Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny
Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe eit...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 6; p. 130603 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.
We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.
Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.
Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.
Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
[Display omitted]
•No organ specific mitochondrial and cytosolic GSH:GSSG ratios in zebrafish larvae.•Almost no effects of manipulated GSH metabolism on EhGSH in older zebrafish larvae.•Inhibition of GSH reductase in young larvae leads to malformation and death.•The environmental pollutant Perfluorooctane Sulfonate affects EhGSH in larvae. |
---|---|
AbstractList | Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.
We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.
Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.
Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.
Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
[Display omitted]
•No organ specific mitochondrial and cytosolic GSH:GSSG ratios in zebrafish larvae.•Almost no effects of manipulated GSH metabolism on EhGSH in older zebrafish larvae.•Inhibition of GSH reductase in young larvae leads to malformation and death.•The environmental pollutant Perfluorooctane Sulfonate affects EhGSH in larvae. Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.BACKGROUNDRedox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.METHODSWe used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.RESULTSFollowing the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.CONCLUSIONSMitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.GENERAL SIGNIFICANCEOur data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death. Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (E ) revealed increasing mitochondrial and cytosolic E during cleavage and gastrulation. During organogenesis, cytosolic E decreased, while that of mitochondria remained high. The similarity between E in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated E as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the E might follow H O levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death. Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EₕGSH) revealed increasing mitochondrial and cytosolic EₕGSH during cleavage and gastrulation. During organogenesis, cytosolic EₕGSH decreased, while that of mitochondria remained high. The similarity between EₕGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EₕGSH as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EₕGSH might follow H₂O₂ levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death. |
ArticleNumber | 130603 |
Author | Hamre, Kristin Yin, Peng Berndt, Carsten Espe, Marit Zhang, Wuxiao Austgulen, Maren Hoff Berntssen, Marc Mykkeltvedt, Eva |
Author_xml | – sequence: 1 givenname: Kristin surname: Hamre fullname: Hamre, Kristin email: post@kristinhamre.no organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 2 givenname: Wuxiao surname: Zhang fullname: Zhang, Wuxiao organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 3 givenname: Maren Hoff surname: Austgulen fullname: Austgulen, Maren Hoff organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 4 givenname: Eva surname: Mykkeltvedt fullname: Mykkeltvedt, Eva organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 5 givenname: Peng surname: Yin fullname: Yin, Peng organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 6 givenname: Marc surname: Berntssen fullname: Berntssen, Marc organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 7 givenname: Marit surname: Espe fullname: Espe, Marit organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway – sequence: 8 givenname: Carsten surname: Berndt fullname: Berndt, Carsten email: berndt@hhu.de organization: Department of Neurology, Medical Faculty, Heinrich-Heine-Universitaet, Duesseldorf, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38521470$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFSEUxYmpsa_Vb2AMSzfzhIGBwYWJafyXNHGhrgkDd97jZQYqMI2vn15ep924sGxu4P7OCTnnAp2FGACh15RsKaHi3WE7DGYHYduSlm8pI4KwZ2hDe9k2PSHiDG0II7zhVHTn6CLnA6mnU90LdM76rqVckg26-3HMBWZvsQkO55K8LTjBbplM8THgOOKyB7yblmLKvr5A3br4p6KmAPYBz75Eu4_BJW_uTeyxxBwn7DMOAA4cHmPCdzAkM_q8xzGUWP99fImej2bK8OphXqJfnz_9vPraXH__8u3q43VjOaelUdw66QzIvlPUOWoZAwbc9qPsRyGk7QQIbhyjlisJvFNysJSqjtPTpWeX6O3qe5Pi7wVy0bPPFqbJBIhL1qwlgiquOH0SbZXkNUMpTuibB3QZZnD6JvnZpKN-jLYC71fApphzglFbX-5DLcn4SVOiTz3qg1571Kce9dpjFfN_xI_-T8g-rDKoed56SDpbD8GC8wls0S76_xv8BXTiuY4 |
CitedBy_id | crossref_primary_10_3389_fcimb_2024_1426340 |
Cites_doi | 10.3390/antiox7110159 10.1016/S0891-5849(01)00480-4 10.1111/anu.13058 10.1126/scisignal.aad3895 10.1016/j.semcdb.2012.03.017 10.1016/j.ydbio.2016.05.004 10.1038/bcj.2014.45 10.1089/ars.2015.6247 10.1158/0008-5472.CAN-15-2380 10.3389/fphar.2014.00168 10.1111/anu.13010 10.1016/j.jhazmat.2022.128691 10.1038/nchembio.1142 10.1038/s41419-018-0635-5 10.1089/ars.2012.5007 10.1016/j.chembiol.2018.01.011 10.1038/nmeth.1212 10.1002/aja.1002030302 10.1016/j.aquatox.2018.02.010 10.1016/j.taap.2015.11.002 10.1089/ars.2019.7976 10.1111/febs.12224 10.1016/j.envpol.2016.10.057 10.1016/j.redox.2021.102221 10.1017/S0007114510001583 10.1515/hsz-2020-0269 10.1074/jbc.R113.464131 10.1016/j.freeradbiomed.2020.12.032 10.1093/toxsci/kfq364 10.1016/j.pharmthera.2021.107916 10.1016/j.devcel.2021.07.020 10.1016/j.phymed.2022.154161 10.1016/j.redox.2019.101235 10.1016/j.taap.2008.01.043 10.1016/j.jphs.2018.08.007 10.1073/pnas.1110085108 10.1096/fj.201800750R 10.3390/antiox12081546 10.1073/pnas.80.3.707 10.1016/j.redox.2015.06.003 10.1089/ars.2012.4599 10.1016/j.scitotenv.2021.145443 10.1016/j.bbagen.2023.130321 10.1007/s12035-014-8705-x 10.1016/j.semcdb.2017.09.019 10.3390/antiox11091708 10.1016/0304-4165(88)90038-4 10.1038/s41580-020-0230-3 10.1002/pbc.25994 10.1038/s41467-023-38739-4 10.1016/j.aquaculture.2022.737950 10.1073/pnas.1313753110 10.1016/j.freeradbiomed.2013.06.011 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2024.130603 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 38521470 10_1016_j_bbagen_2024_130603 S0304416524000461 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-94cd7dae78591dd1c33e3e4c8f78f667c56e64ad31c497e4597bc119541e45983 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Wed Jul 02 03:07:09 EDT 2025 Fri Jul 11 01:57:10 EDT 2025 Mon Jul 21 06:02:02 EDT 2025 Tue Jul 01 00:22:19 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Sat Apr 27 15:44:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Embryonic development GSSG NAC Zebrafish model EhGSH Glutathione metabolism GSH roGFP probe PFOS BSO hpf |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-94cd7dae78591dd1c33e3e4c8f78f667c56e64ad31c497e4597bc119541e45983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304416524000461 |
PMID | 38521470 |
PQID | 2974005761 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3206194941 proquest_miscellaneous_2974005761 pubmed_primary_38521470 crossref_citationtrail_10_1016_j_bbagen_2024_130603 crossref_primary_10_1016_j_bbagen_2024_130603 elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Anderson, Meister (bb0165) 1983; 80 Sharpley, Chi, ten Hoeve, Banerjee (bb0335) 2021; 56 Rampon, Volovitch, Joliot, Vriz (bb0130) 2018; 7 Lillig, Berndt (bb0050) 2013; 18 Facchinello, Astone, Audano, Oberkersch, Spizzotin, Calura, Marques, Crisan, Mitro, Santoro (bb0295) 2022; 4 Gauron, Meda, Dupont, Albadri, Quenech'Du, Ipendey, Volovitch, Del Bene, Joliot, Rampon, Vriz (bb0125) 2016; 414 Bräutigam, Berndt (bb0065) 2022 Go, Jones (bb0055) 2013; 288 Espe, Skjærven, Chen, Vikeså, Adam, Saito, Holen (bb0170) 2020; 26 Ezerina, Takano, Hanaoka, Urano, Dick (bb0275) 2018; 25 Sies, Berndt, Jones (bb0005) 2017; vol. 86 Fujikawa, Roma, Sobotta, Rose, Diaz, Locatelli, Breckwoldt, Misgeld, Kerschensteiner, Herzig, Müller-Decker, Dick (bb0155) 2016; 9 Wilms, Lepka, Häberlein, Edwards, Felsberg, Pudelko, Lindenberg, Poschmann, Qin, Volbracht, Prozorovski, Meuth, Kahlert, Remke, Aktas, Reifenberger, Bräutigam, Odermatt, Berndt (bb0095) 2022; 49 Sies (bb0010) 2021; 165 Villablanca, Volchenboum, Cho, Kang, Cohn, Anderson, Marachelian, Groshen, Tsao-Wei, Matthay, Maris, Hasenauer, Czarnecki, Lai, Goodarzian, Shimada, Reynolds (bb0195) 2016; 63 Lai, Zhou, Huang, Dong, Mo, Xie, Lin, Zhou, Deng, Liu, Chen, Huang, Wu, Sun, Gao, Lv (bb0285) 2018; 138 Davies, Katayama, Monsivais, Adams, Dilts, Eberting, Hansen (bb0265) 2023; 1867 Tagde, Singh, Kang, Reynolds (bb0200) 2014; 4 Schrenk, Bignami, Bodin, Chipman, del Mazo, Grasl-Kraupp, Hogstrand, Hoogenboom, Leblanc, Nebbia, Nielsen, Ntzani, Petersen, Sand, Vleminckx, Wallace, Barregård, Ceccatelli, Cravedi, Halldorsson, Haug, Johansson, Knutsen, Rose, Roudot, Van Loveren, Vollmer, Mackay, Riolo, Schwerdtle, Chain (bb0310) 2020; 18 Corcoran, Cotter (bb0255) 2013; 280 Berndt, Wilms, Thauvin, Vriz (bb0260) 2020 (bb0315) 2022 Xu, Shimpi, Armstrong, Salter, Slitt (bb0325) 2016; 290 Morris, Anderson, Dean, Berk, Galecki, Martin-Subero, Maes (bb0180) 2014; 50 Yu, Franks, Wisden (bb0250) 2021; vol. 1344 Hansen, Jones, Harris (bb0025) 2020; 32 Luo, Chen, Wang, Zhao, Piao (bb0210) 2022; 102 Hu, Wang, Kong, Xiong, Poon, Xu, Duan, Chan, Dong, Tsim (bb0290) 2019; 33 Gutscher, Pauleau, Marty, Brach, Wabnitz, Samstag, Meyer, Dick (bb0140) 2008; 5 Jones (bb0060) 2002; vol. 348 Engur, Ercan, Kiser, Tufekci, Soy, Micili, Ozhan, Guven, Kumral (bb0240) 2023; 27 Bräutigam, Schütte, Godoy, Prozorovski, Gellert, Hauptmann, Holmgren, Lillig, Berndt (bb0090) 2011; 108 Flohé (bb0225) 1830; 2013 Morgan, Ezerina, Amoako, Riemer, Seedorf, Dick (bb0230) 2013; 9 Molinari, Krapp, Weiner, Beyer, Kondadi, Blomeier, López, Bustos-Sanmamed, Tevere, Weber, Reichert, Calcaterra, Beller, Carrillo, Zurbriggen (bb0300) 2023; 14 Schafer, Buettner (bb0220) 2001; 30 Sies, Jones (bb0030) 2020; 21 Araújo, da Luz, Rocha, Ahmed, Silva, Rahman, Malafaia (bb0245) 2022; 432 Berndt, Lillig (bb0015) 1850; 2015 Rastogi, Clark, Conlin, Brown, Timme-Laragy (bb0305) 2019; 26 Yin, Saito, Fjelldal, Björnsson, Remo, Hansen, Sharma, Olsen, Hamre (bb0110) 2023; 12 Berndt, Lillig, Flohé (bb0035) 2014; 5 Timme-Laragy, Hahn, Hansen, Rastogi, Roy (bb0080) 2018; 80 Schwalfenberg (bb0190) 2021; 2021 Hamre, Torstensen, Maage, Waagbo, Berge, Albrektsen (bb0120) 2010; 104 Huang, Wang, Liu, Zhang, Liu, Sun, Wu, Tu (bb0145) 2021; 774 Espe, Vikeså, Thomsen, Adam, Saito, Skjærven (bb0175) 2020; 26 Bräutigam, Jensen, Poschmann, Nyström, Bannenberg, Dreij, Lepka, Prozorovski, Montano, Aktas, Uhlén, Stühler, Cao, Holmgren, Berndt (bb0085) 2013; 110 Indraccolo, Indraccolo, Mignini (bb0205) 2017; 53 Zhang, Forman (bb0235) 2012; 23 Mele, Paino, Papaccio, Regad, Boocock, Stiuso, Lombardi, Liccardo, Aquino, Barbieri, Arra, Coveney, La Noce, Papaccio, Caraglia, Tirino, Desiderio (bb0215) 2018; 9 Pedre, Barayeu, Ezerina, Dick (bb0270) 2021; 228 Hanschmann, Godoy, Berndt, Hudemann, Lillig (bb0045) 2013; 19 Sant, Sinno, Jacobs, Timme-Laragy (bb0330) 2018; 198 Zhang, Lau, Monks (bb0185) 2011; 120 Olafsdottir, Reed (bb0280) 1988; 964 Hamre, Micallef, Hillestad, Johansen, Remo, Zhang, Odegård, Araujo, Philip, Waagbo (bb0105) 2022; 551 Kimmel, Ballard, Kimmel, Ullmann, Schilling (bb0150) 1995; 203 Timme-Laragy, Goldstone, Imhoff, Stegeman, Hahn, Hansen (bb0075) 2013; 65 Penglase, Edvardsen, Furmanek, Ronnestad, Karlsen, van der Meeren, Hamre (bb0100) 2015; 5 Sant, Jacobs, Borofski, Moss, Timme-Laragy (bb0160) 2017; 220 Bräutigam, Pudelko, Jemth, Gad, Narwal, Gustafsson, Karsten, Puigvert, Homan, Berndt, Berglund, Stenmark, Helleday (bb0135) 2016; 76 Yin, Björnsson, Fjelldal, Saito, Remo, Edvardsen, Hansen, Sharma, Olsen, Hamre (bb0115) 2022; 11 Hansen, Harris (bb0020) 1850; 2015 Jones, Sies (bb0040) 2015; 23 Breus, Dickmeis (bb0070) 2021; 402 Shi, Du, Lam, Wu, Zhou (bb0320) 2008; 230 Luo (10.1016/j.bbagen.2024.130603_bb0210) 2022; 102 Rampon (10.1016/j.bbagen.2024.130603_bb0130) 2018; 7 Sies (10.1016/j.bbagen.2024.130603_bb0010) 2021; 165 Hansen (10.1016/j.bbagen.2024.130603_bb0020) 1850; 2015 Sant (10.1016/j.bbagen.2024.130603_bb0160) 2017; 220 Schwalfenberg (10.1016/j.bbagen.2024.130603_bb0190) 2021; 2021 Bräutigam (10.1016/j.bbagen.2024.130603_bb0135) 2016; 76 Schrenk (10.1016/j.bbagen.2024.130603_bb0310) 2020; 18 Timme-Laragy (10.1016/j.bbagen.2024.130603_bb0080) 2018; 80 Jones (10.1016/j.bbagen.2024.130603_bb0040) 2015; 23 Olafsdottir (10.1016/j.bbagen.2024.130603_bb0280) 1988; 964 Anderson (10.1016/j.bbagen.2024.130603_bb0165) 1983; 80 Espe (10.1016/j.bbagen.2024.130603_bb0175) 2020; 26 Morris (10.1016/j.bbagen.2024.130603_bb0180) 2014; 50 Penglase (10.1016/j.bbagen.2024.130603_bb0100) 2015; 5 Berndt (10.1016/j.bbagen.2024.130603_bb0260) 2020 Zhang (10.1016/j.bbagen.2024.130603_bb0235) 2012; 23 (10.1016/j.bbagen.2024.130603_bb0315) 2022 Yin (10.1016/j.bbagen.2024.130603_bb0110) 2023; 12 Bräutigam (10.1016/j.bbagen.2024.130603_bb0085) 2013; 110 Lillig (10.1016/j.bbagen.2024.130603_bb0050) 2013; 18 Gutscher (10.1016/j.bbagen.2024.130603_bb0140) 2008; 5 Shi (10.1016/j.bbagen.2024.130603_bb0320) 2008; 230 Sant (10.1016/j.bbagen.2024.130603_bb0330) 2018; 198 Bräutigam (10.1016/j.bbagen.2024.130603_bb0090) 2011; 108 Jones (10.1016/j.bbagen.2024.130603_bb0060) 2002; vol. 348 Sies (10.1016/j.bbagen.2024.130603_bb0030) 2020; 21 Flohé (10.1016/j.bbagen.2024.130603_bb0225) 1830; 2013 Facchinello (10.1016/j.bbagen.2024.130603_bb0295) 2022; 4 Ezerina (10.1016/j.bbagen.2024.130603_bb0275) 2018; 25 Huang (10.1016/j.bbagen.2024.130603_bb0145) 2021; 774 Berndt (10.1016/j.bbagen.2024.130603_bb0015) 1850; 2015 Espe (10.1016/j.bbagen.2024.130603_bb0170) 2020; 26 Bräutigam (10.1016/j.bbagen.2024.130603_bb0065) 2022 Corcoran (10.1016/j.bbagen.2024.130603_bb0255) 2013; 280 Timme-Laragy (10.1016/j.bbagen.2024.130603_bb0075) 2013; 65 Kimmel (10.1016/j.bbagen.2024.130603_bb0150) 1995; 203 Molinari (10.1016/j.bbagen.2024.130603_bb0300) 2023; 14 Hu (10.1016/j.bbagen.2024.130603_bb0290) 2019; 33 Wilms (10.1016/j.bbagen.2024.130603_bb0095) 2022; 49 Fujikawa (10.1016/j.bbagen.2024.130603_bb0155) 2016; 9 Rastogi (10.1016/j.bbagen.2024.130603_bb0305) 2019; 26 Mele (10.1016/j.bbagen.2024.130603_bb0215) 2018; 9 Hamre (10.1016/j.bbagen.2024.130603_bb0120) 2010; 104 Morgan (10.1016/j.bbagen.2024.130603_bb0230) 2013; 9 Villablanca (10.1016/j.bbagen.2024.130603_bb0195) 2016; 63 Tagde (10.1016/j.bbagen.2024.130603_bb0200) 2014; 4 Araújo (10.1016/j.bbagen.2024.130603_bb0245) 2022; 432 Davies (10.1016/j.bbagen.2024.130603_bb0265) 2023; 1867 Berndt (10.1016/j.bbagen.2024.130603_bb0035) 2014; 5 Hamre (10.1016/j.bbagen.2024.130603_bb0105) 2022; 551 Gauron (10.1016/j.bbagen.2024.130603_bb0125) 2016; 414 Lai (10.1016/j.bbagen.2024.130603_bb0285) 2018; 138 Zhang (10.1016/j.bbagen.2024.130603_bb0185) 2011; 120 Hanschmann (10.1016/j.bbagen.2024.130603_bb0045) 2013; 19 Go (10.1016/j.bbagen.2024.130603_bb0055) 2013; 288 Breus (10.1016/j.bbagen.2024.130603_bb0070) 2021; 402 Schafer (10.1016/j.bbagen.2024.130603_bb0220) 2001; 30 Pedre (10.1016/j.bbagen.2024.130603_bb0270) 2021; 228 Yu (10.1016/j.bbagen.2024.130603_bb0250) 2021; vol. 1344 Sharpley (10.1016/j.bbagen.2024.130603_bb0335) 2021; 56 Hansen (10.1016/j.bbagen.2024.130603_bb0025) 2020; 32 Indraccolo (10.1016/j.bbagen.2024.130603_bb0205) 2017; 53 Sies (10.1016/j.bbagen.2024.130603_bb0005) 2017; vol. 86 Xu (10.1016/j.bbagen.2024.130603_bb0325) 2016; 290 Engur (10.1016/j.bbagen.2024.130603_bb0240) 2023; 27 Yin (10.1016/j.bbagen.2024.130603_bb0115) 2022; 11 |
References_xml | – volume: 104 start-page: 980 year: 2010 end-page: 988 ident: bb0120 article-title: Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (<i>Salmo salar</i>): a multivariate approach publication-title: Br. J. Nutr. – volume: 5 start-page: 308 year: 2015 end-page: 318 ident: bb0100 article-title: Diet affects the redox system in developing Atlantic cod (<i>Gadus morhua</i>) larvae publication-title: Redox Biol. – volume: 33 start-page: 532 year: 2019 end-page: 544 ident: bb0290 article-title: Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling publication-title: FASEB J. – volume: 5 year: 2014 ident: bb0035 article-title: Redox regulation by glutathione needs enzymes publication-title: Front. Pharmacol. – volume: 551 year: 2022 ident: bb0105 article-title: Changes in daylength and temperature from April until august for Atlantic salmon <i>(Salmo salar)</i> reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin publication-title: Aquaculture – volume: 120 start-page: 87 year: 2011 end-page: 97 ident: bb0185 article-title: The Cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis publication-title: Toxicol. Sci. – volume: 63 start-page: 1349 year: 2016 end-page: 1356 ident: bb0195 article-title: A phase I new approaches to neuroblastoma therapy study of Buthionine Sulfoximine and Melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma publication-title: Pediatr. Blood Cancer – volume: 2015 start-page: 1527 year: 1850 end-page: 1542 ident: bb0020 article-title: Glutathione during embryonic development publication-title: BBA-Gen. Subjects – volume: 21 start-page: 363 year: 2020 end-page: 383 ident: bb0030 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 start-page: 119 year: 2013 end-page: 125 ident: bb0230 article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis publication-title: Nat. Chem. Biol. – volume: 53 start-page: 125 year: 2017 end-page: 134 ident: bb0205 article-title: Micronized palmitoylethanolamide/<i>trans</i>−polydatin treatment of endometriosis-related pain: a meta-analysis publication-title: Ann. Ist. Super. Sanita – volume: 203 start-page: 253 year: 1995 end-page: 310 ident: bb0150 article-title: STAGES OF EMBRYONIC-DEVELOPMENT OF THE ZEBRAFISH publication-title: Dev. Dyn. – volume: vol. 348 start-page: 93 year: 2002 end-page: 112 ident: bb0060 article-title: Redox potential of GSH/GSSG couple: Assay and biological significance publication-title: Protein Sensors and Reactive Oxygen Species, Pt B, Thiol Enzymes and Proteins – volume: 2015 start-page: 1467 year: 1850 end-page: 1468 ident: bb0015 article-title: Redox regulation of differentiation and de-differentiation publication-title: BBA-Gen. Subjects – volume: 7 year: 2018 ident: bb0130 article-title: Hydrogen peroxide and redox regulation of developments publication-title: Antioxidants – volume: 19 start-page: 1539 year: 2013 end-page: 1605 ident: bb0045 article-title: Thioredoxins, Glutaredoxins, and Peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling publication-title: Antioxid. Redox Signal. – volume: 56 start-page: 2329-+ year: 2021 ident: bb0335 article-title: Metabolic plasticity drives development during mammalian embryogenesis publication-title: Dev. Cell – volume: 11 year: 2022 ident: bb0115 article-title: Impact of antioxidant feed and growth manipulation on the redox regulation of Atlantic Salmon Smolts publication-title: Antioxidants – volume: 432 year: 2022 ident: bb0245 article-title: Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: perspective study of genotoxicity, mutagenicity, and redox unbalance publication-title: J. Hazard. Mater. – volume: 110 start-page: 20057 year: 2013 end-page: 20062 ident: bb0085 article-title: Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 447-+ year: 2018 ident: bb0275 article-title: N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H<sub>2</sub>S and Sulfane Sulfur Production publication-title: Cell Chem. Biol. – volume: 65 start-page: 89 year: 2013 end-page: 101 ident: bb0075 article-title: Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo publication-title: Free Radic. Biol. Med. – volume: 32 start-page: 715 year: 2020 end-page: 740 ident: bb0025 article-title: The redox theory of development publication-title: Antioxid. Redox Signal. – volume: 76 start-page: 2366 year: 2016 end-page: 2375 ident: bb0135 article-title: Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition publication-title: Cancer Res. – volume: 108 start-page: 20532 year: 2011 end-page: 20537 ident: bb0090 article-title: Vertebrate-specific glutaredoxin is essential for brain development publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 1019 year: 2020 end-page: 1025 ident: bb0170 article-title: The level of 1C diets fed prior to cell isolation affects lipid metabolism in primary liver cells isolated from Atlantic salmon (<i>Salmo salar</i>) publication-title: Aquac. Nutr. – volume: 27 start-page: 5083 year: 2023 end-page: 5096 ident: bb0240 article-title: Genc, hydrogen peroxide signaling modulates neuronal differentiation <i>via</i> microglial polarization and Wnt/β- catenin pathway publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 5 start-page: 553 year: 2008 end-page: 559 ident: bb0140 article-title: Real-time imaging of the intracellular glutathione redox potential publication-title: Nat. Methods – volume: 228 year: 2021 ident: bb0270 article-title: The mechanism of action of N-acetylcysteine (NAC): the emerging role of H<sub>2</sub>S and sulfane sulfur species publication-title: Pharmacol. Ther. – volume: 2021 year: 2021 ident: bb0190 article-title: N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks) publication-title: J. Nutrit. and Metab. – volume: 26 year: 2019 ident: bb0305 article-title: Mapping glutathione utilization in the developing zebrafish (<i>Danio rerio</i>) embryo publication-title: Redox Biol. – volume: 288 start-page: 26512 year: 2013 end-page: 26520 ident: bb0055 article-title: The redox proteome publication-title: J. Biol. Chem. – volume: 18 year: 2020 ident: bb0310 article-title: Risk to human health related to the presence of perfluoroalkyl substances in food publication-title: EFSA J. – volume: 9 year: 2018 ident: bb0215 article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo publication-title: Cell Death Dis. – volume: 2013 start-page: 3139 year: 1830 end-page: 3142 ident: bb0225 article-title: The fairytale of the GSSG/GSH redox potential publication-title: BBA-Gen. Subjects – volume: 280 start-page: 1944 year: 2013 end-page: 1965 ident: bb0255 article-title: Redox regulation of protein kinases publication-title: FEBS J. – volume: 4 start-page: 123-+ year: 2022 ident: bb0295 article-title: Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition, nature publication-title: Metabolism – volume: 198 start-page: 92 year: 2018 end-page: 102 ident: bb0330 article-title: Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, <i>Danio rerio</i> publication-title: Aquat. Toxicol. – volume: 80 start-page: 17 year: 2018 end-page: 28 ident: bb0080 article-title: Redox stress and signaling during vertebrate embryonic development: regulation and responses publication-title: Semin. Cell Dev. Biol. – volume: 414 start-page: 133 year: 2016 end-page: 141 ident: bb0125 article-title: Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) controls axon pathfinding during zebrafish development publication-title: Dev. Biol. – volume: 290 start-page: 21 year: 2016 end-page: 30 ident: bb0325 article-title: PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway publication-title: Toxicol. Appl. Pharmacol. – volume: 30 start-page: 1191 year: 2001 end-page: 1212 ident: bb0220 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. – volume: 14 year: 2023 ident: bb0300 article-title: NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems publication-title: Nat. Commun. – volume: vol. 86 start-page: 715 year: 2017 end-page: 748 ident: bb0005 article-title: Oxidative Stress publication-title: Annual Review of Biochemistry, Vol 86 – volume: 49 year: 2022 ident: bb0095 article-title: Glutaredoxin 2 promotes SP-1-dependent<i> CSPG4</i> transcription and migration of wound healing NG2 glia and glioma cells: enzymatic Taoism publication-title: Redox Biol. – volume: 230 start-page: 23 year: 2008 end-page: 32 ident: bb0320 article-title: Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS publication-title: Toxicol. Appl. Pharmacol. – volume: 80 start-page: 707 year: 1983 end-page: 711 ident: bb0165 article-title: Transport and direct utilization of gamma-GLUTAMYLCYST(e)INE for glutathione synthesis publication-title: Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences – volume: 1867 year: 2023 ident: bb0265 article-title: Real-time analysis of dynamic compartmentalized GSH redox shifts and H2O2 availability in undifferentiated and differentiated cells publication-title: BBA-Gen. Subjects – year: 2022 ident: bb0315 publication-title: EC, COMMISSION REGULATION (EU) 2022/2388 of 7 December 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs official Journal of the Europian Union, L316/38 – volume: 165 year: 2021 ident: bb0010 article-title: Oxidative eustress and oxidative distress publication-title: Free Radic. Biol. Med. – volume: 12 year: 2023 ident: bb0110 article-title: Seasonal changes in photoperiod: effects on growth and redox signaling patterns in Atlantic Salmon Postsmolts publication-title: Antioxidants – volume: 402 start-page: 363 year: 2021 end-page: 378 ident: bb0070 article-title: Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration publication-title: Biol. Chem. – volume: 102 year: 2022 ident: bb0210 article-title: Pharmacological effects of polydatin in the treatment of metabolic diseases: a review publication-title: Phytomedicine – volume: vol. 1344 start-page: 71 year: 2021 end-page: 86 ident: bb0250 article-title: Brain Clocks, Sleep, and Mood publication-title: Circadian Clock in Brain Health and Disease – volume: 23 start-page: 734 year: 2015 end-page: 746 ident: bb0040 article-title: The redox code publication-title: Antioxid. Redox Signal. – volume: 50 start-page: 1059 year: 2014 end-page: 1084 ident: bb0180 article-title: The glutathione system: a new drug target in Neuroimmune disorders publication-title: Mol. Neurobiol. – year: 2020 ident: bb0260 article-title: Redox-Regulated Brain Development publication-title: Oxidative Stress: Eustress and Distress – volume: 4 year: 2014 ident: bb0200 article-title: The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma publication-title: Blood Cancer J. – volume: 220 start-page: 807 year: 2017 end-page: 817 ident: bb0160 article-title: Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, <i>Danio</i> <i>rerio</i> publication-title: Environ. Pollut. – volume: 774 year: 2021 ident: bb0145 article-title: Crosstalk between histological alterations, oxidative stress and immune aberrations of the emerging PFOS alternative OBS in developing zebrafish publication-title: Sci. Total Environ. – volume: 964 start-page: 377 year: 1988 end-page: 382 ident: bb0280 article-title: Retention of oxidized glutathione by isolated rat-liver mitochondria during hydroperoxide treatment publication-title: Biochim. Biophys. Acta – start-page: 57 year: 2022 end-page: 68 ident: bb0065 article-title: Redox regulation during zebrafish development publication-title: Redox Regulation of Differentiation and de-Differentiation – volume: 138 start-page: 46 year: 2018 end-page: 53 ident: bb0285 article-title: Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress publication-title: J. Pharmacol. Sci. – volume: 23 start-page: 722 year: 2012 end-page: 728 ident: bb0235 article-title: Glutathione synthesis and its role in redox signaling publication-title: Semin. Cell Dev. Biol. – volume: 26 start-page: 477 year: 2020 end-page: 489 ident: bb0175 article-title: Atlantic salmon fed a nutrient package of surplus methionine, vitamin B12, folic acid and vitamin B6 improved growth and reduced the relative liver size, but when in excess growth reduced publication-title: Aquac. Nutr. – volume: 18 start-page: 1654 year: 2013 end-page: 1665 ident: bb0050 article-title: Glutaredoxins in thiol/disulfide exchange publication-title: Antioxid. Redox Signal. – volume: 9 year: 2016 ident: bb0155 article-title: Mouse redox histology using genetically encoded probes publication-title: Sci. Signal. – volume: 7 year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0130 article-title: Hydrogen peroxide and redox regulation of developments publication-title: Antioxidants doi: 10.3390/antiox7110159 – volume: 30 start-page: 1191 year: 2001 ident: 10.1016/j.bbagen.2024.130603_bb0220 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00480-4 – volume: vol. 86 start-page: 715 year: 2017 ident: 10.1016/j.bbagen.2024.130603_bb0005 article-title: Oxidative Stress – volume: vol. 1344 start-page: 71 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0250 article-title: Brain Clocks, Sleep, and Mood – year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0315 – volume: 26 start-page: 1019 year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0170 article-title: The level of 1C diets fed prior to cell isolation affects lipid metabolism in primary liver cells isolated from Atlantic salmon (Salmo salar) publication-title: Aquac. Nutr. doi: 10.1111/anu.13058 – volume: 53 start-page: 125 year: 2017 ident: 10.1016/j.bbagen.2024.130603_bb0205 article-title: Micronized palmitoylethanolamide/trans−polydatin treatment of endometriosis-related pain: a meta-analysis publication-title: Ann. Ist. Super. Sanita – volume: 2013 start-page: 3139 year: 1830 ident: 10.1016/j.bbagen.2024.130603_bb0225 article-title: The fairytale of the GSSG/GSH redox potential publication-title: BBA-Gen. Subjects – volume: 9 year: 2016 ident: 10.1016/j.bbagen.2024.130603_bb0155 article-title: Mouse redox histology using genetically encoded probes publication-title: Sci. Signal. doi: 10.1126/scisignal.aad3895 – volume: 23 start-page: 722 year: 2012 ident: 10.1016/j.bbagen.2024.130603_bb0235 article-title: Glutathione synthesis and its role in redox signaling publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2012.03.017 – volume: 414 start-page: 133 year: 2016 ident: 10.1016/j.bbagen.2024.130603_bb0125 article-title: Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2016.05.004 – volume: 4 year: 2014 ident: 10.1016/j.bbagen.2024.130603_bb0200 article-title: The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma publication-title: Blood Cancer J. doi: 10.1038/bcj.2014.45 – volume: 23 start-page: 734 year: 2015 ident: 10.1016/j.bbagen.2024.130603_bb0040 article-title: The redox code publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6247 – volume: 76 start-page: 2366 year: 2016 ident: 10.1016/j.bbagen.2024.130603_bb0135 article-title: Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2380 – volume: 18 year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0310 article-title: Risk to human health related to the presence of perfluoroalkyl substances in food publication-title: EFSA J. – volume: 5 year: 2014 ident: 10.1016/j.bbagen.2024.130603_bb0035 article-title: Redox regulation by glutathione needs enzymes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2014.00168 – volume: 27 start-page: 5083 year: 2023 ident: 10.1016/j.bbagen.2024.130603_bb0240 article-title: Genc, hydrogen peroxide signaling modulates neuronal differentiation via microglial polarization and Wnt/β- catenin pathway publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 26 start-page: 477 year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0175 article-title: Atlantic salmon fed a nutrient package of surplus methionine, vitamin B12, folic acid and vitamin B6 improved growth and reduced the relative liver size, but when in excess growth reduced publication-title: Aquac. Nutr. doi: 10.1111/anu.13010 – volume: 432 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0245 article-title: Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: perspective study of genotoxicity, mutagenicity, and redox unbalance publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128691 – volume: 9 start-page: 119 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0230 article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1142 – volume: 9 year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0215 article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo publication-title: Cell Death Dis. doi: 10.1038/s41419-018-0635-5 – volume: 18 start-page: 1654 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0050 article-title: Glutaredoxins in thiol/disulfide exchange publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5007 – volume: 25 start-page: 447-+ year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0275 article-title: N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.01.011 – volume: 2015 start-page: 1527 year: 1850 ident: 10.1016/j.bbagen.2024.130603_bb0020 article-title: Glutathione during embryonic development publication-title: BBA-Gen. Subjects – volume: 5 start-page: 553 year: 2008 ident: 10.1016/j.bbagen.2024.130603_bb0140 article-title: Real-time imaging of the intracellular glutathione redox potential publication-title: Nat. Methods doi: 10.1038/nmeth.1212 – volume: 203 start-page: 253 year: 1995 ident: 10.1016/j.bbagen.2024.130603_bb0150 article-title: STAGES OF EMBRYONIC-DEVELOPMENT OF THE ZEBRAFISH publication-title: Dev. Dyn. doi: 10.1002/aja.1002030302 – volume: 4 start-page: 123-+ year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0295 article-title: Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition, nature publication-title: Metabolism – volume: 198 start-page: 92 year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0330 article-title: Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, Danio rerio publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.02.010 – volume: 290 start-page: 21 year: 2016 ident: 10.1016/j.bbagen.2024.130603_bb0325 article-title: PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2015.11.002 – volume: 32 start-page: 715 year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0025 article-title: The redox theory of development publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2019.7976 – volume: 280 start-page: 1944 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0255 article-title: Redox regulation of protein kinases publication-title: FEBS J. doi: 10.1111/febs.12224 – volume: 220 start-page: 807 year: 2017 ident: 10.1016/j.bbagen.2024.130603_bb0160 article-title: Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.057 – volume: 49 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0095 article-title: Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: enzymatic Taoism publication-title: Redox Biol. doi: 10.1016/j.redox.2021.102221 – volume: 104 start-page: 980 year: 2010 ident: 10.1016/j.bbagen.2024.130603_bb0120 article-title: Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (Salmo salar): a multivariate approach publication-title: Br. J. Nutr. doi: 10.1017/S0007114510001583 – volume: 402 start-page: 363 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0070 article-title: Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration publication-title: Biol. Chem. doi: 10.1515/hsz-2020-0269 – volume: 288 start-page: 26512 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0055 article-title: The redox proteome publication-title: J. Biol. Chem. doi: 10.1074/jbc.R113.464131 – volume: 165 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0010 article-title: Oxidative eustress and oxidative distress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2020.12.032 – volume: 120 start-page: 87 year: 2011 ident: 10.1016/j.bbagen.2024.130603_bb0185 article-title: The Cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfq364 – volume: 228 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0270 article-title: The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2021.107916 – volume: 2015 start-page: 1467 year: 1850 ident: 10.1016/j.bbagen.2024.130603_bb0015 article-title: Redox regulation of differentiation and de-differentiation publication-title: BBA-Gen. Subjects – volume: 56 start-page: 2329-+ year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0335 article-title: Metabolic plasticity drives development during mammalian embryogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.07.020 – volume: 102 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0210 article-title: Pharmacological effects of polydatin in the treatment of metabolic diseases: a review publication-title: Phytomedicine doi: 10.1016/j.phymed.2022.154161 – start-page: 57 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0065 article-title: Redox regulation during zebrafish development – volume: 26 year: 2019 ident: 10.1016/j.bbagen.2024.130603_bb0305 article-title: Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo publication-title: Redox Biol. doi: 10.1016/j.redox.2019.101235 – volume: 230 start-page: 23 year: 2008 ident: 10.1016/j.bbagen.2024.130603_bb0320 article-title: Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2008.01.043 – volume: 138 start-page: 46 year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0285 article-title: Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress publication-title: J. Pharmacol. Sci. doi: 10.1016/j.jphs.2018.08.007 – volume: 108 start-page: 20532 year: 2011 ident: 10.1016/j.bbagen.2024.130603_bb0090 article-title: Vertebrate-specific glutaredoxin is essential for brain development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110085108 – volume: 2021 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0190 article-title: N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks) publication-title: J. Nutrit. and Metab. – volume: 33 start-page: 532 year: 2019 ident: 10.1016/j.bbagen.2024.130603_bb0290 article-title: Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling publication-title: FASEB J. doi: 10.1096/fj.201800750R – volume: 12 year: 2023 ident: 10.1016/j.bbagen.2024.130603_bb0110 article-title: Seasonal changes in photoperiod: effects on growth and redox signaling patterns in Atlantic Salmon Postsmolts publication-title: Antioxidants doi: 10.3390/antiox12081546 – volume: 80 start-page: 707 year: 1983 ident: 10.1016/j.bbagen.2024.130603_bb0165 article-title: Transport and direct utilization of gamma-GLUTAMYLCYST(e)INE for glutathione synthesis publication-title: Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences doi: 10.1073/pnas.80.3.707 – volume: 5 start-page: 308 year: 2015 ident: 10.1016/j.bbagen.2024.130603_bb0100 article-title: Diet affects the redox system in developing Atlantic cod (Gadus morhua) larvae publication-title: Redox Biol. doi: 10.1016/j.redox.2015.06.003 – year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0260 article-title: Redox-Regulated Brain Development – volume: 19 start-page: 1539 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0045 article-title: Thioredoxins, Glutaredoxins, and Peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.4599 – volume: 774 year: 2021 ident: 10.1016/j.bbagen.2024.130603_bb0145 article-title: Crosstalk between histological alterations, oxidative stress and immune aberrations of the emerging PFOS alternative OBS in developing zebrafish publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145443 – volume: 1867 year: 2023 ident: 10.1016/j.bbagen.2024.130603_bb0265 article-title: Real-time analysis of dynamic compartmentalized GSH redox shifts and H2O2 availability in undifferentiated and differentiated cells publication-title: BBA-Gen. Subjects doi: 10.1016/j.bbagen.2023.130321 – volume: vol. 348 start-page: 93 year: 2002 ident: 10.1016/j.bbagen.2024.130603_bb0060 article-title: Redox potential of GSH/GSSG couple: Assay and biological significance – volume: 50 start-page: 1059 year: 2014 ident: 10.1016/j.bbagen.2024.130603_bb0180 article-title: The glutathione system: a new drug target in Neuroimmune disorders publication-title: Mol. Neurobiol. doi: 10.1007/s12035-014-8705-x – volume: 80 start-page: 17 year: 2018 ident: 10.1016/j.bbagen.2024.130603_bb0080 article-title: Redox stress and signaling during vertebrate embryonic development: regulation and responses publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.09.019 – volume: 11 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0115 article-title: Impact of antioxidant feed and growth manipulation on the redox regulation of Atlantic Salmon Smolts publication-title: Antioxidants doi: 10.3390/antiox11091708 – volume: 964 start-page: 377 year: 1988 ident: 10.1016/j.bbagen.2024.130603_bb0280 article-title: Retention of oxidized glutathione by isolated rat-liver mitochondria during hydroperoxide treatment publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4165(88)90038-4 – volume: 21 start-page: 363 year: 2020 ident: 10.1016/j.bbagen.2024.130603_bb0030 article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-0230-3 – volume: 63 start-page: 1349 year: 2016 ident: 10.1016/j.bbagen.2024.130603_bb0195 article-title: A phase I new approaches to neuroblastoma therapy study of Buthionine Sulfoximine and Melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma publication-title: Pediatr. Blood Cancer doi: 10.1002/pbc.25994 – volume: 14 year: 2023 ident: 10.1016/j.bbagen.2024.130603_bb0300 article-title: NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems publication-title: Nat. Commun. doi: 10.1038/s41467-023-38739-4 – volume: 551 year: 2022 ident: 10.1016/j.bbagen.2024.130603_bb0105 article-title: Changes in daylength and temperature from April until august for Atlantic salmon (Salmo salar) reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin publication-title: Aquaculture doi: 10.1016/j.aquaculture.2022.737950 – volume: 110 start-page: 20057 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0085 article-title: Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313753110 – volume: 65 start-page: 89 year: 2013 ident: 10.1016/j.bbagen.2024.130603_bb0075 article-title: Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.06.011 |
SSID | ssj0000595 |
Score | 2.4445655 |
Snippet | Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130603 |
SubjectTerms | abnormal development Animals brain cytosol Cytosol - metabolism Danio rerio death disulfides Embryo, Nonmammalian - metabolism Embryonic Development gastrulation glutathione Glutathione - metabolism Glutathione Disulfide - metabolism green fluorescent protein homeostasis metabolism mitochondria Mitochondria - metabolism muscles ontogeny organogenesis oxidation Oxidation-Reduction oxidoreductases perfluorooctane sulfonic acid PFOS pollutants pollution roGFP probe Zebrafish - embryology Zebrafish - metabolism Zebrafish model |
Title | Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny |
URI | https://dx.doi.org/10.1016/j.bbagen.2024.130603 https://www.ncbi.nlm.nih.gov/pubmed/38521470 https://www.proquest.com/docview/2974005761 https://www.proquest.com/docview/3206194941 |
Volume | 1868 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCLWXqkBp6QeaSlzT3Y0dOzmiFWgpggtdaW-WvwJBkEVskLoc-O3MxAlVVaGVekxkR47fZDyOZ95j7CB1iHTAbapyLiRCWJ4UpVdJZj1GE87kqaFC4bNzOZmKn7NstsbGfS0MpVV2vj_69NZbd3cG3WwO7qpqcEGHehhOZJQFSbThVMEuFFn5j6c_aR4YPmTxJEEk1Lovn2tzvKzFj5ZYUFNBssiyl876d3l6Lfxsl6Hj9-xdFz_CYRziFlsL9TbbjIqSy232ZtwLuO2wx8hGXjkwtQfS53AN3EfteUQD5iVg9AeXaHuUgjivAxB76G9oi4ygquEWP3d0j7VHK20f4pbNHI0VqgXUuOwFDxjzwiMdPpfV4gqIDAFfdfmBTY-Pfo0nSSe1kDicwyYphPPKm6CIzs77keM88CBcXqq8lFK5TAYpjEf4RKGCwG2IdS1b3Igucr7L1msc5ycGMjfoRQqpgrLCBWelKS1u60KelmgZfI_xfoa163jISQ7jRvcJZ9c64qIJFx1x2WPJS6-7yMOxor3qwdN_2ZPGpWJFz-891hoBo_MTU4f5w0KnuPei4l05er0NT4f0X6gQ2OZjNJSX8fI8I1Wo4ef_HtsX9pauYqraV7be3D-EbxgUNXa_tfp9tnF4cjo5fwa00Qw6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRVcKkpftNBOpV6jZWPHTo5oVbS89lKQuFnxI21Qm0VskFh-fWfihKqqEFKPm7Ujr7_xeLye-T6AL6kjpAMdU7VzIZHSiqSovE4y6ymacGWellwofDZXswt5fJldrsF0qIXhtMre90ef3nnr_sm4n83xdV2Pv_GlHoUTGWdBMm34M1hndqpsBOsHRyez-R-HnHXiK9w-4Q5DBV2X5mUtrVsmQk0lKyOrQT3r3x3qsQi024kOt-BFH0LiQRzlS1gLzTY8j6KSq23YmA4abq_gPhKS1w7LxiNLdLgWb6L8PAGCiwopAMTvZH6chbhoAjKB6B12dUZYN_iLVjx5yMaToXYvcat2QfaK9RIb2vmCRwp78Z7vn6t6-QOZD4F-6uo1XBx-PZ_Okl5tIXE0jW1SSOe1L4NmRjvvJ06IIIJ0eaXzSintMhWULD0hKAsdJJ1ErOsI4yb8IRdvYNTQON8BqrwkR1IoHbSVLjirysrSyS7kaUXGIXZADDNsXE9FzooYP82Qc3ZlIi6GcTERlx1IHnpdRyqOJ9rrATzzl0kZ2i2e6Pl5wNoQYHyFUjZhcbs0KR2_uH5XTR5vI9J9_muokNTmbTSUh_GKPGNhqP33_z22T7AxOz87NadH85MPsMnfxMy1XRi1N7dhj2Kk1n7s18Bv2mwO6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systemic+and+strict+regulation+of+the+glutathione+redox+state+in+mitochondria+and+cytosol+is+needed+for+zebrafish+ontogeny&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Hamre%2C+Kristin&rft.au=Zhang%2C+Wuxiao&rft.au=Austgulen%2C+Maren+Hoff&rft.au=Mykkeltvedt%2C+Eva&rft.date=2024-06-01&rft.issn=0304-4165&rft.volume=1868&rft.issue=6&rft.spage=130603&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130603&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2024_130603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |