Application research of pulse signal physiology and pathology feature mining in the field of disease diagnosis

This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the p...

Full description

Saved in:
Bibliographic Details
Published inComputer methods in biomechanics and biomedical engineering Vol. 25; no. 10; pp. 1111 - 1124
Main Authors Fan, Lin, Zhang, Jin Cheng, Wang, Zhongmin, Zhang, Xiaokang, Yao, Ruiling, Li, Yan
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 27.07.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1025-5842
1476-8259
1476-8259
DOI10.1080/10255842.2021.2002306

Cover

Loading…
Abstract This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis.
AbstractList This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis.
This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis.This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis.
Author Wang, Zhongmin
Yao, Ruiling
Zhang, Jin Cheng
Fan, Lin
Zhang, Xiaokang
Li, Yan
Author_xml – sequence: 1
  givenname: Lin
  surname: Fan
  fullname: Fan, Lin
  organization: Xi'an Key Laboratory of Big Data and Intelligent Computing
– sequence: 2
  givenname: Jin Cheng
  orcidid: 0000-0002-2040-0496
  surname: Zhang
  fullname: Zhang, Jin Cheng
  email: 18237981402@stu.xupt.edu.cn
  organization: Xi'an Key Laboratory of Big Data and Intelligent Computing
– sequence: 3
  givenname: Zhongmin
  surname: Wang
  fullname: Wang, Zhongmin
  organization: Xi'an Key Laboratory of Big Data and Intelligent Computing
– sequence: 4
  givenname: Xiaokang
  surname: Zhang
  fullname: Zhang, Xiaokang
  organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications
– sequence: 5
  givenname: Ruiling
  surname: Yao
  fullname: Yao, Ruiling
  organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications
– sequence: 6
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35062849$$D View this record in MEDLINE/PubMed
BookMark eNqFkUmLFDEYhoOMOIv-BCXgxUuN2asKLw6DGwx40XNIZenOkErKJIX0vzdld1_moJcs8LxPyPdeg4uYogXgNUa3GA3oPUaE84GRW4IIbgsiFIln4AqzXnQD4eNFOzem26BLcF3KI0JowAN7AS4pR4IMbLwC8W5Zgteq-hRhtsWqrPcwObisoVhY_C6qAJf9ofgU0u4AVTRwUXV_vDmr6potnH30cQd9hHVvofM2mE1ifBM2jfFqF1Px5SV47lQTvzrtN-Dn508_7r92D9-_fLu_e-g0Y7h2Y4-I0hgTLXrWa6cFdnRylBkzGComikaOyDS11WKlOGKUTj21zqhROIHoDXh39C45_VptqXL2RdsQVLRpLZIIQsjABWUNffsEfUxrbr_eqLGnBHEmGvXmRK3TbI1csp9VPsjzJBvw4QjonErJ1knt69-x1qx8kBjJrTd57k1uvclTby3Nn6TPD_wv9_GY89GlPKvfKQcjqzqElF1WUfsi6b8VfwDeAq4i
CitedBy_id crossref_primary_10_1142_S0192415X24500265
crossref_primary_10_1016_j_dcmed_2024_04_004
crossref_primary_10_1186_s12911_024_02666_1
Cites_doi 10.1016/j.medengphy.2009.08.008
10.1016/j.nanoen.2020.105614
10.1002/adfm.201803413
10.1016/j.ctim.2006.06.004
10.1161/01.HYP.37.5.1236
10.1155/2014/947254
10.1126/sciadv.1501856
10.1016/j.eujim.2016.06.017
10.1016/j.arr.2015.08.003
10.1016/j.patcog.2018.12.010
10.1177/070674371506000805
10.1002/jbio.201900084
10.1016/j.compbiomed.2012.12.010
10.1109/ICBAPS.2015.7292210
10.1161/01.CIR.0000105767.94169.E3
10.1162/0899766053491896
10.1002/adma.201703456
10.1038/s41551-018-0336-5
10.3923/itj.2009.64.70
10.1016/j.bspc.2015.08.002
10.1016/j.medengphy.2016.06.022
10.1016/j.eujim.2018.11.004
10.1155/2015/859192
10.1109/ICDM.2001.989589
10.1002/cnm.3272
10.1016/j.compeleceng.2014.12.016
10.1007/s10916-009-9368-4
10.1109/TNNLS.2018.2817538
10.1016/S0735-1097(97)00378-1
10.1109/TNNLS.2018.2829867
10.1097/00004872-200112000-00013
10.1016/j.jcma.2018.07.002
10.1109/TITB.2012.2195188
10.1016/j.jvs.2007.01.008
ContentType Journal Article
Copyright 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021
2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021
– notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1080/10255842.2021.2002306
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1476-8259
EndPage 1124
ExternalDocumentID 35062849
10_1080_10255842_2021_2002306
2002306
Genre Research Article
Journal Article
GroupedDBID ---
.7F
.QJ
0BK
0R~
0YH
29F
2DF
30N
36B
4.4
53G
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACPRK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRAH
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EMOBN
E~A
E~B
F5P
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADMLS
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
NPM
7QO
8FD
FR3
P64
TASJS
7X8
ID FETCH-LOGICAL-c441t-9702ac112c6747cfc61f3bf34dd8d36b309502bb950e1aa50433b73efda96f603
IEDL.DBID 0YH
ISSN 1025-5842
1476-8259
IngestDate Fri Jul 11 06:05:56 EDT 2025
Wed Aug 13 09:01:46 EDT 2025
Wed Feb 19 02:28:39 EST 2025
Tue Jul 01 03:32:14 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Wed Dec 25 09:05:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords kernel method
Pulse diagnosis
decision tree
SVM
signal processing
pulse wave analysis
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-9702ac112c6747cfc61f3bf34dd8d36b309502bb950e1aa50433b73efda96f603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2040-0496
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10255842.2021.2002306
PMID 35062849
PQID 2697320546
PQPubID 2045306
PageCount 14
ParticipantIDs pubmed_primary_35062849
crossref_citationtrail_10_1080_10255842_2021_2002306
crossref_primary_10_1080_10255842_2021_2002306
informaworld_taylorfrancis_310_1080_10255842_2021_2002306
proquest_miscellaneous_2622285634
proquest_journals_2697320546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-27
PublicationDateYYYYMMDD 2022-07-27
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Computer methods in biomechanics and biomedical engineering
PublicationTitleAlternate Comput Methods Biomech Biomed Engin
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
Rangaprakash D (CIT0024) 2014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
Cymberknop L (CIT0008) 2011
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Rangaprakash D. (CIT0026) 2014
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
Chung Y-F (CIT0007) 2013
CIT0029
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0004
  doi: 10.1016/j.medengphy.2009.08.008
– ident: CIT0037
  doi: 10.1016/j.nanoen.2020.105614
– ident: CIT0006
  doi: 10.1002/adfm.201803413
– ident: CIT0029
  doi: 10.1016/j.ctim.2006.06.004
– ident: CIT0015
  doi: 10.1161/01.HYP.37.5.1236
– ident: CIT0013
  doi: 10.1155/2014/947254
– ident: CIT0038
  doi: 10.1126/sciadv.1501856
– ident: CIT0021
  doi: 10.1016/j.eujim.2016.06.017
– ident: CIT0009
  doi: 10.1016/j.arr.2015.08.003
– ident: CIT0019
  doi: 10.1016/j.patcog.2018.12.010
– ident: CIT0014
  doi: 10.1177/070674371506000805
– start-page: 1410
  volume-title: In: Proceedings of IEEE International Conference on Communications and Signal Processing. Melmaruvathur (India
  year: 2014
  ident: CIT0026
– ident: CIT0033
  doi: 10.1002/jbio.201900084
– ident: CIT0040
  doi: 10.1016/j.compbiomed.2012.12.010
– ident: CIT0012
  doi: 10.1109/ICBAPS.2015.7292210
– ident: CIT0035
  doi: 10.1161/01.CIR.0000105767.94169.E3
– ident: CIT0036
  doi: 10.1162/0899766053491896
– ident: CIT0023
  doi: 10.1002/adma.201703456
– ident: CIT0039
– ident: CIT0002
  doi: 10.1038/s41551-018-0336-5
– ident: CIT0028
  doi: 10.3923/itj.2009.64.70
– ident: CIT0032
  doi: 10.1016/j.bspc.2015.08.002
– ident: CIT0031
  doi: 10.1016/j.medengphy.2016.06.022
– start-page: 5
  volume-title: 1st International Conference on Orange Technologies (ICOT)
  year: 2013
  ident: CIT0007
– ident: CIT0016
  doi: 10.1016/j.eujim.2018.11.004
– ident: CIT0022
  doi: 10.1155/2015/859192
– ident: CIT0027
  doi: 10.1109/ICDM.2001.989589
– ident: CIT0003
  doi: 10.1002/cnm.3272
– ident: CIT0025
  doi: 10.1016/j.compeleceng.2014.12.016
– ident: CIT0005
  doi: 10.1007/s10916-009-9368-4
– ident: CIT0017
  doi: 10.1109/TNNLS.2018.2817538
– ident: CIT0011
  doi: 10.1016/S0735-1097(97)00378-1
– ident: CIT0018
  doi: 10.1109/TNNLS.2018.2829867
– volume-title: Annual International Conference of the IEEE Engineering in Medicine and society
  year: 2011
  ident: CIT0008
– ident: CIT0010
  doi: 10.1097/00004872-200112000-00013
– ident: CIT0001
– ident: CIT0030
  doi: 10.1016/j.jcma.2018.07.002
– ident: CIT0020
  doi: 10.1109/TITB.2012.2195188
– start-page: 345
  volume-title: In: IEEE International Conference on Communications and Signal Processing. Melmaruvathur (India)
  year: 2014
  ident: CIT0024
– ident: CIT0034
  doi: 10.1016/j.jvs.2007.01.008
SSID ssj0008184
Score 2.3160388
Snippet This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1111
SubjectTerms Algorithms
Chronic illnesses
decision tree
Decision trees
Diagnosis
Disease detection
Feature extraction
Herbal medicine
Kernel functions
kernel method
Photoelectricity
Physiology
Pulse diagnosis
pulse wave analysis
signal processing
Support vector machines
SVM
Traditional Chinese medicine
Title Application research of pulse signal physiology and pathology feature mining in the field of disease diagnosis
URI https://www.tandfonline.com/doi/abs/10.1080/10255842.2021.2002306
https://www.ncbi.nlm.nih.gov/pubmed/35062849
https://www.proquest.com/docview/2697320546
https://www.proquest.com/docview/2622285634
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6IXgRv53OEcFrpW26tD0OdQxBTw4_LiWfONBuuO7gf-97aTrdQXbw0lDSV0JekvdL3svvEXKZq7wvlFBBlMksSHQEc06lFt2FWvPY5tqlTrh_4KNxcvfcb6IJ5z6sEvfQtiaKcGs1Tm4h501EHJSAg7MEr1HFbouHMHqTtGPkXochHb6Mlosx2CPnWMasrSjTXOL56zcr5mmFvPRvCOpM0XCX7HgMSQe10vfIhin3yVadVfLrgJSDH6c09WQ-b3Rq6WwBdpBixAZIuyMNJ0GhIyhmJq7frHFcn_TDpY6gk5ICRqQu0g1_4j06ULoYvcn8kIyHt4_Xo8CnVQgUYJ8qyNMwFgpwluKwl1BW8cgyaVmidaYZlwxQVxhLCU8TCeEozmTKjNUi55aH7Ii0ymlpTgiVYP-5MLhJgY5MdQbjUsEKkEsbCZPxDkma3iyU5xzH1BfvReSpSRslFKiEwiuhQ66WYrOadGOdQP5bVUXlTjtsnZqkYGtku41eCz9_50XMkcUI4CxUXyyrYeahO0WUZrrAb_D0rM9Z0iHH9XhYtpb18W5qkp_-o2FnZDvGuxZhGsRpl7Sqz4U5BwRUyZ4b4z3SHoxuXp--AY0G-i4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKkQvtBRot6XgSlyzSuLEiY-oKtq2sCeQuFl-CgRkVyV7aH89M06yPCTEgUuiKJnIcWbsz56ZbwAOpJWlttomWW3qpHAZ2pytArkLnRN5kC6WTjiZislZ8fu8PH-QC0NhlbSGDh1RRByrybhpM3oIicMzAuG6oDyqPK7xCEevwNtSioqMk6fT5WiME1L0LFPZVpIZsniee82j-ekRe-nzGDTORUfvwQ5f0YWgXI0XrRnb_08IHl_3mR9go4eq7LDTrU1445uPsNYVr_y3Bc3hve-b9ZxBF2wW2HyB0y2jwBCUjjsnUYJhQxgVQO6ugo-UouwmVqhglw1DKMpiQB29pHcc4TmGAl7ebsPZ0c_TH5Okr96QWIRYbSKrNNcW4ZwVuGSxwYoscBN44VztuDAcwV2aG4NHn2kdmdRMxX1wWoogUr4Dq82s8Z-BGYQZQntaC2F3VK5G9bc40EgTMu1rMYJi-GfK9tTmVGHjWmU9A-rQlYq6UvVdOYLxUmzecXu8JCAfKoRq46ZK6CqgKP6C7O6gPaofJm5VLogsCVEz3v6-vI0GTl4b3fjZgp6hTbpS8GIEnzqtW7aWl5QCW8gvr2jYPqxPTk-O1fGv6Z-v8C6n9I60SvJqF1bbvwv_DUFXa_aiVd0BKdAcAQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VFRcgAKlS6F1Ja5ZJXHWSY6IdkVfqx6KxM3yU6yg2VU3e4Bfz4zjbAsS4sAlVpSM5Thj-7Nn5huA49rUI2WUSbJKV0lhMxxzpvRkLrRW5L62IXXCz4k4Oy--XYx6b8JFdKukPbTviCLCXE2De2597xGHJeLgqqAwqjxs8QhGv4RXgox8FMWRTlaTMa5HwbBMWVtJpg_ieayae8vTPfLSxyFoWIrGW6D7j-g8UK6Gy1YPze0DfsdnfeU2bEagyk46zXoDL1yzA-td6sqbXWhO_lm-WWQMumQzz-ZLXGwZuYWgdDg3CRIM28Eo_XF3510gFGV_Qn4KNm0YAlEW3Omokmg2wjI4Ak4Xe3A-_vL79CyJuRsSgwCrTeoyzZVBMGcEbliMNyLzXHteWFtZLjRHaJfmWuPVZUoFHjVdcuetqoUXKX8La82sce-AaQQZQjnaCWF3lLZC5Tc4zdTaZ8pVYgBF_8ukicTmlF_jWmaR_7TvSkldKWNXDmC4Ept3zB5PCdT_64Nsw5GK7_KfSP6E7GGvPDJOEguZC6JKQsyMjz-tHuPwJpuNatxsSe_QEd1I8GIA-53SrVrLRxQAW9QHz2jYR3j96_NY_vg6-f4eNnKK7UjLJC8PYa39u3RHiLha_SGMqTuFgxql
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+research+of+pulse+signal+physiology+and+pathology+feature+mining+in+the+field+of+disease+diagnosis&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Fan%2C+Lin&rft.au=Zhang%2C+Jin+Cheng&rft.au=Wang%2C+Zhongmin&rft.au=Zhang%2C+Xiaokang&rft.date=2022-07-27&rft.eissn=1476-8259&rft.spage=1&rft_id=info:doi/10.1080%2F10255842.2021.2002306&rft_id=info%3Apmid%2F35062849&rft.externalDocID=35062849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon