A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection
Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorb...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 11; p. 4011 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
17.11.2018
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s18114011 |
Cover
Loading…
Abstract | Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H2O2 depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes. |
---|---|
AbstractList | Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H2O2 depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes. Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H 2 O 2 depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes. Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes.Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes. Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and effectively and reduce healthcare costs. Herein, we demonstrate a novel, fully integrated, microfluidic amperometric enzyme-linked immunosorbent assay (ELISA) prototype using a commercial interferon gamma release assay (IGRA) as a model antibody binding system. Microfluidic assay chemistry was engineered to take place on Au-plated electrodes within an assay cell on a printed circuit board (PCB)-based biosensor system. The assay cell is linked to an electrochemical reporter cell comprising microfluidic architecture, Au working and counter electrodes and a Ag/AgCl reference electrode, all manufactured exclusively via standard commercial PCB fabrication processes. Assay chemistry has been optimised for microfluidic diffusion kinetics to function under continual flow. We characterised the electrode integrity of the developed platforms with reference to biological sampling and buffer composition and subsequently we demonstrated concentration-dependent measurements of H₂O₂ depletion as resolved by existing FDA-validated ELISA kits. Finally, we validated the assay technology in both buffer and serum and demonstrate limits of detection comparable to high-end commercial systems with the addition of full microfluidic assay architecture capable of returning diagnostic analyses in approximately eight minutes. |
Author | Vasilakis, Nikolaos Pantelidis, Panagiotis Kelleher, Peter Papadimitriou, Konstantinos Morgan, Hywel Prodromakis, Themistoklis Evans, Daniel |
AuthorAffiliation | 1 Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK; k.papadimitriou@ucl.ac.uk (K.I.P.); n.vasilakis@soton.ac.uk (N.V.); hm@ecs.soton.ac.uk (H.M.) 2 Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK; panagiotis.pantelidis@nhs.net (P.P.); p.kelleher@imperial.ac.uk (P.K.) 4 Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK 5 Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, UK; t.prodromakis@soton.ac.uk 3 Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK |
AuthorAffiliation_xml | – name: 1 Nanoelectronics & Nanotechnology Research Group, Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK; k.papadimitriou@ucl.ac.uk (K.I.P.); n.vasilakis@soton.ac.uk (N.V.); hm@ecs.soton.ac.uk (H.M.) – name: 2 Centre for Immunology and Vaccinology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London SW10 9NH, UK; panagiotis.pantelidis@nhs.net (P.P.); p.kelleher@imperial.ac.uk (P.K.) – name: 3 Infection and Immunity, North West London Pathology, Imperial College NHS Trust, Charing Cross Hospital, London W6 8RF, UK – name: 5 Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, UK; t.prodromakis@soton.ac.uk – name: 4 Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK |
Author_xml | – sequence: 1 givenname: Daniel surname: Evans fullname: Evans, Daniel – sequence: 2 givenname: Konstantinos orcidid: 0000-0002-0995-4834 surname: Papadimitriou fullname: Papadimitriou, Konstantinos – sequence: 3 givenname: Nikolaos surname: Vasilakis fullname: Vasilakis, Nikolaos – sequence: 4 givenname: Panagiotis surname: Pantelidis fullname: Pantelidis, Panagiotis – sequence: 5 givenname: Peter surname: Kelleher fullname: Kelleher, Peter – sequence: 6 givenname: Hywel surname: Morgan fullname: Morgan, Hywel – sequence: 7 givenname: Themistoklis surname: Prodromakis fullname: Prodromakis, Themistoklis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30453609$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1vFSEUhompse3VhX_AsNTFWL6GmdmYtONXk6pN1DUB5lCpc6EC0-T-e7neetMaVxB4eA7wnmN0EGIAhJ5T8przgZxk2lMqCKWP0BEVTDQ9Y-Tg3vwQHed8TQjjnPdP0CEnouWSDEfInuLP8RZm_MnbFN28-MlbfBl9KE10zagT4DMfM4QcE_66yQXWOAZ8mSoBEx59sosv-CzqNGFXmXFT4k8fAL-FArb4GJ6ix07PGZ7djSv0_f27b-PH5uLLh_Px9KKxQtDSDExooLbvmTY9YcPE3EC5bokF0DAMbQ_SCmOJ7TphO0OJldBT10oDQ8c0X6HznXeK-lrdJL_WaaOi9urPQkxXSqfi7QxKdJTU98tJtFQYaI2jTnbcdIa1xHWuut7sXDeLWcNkIZSk5wfShzvB_1BX8VZJJsX2n1fo5Z0gxV8L5KLWPluYZx0gLlkxWgNoZS_bir64X2tf5G9KFXi1A2pEOSdwe4QSte0Ate-Ayp78w1pf9DaGek0__-fEb51Qsfk |
CitedBy_id | crossref_primary_10_1016_j_bios_2023_115891 crossref_primary_10_1039_D0AN01945C crossref_primary_10_3390_bios12110956 crossref_primary_10_1016_j_ijbiomac_2022_04_038 crossref_primary_10_1002_VIW_20210003 crossref_primary_10_1039_D4RA03039G crossref_primary_10_3390_s20071951 crossref_primary_10_1007_s10800_024_02159_z crossref_primary_10_3390_microorganisms9112330 crossref_primary_10_1016_j_microc_2024_111038 crossref_primary_10_1016_j_bios_2021_113745 crossref_primary_10_1149_2754_2726_ad8cc7 crossref_primary_10_1002_elan_202100237 crossref_primary_10_1016_j_biosx_2022_100246 crossref_primary_10_1016_j_biosx_2024_100569 crossref_primary_10_1109_JSEN_2022_3164934 crossref_primary_10_1016_j_biosx_2024_100489 crossref_primary_10_1016_j_talanta_2019_05_081 crossref_primary_10_1016_j_coelec_2019_05_014 crossref_primary_10_3390_s19040911 crossref_primary_10_3390_s19061314 crossref_primary_10_1016_j_aca_2024_342507 crossref_primary_10_1007_s00542_024_05812_x crossref_primary_10_1149_1945_7111_ac0016 crossref_primary_10_1039_D2LC00926A crossref_primary_10_1007_s42247_021_00195_5 crossref_primary_10_1016_j_microc_2023_109385 crossref_primary_10_1016_S1872_2040_19_61169_2 crossref_primary_10_1016_j_tibtech_2023_11_002 crossref_primary_10_1021_acssensors_1c00972 crossref_primary_10_1007_s00216_021_03702_z crossref_primary_10_1002_advs_202004433 crossref_primary_10_1109_ACCESS_2021_3128668 crossref_primary_10_1039_D4TA06561A crossref_primary_10_1016_j_trac_2019_115688 crossref_primary_10_3390_bios10110159 crossref_primary_10_1149_2754_2726_ad304a crossref_primary_10_1016_j_snb_2021_130169 |
Cites_doi | 10.1016/S1473-3099(13)70008-2 10.1016/j.bios.2014.11.017 10.1021/acsnano.5b03203 10.1109/ISCAS.2017.8050616 10.1080/14737159.2017.1310619 10.1007/s10404-017-1935-2 10.1021/acsami.8b13518 10.1039/C6LC01239F 10.1021/ac2030199 10.1016/j.snb.2018.10.024 10.1016/j.jelechem.2016.04.022 10.1016/j.bios.2017.07.024 10.1039/C7LC00121E 10.1016/j.bios.2017.07.038 10.1016/j.rppnen.2017.12.002 10.1155/2017/4571614 10.1016/j.sna.2006.04.009 10.1016/j.mee.2014.09.024 10.1016/j.bios.2017.09.013 10.1016/j.bios.2016.07.075 10.1039/B609261F 10.1109/HIC.2016.7797713 10.1149/2.0271605jes 10.2217/fmb-2016-0120 10.1039/c3lc50431j 10.1128/JCM.00476-17 10.1039/C6LC01586G 10.1039/C6AN02445A 10.1002/biot.201700047 10.1109/JPROC.2014.2378776 10.1088/0960-1317/22/10/105022 10.3390/bios5030577 10.1021/ac0353029 10.1016/j.bios.2013.10.075 10.1016/j.tibtech.2017.03.013 10.1016/j.tibtech.2015.09.001 10.1109/LED.2010.2099098 10.1378/chest.06-2471 10.1038/nature05448 10.1109/BioCAS.2016.7833779 10.1016/j.bios.2015.08.040 10.1016/j.chroma.2014.12.041 10.1016/j.snb.2013.11.103 10.1016/j.bios.2014.08.027 10.1039/C8LC00010G 10.1109/BioCAS.2014.6981725 10.1021/acs.analchem.8b02042 10.1039/C6LC90046A 10.1016/S0924-4247(99)00062-X 10.1126/scitranslmed.aaa0056 10.1016/j.mee.2014.10.018 10.1016/j.bios.2016.08.084 10.1021/acssensors.6b00581 10.1016/j.talanta.2017.10.030 10.1038/s41598-017-00783-8 10.1016/j.apsusc.2015.12.123 10.1016/j.bios.2018.09.006 10.1016/j.tibtech.2014.01.003 10.1016/j.msec.2015.10.066 10.3389/fnhum.2016.00212 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s18114011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_47106096d4514be5bf1f673b7b250f7f PMC6264023 30453609 10_3390_s18114011 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Engineering and Physical Sciences Research Council grantid: EP/L020920/1 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-924ae1c882ab8029d2f913a50ceeae9958e6c4bc0c774c7b10c6e81f56be972a3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:41 EDT 2025 Thu Aug 21 18:11:19 EDT 2025 Mon Jul 21 09:50:32 EDT 2025 Thu Apr 03 06:57:29 EDT 2025 Tue Jul 01 00:41:46 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | point-of-care diagnostics eELISA lab-on-PCB PCB biosensors cytokine detection microfluidics |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-924ae1c882ab8029d2f913a50ceeae9958e6c4bc0c774c7b10c6e81f56be972a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-0995-4834 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18114011 |
PMID | 30453609 |
PQID | 2136056865 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47106096d4514be5bf1f673b7b250f7f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6264023 proquest_miscellaneous_2136056865 pubmed_primary_30453609 crossref_primary_10_3390_s18114011 crossref_citationtrail_10_3390_s18114011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181117 |
PublicationDateYYYYMMDD | 2018-11-17 |
PublicationDate_xml | – month: 11 year: 2018 text: 20181117 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Liu (ref_41) 2004; 76 Moschou (ref_51) 2017; 17 Berg (ref_14) 2015; 9 Ruecha (ref_58) 2018; 279 Barbosa (ref_5) 2017; 142 Vasilakis (ref_54) 2017; 21 Lin (ref_25) 2018; 18 Kozel (ref_9) 2017; 55 Jung (ref_48) 2015; 132 ref_53 ref_52 Dou (ref_35) 2016; 781 Evans (ref_50) 2017; 7 Mauk (ref_3) 2017; 17 Aracil (ref_40) 2015; 131 Kaushik (ref_8) 2016; 75 Vasilakis (ref_45) 2016; 368 Zarei (ref_13) 2017; 98 Burdallo (ref_43) 2012; 22 Moschou (ref_49) 2016; 86 Pandey (ref_17) 2018; 13 Laksanasopin (ref_11) 2015; 7 Urdea (ref_24) 2006; 444 Dincer (ref_15) 2017; 35 Song (ref_22) 2014; 32 Lalvani (ref_55) 2007; 131 Vashist (ref_32) 2015; 66 Zhang (ref_60) 2016; 59 Ding (ref_62) 2017; 2 Lawn (ref_6) 2013; 13 Saavedra (ref_23) 2018; 24 Hu (ref_19) 2014; 54 Jolly (ref_44) 2018; 123 Channon (ref_26) 2018; 90 Cao (ref_61) 2018; 10 ref_34 Wang (ref_59) 2016; 163 Srinivasan (ref_12) 2018; 99 Aldous (ref_57) 2006; 30 Merkel (ref_38) 1999; 77 Ibendorf (ref_42) 2007; 133 Vashist (ref_21) 2015; 33 ref_39 ref_37 Jiang (ref_36) 2014; 193 Gubala (ref_18) 2011; 84 Papadimitriou (ref_56) 2016; 10 Vashist (ref_31) 2015; 67 Bissonnette (ref_4) 2017; 17 Sharma (ref_20) 2015; 5 Tintu (ref_2) 2017; 12 Cinti (ref_27) 2018; 179 Xu (ref_30) 2015; 103 ref_47 Syedmoradi (ref_16) 2017; 87 Tang (ref_29) 2017; 17 ref_1 Prodromakis (ref_46) 2011; 32 Oncescu (ref_33) 2013; 13 Su (ref_10) 2015; 1377 Romero (ref_28) 2018; 100 Romeo (ref_7) 2016; 16 |
References_xml | – volume: 13 start-page: 349 year: 2013 ident: ref_6 article-title: Advances in tuberculosis diagnostics: the Xpert MTB/RIF assay and future prospects for a point-of-care test publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(13)70008-2 – volume: 66 start-page: 169 year: 2015 ident: ref_32 article-title: Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.11.017 – volume: 9 start-page: 7857 year: 2015 ident: ref_14 article-title: Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays publication-title: ACS Nano doi: 10.1021/acsnano.5b03203 – ident: ref_47 doi: 10.1109/ISCAS.2017.8050616 – volume: 17 start-page: 471 year: 2017 ident: ref_4 article-title: Portable devices and mobile instruments for infectious diseases point-of-care testing publication-title: Expert. Rev. Mol. Diagn. doi: 10.1080/14737159.2017.1310619 – volume: 21 start-page: 103 year: 2017 ident: ref_54 article-title: High-performance PCB-based capillary pumps for affordable point-of-care diagnostics publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-017-1935-2 – volume: 10 start-page: 33078 year: 2018 ident: ref_61 article-title: Graphene Oxide Based Recyclable in Vivo Device for Amperometric Monitoring of Interferon-γ in Inflammatory Mice publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13518 – volume: 17 start-page: 382 year: 2017 ident: ref_3 article-title: Miniaturized devices for point of care molecular detection of HIV publication-title: Lab Chip doi: 10.1039/C6LC01239F – volume: 84 start-page: 487 year: 2011 ident: ref_18 article-title: Point of care diagnostics: Status and future publication-title: Anal. Chem. doi: 10.1021/ac2030199 – volume: 279 start-page: 298 year: 2018 ident: ref_58 article-title: Label-free Paper-based Electrochemical Impedance Immunosensor for Human Interferon Gamma Detection publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.10.024 – volume: 781 start-page: 339 year: 2016 ident: ref_35 article-title: Portable detection of clenbuterol using a smartphone-based electrochemical biosensor with electric field-driven acceleration publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.04.022 – ident: ref_39 – volume: 98 start-page: 494 year: 2017 ident: ref_13 article-title: Advances in point-of-care technologies for molecular diagnostics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.07.024 – volume: 17 start-page: 1388 year: 2017 ident: ref_51 article-title: The lab-on-PCB approach: tackling the μTAS commercial upscaling bottleneck publication-title: Lab Chip doi: 10.1039/C7LC00121E – volume: 99 start-page: 115 year: 2018 ident: ref_12 article-title: IronPhone: Mobile device-coupled point-of-care diagnostics for assessment of iron status by quantification of serum ferritin publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.07.038 – volume: 24 start-page: 73 year: 2018 ident: ref_23 article-title: Point of care diagnostics for tuberculosis publication-title: Pulmonology doi: 10.1016/j.rppnen.2017.12.002 – ident: ref_1 doi: 10.1155/2017/4571614 – volume: 133 start-page: 231 year: 2007 ident: ref_42 article-title: Realization of a flow injection analysis in PCB technology publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2006.04.009 – volume: 132 start-page: 46 year: 2015 ident: ref_48 article-title: Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.09.024 – volume: 100 start-page: 208 year: 2018 ident: ref_28 article-title: Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.09.013 – volume: 86 start-page: 805 year: 2016 ident: ref_49 article-title: Amperometric IFN-γ immunosensors with commercially fabricated PCB sensing electrodes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.075 – volume: 30 start-page: 1576 year: 2006 ident: ref_57 article-title: Electrochemical studies of gold and chloride in ionic liquids publication-title: New J. Chem. doi: 10.1039/B609261F – ident: ref_53 doi: 10.1109/HIC.2016.7797713 – volume: 163 start-page: B140 year: 2016 ident: ref_59 article-title: Measurement of interferon gamma concentration using an electrochemical immunosensor publication-title: J. Electrochem. Soc. doi: 10.1149/2.0271605jes – volume: 12 start-page: 51 year: 2017 ident: ref_2 article-title: Pre-implementation guidelines for infectious disease point-of-care testing in medical institutions publication-title: Future Microbiol. doi: 10.2217/fmb-2016-0120 – volume: 13 start-page: 3232 year: 2013 ident: ref_33 article-title: Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva publication-title: Lab Chip doi: 10.1039/c3lc50431j – volume: 55 start-page: 2313 year: 2017 ident: ref_9 article-title: Point of Care Testing for Infectious Diseases-Past, Present and Future publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00476-17 – volume: 17 start-page: 1270 year: 2017 ident: ref_29 article-title: A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection publication-title: Lab Chip doi: 10.1039/C6LC01586G – volume: 142 start-page: 858 year: 2017 ident: ref_5 article-title: A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care publication-title: Analyst doi: 10.1039/C6AN02445A – volume: 13 start-page: 1700047 year: 2018 ident: ref_17 article-title: Microfluidics Based Point-of-Care Diagnostics publication-title: Biotechnol. J. doi: 10.1002/biot.201700047 – volume: 103 start-page: 236 year: 2015 ident: ref_30 article-title: Advances in smartphone-based point-of-care diagnostics publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2378776 – volume: 22 start-page: 105022 year: 2012 ident: ref_43 article-title: Integration of microelectronic chips in microfluidic systems on printed circuit board publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/10/105022 – volume: 5 start-page: 577 year: 2015 ident: ref_20 article-title: Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics publication-title: Biosensors doi: 10.3390/bios5030577 – volume: 76 start-page: 1824 year: 2004 ident: ref_41 article-title: Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection publication-title: Anal. Chem. doi: 10.1021/ac0353029 – volume: 54 start-page: 585 year: 2014 ident: ref_19 article-title: Advances in paper-based point-of-care diagnostics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.10.075 – volume: 35 start-page: 728 year: 2017 ident: ref_15 article-title: Multiplexed Point-of-Care Testing–xPOCT publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2017.03.013 – volume: 33 start-page: 692 year: 2015 ident: ref_21 article-title: Emerging technologies for next-generation point-of-care testing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2015.09.001 – volume: 32 start-page: 417 year: 2011 ident: ref_46 article-title: A Low-Cost Disposable Chemical Sensing Platform Based on Discrete Components publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2010.2099098 – volume: 131 start-page: 1898 year: 2007 ident: ref_55 article-title: Diagnosing tuberculosis infection in the 21st century—New tools to tackle an old enemy publication-title: Chest doi: 10.1378/chest.06-2471 – volume: 444 start-page: 73 year: 2006 ident: ref_24 article-title: Requirements for high impact diagnostics in the developing world publication-title: Nature doi: 10.1038/nature05448 – ident: ref_52 doi: 10.1109/BioCAS.2016.7833779 – volume: 75 start-page: 254 year: 2016 ident: ref_8 article-title: Towards detection and diagnosis of Ebola virus disease at point-of-care publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.08.040 – volume: 1377 start-page: 13 year: 2015 ident: ref_10 article-title: Microfluidic platform towards point-of-care diagnostics in infectious diseases publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.12.041 – volume: 193 start-page: 653 year: 2014 ident: ref_36 article-title: Smartphone based portable bacteria pre-concentrating microfluidic sensor and impedance sensing system publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2013.11.103 – ident: ref_37 – volume: 67 start-page: 248 year: 2015 ident: ref_31 article-title: A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.08.027 – volume: 18 start-page: 965 year: 2018 ident: ref_25 article-title: Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein publication-title: Lab Chip doi: 10.1039/C8LC00010G – ident: ref_34 doi: 10.1109/BioCAS.2014.6981725 – volume: 90 start-page: 7777 year: 2018 ident: ref_26 article-title: Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02042 – volume: 16 start-page: 1957 year: 2016 ident: ref_7 article-title: Smart biosensors for multiplexed and fully integrated point-of-care diagnostics publication-title: Lab Chip doi: 10.1039/C6LC90046A – volume: 77 start-page: 98 year: 1999 ident: ref_38 article-title: A new technology for fluidic microsystems based on PCB technology publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(99)00062-X – volume: 7 start-page: 273re1 year: 2015 ident: ref_11 article-title: A smartphone dongle for diagnosis of infectious diseases at the point of care publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa0056 – volume: 131 start-page: 13 year: 2015 ident: ref_40 article-title: Portable Lab-on-PCB platform for autonomous micromixing publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.10.018 – volume: 87 start-page: 373 year: 2017 ident: ref_16 article-title: Point of care testing: the impact of nanotechnology publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.08.084 – volume: 2 start-page: 210 year: 2017 ident: ref_62 article-title: Rapid and label-free detection of interferon gamma via an electrochemical aptasensor comprising a ternary surface monolayer on a gold interdigitated electrode array publication-title: ACS Sens. doi: 10.1021/acssensors.6b00581 – volume: 179 start-page: 186 year: 2018 ident: ref_27 article-title: Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat publication-title: Talanta doi: 10.1016/j.talanta.2017.10.030 – volume: 7 start-page: 685 year: 2017 ident: ref_50 article-title: An Assay System for Point-of-Care Diagnosis of Tuberculosis using Commercially Manufactured PCB Technology publication-title: Sci. Rep. doi: 10.1038/s41598-017-00783-8 – volume: 368 start-page: 69 year: 2016 ident: ref_45 article-title: Long-lasting FR-4 surface hydrophilisation towards commercial PCB passive microfluidics publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.12.123 – volume: 123 start-page: 244 year: 2018 ident: ref_44 article-title: A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.09.006 – volume: 32 start-page: 132 year: 2014 ident: ref_22 article-title: Point-of-care technologies for molecular diagnostics using a drop of blood publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.01.003 – volume: 59 start-page: 577 year: 2016 ident: ref_60 article-title: Electrochemical immunosensor for interferon-γ based on disposable ITO detector and HRP-antibody-conjugated nano gold as signal tag publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.10.066 – volume: 10 start-page: 212 year: 2016 ident: ref_56 article-title: High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2016.00212 |
SSID | ssj0023338 |
Score | 2.4278092 |
Snippet | Point of Care (PoC) diagnostics have been the subject of considerable research over the last few decades driven by the pressure to detect diseases quickly and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4011 |
SubjectTerms | Biosensing Techniques cytokine detection Cytokines - blood eELISA Electrochemical Techniques Electrodes Humans Hydrogen Peroxide - chemistry Interferon-gamma - blood lab-on-PCB Limit of Detection microfluidics Microfluidics - methods PCB biosensors point-of-care diagnostics Point-of-Care Systems |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8MwGA6ykx7Eb-sXUTx4Ketn2h636RjCxg4OditN8gaLo5GtE_z3vmm7scnAi9cmJeHNmz7P0yRPCHkEQJWMwG6HoZR2IKPAzsyVYUzx2EF4lkqaH_rDERtMgtdpON246svsCavtgevAtfHj6TDk2TJAaOcQcuUqFvk84gjeKlLm64uYtxJTjdTC9uPaR8hHUd9eII4ZJeFuoU9l0r-LWf7eILmBOP0jcthQRdqpu3hM9qA4IQcbBoKnRHToSH_BjA7Nvjo1W-YyF3Ss86K0tbLN4SLazfUCtaqe09qdnOqCjufGJkLSXj4Xy7ykXY2JQpG_0t53qT-wAfoMZbVLqzgjk_7LW29gN9cm2AK5TWmjosrAFUidM4y3l0hPJa6fhQ7iYQZJEsbARMCFI5D6iYi7jmAQuypkHJLIy_xz0ip0AZeExokAAcpMWgjwtUz4XKEWhyQG6fHAIk-rcKai8RQ3V1vMUtQWJvLpOvIWeVhX_ayNNHZV6poxWVcw3tfVA8yItMmI9K-MsMj9akRTnCtmASQrQC8Xqef6qN5YzEKLXNQjvG7KrBhjaWKRaGvst_qyXVLk75UfN2pCVOH-1X90_prsIyWLzWlHN7ohrXK-hFukPSW_qzL8B1OOAaQ priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Microfluidic Point-of-Care Biosensor System on Printed Circuit Board for Cytokine Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30453609 https://www.proquest.com/docview/2136056865 https://pubmed.ncbi.nlm.nih.gov/PMC6264023 https://doaj.org/article/47106096d4514be5bf1f673b7b250f7f |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3LjtMwFL0aZiQ0LBBvwqMyiAWbQF62kwVC0zJlhNSqQlTqLopfQ0QVQ5oi5u-5TtKoRWWTReI85OOre05snwvwRmtUyZjYfUqV8hPFE79wJcOYEWmA6VkZ5X7oz-bsapl8WdHVCexqbPYduDkq7Vw9qWW9fvfn181HDPgPTnGiZH-_wSzldAKKoDNMSNzF5ywZJhMi_Ji0MxU6bH4Ot908YczcasS9rNSa9x9jnP8unNzLRNN7cLenkOSiw_w-nOjqAdzZMxZ8CPKCzO1vvSYzt97OrLelKiVZ2LJqfGt8t-mIjEu7QQ1ra9K5lhNbkUXt7CMUmZS13JYNGVscQAR5LZncNPYHvoB80k27eqt6BMvp5bfJld-XU_Alcp7GR6VV6FAipS4QhyhTkcnCuKAB5slCZxlNNZOJkIFESii5CAPJdBoayoTOeFTEj-G0spV-CiTNpJbauGDWCd5WyFgY1Og6S7WKROLB21135rL3GnclL9Y5ag4HQj6A4MHroenPzmDjWKOxw2Ro4Dyx2xO2vs77EMsxzQYIJVMJkkChqTChYTwWXCDNM9x48GqHaI4x5CZGikrb7SaPQhwDlKWMevCkQ3h41W6EeMAPsD_4lsMrVfm99elGrYjqPH7232c-h3PkX6nb2hjyF3Da1Fv9EjlOI0Zwi684HtPp5xGcjS_ni6-j9n_BqB3bfwHas_9D |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Microfluidic+Point-of-Care+Biosensor+System+on+Printed+Circuit+Board+for+Cytokine+Detection&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Evans%2C+Daniel&rft.au=Papadimitriou%2C+Konstantinos+I&rft.au=Vasilakis%2C+Nikolaos&rft.au=Pantelidis%2C+Panagiotis&rft.date=2018-11-17&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft_id=info:doi/10.3390%2Fs18114011&rft_id=info%3Apmid%2F30453609&rft.externalDocID=30453609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |