Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny

Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe eit...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1868; no. 6; p. 130603
Main Authors Hamre, Kristin, Zhang, Wuxiao, Austgulen, Maren Hoff, Mykkeltvedt, Eva, Yin, Peng, Berntssen, Marc, Espe, Marit, Berndt, Carsten
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death. [Display omitted] •No organ specific mitochondrial and cytosolic GSH:GSSG ratios in zebrafish larvae.•Almost no effects of manipulated GSH metabolism on EhGSH in older zebrafish larvae.•Inhibition of GSH reductase in young larvae leads to malformation and death.•The environmental pollutant Perfluorooctane Sulfonate affects EhGSH in larvae.
AbstractList Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death. [Display omitted] •No organ specific mitochondrial and cytosolic GSH:GSSG ratios in zebrafish larvae.•Almost no effects of manipulated GSH metabolism on EhGSH in older zebrafish larvae.•Inhibition of GSH reductase in young larvae leads to malformation and death.•The environmental pollutant Perfluorooctane Sulfonate affects EhGSH in larvae.
Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.BACKGROUNDRedox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit.We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.METHODSWe used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo.Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.RESULTSFollowing the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EhGSH) revealed increasing mitochondrial and cytosolic EhGSH during cleavage and gastrulation. During organogenesis, cytosolic EhGSH decreased, while that of mitochondria remained high. The similarity between EhGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EhGSH as well.Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.CONCLUSIONSMitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EhGSH might follow H2O2 levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis.Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.GENERAL SIGNIFICANCEOur data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (E ) revealed increasing mitochondrial and cytosolic E during cleavage and gastrulation. During organogenesis, cytosolic E decreased, while that of mitochondria remained high. The similarity between E in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated E as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the E might follow H O levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most abundant cellular redox circuit. We used zebrafish harboring the glutaredoxin 1-redox sensitive green fluorescent protein (Grx1-roGFP) probe either in mitochondria or cytosol to test the hypothesis that the GSH:GSSG ratio is strictly regulated through zebrafish embryogenesis to sustain the different developmental processes of the embryo. Following the GSSG:GSH ratio as a proxy for the GSH-dependent reduction potential (EₕGSH) revealed increasing mitochondrial and cytosolic EₕGSH during cleavage and gastrulation. During organogenesis, cytosolic EₕGSH decreased, while that of mitochondria remained high. The similarity between EₕGSH in brain and muscle suggests a central regulation. Modulation of GSH metabolism had only modest effects on the GSSG:GSH ratios of newly hatched larvae. However, inhibition of GSH reductase directly after fertilization led to dead embryos already 10 h later. Exposure to the emerging environmental pollutant Perfluorooctane Sulfonate (PFOS) disturbed the apparent regulated EₕGSH as well. Mitochondrial and cytosolic GSSG:GSH ratios are almost identical in different organs during zebrafish development indicating that the EₕGSH might follow H₂O₂ levels and rather indirectly affect specific enzymatic activities needed for proper embryogenesis. Our data confirm that vertebrate embryogenesis depends on strictly regulated redox homeostasis. Disturbance of the GSSG:GSH circuit, e.g. induced by environmental pollution, leads to malformation and death.
ArticleNumber 130603
Author Hamre, Kristin
Yin, Peng
Berndt, Carsten
Espe, Marit
Zhang, Wuxiao
Austgulen, Maren Hoff
Berntssen, Marc
Mykkeltvedt, Eva
Author_xml – sequence: 1
  givenname: Kristin
  surname: Hamre
  fullname: Hamre, Kristin
  email: post@kristinhamre.no
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 2
  givenname: Wuxiao
  surname: Zhang
  fullname: Zhang, Wuxiao
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 3
  givenname: Maren Hoff
  surname: Austgulen
  fullname: Austgulen, Maren Hoff
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 4
  givenname: Eva
  surname: Mykkeltvedt
  fullname: Mykkeltvedt, Eva
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 5
  givenname: Peng
  surname: Yin
  fullname: Yin, Peng
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 6
  givenname: Marc
  surname: Berntssen
  fullname: Berntssen, Marc
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 7
  givenname: Marit
  surname: Espe
  fullname: Espe, Marit
  organization: Department of Feed and Nutrition, The Institute of Marine Research, Bergen, Norway
– sequence: 8
  givenname: Carsten
  surname: Berndt
  fullname: Berndt, Carsten
  email: berndt@hhu.de
  organization: Department of Neurology, Medical Faculty, Heinrich-Heine-Universitaet, Duesseldorf, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38521470$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFSEUxYmpsa_Vb2AMSzfzhIGBwYWJafyXNHGhrgkDd97jZQYqMI2vn15ep924sGxu4P7OCTnnAp2FGACh15RsKaHi3WE7DGYHYduSlm8pI4KwZ2hDe9k2PSHiDG0II7zhVHTn6CLnA6mnU90LdM76rqVckg26-3HMBWZvsQkO55K8LTjBbplM8THgOOKyB7yblmLKvr5A3br4p6KmAPYBz75Eu4_BJW_uTeyxxBwn7DMOAA4cHmPCdzAkM_q8xzGUWP99fImej2bK8OphXqJfnz_9vPraXH__8u3q43VjOaelUdw66QzIvlPUOWoZAwbc9qPsRyGk7QQIbhyjlisJvFNysJSqjtPTpWeX6O3qe5Pi7wVy0bPPFqbJBIhL1qwlgiquOH0SbZXkNUMpTuibB3QZZnD6JvnZpKN-jLYC71fApphzglFbX-5DLcn4SVOiTz3qg1571Kce9dpjFfN_xI_-T8g-rDKoed56SDpbD8GC8wls0S76_xv8BXTiuY4
CitedBy_id crossref_primary_10_3389_fcimb_2024_1426340
Cites_doi 10.3390/antiox7110159
10.1016/S0891-5849(01)00480-4
10.1111/anu.13058
10.1126/scisignal.aad3895
10.1016/j.semcdb.2012.03.017
10.1016/j.ydbio.2016.05.004
10.1038/bcj.2014.45
10.1089/ars.2015.6247
10.1158/0008-5472.CAN-15-2380
10.3389/fphar.2014.00168
10.1111/anu.13010
10.1016/j.jhazmat.2022.128691
10.1038/nchembio.1142
10.1038/s41419-018-0635-5
10.1089/ars.2012.5007
10.1016/j.chembiol.2018.01.011
10.1038/nmeth.1212
10.1002/aja.1002030302
10.1016/j.aquatox.2018.02.010
10.1016/j.taap.2015.11.002
10.1089/ars.2019.7976
10.1111/febs.12224
10.1016/j.envpol.2016.10.057
10.1016/j.redox.2021.102221
10.1017/S0007114510001583
10.1515/hsz-2020-0269
10.1074/jbc.R113.464131
10.1016/j.freeradbiomed.2020.12.032
10.1093/toxsci/kfq364
10.1016/j.pharmthera.2021.107916
10.1016/j.devcel.2021.07.020
10.1016/j.phymed.2022.154161
10.1016/j.redox.2019.101235
10.1016/j.taap.2008.01.043
10.1016/j.jphs.2018.08.007
10.1073/pnas.1110085108
10.1096/fj.201800750R
10.3390/antiox12081546
10.1073/pnas.80.3.707
10.1016/j.redox.2015.06.003
10.1089/ars.2012.4599
10.1016/j.scitotenv.2021.145443
10.1016/j.bbagen.2023.130321
10.1007/s12035-014-8705-x
10.1016/j.semcdb.2017.09.019
10.3390/antiox11091708
10.1016/0304-4165(88)90038-4
10.1038/s41580-020-0230-3
10.1002/pbc.25994
10.1038/s41467-023-38739-4
10.1016/j.aquaculture.2022.737950
10.1073/pnas.1313753110
10.1016/j.freeradbiomed.2013.06.011
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2024.130603
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 38521470
10_1016_j_bbagen_2024_130603
S0304416524000461
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-94cd7dae78591dd1c33e3e4c8f78f667c56e64ad31c497e4597bc119541e45983
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Wed Jul 02 03:07:09 EDT 2025
Fri Jul 11 01:57:10 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
Tue Jul 01 00:22:19 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Sat Apr 27 15:44:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Embryonic development
GSSG
NAC
Zebrafish model
EhGSH
Glutathione metabolism
GSH
roGFP probe
PFOS
BSO
hpf
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-94cd7dae78591dd1c33e3e4c8f78f667c56e64ad31c497e4597bc119541e45983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304416524000461
PMID 38521470
PQID 2974005761
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3206194941
proquest_miscellaneous_2974005761
pubmed_primary_38521470
crossref_citationtrail_10_1016_j_bbagen_2024_130603
crossref_primary_10_1016_j_bbagen_2024_130603
elsevier_sciencedirect_doi_10_1016_j_bbagen_2024_130603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Anderson, Meister (bb0165) 1983; 80
Sharpley, Chi, ten Hoeve, Banerjee (bb0335) 2021; 56
Rampon, Volovitch, Joliot, Vriz (bb0130) 2018; 7
Lillig, Berndt (bb0050) 2013; 18
Facchinello, Astone, Audano, Oberkersch, Spizzotin, Calura, Marques, Crisan, Mitro, Santoro (bb0295) 2022; 4
Gauron, Meda, Dupont, Albadri, Quenech'Du, Ipendey, Volovitch, Del Bene, Joliot, Rampon, Vriz (bb0125) 2016; 414
Bräutigam, Berndt (bb0065) 2022
Go, Jones (bb0055) 2013; 288
Espe, Skjærven, Chen, Vikeså, Adam, Saito, Holen (bb0170) 2020; 26
Ezerina, Takano, Hanaoka, Urano, Dick (bb0275) 2018; 25
Sies, Berndt, Jones (bb0005) 2017; vol. 86
Fujikawa, Roma, Sobotta, Rose, Diaz, Locatelli, Breckwoldt, Misgeld, Kerschensteiner, Herzig, Müller-Decker, Dick (bb0155) 2016; 9
Wilms, Lepka, Häberlein, Edwards, Felsberg, Pudelko, Lindenberg, Poschmann, Qin, Volbracht, Prozorovski, Meuth, Kahlert, Remke, Aktas, Reifenberger, Bräutigam, Odermatt, Berndt (bb0095) 2022; 49
Sies (bb0010) 2021; 165
Villablanca, Volchenboum, Cho, Kang, Cohn, Anderson, Marachelian, Groshen, Tsao-Wei, Matthay, Maris, Hasenauer, Czarnecki, Lai, Goodarzian, Shimada, Reynolds (bb0195) 2016; 63
Lai, Zhou, Huang, Dong, Mo, Xie, Lin, Zhou, Deng, Liu, Chen, Huang, Wu, Sun, Gao, Lv (bb0285) 2018; 138
Davies, Katayama, Monsivais, Adams, Dilts, Eberting, Hansen (bb0265) 2023; 1867
Tagde, Singh, Kang, Reynolds (bb0200) 2014; 4
Schrenk, Bignami, Bodin, Chipman, del Mazo, Grasl-Kraupp, Hogstrand, Hoogenboom, Leblanc, Nebbia, Nielsen, Ntzani, Petersen, Sand, Vleminckx, Wallace, Barregård, Ceccatelli, Cravedi, Halldorsson, Haug, Johansson, Knutsen, Rose, Roudot, Van Loveren, Vollmer, Mackay, Riolo, Schwerdtle, Chain (bb0310) 2020; 18
Corcoran, Cotter (bb0255) 2013; 280
Berndt, Wilms, Thauvin, Vriz (bb0260) 2020
(bb0315) 2022
Xu, Shimpi, Armstrong, Salter, Slitt (bb0325) 2016; 290
Morris, Anderson, Dean, Berk, Galecki, Martin-Subero, Maes (bb0180) 2014; 50
Yu, Franks, Wisden (bb0250) 2021; vol. 1344
Hansen, Jones, Harris (bb0025) 2020; 32
Luo, Chen, Wang, Zhao, Piao (bb0210) 2022; 102
Hu, Wang, Kong, Xiong, Poon, Xu, Duan, Chan, Dong, Tsim (bb0290) 2019; 33
Gutscher, Pauleau, Marty, Brach, Wabnitz, Samstag, Meyer, Dick (bb0140) 2008; 5
Jones (bb0060) 2002; vol. 348
Engur, Ercan, Kiser, Tufekci, Soy, Micili, Ozhan, Guven, Kumral (bb0240) 2023; 27
Bräutigam, Schütte, Godoy, Prozorovski, Gellert, Hauptmann, Holmgren, Lillig, Berndt (bb0090) 2011; 108
Flohé (bb0225) 1830; 2013
Morgan, Ezerina, Amoako, Riemer, Seedorf, Dick (bb0230) 2013; 9
Molinari, Krapp, Weiner, Beyer, Kondadi, Blomeier, López, Bustos-Sanmamed, Tevere, Weber, Reichert, Calcaterra, Beller, Carrillo, Zurbriggen (bb0300) 2023; 14
Schafer, Buettner (bb0220) 2001; 30
Sies, Jones (bb0030) 2020; 21
Araújo, da Luz, Rocha, Ahmed, Silva, Rahman, Malafaia (bb0245) 2022; 432
Berndt, Lillig (bb0015) 1850; 2015
Rastogi, Clark, Conlin, Brown, Timme-Laragy (bb0305) 2019; 26
Yin, Saito, Fjelldal, Björnsson, Remo, Hansen, Sharma, Olsen, Hamre (bb0110) 2023; 12
Berndt, Lillig, Flohé (bb0035) 2014; 5
Timme-Laragy, Hahn, Hansen, Rastogi, Roy (bb0080) 2018; 80
Schwalfenberg (bb0190) 2021; 2021
Hamre, Torstensen, Maage, Waagbo, Berge, Albrektsen (bb0120) 2010; 104
Huang, Wang, Liu, Zhang, Liu, Sun, Wu, Tu (bb0145) 2021; 774
Espe, Vikeså, Thomsen, Adam, Saito, Skjærven (bb0175) 2020; 26
Bräutigam, Jensen, Poschmann, Nyström, Bannenberg, Dreij, Lepka, Prozorovski, Montano, Aktas, Uhlén, Stühler, Cao, Holmgren, Berndt (bb0085) 2013; 110
Indraccolo, Indraccolo, Mignini (bb0205) 2017; 53
Zhang, Forman (bb0235) 2012; 23
Mele, Paino, Papaccio, Regad, Boocock, Stiuso, Lombardi, Liccardo, Aquino, Barbieri, Arra, Coveney, La Noce, Papaccio, Caraglia, Tirino, Desiderio (bb0215) 2018; 9
Pedre, Barayeu, Ezerina, Dick (bb0270) 2021; 228
Hanschmann, Godoy, Berndt, Hudemann, Lillig (bb0045) 2013; 19
Sant, Sinno, Jacobs, Timme-Laragy (bb0330) 2018; 198
Zhang, Lau, Monks (bb0185) 2011; 120
Olafsdottir, Reed (bb0280) 1988; 964
Hamre, Micallef, Hillestad, Johansen, Remo, Zhang, Odegård, Araujo, Philip, Waagbo (bb0105) 2022; 551
Kimmel, Ballard, Kimmel, Ullmann, Schilling (bb0150) 1995; 203
Timme-Laragy, Goldstone, Imhoff, Stegeman, Hahn, Hansen (bb0075) 2013; 65
Penglase, Edvardsen, Furmanek, Ronnestad, Karlsen, van der Meeren, Hamre (bb0100) 2015; 5
Sant, Jacobs, Borofski, Moss, Timme-Laragy (bb0160) 2017; 220
Bräutigam, Pudelko, Jemth, Gad, Narwal, Gustafsson, Karsten, Puigvert, Homan, Berndt, Berglund, Stenmark, Helleday (bb0135) 2016; 76
Yin, Björnsson, Fjelldal, Saito, Remo, Edvardsen, Hansen, Sharma, Olsen, Hamre (bb0115) 2022; 11
Hansen, Harris (bb0020) 1850; 2015
Jones, Sies (bb0040) 2015; 23
Breus, Dickmeis (bb0070) 2021; 402
Shi, Du, Lam, Wu, Zhou (bb0320) 2008; 230
Luo (10.1016/j.bbagen.2024.130603_bb0210) 2022; 102
Rampon (10.1016/j.bbagen.2024.130603_bb0130) 2018; 7
Sies (10.1016/j.bbagen.2024.130603_bb0010) 2021; 165
Hansen (10.1016/j.bbagen.2024.130603_bb0020) 1850; 2015
Sant (10.1016/j.bbagen.2024.130603_bb0160) 2017; 220
Schwalfenberg (10.1016/j.bbagen.2024.130603_bb0190) 2021; 2021
Bräutigam (10.1016/j.bbagen.2024.130603_bb0135) 2016; 76
Schrenk (10.1016/j.bbagen.2024.130603_bb0310) 2020; 18
Timme-Laragy (10.1016/j.bbagen.2024.130603_bb0080) 2018; 80
Jones (10.1016/j.bbagen.2024.130603_bb0040) 2015; 23
Olafsdottir (10.1016/j.bbagen.2024.130603_bb0280) 1988; 964
Anderson (10.1016/j.bbagen.2024.130603_bb0165) 1983; 80
Espe (10.1016/j.bbagen.2024.130603_bb0175) 2020; 26
Morris (10.1016/j.bbagen.2024.130603_bb0180) 2014; 50
Penglase (10.1016/j.bbagen.2024.130603_bb0100) 2015; 5
Berndt (10.1016/j.bbagen.2024.130603_bb0260) 2020
Zhang (10.1016/j.bbagen.2024.130603_bb0235) 2012; 23
(10.1016/j.bbagen.2024.130603_bb0315) 2022
Yin (10.1016/j.bbagen.2024.130603_bb0110) 2023; 12
Bräutigam (10.1016/j.bbagen.2024.130603_bb0085) 2013; 110
Lillig (10.1016/j.bbagen.2024.130603_bb0050) 2013; 18
Gutscher (10.1016/j.bbagen.2024.130603_bb0140) 2008; 5
Shi (10.1016/j.bbagen.2024.130603_bb0320) 2008; 230
Sant (10.1016/j.bbagen.2024.130603_bb0330) 2018; 198
Bräutigam (10.1016/j.bbagen.2024.130603_bb0090) 2011; 108
Jones (10.1016/j.bbagen.2024.130603_bb0060) 2002; vol. 348
Sies (10.1016/j.bbagen.2024.130603_bb0030) 2020; 21
Flohé (10.1016/j.bbagen.2024.130603_bb0225) 1830; 2013
Facchinello (10.1016/j.bbagen.2024.130603_bb0295) 2022; 4
Ezerina (10.1016/j.bbagen.2024.130603_bb0275) 2018; 25
Huang (10.1016/j.bbagen.2024.130603_bb0145) 2021; 774
Berndt (10.1016/j.bbagen.2024.130603_bb0015) 1850; 2015
Espe (10.1016/j.bbagen.2024.130603_bb0170) 2020; 26
Bräutigam (10.1016/j.bbagen.2024.130603_bb0065) 2022
Corcoran (10.1016/j.bbagen.2024.130603_bb0255) 2013; 280
Timme-Laragy (10.1016/j.bbagen.2024.130603_bb0075) 2013; 65
Kimmel (10.1016/j.bbagen.2024.130603_bb0150) 1995; 203
Molinari (10.1016/j.bbagen.2024.130603_bb0300) 2023; 14
Hu (10.1016/j.bbagen.2024.130603_bb0290) 2019; 33
Wilms (10.1016/j.bbagen.2024.130603_bb0095) 2022; 49
Fujikawa (10.1016/j.bbagen.2024.130603_bb0155) 2016; 9
Rastogi (10.1016/j.bbagen.2024.130603_bb0305) 2019; 26
Mele (10.1016/j.bbagen.2024.130603_bb0215) 2018; 9
Hamre (10.1016/j.bbagen.2024.130603_bb0120) 2010; 104
Morgan (10.1016/j.bbagen.2024.130603_bb0230) 2013; 9
Villablanca (10.1016/j.bbagen.2024.130603_bb0195) 2016; 63
Tagde (10.1016/j.bbagen.2024.130603_bb0200) 2014; 4
Araújo (10.1016/j.bbagen.2024.130603_bb0245) 2022; 432
Davies (10.1016/j.bbagen.2024.130603_bb0265) 2023; 1867
Berndt (10.1016/j.bbagen.2024.130603_bb0035) 2014; 5
Hamre (10.1016/j.bbagen.2024.130603_bb0105) 2022; 551
Gauron (10.1016/j.bbagen.2024.130603_bb0125) 2016; 414
Lai (10.1016/j.bbagen.2024.130603_bb0285) 2018; 138
Zhang (10.1016/j.bbagen.2024.130603_bb0185) 2011; 120
Hanschmann (10.1016/j.bbagen.2024.130603_bb0045) 2013; 19
Go (10.1016/j.bbagen.2024.130603_bb0055) 2013; 288
Breus (10.1016/j.bbagen.2024.130603_bb0070) 2021; 402
Schafer (10.1016/j.bbagen.2024.130603_bb0220) 2001; 30
Pedre (10.1016/j.bbagen.2024.130603_bb0270) 2021; 228
Yu (10.1016/j.bbagen.2024.130603_bb0250) 2021; vol. 1344
Sharpley (10.1016/j.bbagen.2024.130603_bb0335) 2021; 56
Hansen (10.1016/j.bbagen.2024.130603_bb0025) 2020; 32
Indraccolo (10.1016/j.bbagen.2024.130603_bb0205) 2017; 53
Sies (10.1016/j.bbagen.2024.130603_bb0005) 2017; vol. 86
Xu (10.1016/j.bbagen.2024.130603_bb0325) 2016; 290
Engur (10.1016/j.bbagen.2024.130603_bb0240) 2023; 27
Yin (10.1016/j.bbagen.2024.130603_bb0115) 2022; 11
References_xml – volume: 104
  start-page: 980
  year: 2010
  end-page: 988
  ident: bb0120
  article-title: Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (<i>Salmo salar</i>): a multivariate approach
  publication-title: Br. J. Nutr.
– volume: 5
  start-page: 308
  year: 2015
  end-page: 318
  ident: bb0100
  article-title: Diet affects the redox system in developing Atlantic cod (<i>Gadus morhua</i>) larvae
  publication-title: Redox Biol.
– volume: 33
  start-page: 532
  year: 2019
  end-page: 544
  ident: bb0290
  article-title: Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling
  publication-title: FASEB J.
– volume: 5
  year: 2014
  ident: bb0035
  article-title: Redox regulation by glutathione needs enzymes
  publication-title: Front. Pharmacol.
– volume: 551
  year: 2022
  ident: bb0105
  article-title: Changes in daylength and temperature from April until august for Atlantic salmon <i>(Salmo salar)</i> reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin
  publication-title: Aquaculture
– volume: 120
  start-page: 87
  year: 2011
  end-page: 97
  ident: bb0185
  article-title: The Cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis
  publication-title: Toxicol. Sci.
– volume: 63
  start-page: 1349
  year: 2016
  end-page: 1356
  ident: bb0195
  article-title: A phase I new approaches to neuroblastoma therapy study of Buthionine Sulfoximine and Melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma
  publication-title: Pediatr. Blood Cancer
– volume: 2015
  start-page: 1527
  year: 1850
  end-page: 1542
  ident: bb0020
  article-title: Glutathione during embryonic development
  publication-title: BBA-Gen. Subjects
– volume: 21
  start-page: 363
  year: 2020
  end-page: 383
  ident: bb0030
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  start-page: 119
  year: 2013
  end-page: 125
  ident: bb0230
  article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
  publication-title: Nat. Chem. Biol.
– volume: 53
  start-page: 125
  year: 2017
  end-page: 134
  ident: bb0205
  article-title: Micronized palmitoylethanolamide/<i>trans</i>−polydatin treatment of endometriosis-related pain: a meta-analysis
  publication-title: Ann. Ist. Super. Sanita
– volume: 203
  start-page: 253
  year: 1995
  end-page: 310
  ident: bb0150
  article-title: STAGES OF EMBRYONIC-DEVELOPMENT OF THE ZEBRAFISH
  publication-title: Dev. Dyn.
– volume: vol. 348
  start-page: 93
  year: 2002
  end-page: 112
  ident: bb0060
  article-title: Redox potential of GSH/GSSG couple: Assay and biological significance
  publication-title: Protein Sensors and Reactive Oxygen Species, Pt B, Thiol Enzymes and Proteins
– volume: 2015
  start-page: 1467
  year: 1850
  end-page: 1468
  ident: bb0015
  article-title: Redox regulation of differentiation and de-differentiation
  publication-title: BBA-Gen. Subjects
– volume: 7
  year: 2018
  ident: bb0130
  article-title: Hydrogen peroxide and redox regulation of developments
  publication-title: Antioxidants
– volume: 19
  start-page: 1539
  year: 2013
  end-page: 1605
  ident: bb0045
  article-title: Thioredoxins, Glutaredoxins, and Peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling
  publication-title: Antioxid. Redox Signal.
– volume: 56
  start-page: 2329-+
  year: 2021
  ident: bb0335
  article-title: Metabolic plasticity drives development during mammalian embryogenesis
  publication-title: Dev. Cell
– volume: 11
  year: 2022
  ident: bb0115
  article-title: Impact of antioxidant feed and growth manipulation on the redox regulation of Atlantic Salmon Smolts
  publication-title: Antioxidants
– volume: 432
  year: 2022
  ident: bb0245
  article-title: Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: perspective study of genotoxicity, mutagenicity, and redox unbalance
  publication-title: J. Hazard. Mater.
– volume: 110
  start-page: 20057
  year: 2013
  end-page: 20062
  ident: bb0085
  article-title: Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 447-+
  year: 2018
  ident: bb0275
  article-title: N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H<sub>2</sub>S and Sulfane Sulfur Production
  publication-title: Cell Chem. Biol.
– volume: 65
  start-page: 89
  year: 2013
  end-page: 101
  ident: bb0075
  article-title: Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo
  publication-title: Free Radic. Biol. Med.
– volume: 32
  start-page: 715
  year: 2020
  end-page: 740
  ident: bb0025
  article-title: The redox theory of development
  publication-title: Antioxid. Redox Signal.
– volume: 76
  start-page: 2366
  year: 2016
  end-page: 2375
  ident: bb0135
  article-title: Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition
  publication-title: Cancer Res.
– volume: 108
  start-page: 20532
  year: 2011
  end-page: 20537
  ident: bb0090
  article-title: Vertebrate-specific glutaredoxin is essential for brain development
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 1019
  year: 2020
  end-page: 1025
  ident: bb0170
  article-title: The level of 1C diets fed prior to cell isolation affects lipid metabolism in primary liver cells isolated from Atlantic salmon (<i>Salmo salar</i>)
  publication-title: Aquac. Nutr.
– volume: 27
  start-page: 5083
  year: 2023
  end-page: 5096
  ident: bb0240
  article-title: Genc, hydrogen peroxide signaling modulates neuronal differentiation <i>via</i> microglial polarization and Wnt/β- catenin pathway
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 5
  start-page: 553
  year: 2008
  end-page: 559
  ident: bb0140
  article-title: Real-time imaging of the intracellular glutathione redox potential
  publication-title: Nat. Methods
– volume: 228
  year: 2021
  ident: bb0270
  article-title: The mechanism of action of N-acetylcysteine (NAC): the emerging role of H<sub>2</sub>S and sulfane sulfur species
  publication-title: Pharmacol. Ther.
– volume: 2021
  year: 2021
  ident: bb0190
  article-title: N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks)
  publication-title: J. Nutrit. and Metab.
– volume: 26
  year: 2019
  ident: bb0305
  article-title: Mapping glutathione utilization in the developing zebrafish (<i>Danio rerio</i>) embryo
  publication-title: Redox Biol.
– volume: 288
  start-page: 26512
  year: 2013
  end-page: 26520
  ident: bb0055
  article-title: The redox proteome
  publication-title: J. Biol. Chem.
– volume: 18
  year: 2020
  ident: bb0310
  article-title: Risk to human health related to the presence of perfluoroalkyl substances in food
  publication-title: EFSA J.
– volume: 9
  year: 2018
  ident: bb0215
  article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo
  publication-title: Cell Death Dis.
– volume: 2013
  start-page: 3139
  year: 1830
  end-page: 3142
  ident: bb0225
  article-title: The fairytale of the GSSG/GSH redox potential
  publication-title: BBA-Gen. Subjects
– volume: 280
  start-page: 1944
  year: 2013
  end-page: 1965
  ident: bb0255
  article-title: Redox regulation of protein kinases
  publication-title: FEBS J.
– volume: 4
  start-page: 123-+
  year: 2022
  ident: bb0295
  article-title: Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition, nature
  publication-title: Metabolism
– volume: 198
  start-page: 92
  year: 2018
  end-page: 102
  ident: bb0330
  article-title: Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, <i>Danio rerio</i>
  publication-title: Aquat. Toxicol.
– volume: 80
  start-page: 17
  year: 2018
  end-page: 28
  ident: bb0080
  article-title: Redox stress and signaling during vertebrate embryonic development: regulation and responses
  publication-title: Semin. Cell Dev. Biol.
– volume: 414
  start-page: 133
  year: 2016
  end-page: 141
  ident: bb0125
  article-title: Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) controls axon pathfinding during zebrafish development
  publication-title: Dev. Biol.
– volume: 290
  start-page: 21
  year: 2016
  end-page: 30
  ident: bb0325
  article-title: PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 30
  start-page: 1191
  year: 2001
  end-page: 1212
  ident: bb0220
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radic. Biol. Med.
– volume: 14
  year: 2023
  ident: bb0300
  article-title: NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems
  publication-title: Nat. Commun.
– volume: vol. 86
  start-page: 715
  year: 2017
  end-page: 748
  ident: bb0005
  article-title: Oxidative Stress
  publication-title: Annual Review of Biochemistry, Vol 86
– volume: 49
  year: 2022
  ident: bb0095
  article-title: Glutaredoxin 2 promotes SP-1-dependent<i> CSPG4</i> transcription and migration of wound healing NG2 glia and glioma cells: enzymatic Taoism
  publication-title: Redox Biol.
– volume: 230
  start-page: 23
  year: 2008
  end-page: 32
  ident: bb0320
  article-title: Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 80
  start-page: 707
  year: 1983
  end-page: 711
  ident: bb0165
  article-title: Transport and direct utilization of gamma-GLUTAMYLCYST(e)INE for glutathione synthesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences
– volume: 1867
  year: 2023
  ident: bb0265
  article-title: Real-time analysis of dynamic compartmentalized GSH redox shifts and H2O2 availability in undifferentiated and differentiated cells
  publication-title: BBA-Gen. Subjects
– year: 2022
  ident: bb0315
  publication-title: EC, COMMISSION REGULATION (EU) 2022/2388 of 7 December 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of perfluoroalkyl substances in certain foodstuffs official Journal of the Europian Union, L316/38
– volume: 165
  year: 2021
  ident: bb0010
  article-title: Oxidative eustress and oxidative distress
  publication-title: Free Radic. Biol. Med.
– volume: 12
  year: 2023
  ident: bb0110
  article-title: Seasonal changes in photoperiod: effects on growth and redox signaling patterns in Atlantic Salmon Postsmolts
  publication-title: Antioxidants
– volume: 402
  start-page: 363
  year: 2021
  end-page: 378
  ident: bb0070
  article-title: Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration
  publication-title: Biol. Chem.
– volume: 102
  year: 2022
  ident: bb0210
  article-title: Pharmacological effects of polydatin in the treatment of metabolic diseases: a review
  publication-title: Phytomedicine
– volume: vol. 1344
  start-page: 71
  year: 2021
  end-page: 86
  ident: bb0250
  article-title: Brain Clocks, Sleep, and Mood
  publication-title: Circadian Clock in Brain Health and Disease
– volume: 23
  start-page: 734
  year: 2015
  end-page: 746
  ident: bb0040
  article-title: The redox code
  publication-title: Antioxid. Redox Signal.
– volume: 50
  start-page: 1059
  year: 2014
  end-page: 1084
  ident: bb0180
  article-title: The glutathione system: a new drug target in Neuroimmune disorders
  publication-title: Mol. Neurobiol.
– year: 2020
  ident: bb0260
  article-title: Redox-Regulated Brain Development
  publication-title: Oxidative Stress: Eustress and Distress
– volume: 4
  year: 2014
  ident: bb0200
  article-title: The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma
  publication-title: Blood Cancer J.
– volume: 220
  start-page: 807
  year: 2017
  end-page: 817
  ident: bb0160
  article-title: Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, <i>Danio</i> <i>rerio</i>
  publication-title: Environ. Pollut.
– volume: 774
  year: 2021
  ident: bb0145
  article-title: Crosstalk between histological alterations, oxidative stress and immune aberrations of the emerging PFOS alternative OBS in developing zebrafish
  publication-title: Sci. Total Environ.
– volume: 964
  start-page: 377
  year: 1988
  end-page: 382
  ident: bb0280
  article-title: Retention of oxidized glutathione by isolated rat-liver mitochondria during hydroperoxide treatment
  publication-title: Biochim. Biophys. Acta
– start-page: 57
  year: 2022
  end-page: 68
  ident: bb0065
  article-title: Redox regulation during zebrafish development
  publication-title: Redox Regulation of Differentiation and de-Differentiation
– volume: 138
  start-page: 46
  year: 2018
  end-page: 53
  ident: bb0285
  article-title: Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress
  publication-title: J. Pharmacol. Sci.
– volume: 23
  start-page: 722
  year: 2012
  end-page: 728
  ident: bb0235
  article-title: Glutathione synthesis and its role in redox signaling
  publication-title: Semin. Cell Dev. Biol.
– volume: 26
  start-page: 477
  year: 2020
  end-page: 489
  ident: bb0175
  article-title: Atlantic salmon fed a nutrient package of surplus methionine, vitamin B12, folic acid and vitamin B6 improved growth and reduced the relative liver size, but when in excess growth reduced
  publication-title: Aquac. Nutr.
– volume: 18
  start-page: 1654
  year: 2013
  end-page: 1665
  ident: bb0050
  article-title: Glutaredoxins in thiol/disulfide exchange
  publication-title: Antioxid. Redox Signal.
– volume: 9
  year: 2016
  ident: bb0155
  article-title: Mouse redox histology using genetically encoded probes
  publication-title: Sci. Signal.
– volume: 7
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0130
  article-title: Hydrogen peroxide and redox regulation of developments
  publication-title: Antioxidants
  doi: 10.3390/antiox7110159
– volume: 30
  start-page: 1191
  year: 2001
  ident: 10.1016/j.bbagen.2024.130603_bb0220
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00480-4
– volume: vol. 86
  start-page: 715
  year: 2017
  ident: 10.1016/j.bbagen.2024.130603_bb0005
  article-title: Oxidative Stress
– volume: vol. 1344
  start-page: 71
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0250
  article-title: Brain Clocks, Sleep, and Mood
– year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0315
– volume: 26
  start-page: 1019
  year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0170
  article-title: The level of 1C diets fed prior to cell isolation affects lipid metabolism in primary liver cells isolated from Atlantic salmon (Salmo salar)
  publication-title: Aquac. Nutr.
  doi: 10.1111/anu.13058
– volume: 53
  start-page: 125
  year: 2017
  ident: 10.1016/j.bbagen.2024.130603_bb0205
  article-title: Micronized palmitoylethanolamide/trans−polydatin treatment of endometriosis-related pain: a meta-analysis
  publication-title: Ann. Ist. Super. Sanita
– volume: 2013
  start-page: 3139
  year: 1830
  ident: 10.1016/j.bbagen.2024.130603_bb0225
  article-title: The fairytale of the GSSG/GSH redox potential
  publication-title: BBA-Gen. Subjects
– volume: 9
  year: 2016
  ident: 10.1016/j.bbagen.2024.130603_bb0155
  article-title: Mouse redox histology using genetically encoded probes
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.aad3895
– volume: 23
  start-page: 722
  year: 2012
  ident: 10.1016/j.bbagen.2024.130603_bb0235
  article-title: Glutathione synthesis and its role in redox signaling
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2012.03.017
– volume: 414
  start-page: 133
  year: 2016
  ident: 10.1016/j.bbagen.2024.130603_bb0125
  article-title: Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2016.05.004
– volume: 4
  year: 2014
  ident: 10.1016/j.bbagen.2024.130603_bb0200
  article-title: The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma
  publication-title: Blood Cancer J.
  doi: 10.1038/bcj.2014.45
– volume: 23
  start-page: 734
  year: 2015
  ident: 10.1016/j.bbagen.2024.130603_bb0040
  article-title: The redox code
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6247
– volume: 76
  start-page: 2366
  year: 2016
  ident: 10.1016/j.bbagen.2024.130603_bb0135
  article-title: Hypoxic signaling and the cellular redox tumor environment determine sensitivity to MTH1 inhibition
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2380
– volume: 18
  year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0310
  article-title: Risk to human health related to the presence of perfluoroalkyl substances in food
  publication-title: EFSA J.
– volume: 5
  year: 2014
  ident: 10.1016/j.bbagen.2024.130603_bb0035
  article-title: Redox regulation by glutathione needs enzymes
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2014.00168
– volume: 27
  start-page: 5083
  year: 2023
  ident: 10.1016/j.bbagen.2024.130603_bb0240
  article-title: Genc, hydrogen peroxide signaling modulates neuronal differentiation via microglial polarization and Wnt/β- catenin pathway
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 26
  start-page: 477
  year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0175
  article-title: Atlantic salmon fed a nutrient package of surplus methionine, vitamin B12, folic acid and vitamin B6 improved growth and reduced the relative liver size, but when in excess growth reduced
  publication-title: Aquac. Nutr.
  doi: 10.1111/anu.13010
– volume: 432
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0245
  article-title: Toxicity evaluation of the combination of emerging pollutants with polyethylene microplastics in zebrafish: perspective study of genotoxicity, mutagenicity, and redox unbalance
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128691
– volume: 9
  start-page: 119
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0230
  article-title: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1142
– volume: 9
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0215
  article-title: A new inhibitor of glucose-6-phosphate dehydrogenase blocks pentose phosphate pathway and suppresses malignant proliferation and metastasis in vivo
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-018-0635-5
– volume: 18
  start-page: 1654
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0050
  article-title: Glutaredoxins in thiol/disulfide exchange
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5007
– volume: 25
  start-page: 447-+
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0275
  article-title: N-Acetyl Cysteine Functions as a Fast-Acting Antioxidant by Triggering Intracellular H2S and Sulfane Sulfur Production
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.01.011
– volume: 2015
  start-page: 1527
  year: 1850
  ident: 10.1016/j.bbagen.2024.130603_bb0020
  article-title: Glutathione during embryonic development
  publication-title: BBA-Gen. Subjects
– volume: 5
  start-page: 553
  year: 2008
  ident: 10.1016/j.bbagen.2024.130603_bb0140
  article-title: Real-time imaging of the intracellular glutathione redox potential
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1212
– volume: 203
  start-page: 253
  year: 1995
  ident: 10.1016/j.bbagen.2024.130603_bb0150
  article-title: STAGES OF EMBRYONIC-DEVELOPMENT OF THE ZEBRAFISH
  publication-title: Dev. Dyn.
  doi: 10.1002/aja.1002030302
– volume: 4
  start-page: 123-+
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0295
  article-title: Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition, nature
  publication-title: Metabolism
– volume: 198
  start-page: 92
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0330
  article-title: Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, Danio rerio
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.02.010
– volume: 290
  start-page: 21
  year: 2016
  ident: 10.1016/j.bbagen.2024.130603_bb0325
  article-title: PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2015.11.002
– volume: 32
  start-page: 715
  year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0025
  article-title: The redox theory of development
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2019.7976
– volume: 280
  start-page: 1944
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0255
  article-title: Redox regulation of protein kinases
  publication-title: FEBS J.
  doi: 10.1111/febs.12224
– volume: 220
  start-page: 807
  year: 2017
  ident: 10.1016/j.bbagen.2024.130603_bb0160
  article-title: Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.10.057
– volume: 49
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0095
  article-title: Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: enzymatic Taoism
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2021.102221
– volume: 104
  start-page: 980
  year: 2010
  ident: 10.1016/j.bbagen.2024.130603_bb0120
  article-title: Effects of dietary lipid, vitamins and minerals on total amounts and redox status of glutathione and ubiquinone in tissues of Atlantic salmon (Salmo salar): a multivariate approach
  publication-title: Br. J. Nutr.
  doi: 10.1017/S0007114510001583
– volume: 402
  start-page: 363
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0070
  article-title: Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2020-0269
– volume: 288
  start-page: 26512
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0055
  article-title: The redox proteome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R113.464131
– volume: 165
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0010
  article-title: Oxidative eustress and oxidative distress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2020.12.032
– volume: 120
  start-page: 87
  year: 2011
  ident: 10.1016/j.bbagen.2024.130603_bb0185
  article-title: The Cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfq364
– volume: 228
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0270
  article-title: The mechanism of action of N-acetylcysteine (NAC): the emerging role of H2S and sulfane sulfur species
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2021.107916
– volume: 2015
  start-page: 1467
  year: 1850
  ident: 10.1016/j.bbagen.2024.130603_bb0015
  article-title: Redox regulation of differentiation and de-differentiation
  publication-title: BBA-Gen. Subjects
– volume: 56
  start-page: 2329-+
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0335
  article-title: Metabolic plasticity drives development during mammalian embryogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2021.07.020
– volume: 102
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0210
  article-title: Pharmacological effects of polydatin in the treatment of metabolic diseases: a review
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2022.154161
– start-page: 57
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0065
  article-title: Redox regulation during zebrafish development
– volume: 26
  year: 2019
  ident: 10.1016/j.bbagen.2024.130603_bb0305
  article-title: Mapping glutathione utilization in the developing zebrafish (Danio rerio) embryo
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101235
– volume: 230
  start-page: 23
  year: 2008
  ident: 10.1016/j.bbagen.2024.130603_bb0320
  article-title: Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2008.01.043
– volume: 138
  start-page: 46
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0285
  article-title: Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress
  publication-title: J. Pharmacol. Sci.
  doi: 10.1016/j.jphs.2018.08.007
– volume: 108
  start-page: 20532
  year: 2011
  ident: 10.1016/j.bbagen.2024.130603_bb0090
  article-title: Vertebrate-specific glutaredoxin is essential for brain development
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1110085108
– volume: 2021
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0190
  article-title: N-acetylcysteine: a review of clinical usefulness (an old drug with new tricks)
  publication-title: J. Nutrit. and Metab.
– volume: 33
  start-page: 532
  year: 2019
  ident: 10.1016/j.bbagen.2024.130603_bb0290
  article-title: Polydatin suppresses VEGF-induced angiogenesis through binding with VEGF and inhibiting its receptor signaling
  publication-title: FASEB J.
  doi: 10.1096/fj.201800750R
– volume: 12
  year: 2023
  ident: 10.1016/j.bbagen.2024.130603_bb0110
  article-title: Seasonal changes in photoperiod: effects on growth and redox signaling patterns in Atlantic Salmon Postsmolts
  publication-title: Antioxidants
  doi: 10.3390/antiox12081546
– volume: 80
  start-page: 707
  year: 1983
  ident: 10.1016/j.bbagen.2024.130603_bb0165
  article-title: Transport and direct utilization of gamma-GLUTAMYLCYST(e)INE for glutathione synthesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences
  doi: 10.1073/pnas.80.3.707
– volume: 5
  start-page: 308
  year: 2015
  ident: 10.1016/j.bbagen.2024.130603_bb0100
  article-title: Diet affects the redox system in developing Atlantic cod (Gadus morhua) larvae
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.06.003
– year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0260
  article-title: Redox-Regulated Brain Development
– volume: 19
  start-page: 1539
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0045
  article-title: Thioredoxins, Glutaredoxins, and Peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.4599
– volume: 774
  year: 2021
  ident: 10.1016/j.bbagen.2024.130603_bb0145
  article-title: Crosstalk between histological alterations, oxidative stress and immune aberrations of the emerging PFOS alternative OBS in developing zebrafish
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145443
– volume: 1867
  year: 2023
  ident: 10.1016/j.bbagen.2024.130603_bb0265
  article-title: Real-time analysis of dynamic compartmentalized GSH redox shifts and H2O2 availability in undifferentiated and differentiated cells
  publication-title: BBA-Gen. Subjects
  doi: 10.1016/j.bbagen.2023.130321
– volume: vol. 348
  start-page: 93
  year: 2002
  ident: 10.1016/j.bbagen.2024.130603_bb0060
  article-title: Redox potential of GSH/GSSG couple: Assay and biological significance
– volume: 50
  start-page: 1059
  year: 2014
  ident: 10.1016/j.bbagen.2024.130603_bb0180
  article-title: The glutathione system: a new drug target in Neuroimmune disorders
  publication-title: Mol. Neurobiol.
  doi: 10.1007/s12035-014-8705-x
– volume: 80
  start-page: 17
  year: 2018
  ident: 10.1016/j.bbagen.2024.130603_bb0080
  article-title: Redox stress and signaling during vertebrate embryonic development: regulation and responses
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.09.019
– volume: 11
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0115
  article-title: Impact of antioxidant feed and growth manipulation on the redox regulation of Atlantic Salmon Smolts
  publication-title: Antioxidants
  doi: 10.3390/antiox11091708
– volume: 964
  start-page: 377
  year: 1988
  ident: 10.1016/j.bbagen.2024.130603_bb0280
  article-title: Retention of oxidized glutathione by isolated rat-liver mitochondria during hydroperoxide treatment
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4165(88)90038-4
– volume: 21
  start-page: 363
  year: 2020
  ident: 10.1016/j.bbagen.2024.130603_bb0030
  article-title: Reactive oxygen species (ROS) as pleiotropic physiological signalling agents
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-0230-3
– volume: 63
  start-page: 1349
  year: 2016
  ident: 10.1016/j.bbagen.2024.130603_bb0195
  article-title: A phase I new approaches to neuroblastoma therapy study of Buthionine Sulfoximine and Melphalan with autologous stem cells for recurrent/refractory high-risk neuroblastoma
  publication-title: Pediatr. Blood Cancer
  doi: 10.1002/pbc.25994
– volume: 14
  year: 2023
  ident: 10.1016/j.bbagen.2024.130603_bb0300
  article-title: NERNST: a genetically-encoded ratiometric non-destructive sensing tool to estimate NADP(H) redox status in bacterial, plant and animal systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38739-4
– volume: 551
  year: 2022
  ident: 10.1016/j.bbagen.2024.130603_bb0105
  article-title: Changes in daylength and temperature from April until august for Atlantic salmon (Salmo salar) reared in sea cages, increase growth, and may cause consumption of antioxidants, onset of cataracts and increased oxidation of fillet astaxanthin
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2022.737950
– volume: 110
  start-page: 20057
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0085
  article-title: Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313753110
– volume: 65
  start-page: 89
  year: 2013
  ident: 10.1016/j.bbagen.2024.130603_bb0075
  article-title: Glutathione redox dynamics and expression of glutathione-related genes in the developing embryo
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2013.06.011
SSID ssj0000595
Score 2.4445655
Snippet Redox control seems to be indispensable for proper embryonic development. The ratio between glutathione (GSH) and its oxidized disulfide (GSSG) is the most...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130603
SubjectTerms abnormal development
Animals
brain
cytosol
Cytosol - metabolism
Danio rerio
death
disulfides
Embryo, Nonmammalian - metabolism
Embryonic Development
gastrulation
glutathione
Glutathione - metabolism
Glutathione Disulfide - metabolism
green fluorescent protein
homeostasis
metabolism
mitochondria
Mitochondria - metabolism
muscles
ontogeny
organogenesis
oxidation
Oxidation-Reduction
oxidoreductases
perfluorooctane sulfonic acid
PFOS
pollutants
pollution
roGFP probe
Zebrafish - embryology
Zebrafish - metabolism
Zebrafish model
Title Systemic and strict regulation of the glutathione redox state in mitochondria and cytosol is needed for zebrafish ontogeny
URI https://dx.doi.org/10.1016/j.bbagen.2024.130603
https://www.ncbi.nlm.nih.gov/pubmed/38521470
https://www.proquest.com/docview/2974005761
https://www.proquest.com/docview/3206194941
Volume 1868
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQCLWXqkBp6QeaSlzT3Y0dOzmiFWgpggtdaW-WvwJBkEVskLoc-O3MxAlVVaGVekxkR47fZDyOZ95j7CB1iHTAbapyLiRCWJ4UpVdJZj1GE87kqaFC4bNzOZmKn7NstsbGfS0MpVV2vj_69NZbd3cG3WwO7qpqcEGHehhOZJQFSbThVMEuFFn5j6c_aR4YPmTxJEEk1Lovn2tzvKzFj5ZYUFNBssiyl876d3l6Lfxsl6Hj9-xdFz_CYRziFlsL9TbbjIqSy232ZtwLuO2wx8hGXjkwtQfS53AN3EfteUQD5iVg9AeXaHuUgjivAxB76G9oi4ygquEWP3d0j7VHK20f4pbNHI0VqgXUuOwFDxjzwiMdPpfV4gqIDAFfdfmBTY-Pfo0nSSe1kDicwyYphPPKm6CIzs77keM88CBcXqq8lFK5TAYpjEf4RKGCwG2IdS1b3Igucr7L1msc5ycGMjfoRQqpgrLCBWelKS1u60KelmgZfI_xfoa163jISQ7jRvcJZ9c64qIJFx1x2WPJS6-7yMOxor3qwdN_2ZPGpWJFz-891hoBo_MTU4f5w0KnuPei4l05er0NT4f0X6gQ2OZjNJSX8fI8I1Wo4ef_HtsX9pauYqraV7be3D-EbxgUNXa_tfp9tnF4cjo5fwa00Qw6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RRRVcKkpftNBOpV6jZWPHTo5oVbS89lKQuFnxI21Qm0VskFh-fWfihKqqEFKPm7Ujr7_xeLye-T6AL6kjpAMdU7VzIZHSiqSovE4y6ymacGWellwofDZXswt5fJldrsF0qIXhtMre90ef3nnr_sm4n83xdV2Pv_GlHoUTGWdBMm34M1hndqpsBOsHRyez-R-HnHXiK9w-4Q5DBV2X5mUtrVsmQk0lKyOrQT3r3x3qsQi024kOt-BFH0LiQRzlS1gLzTY8j6KSq23YmA4abq_gPhKS1w7LxiNLdLgWb6L8PAGCiwopAMTvZH6chbhoAjKB6B12dUZYN_iLVjx5yMaToXYvcat2QfaK9RIb2vmCRwp78Z7vn6t6-QOZD4F-6uo1XBx-PZ_Okl5tIXE0jW1SSOe1L4NmRjvvJ06IIIJ0eaXzSintMhWULD0hKAsdJJ1ErOsI4yb8IRdvYNTQON8BqrwkR1IoHbSVLjirysrSyS7kaUXGIXZADDNsXE9FzooYP82Qc3ZlIi6GcTERlx1IHnpdRyqOJ9rrATzzl0kZ2i2e6Pl5wNoQYHyFUjZhcbs0KR2_uH5XTR5vI9J9_muokNTmbTSUh_GKPGNhqP33_z22T7AxOz87NadH85MPsMnfxMy1XRi1N7dhj2Kk1n7s18Bv2mwO6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systemic+and+strict+regulation+of+the+glutathione+redox+state+in+mitochondria+and+cytosol+is+needed+for+zebrafish+ontogeny&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Hamre%2C+Kristin&rft.au=Zhang%2C+Wuxiao&rft.au=Austgulen%2C+Maren+Hoff&rft.au=Mykkeltvedt%2C+Eva&rft.date=2024-06-01&rft.issn=0304-4165&rft.volume=1868&rft.issue=6&rft.spage=130603&rft_id=info:doi/10.1016%2Fj.bbagen.2024.130603&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2024_130603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon