Application research of pulse signal physiology and pathology feature mining in the field of disease diagnosis
This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the p...
Saved in:
Published in | Computer methods in biomechanics and biomedical engineering Vol. 25; no. 10; pp. 1111 - 1124 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
27.07.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1025-5842 1476-8259 1476-8259 |
DOI | 10.1080/10255842.2021.2002306 |
Cover
Loading…
Abstract | This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis. |
---|---|
AbstractList | This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis. This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis.This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized into a dataset, and the algorithms are designed to apply feature extraction. After denoising, smoothing and eliminating baseline drift of the photoelectric sensors pulse data of several groups of subjects, we designed three algorithms to describe the difference between the two-dimensional images of the pulse data of normal people and patients with chronic diseases. Convert the calculated feature values into multi-dimensional arrays, enter the decision tree (DT) to balance the differences in human physiological conditions, then train in the support vector machine kernel method (SVM-KM) classifier. Experimental results show that the application of these feature mining algorithms to disease detection greatly improves the reliability of TCM diagnosis. |
Author | Wang, Zhongmin Yao, Ruiling Zhang, Jin Cheng Fan, Lin Zhang, Xiaokang Li, Yan |
Author_xml | – sequence: 1 givenname: Lin surname: Fan fullname: Fan, Lin organization: Xi'an Key Laboratory of Big Data and Intelligent Computing – sequence: 2 givenname: Jin Cheng orcidid: 0000-0002-2040-0496 surname: Zhang fullname: Zhang, Jin Cheng email: 18237981402@stu.xupt.edu.cn organization: Xi'an Key Laboratory of Big Data and Intelligent Computing – sequence: 3 givenname: Zhongmin surname: Wang fullname: Wang, Zhongmin organization: Xi'an Key Laboratory of Big Data and Intelligent Computing – sequence: 4 givenname: Xiaokang surname: Zhang fullname: Zhang, Xiaokang organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications – sequence: 5 givenname: Ruiling surname: Yao fullname: Yao, Ruiling organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications – sequence: 6 givenname: Yan surname: Li fullname: Li, Yan organization: School of Computer Science and Technology, Xi'an University of Posts and Telecommunications |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35062849$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUmLFDEYhoOMOIv-BCXgxUuN2asKLw6DGwx40XNIZenOkErKJIX0vzdld1_moJcs8LxPyPdeg4uYogXgNUa3GA3oPUaE84GRW4IIbgsiFIln4AqzXnQD4eNFOzem26BLcF3KI0JowAN7AS4pR4IMbLwC8W5Zgteq-hRhtsWqrPcwObisoVhY_C6qAJf9ofgU0u4AVTRwUXV_vDmr6potnH30cQd9hHVvofM2mE1ifBM2jfFqF1Px5SV47lQTvzrtN-Dn508_7r92D9-_fLu_e-g0Y7h2Y4-I0hgTLXrWa6cFdnRylBkzGComikaOyDS11WKlOGKUTj21zqhROIHoDXh39C45_VptqXL2RdsQVLRpLZIIQsjABWUNffsEfUxrbr_eqLGnBHEmGvXmRK3TbI1csp9VPsjzJBvw4QjonErJ1knt69-x1qx8kBjJrTd57k1uvclTby3Nn6TPD_wv9_GY89GlPKvfKQcjqzqElF1WUfsi6b8VfwDeAq4i |
CitedBy_id | crossref_primary_10_1142_S0192415X24500265 crossref_primary_10_1016_j_dcmed_2024_04_004 crossref_primary_10_1186_s12911_024_02666_1 |
Cites_doi | 10.1016/j.medengphy.2009.08.008 10.1016/j.nanoen.2020.105614 10.1002/adfm.201803413 10.1016/j.ctim.2006.06.004 10.1161/01.HYP.37.5.1236 10.1155/2014/947254 10.1126/sciadv.1501856 10.1016/j.eujim.2016.06.017 10.1016/j.arr.2015.08.003 10.1016/j.patcog.2018.12.010 10.1177/070674371506000805 10.1002/jbio.201900084 10.1016/j.compbiomed.2012.12.010 10.1109/ICBAPS.2015.7292210 10.1161/01.CIR.0000105767.94169.E3 10.1162/0899766053491896 10.1002/adma.201703456 10.1038/s41551-018-0336-5 10.3923/itj.2009.64.70 10.1016/j.bspc.2015.08.002 10.1016/j.medengphy.2016.06.022 10.1016/j.eujim.2018.11.004 10.1155/2015/859192 10.1109/ICDM.2001.989589 10.1002/cnm.3272 10.1016/j.compeleceng.2014.12.016 10.1007/s10916-009-9368-4 10.1109/TNNLS.2018.2817538 10.1016/S0735-1097(97)00378-1 10.1109/TNNLS.2018.2829867 10.1097/00004872-200112000-00013 10.1016/j.jcma.2018.07.002 10.1109/TITB.2012.2195188 10.1016/j.jvs.2007.01.008 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2021 – notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1080/10255842.2021.2002306 |
DatabaseName | Taylor & Francis Open Access CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 0YH name: Taylor & Francis Free Journals (Free resource, activated by CARLI) url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-8259 |
EndPage | 1124 |
ExternalDocumentID | 35062849 10_1080_10255842_2021_2002306 2002306 |
Genre | Research Article Journal Article |
GroupedDBID | --- .7F .QJ 0BK 0R~ 0YH 29F 2DF 30N 36B 4.4 53G 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACPRK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EMOBN E~A E~B F5P GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADMLS ADYSH AFRVT AIYEW AMPGV CITATION NPM 7QO 8FD FR3 P64 TASJS 7X8 |
ID | FETCH-LOGICAL-c441t-9702ac112c6747cfc61f3bf34dd8d36b309502bb950e1aa50433b73efda96f603 |
IEDL.DBID | 0YH |
ISSN | 1025-5842 1476-8259 |
IngestDate | Fri Jul 11 06:05:56 EDT 2025 Wed Aug 13 09:01:46 EDT 2025 Wed Feb 19 02:28:39 EST 2025 Tue Jul 01 03:32:14 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Wed Dec 25 09:05:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | kernel method Pulse diagnosis decision tree SVM signal processing pulse wave analysis |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-9702ac112c6747cfc61f3bf34dd8d36b309502bb950e1aa50433b73efda96f603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2040-0496 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/10255842.2021.2002306 |
PMID | 35062849 |
PQID | 2697320546 |
PQPubID | 2045306 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_35062849 crossref_citationtrail_10_1080_10255842_2021_2002306 crossref_primary_10_1080_10255842_2021_2002306 informaworld_taylorfrancis_310_1080_10255842_2021_2002306 proquest_miscellaneous_2622285634 proquest_journals_2697320546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-27 |
PublicationDateYYYYMMDD | 2022-07-27 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Computer methods in biomechanics and biomedical engineering |
PublicationTitleAlternate | Comput Methods Biomech Biomed Engin |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 Rangaprakash D (CIT0024) 2014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 Cymberknop L (CIT0008) 2011 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0040 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Rangaprakash D. (CIT0026) 2014 CIT0003 CIT0025 CIT0002 CIT0005 CIT0027 CIT0004 Chung Y-F (CIT0007) 2013 CIT0029 CIT0006 CIT0028 CIT0009 |
References_xml | – ident: CIT0004 doi: 10.1016/j.medengphy.2009.08.008 – ident: CIT0037 doi: 10.1016/j.nanoen.2020.105614 – ident: CIT0006 doi: 10.1002/adfm.201803413 – ident: CIT0029 doi: 10.1016/j.ctim.2006.06.004 – ident: CIT0015 doi: 10.1161/01.HYP.37.5.1236 – ident: CIT0013 doi: 10.1155/2014/947254 – ident: CIT0038 doi: 10.1126/sciadv.1501856 – ident: CIT0021 doi: 10.1016/j.eujim.2016.06.017 – ident: CIT0009 doi: 10.1016/j.arr.2015.08.003 – ident: CIT0019 doi: 10.1016/j.patcog.2018.12.010 – ident: CIT0014 doi: 10.1177/070674371506000805 – start-page: 1410 volume-title: In: Proceedings of IEEE International Conference on Communications and Signal Processing. Melmaruvathur (India year: 2014 ident: CIT0026 – ident: CIT0033 doi: 10.1002/jbio.201900084 – ident: CIT0040 doi: 10.1016/j.compbiomed.2012.12.010 – ident: CIT0012 doi: 10.1109/ICBAPS.2015.7292210 – ident: CIT0035 doi: 10.1161/01.CIR.0000105767.94169.E3 – ident: CIT0036 doi: 10.1162/0899766053491896 – ident: CIT0023 doi: 10.1002/adma.201703456 – ident: CIT0039 – ident: CIT0002 doi: 10.1038/s41551-018-0336-5 – ident: CIT0028 doi: 10.3923/itj.2009.64.70 – ident: CIT0032 doi: 10.1016/j.bspc.2015.08.002 – ident: CIT0031 doi: 10.1016/j.medengphy.2016.06.022 – start-page: 5 volume-title: 1st International Conference on Orange Technologies (ICOT) year: 2013 ident: CIT0007 – ident: CIT0016 doi: 10.1016/j.eujim.2018.11.004 – ident: CIT0022 doi: 10.1155/2015/859192 – ident: CIT0027 doi: 10.1109/ICDM.2001.989589 – ident: CIT0003 doi: 10.1002/cnm.3272 – ident: CIT0025 doi: 10.1016/j.compeleceng.2014.12.016 – ident: CIT0005 doi: 10.1007/s10916-009-9368-4 – ident: CIT0017 doi: 10.1109/TNNLS.2018.2817538 – ident: CIT0011 doi: 10.1016/S0735-1097(97)00378-1 – ident: CIT0018 doi: 10.1109/TNNLS.2018.2829867 – volume-title: Annual International Conference of the IEEE Engineering in Medicine and society year: 2011 ident: CIT0008 – ident: CIT0010 doi: 10.1097/00004872-200112000-00013 – ident: CIT0001 – ident: CIT0030 doi: 10.1016/j.jcma.2018.07.002 – ident: CIT0020 doi: 10.1109/TITB.2012.2195188 – start-page: 345 volume-title: In: IEEE International Conference on Communications and Signal Processing. Melmaruvathur (India) year: 2014 ident: CIT0024 – ident: CIT0034 doi: 10.1016/j.jvs.2007.01.008 |
SSID | ssj0008184 |
Score | 2.3160388 |
Snippet | This experiment is based on the principle of traditional Chinese medicine (TCM) pulse diagnosis, the human pulse signal collected by the sensor is organized... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1111 |
SubjectTerms | Algorithms Chronic illnesses decision tree Decision trees Diagnosis Disease detection Feature extraction Herbal medicine Kernel functions kernel method Photoelectricity Physiology Pulse diagnosis pulse wave analysis signal processing Support vector machines SVM Traditional Chinese medicine |
Title | Application research of pulse signal physiology and pathology feature mining in the field of disease diagnosis |
URI | https://www.tandfonline.com/doi/abs/10.1080/10255842.2021.2002306 https://www.ncbi.nlm.nih.gov/pubmed/35062849 https://www.proquest.com/docview/2697320546 https://www.proquest.com/docview/2622285634 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-6IXgRv53OEcFrpW26tD0OdQxBTw4_LiWfONBuuO7gf-97aTrdQXbw0lDSV0JekvdL3svvEXKZq7wvlFBBlMksSHQEc06lFt2FWvPY5tqlTrh_4KNxcvfcb6IJ5z6sEvfQtiaKcGs1Tm4h501EHJSAg7MEr1HFbouHMHqTtGPkXochHb6Mlosx2CPnWMasrSjTXOL56zcr5mmFvPRvCOpM0XCX7HgMSQe10vfIhin3yVadVfLrgJSDH6c09WQ-b3Rq6WwBdpBixAZIuyMNJ0GhIyhmJq7frHFcn_TDpY6gk5ICRqQu0g1_4j06ULoYvcn8kIyHt4_Xo8CnVQgUYJ8qyNMwFgpwluKwl1BW8cgyaVmidaYZlwxQVxhLCU8TCeEozmTKjNUi55aH7Ii0ymlpTgiVYP-5MLhJgY5MdQbjUsEKkEsbCZPxDkma3iyU5xzH1BfvReSpSRslFKiEwiuhQ66WYrOadGOdQP5bVUXlTjtsnZqkYGtku41eCz9_50XMkcUI4CxUXyyrYeahO0WUZrrAb_D0rM9Z0iHH9XhYtpb18W5qkp_-o2FnZDvGuxZhGsRpl7Sqz4U5BwRUyZ4b4z3SHoxuXp--AY0G-i4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKkQvtBRot6XgSlyzSuLEiY-oKtq2sCeQuFl-CgRkVyV7aH89M06yPCTEgUuiKJnIcWbsz56ZbwAOpJWlttomWW3qpHAZ2pytArkLnRN5kC6WTjiZislZ8fu8PH-QC0NhlbSGDh1RRByrybhpM3oIicMzAuG6oDyqPK7xCEevwNtSioqMk6fT5WiME1L0LFPZVpIZsniee82j-ekRe-nzGDTORUfvwQ5f0YWgXI0XrRnb_08IHl_3mR9go4eq7LDTrU1445uPsNYVr_y3Bc3hve-b9ZxBF2wW2HyB0y2jwBCUjjsnUYJhQxgVQO6ugo-UouwmVqhglw1DKMpiQB29pHcc4TmGAl7ebsPZ0c_TH5Okr96QWIRYbSKrNNcW4ZwVuGSxwYoscBN44VztuDAcwV2aG4NHn2kdmdRMxX1wWoogUr4Dq82s8Z-BGYQZQntaC2F3VK5G9bc40EgTMu1rMYJi-GfK9tTmVGHjWmU9A-rQlYq6UvVdOYLxUmzecXu8JCAfKoRq46ZK6CqgKP6C7O6gPaofJm5VLogsCVEz3v6-vI0GTl4b3fjZgp6hTbpS8GIEnzqtW7aWl5QCW8gvr2jYPqxPTk-O1fGv6Z-v8C6n9I60SvJqF1bbvwv_DUFXa_aiVd0BKdAcAQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61VFRcgAKlS6F1Ja5ZJXHWSY6IdkVfqx6KxM3yU6yg2VU3e4Bfz4zjbAsS4sAlVpSM5Thj-7Nn5huA49rUI2WUSbJKV0lhMxxzpvRkLrRW5L62IXXCz4k4Oy--XYx6b8JFdKukPbTviCLCXE2De2597xGHJeLgqqAwqjxs8QhGv4RXgox8FMWRTlaTMa5HwbBMWVtJpg_ieayae8vTPfLSxyFoWIrGW6D7j-g8UK6Gy1YPze0DfsdnfeU2bEagyk46zXoDL1yzA-td6sqbXWhO_lm-WWQMumQzz-ZLXGwZuYWgdDg3CRIM28Eo_XF3510gFGV_Qn4KNm0YAlEW3Omokmg2wjI4Ak4Xe3A-_vL79CyJuRsSgwCrTeoyzZVBMGcEbliMNyLzXHteWFtZLjRHaJfmWuPVZUoFHjVdcuetqoUXKX8La82sce-AaQQZQjnaCWF3lLZC5Tc4zdTaZ8pVYgBF_8ukicTmlF_jWmaR_7TvSkldKWNXDmC4Ept3zB5PCdT_64Nsw5GK7_KfSP6E7GGvPDJOEguZC6JKQsyMjz-tHuPwJpuNatxsSe_QEd1I8GIA-53SrVrLRxQAW9QHz2jYR3j96_NY_vg6-f4eNnKK7UjLJC8PYa39u3RHiLha_SGMqTuFgxql |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+research+of+pulse+signal+physiology+and+pathology+feature+mining+in+the+field+of+disease+diagnosis&rft.jtitle=Computer+methods+in+biomechanics+and+biomedical+engineering&rft.au=Fan%2C+Lin&rft.au=Zhang%2C+Jin+Cheng&rft.au=Wang%2C+Zhongmin&rft.au=Zhang%2C+Xiaokang&rft.date=2022-07-27&rft.eissn=1476-8259&rft.spage=1&rft_id=info:doi/10.1080%2F10255842.2021.2002306&rft_id=info%3Apmid%2F35062849&rft.externalDocID=35062849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1025-5842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1025-5842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1025-5842&client=summon |