016/j.apenergy.2014.07.061_b0060 article-title: Effect of frequency on two-phase flow regimes under high-voltage AC electric fields publication-title: J Electrostat doi: 10.1016/j.elstat.2007.08.008 – volume: 8 start-page: 1273 year: 1965 ident: 10.1016/j.apenergy.2014.07.061_b0035 article-title: The influence of ultrasonic vibrations on heat transfer to water flowing in annuli publication-title: Int J Heat Mass Transfer doi: 10.1016/0017-9310(65)90055-4 – volume: 30 start-page: 579 issue: 6 year: 2006 ident: 10.1016/j.apenergy.2014.07.061_b0105 article-title: An investigation of behaviours of a single bubble in a uniform electric field publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2005.12.003 – volume: 133 start-page: 091501 year: 2011 ident: 10.1016/j.apenergy.2014.07.061_b0110 article-title: Transient two-phase flow patterns by application of a high voltage pulse width modulated signal and the effect on condensation heat transfer publication-title: J Heat Transfer doi: 10.1115/1.4003901 – ident: 10.1016/j.apenergy.2014.07.061_b0015 – volume: 105 start-page: 293 year: 2013 ident: 10.1016/j.apenergy.2014.07.061_b0020 article-title: Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.060 – ident: 10.1016/j.apenergy.2014.07.061_b0095 – volume: 17 start-page: 79 issue: 1 year: 1997 ident: 10.1016/j.apenergy.2014.07.061_b0055 article-title: Potential benefits of electrohydrodynamic enhancement of two-phase heat transfer in the design of refrigeration systems publication-title: Appl Therm Eng doi: 10.1016/1359-4311(96)00012-9 – ident: 10.1016/j.apenergy.2014.07.061_b0070 – volume: 7 start-page: 64 issue: 1 year: 2012 ident: 10.1016/j.apenergy.2014.07.061_b0115 article-title: The influence of the electrophoretic and polarization forces on two phase flow redistribution in a horizontal annular tube publication-title: Int J Plasma Environ Sci Technol, IJPEST – volume: 88 start-page: 77 issue: 1 year: 2011 ident: 10.1016/j.apenergy.2014.07.061_b0010 article-title: Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.07.023 – volume: 26 start-page: 1351 issue: 8 year: 2000 ident: 10.1016/j.apenergy.2014.07.061_b0100 article-title: Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a nonuniform dc electric field publication-title: Int J Multiphase Flow doi: 10.1016/S0301-9322(99)00090-7 – year: 2003 ident: 10.1016/j.apenergy.2014.07.061_b0040 article-title: Heat transfer enhancement – year: 1973 ident: 10.1016/j.apenergy.2014.07.061_b0080 – ident: 10.1016/j.apenergy.2014.07.061_b0050 – volume: 8 start-page: 45 year: 1984 ident: 10.1016/j.apenergy.2014.07.061_b0065 article-title: Electrodynamics of continuous media publication-title: Course Theor Phys – volume: 48 start-page: 275 year: 2012 ident: 10.1016/j.apenergy.2014.07.061_b0030 article-title: Heat transfer enhancement in micro-channel with multiple synthetic jets publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2012.04.059 – ident: 10.1016/j.apenergy.2014.07.061_b0085 – ident: 10.1016/j.apenergy.2014.07.061_b0120 – volume: 48 start-page: 5563 issue: 25–26 year: 2005 ident: 10.1016/j.apenergy.2014.07.061_b0075 article-title: A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis publication-title: Int J Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2005.05.032 – volume: 49 start-page: 936 issue: 9 year: 2010 ident: 10.1016/j.apenergy.2014.07.061_b0045 article-title: Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound publication-title: Chem Eng Process doi: 10.1016/j.cep.2010.06.007 |
SSID | ssj0002120 |
Score | 2.2222564 |
Snippet | •EHD controllers for convective boiling heat exchangers were implemented in LabVIEW.•The controllers output negative DC voltage to maximise the range of... The objective of this study is to investigate the application of high voltage DC waveforms as a mechanism of load control for convective boiling systems.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 125 |
SubjectTerms | Applied sciences boiling Control controllers Convective boiling Devices using thermal energy electric power Electrohydrodynamics Energy Energy. Thermal use of fuels Exact sciences and technology Flow pattern Heat exchanger heat exchangers Heat exchangers (included heat transformers, condensers, cooling towers) Load following |
Title | EHD-based load controllers for R134a convective boiling heat exchangers |
URI | https://dx.doi.org/10.1016/j.apenergy.2014.07.061 https://www.proquest.com/docview/2101339390 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5EL4qIr2J9lAheY7e76W72KFqtih58gLeQbBJoKW2xFTz5253ZzfpAxIPHXWbYZJLMfGG_mQE4SqkqUWQ0T3PjuZB5xk0sLdfSxdZonxhHucM3t2n_UVw9dZ8W4LTOhSFaZfD9lU8vvXV40w7WbE8Hg_Y9oV3C_x1q7S0E-WEhMtrlx2-fNI84lGZEYU7SX7KEh8d66soMO6J4ibKIZ9r5LUCtTvUMzearfhc_XHcZj87XYS0ASXZSjXUDFtx4E1a-lBfchEbvM4sNRcMxnm3BRa9_xil-WTaaaMsCX32EUJAhiGV3nURoVhLSS3fIzGRAaeuMPDdzryFbeLYNj-e9h9M-Dx0VeIGwZ87zzOqsoMlL7TrOOsQ3ea59JLVNo8T6BOGZsVGBqMTpzBvru0KYRFMjGCG6SQMWx5Ox2wHmdZZ6alEd-0i41BiJ4bBInDTeobxsQrc2oypCuXHqejFSNa9sqGrzKzK_ijKF5m9C-0NvWhXc-FMjr1dJfds6CqPCn7qtb8v68clYSpnilJpwWK-zwoNHf1P02E1eZgrvyni_z5M82v3HAPZgmZ4qgsw-LM6fX9wBwpy5aZX7uAVLJ5fX_dt37nb-Lw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6h9gHQhICBVtiYJ-3VNE2cxHmsWCEM6MMGEm-WHdtSUdVWa5H253OXOB1oQjzwmvgU-87-7rNyPwC-Z1SVKDKaZ4XxXMgi5yaWlmvpYmu0T4yj3OGbcVbeiZ_36f0GnLW5MBRWGbC_wfQarcOTftBmfzGZ9H8T2yX-P6DW3kIgDnepOlXage7w8qocrwE5DtUZcTwngWeJwg-neuHqJDuK8hJ1Hc9s8JqP-rDQS9Scb1pe_IfetUs634WdwCXZsJnuHmy42T5sP6swuA-Ho3-JbDg0nOTlR7gYlT84uTDLpnNtWQhZnyIbZMhj2a9BIjSrY9JrRGRmPqHMdUbgzdzfkDC8PIC789HtWclDUwVeIfNZ8SK3Oq9o8VK7gbMOKU5RaB9JbbMosT5BhmZsVCExcTr3xvpUCJNo6gUjRJocQmc2n7lPwLzOM09dqmMfCZcZI9EjVomTxjscL3uQtmpUVag4To0vpqoNLXtQrfoVqV9FuUL196C_lls0NTfelChaK6kXu0ehY3hT9uSFWdefjKWUGS6pB99aOys8e_RDRc_c_HGp8LqMV_wiKaKjd0zgK2yWtzfX6vpyfHUMW_SmiZf5DJ3Vn0f3BVnPypyEXf0End0A7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EHD-based+load+controllers+for+R134a+convective+boiling+heat+exchangers&rft.jtitle=Applied+energy&rft.au=NANGLE-SMITH%2C+S&rft.au=COTTON%2C+J.+S&rft.date=2014-12-01&rft.pub=Elsevier&rft.issn=0306-2619&rft.volume=134&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.apenergy.2014.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=28886841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |