The multiple activities of BAG3 protein: Mechanisms

BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1864; no. 8; p. 129628
Main Authors Marzullo, Liberato, Turco, Maria Caterina, De Marco, Margot
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways. Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell. Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells. BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions. •BAG3 protein modulates multiple pathways involved into cell stress response.•Apoptosis, autophagy, cytoskeleton dynamics are regulated by BAG3.•BAG3 supports cell survival in several tumor types under stressful conditions.•Recent advances reported a new paracrine activity of secreted BAG3 on macrophages.•BAG3/IFITM2 axis is a novel signaling pathway leading to tumor (PDAC) development.
AbstractList BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways. Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell. Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells. BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions. •BAG3 protein modulates multiple pathways involved into cell stress response.•Apoptosis, autophagy, cytoskeleton dynamics are regulated by BAG3.•BAG3 supports cell survival in several tumor types under stressful conditions.•Recent advances reported a new paracrine activity of secreted BAG3 on macrophages.•BAG3/IFITM2 axis is a novel signaling pathway leading to tumor (PDAC) development.
BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways. Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell. Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells. BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.
BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.
BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.BACKGROUNDBAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.SCOPE OF REVIEWHere we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.MAJOR CONCLUSIONSWhereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.GENERAL SIGNIFICANCEBAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.
ArticleNumber 129628
Author Turco, Maria Caterina
De Marco, Margot
Marzullo, Liberato
Author_xml – sequence: 1
  givenname: Liberato
  surname: Marzullo
  fullname: Marzullo, Liberato
  email: marzullo@unisa.it
– sequence: 2
  givenname: Maria Caterina
  surname: Turco
  fullname: Turco, Maria Caterina
  email: mcturco@unisa.it
– sequence: 3
  givenname: Margot
  surname: De Marco
  fullname: De Marco, Margot
  email: mdemarco@unisa.it
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32360144$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlLBDEQhYMoOi7_QKSPXnrM1umMB0EHNxjxoueQrlQ0Qy9jJzPgv7eH1osHrUtB8b1H8d4h2W27Fgk5ZXTKKFMXy2lV2Tdsp5zy4cRniusdMmG65LmmVO2SCRVU5pKp4oAcxrikwxSzYp8cCC4UZVJOiHh5x6xZ1ymsaswspLAJKWDMOp_dXN-LbNV3CUN7mT0hvNs2xCYekz1v64gn3_uIvN7dvswf8sXz_eP8epGDlCzlM1agcqUTTvrKeVEALaxHXVUKADQrHaWgvBMawFegvS3lwCMFIamTKI7I-eg7_PCxxphMEyJgXdsWu3U0XJal4lJr_T8qZpoVnNMtevaNrqsGnVn1obH9p_nJZAAuRwD6LsYevYGQbApdm3obasOo2RZglmYswGwLMGMBg1j-Ev_4_yO7GmU45LkJ2JsIAVtAF3qEZFwX_jb4AsITn6s
CitedBy_id crossref_primary_10_1177_15353702211066908
crossref_primary_10_3390_cells9112416
crossref_primary_10_1172_JCI149415
crossref_primary_10_1016_j_taap_2022_116067
crossref_primary_10_1039_D4BM00286E
crossref_primary_10_3389_fvets_2024_1393372
crossref_primary_10_1016_j_xphs_2021_02_025
crossref_primary_10_1002_jcb_30123
crossref_primary_10_1002_cm_21697
crossref_primary_10_3390_cells11071160
crossref_primary_10_3390_molecules29215051
crossref_primary_10_1016_j_trecan_2020_07_001
crossref_primary_10_3390_ijms22010142
crossref_primary_10_1016_j_nbd_2021_105527
crossref_primary_10_1186_s40001_024_01687_w
crossref_primary_10_1002_jcp_30016
crossref_primary_10_3390_cells12060937
crossref_primary_10_3390_ijerph18157968
crossref_primary_10_3389_fbioe_2022_1027468
crossref_primary_10_1038_s41565_023_01378_3
crossref_primary_10_1038_s41420_024_02153_6
crossref_primary_10_1128_jvi_00284_23
crossref_primary_10_3390_cells9112350
crossref_primary_10_1016_j_imbio_2021_152153
crossref_primary_10_1016_j_bbcan_2022_188781
crossref_primary_10_1016_j_yexcr_2021_112790
Cites_doi 10.1038/cddis.2015.280
10.1016/j.bbrc.2017.08.118
10.1016/j.bbrc.2015.07.006
10.1038/ajg.2013.128
10.1161/CIRCRESAHA.110.225649
10.1155/2018/5967890
10.1016/j.jacc.2018.08.2171
10.1038/emboj.2009.29
10.1002/cpbi.5
10.1161/CIRCHEARTFAILURE.117.004202
10.1007/s00109-011-0795-6
10.1371/journal.pgen.1005582
10.1210/jc.2011-0484
10.1158/1078-0432.CCR-18-2455
10.1016/j.jacc.2018.08.2181
10.1038/onc.2012.17
10.1016/j.ajpath.2012.07.016
10.1038/cddis.2013.8
10.1016/j.ajpath.2011.02.002
10.3390/ijms21041409
10.1016/j.biocel.2009.12.008
10.1073/pnas.0907696107
10.1038/ncomms9695
10.1242/jcs.203679
10.1158/0008-5472.CAN-07-0618
10.1002/1878-0261.12492
10.1093/nar/gkw1132
10.1007/s10741-015-9487-6
10.2353/ajpath.2006.060250
10.1038/s41467-019-13690-5
10.1038/cddis.2015.53
10.1172/jci.insight.94623
10.1074/jbc.M706304200
10.1016/j.smim.2018.08.004
10.1002/jcp.21397
10.1038/leu.2010.68
10.1016/j.tips.2016.04.007
10.4161/cc.10.5.14964
10.3389/fnmol.2017.00177
10.1074/jbc.M112.414177
10.1242/jcs.034355
10.1007/s12192-017-0780-2
10.1038/s41598-019-44139-w
10.1074/jbc.M209682200
10.1172/JCI95839
10.1038/sj.onc.1203797
10.1007/s10741-019-09899-7
10.1016/j.jchf.2014.05.012
10.1016/j.semcdb.2017.08.049
10.1038/s41467-018-06583-6
10.1038/s41467-018-07718-5
10.1038/onc.2008.142
10.1016/j.yjmcc.2016.01.015
10.1074/jbc.275.7.4613
10.1101/cshperspect.a033928
10.1016/j.cca.2015.02.048
10.1161/CIRCULATIONAHA.119.041161
10.1002/jcp.26093
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129628
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 32360144
10_1016_j_bbagen_2020_129628
S0304416520301409
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-915e6d7d3d4fbdf35c05afe8bb6ccc817d00c6fd38ccfbc8fa746d7e0c340d4e3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 15:59:38 EDT 2025
Fri Jul 11 08:22:38 EDT 2025
Thu Apr 03 07:06:37 EDT 2025
Tue Jul 01 00:22:13 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Fri Feb 23 02:47:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cell survival
Protein quality control
BAG3
Monocyte activation
Actin dynamics
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-915e6d7d3d4fbdf35c05afe8bb6ccc817d00c6fd38ccfbc8fa746d7e0c340d4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doi.org/10.1016/j.bbagen.2020.129628
PMID 32360144
PQID 2398152208
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2477624888
proquest_miscellaneous_2398152208
pubmed_primary_32360144
crossref_citationtrail_10_1016_j_bbagen_2020_129628
crossref_primary_10_1016_j_bbagen_2020_129628
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Stelzer (bb0010) 2016; 54
Gandhi, Gaggin, Belcher (bb0290) 2015; 445
Fontanella, Birolo, Infusini (bb0140) 2010; 42
Iwasaki, Homma, Hishiya, Dolezal, Reed, Takayama (bb0135) 2007; 67
Iorio, De Marco, Basile (bb0270) 2019; 15
Varlet, Fuchs, Luthold, Lambert, Landry, Lavoie (bb0155) 2017; 22
Gamerdinger, Hajieva, Kaya, Wolfrum, Hartl, Behl (bb0120) 2009; 28
Doong, Price, Kim (bb0170) 2000; 19
Shah, Henry, Roselli (bb0180) 2020; 11
Vasilescu, Ojala, Brilhante (bb0235) 2018; 72
De Marco, D'Auria, Rosati (bb0285) 2014; 2
De Marco, Turco, Rosati (bb0220) 2011; 10
Gentilella, Passiatore, Deshmane, Turco, Khalili (bb0025) 2008; 27
Meister-Broekema, Freilich, Jagadeesan (bb0185) 2018; 9
Feldman, Kontos, McClung, Gerhard, Khalili, Cheung (bb0050) 2017; 10
Falco, Festa, Basile (bb0175) 2012; 31
Rosati, Basile, D’Auria (bb0255) 2015; 6
Iorio, Rosati, D’Auria (bb0275) 2018; 67
Lüders, Demand, Höhfeld (bb0080) 2000; 275
Judge, Perez-Bermejo, Truong (bb0195) 2017; 2
Sarparanta, Jonson, Kawan, Udd (bb0065) 2020; 21
Franceschelli, Rosati, Lerose, De Nicola, Turco, Pascale (bb0015) 2008; 215
Ganassi, Badodi, Ortuste Quiroga, Zammit, Hinits, Hughes (bb0225) 2018; 9
Festa, Del Valle, Khalili (bb0100) 2011; 178
Franceschelli, Bruno, Festa (bb0145) 2018; 2018
Carra, Seguin, Lambert, Landry (bb0115) 2008; 283
Yánez, Ross, Crompton (bb0260) 2019
d'Avenia, Citro, De Marco (bb0240) 2015; 6
Homma, Iwasaki, Shelton, Engvall, Reed, Takayama (bb0200) 2006; 169
Ammirante, Rosati, Arra (bb0075) 2010; 107
Basile, De Marco, Festa (bb0265) 2019; 13
Hishiya, Kitazawa, Takayama (bb0205) 2010; 107
Doong, Rizzo, Fang, Kulpa, Weissman, Kohn (bb0070) 2003; 278
Boiani, Daniel, Liu, Hogarty, Marnett (bb0090) 2013; 288
Derosa, Maffioli, Rosati (bb0295) 2018; 233
Knezevic, Myers, Gordon (bb0035) 2015; 20
Klimek, Kathage, Wördehoff, Höhfeld (bb0110) 2017; 130
Wang, Thurmond (bb0165) 2009; 122
Needham, Guerriero, Brodsky (bb0125) 2019; 11
Dziki, Hussey, Badylak (bb0300) 2018; 38
Domínguez, Cuenca, Bilińska (bb0055) 2018; 72
Jin, Ahn, Kim (bb0105) 2015; 464
Rosati, Bersani, Tavano (bb0245) 2012; 181
Aung, Vargas, Yang (bb0230) 2019; 140
Behl (bb0040) 2016; 37
Chiappetta, Basile, Arra (bb0085) 2012; 97
Kang, Yun, Lee (bb0095) 2017; 492
Feldman, Gordon, Wang (bb0210) 2016; 92
Stürner, Behl (bb0045) 2017; 10
Fuchs, Luthold, Guilbert (bb0150) 2015; 11
De Marco, Falco, Basile (bb0280) 2013; 4
Bienert, Waterhouse, de Beer, Tauriello, Studer, Bordoli, Schwede (bb0005) 2017; 45
Gamerdinger, Carra, Behl (bb0130) 2011; 89
Iorio, Festa, Rosati (bb0160) 2015; 6
De Marco, Basile, Iorio (bb0030) 2018; 78
Liu, Sun, Zhang, Tang, Xu (bb0060) 2019
Cesaro, Montano, Rosati, Crescitelli, Izzo, Turco, Costanzo (bb0020) 2010; 24
Ghasemi Tahrir, Gupta, Myers (bb0215) 2019; 9
Mizushima, Sadoshima (bb0190) 2017; 127
Falco, Rosati, Festa (bb0250) 2013; 108
Varlet (10.1016/j.bbagen.2020.129628_bb0155) 2017; 22
Festa (10.1016/j.bbagen.2020.129628_bb0100) 2011; 178
Aung (10.1016/j.bbagen.2020.129628_bb0230) 2019; 140
Yánez (10.1016/j.bbagen.2020.129628_bb0260) 2019
Gamerdinger (10.1016/j.bbagen.2020.129628_bb0130) 2011; 89
Ganassi (10.1016/j.bbagen.2020.129628_bb0225) 2018; 9
Chiappetta (10.1016/j.bbagen.2020.129628_bb0085) 2012; 97
Hishiya (10.1016/j.bbagen.2020.129628_bb0205) 2010; 107
Falco (10.1016/j.bbagen.2020.129628_bb0175) 2012; 31
Klimek (10.1016/j.bbagen.2020.129628_bb0110) 2017; 130
Feldman (10.1016/j.bbagen.2020.129628_bb0050) 2017; 10
Kang (10.1016/j.bbagen.2020.129628_bb0095) 2017; 492
Domínguez (10.1016/j.bbagen.2020.129628_bb0055) 2018; 72
Franceschelli (10.1016/j.bbagen.2020.129628_bb0145) 2018; 2018
Stelzer (10.1016/j.bbagen.2020.129628_bb0010) 2016; 54
Wang (10.1016/j.bbagen.2020.129628_bb0165) 2009; 122
Derosa (10.1016/j.bbagen.2020.129628_bb0295) 2018; 233
Knezevic (10.1016/j.bbagen.2020.129628_bb0035) 2015; 20
Fontanella (10.1016/j.bbagen.2020.129628_bb0140) 2010; 42
De Marco (10.1016/j.bbagen.2020.129628_bb0030) 2018; 78
Fuchs (10.1016/j.bbagen.2020.129628_bb0150) 2015; 11
Lüders (10.1016/j.bbagen.2020.129628_bb0080) 2000; 275
Doong (10.1016/j.bbagen.2020.129628_bb0170) 2000; 19
d'Avenia (10.1016/j.bbagen.2020.129628_bb0240) 2015; 6
Liu (10.1016/j.bbagen.2020.129628_bb0060) 2019
Iorio (10.1016/j.bbagen.2020.129628_bb0160) 2015; 6
Needham (10.1016/j.bbagen.2020.129628_bb0125) 2019; 11
Judge (10.1016/j.bbagen.2020.129628_bb0195) 2017; 2
Cesaro (10.1016/j.bbagen.2020.129628_bb0020) 2010; 24
Mizushima (10.1016/j.bbagen.2020.129628_bb0190) 2017; 127
Rosati (10.1016/j.bbagen.2020.129628_bb0255) 2015; 6
De Marco (10.1016/j.bbagen.2020.129628_bb0285) 2014; 2
Ammirante (10.1016/j.bbagen.2020.129628_bb0075) 2010; 107
Rosati (10.1016/j.bbagen.2020.129628_bb0245) 2012; 181
Vasilescu (10.1016/j.bbagen.2020.129628_bb0235) 2018; 72
Dziki (10.1016/j.bbagen.2020.129628_bb0300) 2018; 38
Jin (10.1016/j.bbagen.2020.129628_bb0105) 2015; 464
Gamerdinger (10.1016/j.bbagen.2020.129628_bb0120) 2009; 28
Doong (10.1016/j.bbagen.2020.129628_bb0070) 2003; 278
De Marco (10.1016/j.bbagen.2020.129628_bb0280) 2013; 4
Iorio (10.1016/j.bbagen.2020.129628_bb0270) 2019; 15
Boiani (10.1016/j.bbagen.2020.129628_bb0090) 2013; 288
Ghasemi Tahrir (10.1016/j.bbagen.2020.129628_bb0215) 2019; 9
Falco (10.1016/j.bbagen.2020.129628_bb0250) 2013; 108
Carra (10.1016/j.bbagen.2020.129628_bb0115) 2008; 283
Meister-Broekema (10.1016/j.bbagen.2020.129628_bb0185) 2018; 9
Behl (10.1016/j.bbagen.2020.129628_bb0040) 2016; 37
Sarparanta (10.1016/j.bbagen.2020.129628_bb0065) 2020; 21
Franceschelli (10.1016/j.bbagen.2020.129628_bb0015) 2008; 215
Iwasaki (10.1016/j.bbagen.2020.129628_bb0135) 2007; 67
Feldman (10.1016/j.bbagen.2020.129628_bb0210) 2016; 92
Gandhi (10.1016/j.bbagen.2020.129628_bb0290) 2015; 445
Basile (10.1016/j.bbagen.2020.129628_bb0265) 2019; 13
Homma (10.1016/j.bbagen.2020.129628_bb0200) 2006; 169
Gentilella (10.1016/j.bbagen.2020.129628_bb0025) 2008; 27
Stürner (10.1016/j.bbagen.2020.129628_bb0045) 2017; 10
De Marco (10.1016/j.bbagen.2020.129628_bb0220) 2011; 10
Iorio (10.1016/j.bbagen.2020.129628_bb0275) 2018; 67
Bienert (10.1016/j.bbagen.2020.129628_bb0005) 2017; 45
Shah (10.1016/j.bbagen.2020.129628_bb0180) 2020; 11
References_xml – volume: 178
  start-page: 2504
  year: 2011
  end-page: 2512
  ident: bb0100
  article-title: BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy
  publication-title: Am. J. Pathol.
– volume: 21
  year: 2020
  ident: bb0065
  article-title: Neuromuscular diseases due to chaperone mutations: a review and some new results
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: 850
  year: 2011
  end-page: 852
  ident: bb0220
  article-title: BAG3 protein is induced during cardiomyoblast differentiation and modulates myogenin expression
  publication-title: Cell Cycle
– volume: 11
  year: 2015
  ident: bb0150
  article-title: A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis
  publication-title: PLoS Genet.
– volume: 38
  start-page: 33
  year: 2018
  end-page: 39
  ident: bb0300
  article-title: Alarmins of the extracellular space
  publication-title: Semin. Immunol.
– volume: 278
  start-page: 28490
  year: 2003
  end-page: 28500
  ident: bb0070
  article-title: CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins
  publication-title: J. Biol. Chem.
– volume: 140
  start-page: 1318
  year: 2019
  end-page: 1330
  ident: bb0230
  article-title: Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development
  publication-title: Circulation
– volume: 89
  start-page: 1175
  year: 2011
  end-page: 1182
  ident: bb0130
  article-title: Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins
  publication-title: J. Mol. Med.
– volume: 15
  start-page: 892
  year: 2019
  end-page: 893
  ident: bb0270
  article-title: CAF-derived IL6 and GM-CSF cooperate to induce M2-like TAMs
  publication-title: Clin. Cancer Res.
– volume: 107
  start-page: 7497
  year: 2010
  end-page: 7502
  ident: bb0075
  article-title: IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 20
  start-page: 423
  year: 2015
  end-page: 434
  ident: bb0035
  article-title: BAG3: a new player in the heart failure paradigm
  publication-title: Heart Fail. Rev.
– volume: 169
  start-page: 761
  year: 2006
  end-page: 773
  ident: bb0200
  article-title: BAG3 deficiency results in fulminant myopathy and early lethality
  publication-title: Am. J. Pathol.
– volume: 233
  start-page: 1791
  year: 2018
  end-page: 1795
  ident: bb0295
  article-title: Evaluation of BAG3 levels in healthy subjects, hypertensive patients, and hypertensive diabetic patients
  publication-title: J. Cell. Physiol.
– volume: 19
  start-page: 4385
  year: 2000
  end-page: 4395
  ident: bb0170
  article-title: CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70
  publication-title: Oncogene
– volume: 2
  start-page: 673
  year: 2014
  end-page: 675
  ident: bb0285
  article-title: BAG3 protein in advanced-stage heart failure
  publication-title: JACC Heart Fail.
– volume: 54
  start-page: p. 1.30.1
  year: 2016
  end-page: p. 1.30.33
  ident: bb0010
  publication-title: Curr. Protoc. Bioinformatics.
– volume: 288
  start-page: 6980
  year: 2013
  end-page: 6990
  ident: bb0090
  article-title: The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737
  publication-title: J. Biol. Chem.
– year: 2019
  ident: bb0260
  article-title: The IFITM protein family in adaptive immunity
  publication-title: Immunology
– volume: 78
  start-page: 85
  year: 2018
  end-page: 92
  ident: bb0030
  article-title: Role of BAG3 in cancer progression: a therapeutic opportunity
  publication-title: Semin. Cell Dev. Biol.
– volume: 108
  start-page: 1178
  year: 2013
  end-page: 1180
  ident: bb0250
  article-title: BAG3 is a novel serum biomarker for pancreatic adenocarcinomas
  publication-title: Am. J. Gastroenterol.
– volume: 22
  start-page: 553
  year: 2017
  end-page: 567
  ident: bb0155
  article-title: Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division
  publication-title: Cell Stress Chaperones
– volume: 445
  start-page: 73
  year: 2015
  end-page: 78
  ident: bb0290
  article-title: Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure
  publication-title: Clin. Chim. Acta
– volume: 72
  start-page: 2471
  year: 2018
  end-page: 2481
  ident: bb0055
  article-title: Dilated cardiomyopathy due to BLC2-associated Athanogene 3 (BAG3) mutations
  publication-title: J. Am. Coll. Cardiol.
– volume: 27
  start-page: 5011
  year: 2008
  end-page: 5018
  ident: bb0025
  article-title: Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells
  publication-title: Oncogene
– year: 2019
  ident: bb0060
  article-title: Advances in the role and mechanism of BAG3 in dilated cardiomyopathy
  publication-title: Heart Fail. Rev.
– volume: 181
  start-page: 1524
  year: 2012
  end-page: 1529
  ident: bb0245
  article-title: Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival
  publication-title: Am. J. Pathol.
– volume: 92
  year: 2016
  ident: bb0210
  article-title: BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes
  publication-title: J. Mol. Cell Cardiol.
– volume: 28
  start-page: 889
  year: 2009
  end-page: 901
  ident: bb0120
  article-title: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
  publication-title: EMBO J.
– volume: 130
  start-page: 2781
  year: 2017
  end-page: 2788
  ident: bb0110
  article-title: BAG3-mediated proteostasis at a glance
  publication-title: J. Cell Sci.
– volume: 492
  start-page: 304
  year: 2017
  end-page: 309
  ident: bb0095
  article-title: KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, mule-dependent pathway in A549 non-small cell lung cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 215
  start-page: 575
  year: 2008
  end-page: 577
  ident: bb0015
  article-title: gene expression is regulated by heat shock factor 1
  publication-title: J. Cell Physiol.
– volume: 10
  start-page: 177
  year: 2017
  ident: bb0045
  article-title: The role of the multifunctional BAG3 protein in cellular protein quality control and in disease
  publication-title: Front. Mol. Neurosci.
– volume: 9
  start-page: 5342
  year: 2018
  ident: bb0185
  article-title: Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks
  publication-title: Nat. Commun.
– volume: 122
  start-page: 893
  year: 2009
  end-page: 903
  ident: bb0165
  article-title: Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins
  publication-title: J. Cell Sci.
– volume: 31
  start-page: 5153
  year: 2012
  end-page: 5161
  ident: bb0175
  article-title: BAG3 controls angiogenesis through regulation of ERK phosphorylation
  publication-title: Oncogene
– volume: 6
  start-page: 8695
  year: 2015
  ident: bb0255
  article-title: BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  ident: bb0195
  article-title: A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress
  publication-title: JCI Insight
– volume: 13
  start-page: 1388
  year: 2019
  end-page: 1399
  ident: bb0265
  article-title: Development of a humanized anti-BAG3 antibody for pancreatic cancer treatment
  publication-title: Mol. Oncol.
– volume: 464
  start-page: 561
  year: 2015
  end-page: 567
  ident: bb0105
  article-title: BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 9
  start-page: 7658
  year: 2019
  ident: bb0215
  article-title: Role of Bcl2-associated Athanogene 3 in turnover of gap junction protein, Connexin 43, in neonatal cardiomyocytes
  publication-title: Sci. Rep.
– volume: 4
  year: 2013
  ident: bb0280
  article-title: Detection of soluble BAG3 and anti-BAG3 antibodies in patients with chronic heart failure
  publication-title: Cell Death Dis.
– volume: 24
  start-page: 1204
  year: 2010
  end-page: 1206
  ident: bb0020
  article-title: WT1 protein is a transcriptional activator of the antiapoptotic
  publication-title: Leukemia
– volume: 6
  year: 2015
  ident: bb0240
  article-title: A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy
  publication-title: Cell Death Dis.
– volume: 72
  start-page: 2324
  year: 2018
  end-page: 2338
  ident: bb0235
  article-title: Genetic basis of severe childhood-onset cardiomyopathies
  publication-title: J. Am. Coll. Cardiol.
– volume: 10
  year: 2017
  ident: bb0050
  article-title: Precision medicine for heart failure: lessons from oncology
  publication-title: Circ Heart Fail.
– volume: 275
  start-page: 4613
  year: 2000
  end-page: 4617
  ident: bb0080
  article-title: The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome
  publication-title: J. Biol. Chem.
– volume: 67
  start-page: 780
  year: 2018
  end-page: 782
  ident: bb0275
  article-title: Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer
  publication-title: Gut
– volume: 42
  start-page: 641
  year: 2010
  end-page: 650
  ident: bb0140
  article-title: The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 11
  start-page: a033928
  year: 2019
  ident: bb0125
  article-title: Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 6
  year: 2015
  ident: bb0160
  article-title: BAG3 regulates formation of the SNARE complex and insulin secretion
  publication-title: Cell Death Dis.
– volume: 283
  start-page: 1437
  year: 2008
  end-page: 1444
  ident: bb0115
  article-title: HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 1220
  year: 2010
  end-page: 1231
  ident: bb0205
  article-title: BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress
  publication-title: Circ. Res.
– volume: 67
  start-page: 10252
  year: 2007
  end-page: 10259
  ident: bb0135
  article-title: BAG3 regulates motility and adhesion of epithelial cancer cells
  publication-title: Cancer Res.
– volume: 11
  start-page: 163
  year: 2020
  ident: bb0180
  article-title: Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  publication-title: Nat. Commun.
– volume: 2018
  start-page: 5967890
  year: 2018
  ident: bb0145
  article-title: BAG3 protein is involved in endothelial cell response to phenethyl isothiocyanate
  publication-title: Oxidative Med. Cell. Longev.
– volume: 45
  start-page: D313
  year: 2017
  end-page: D319
  ident: bb0005
  article-title: The SWISS-MODEL Repository - new features and functionality
  publication-title: Nucleic Acids Res.
– volume: 127
  start-page: 2900
  year: 2017
  end-page: 2903
  ident: bb0190
  article-title: BAG3 plays a central role in proteostasis in the heart
  publication-title: J. Clin. Invest.
– volume: 9
  start-page: 4232
  year: 2018
  ident: bb0225
  article-title: Myogenin promotes myocyte fusion to balance fibre number and size
  publication-title: Nat. Commun.
– volume: 97
  start-page: E115
  year: 2012
  end-page: E120
  ident: bb0085
  article-title: BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 37
  start-page: 672
  year: 2016
  end-page: 688
  ident: bb0040
  article-title: Breaking BAG: the co-chaperone BAG3 in health and disease
  publication-title: Trends Pharmacol. Sci.
– volume: 6
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0240
  article-title: A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2015.280
– volume: 492
  start-page: 304
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0095
  article-title: KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, mule-dependent pathway in A549 non-small cell lung cancer cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.08.118
– volume: 464
  start-page: 561
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0105
  article-title: BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.07.006
– volume: 108
  start-page: 1178
  year: 2013
  ident: 10.1016/j.bbagen.2020.129628_bb0250
  article-title: BAG3 is a novel serum biomarker for pancreatic adenocarcinomas
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2013.128
– volume: 107
  start-page: 1220
  year: 2010
  ident: 10.1016/j.bbagen.2020.129628_bb0205
  article-title: BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.110.225649
– volume: 67
  start-page: 780
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0275
  article-title: Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer
  publication-title: Gut
– volume: 2018
  start-page: 5967890
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0145
  article-title: BAG3 protein is involved in endothelial cell response to phenethyl isothiocyanate
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2018/5967890
– volume: 72
  start-page: 2324
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0235
  article-title: Genetic basis of severe childhood-onset cardiomyopathies
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.08.2171
– volume: 28
  start-page: 889
  year: 2009
  ident: 10.1016/j.bbagen.2020.129628_bb0120
  article-title: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.29
– volume: 54
  start-page: p. 1.30.1
  year: 2016
  ident: 10.1016/j.bbagen.2020.129628_bb0010
  article-title: The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis
  publication-title: Curr. Protoc. Bioinformatics.
  doi: 10.1002/cpbi.5
– volume: 10
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0050
  article-title: Precision medicine for heart failure: lessons from oncology
  publication-title: Circ Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.117.004202
– volume: 89
  start-page: 1175
  year: 2011
  ident: 10.1016/j.bbagen.2020.129628_bb0130
  article-title: Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-011-0795-6
– volume: 11
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0150
  article-title: A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005582
– volume: 97
  start-page: E115
  year: 2012
  ident: 10.1016/j.bbagen.2020.129628_bb0085
  article-title: BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-0484
– volume: 15
  start-page: 892
  year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0270
  article-title: CAF-derived IL6 and GM-CSF cooperate to induce M2-like TAMs
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2455
– volume: 72
  start-page: 2471
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0055
  article-title: Dilated cardiomyopathy due to BLC2-associated Athanogene 3 (BAG3) mutations
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.08.2181
– volume: 31
  start-page: 5153
  year: 2012
  ident: 10.1016/j.bbagen.2020.129628_bb0175
  article-title: BAG3 controls angiogenesis through regulation of ERK phosphorylation
  publication-title: Oncogene
  doi: 10.1038/onc.2012.17
– volume: 181
  start-page: 1524
  year: 2012
  ident: 10.1016/j.bbagen.2020.129628_bb0245
  article-title: Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2012.07.016
– volume: 4
  year: 2013
  ident: 10.1016/j.bbagen.2020.129628_bb0280
  article-title: Detection of soluble BAG3 and anti-BAG3 antibodies in patients with chronic heart failure
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.8
– volume: 178
  start-page: 2504
  year: 2011
  ident: 10.1016/j.bbagen.2020.129628_bb0100
  article-title: BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2011.02.002
– volume: 21
  year: 2020
  ident: 10.1016/j.bbagen.2020.129628_bb0065
  article-title: Neuromuscular diseases due to chaperone mutations: a review and some new results
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21041409
– volume: 42
  start-page: 641
  year: 2010
  ident: 10.1016/j.bbagen.2020.129628_bb0140
  article-title: The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.12.008
– volume: 107
  start-page: 7497
  year: 2010
  ident: 10.1016/j.bbagen.2020.129628_bb0075
  article-title: IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0907696107
– volume: 6
  start-page: 8695
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0255
  article-title: BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9695
– volume: 130
  start-page: 2781
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0110
  article-title: BAG3-mediated proteostasis at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.203679
– volume: 67
  start-page: 10252
  year: 2007
  ident: 10.1016/j.bbagen.2020.129628_bb0135
  article-title: BAG3 regulates motility and adhesion of epithelial cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0618
– volume: 13
  start-page: 1388
  year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0265
  article-title: Development of a humanized anti-BAG3 antibody for pancreatic cancer treatment
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12492
– volume: 45
  start-page: D313
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0005
  article-title: The SWISS-MODEL Repository - new features and functionality
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1132
– volume: 20
  start-page: 423
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0035
  article-title: BAG3: a new player in the heart failure paradigm
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-015-9487-6
– volume: 169
  start-page: 761
  year: 2006
  ident: 10.1016/j.bbagen.2020.129628_bb0200
  article-title: BAG3 deficiency results in fulminant myopathy and early lethality
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2006.060250
– volume: 11
  start-page: 163
  year: 2020
  ident: 10.1016/j.bbagen.2020.129628_bb0180
  article-title: Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13690-5
– volume: 6
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0160
  article-title: BAG3 regulates formation of the SNARE complex and insulin secretion
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2015.53
– volume: 2
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0195
  article-title: A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.94623
– volume: 283
  start-page: 1437
  issue: 3
  year: 2008
  ident: 10.1016/j.bbagen.2020.129628_bb0115
  article-title: HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M706304200
– volume: 38
  start-page: 33
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0300
  article-title: Alarmins of the extracellular space
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2018.08.004
– volume: 215
  start-page: 575
  year: 2008
  ident: 10.1016/j.bbagen.2020.129628_bb0015
  article-title: bag3 gene expression is regulated by heat shock factor 1
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.21397
– volume: 24
  start-page: 1204
  year: 2010
  ident: 10.1016/j.bbagen.2020.129628_bb0020
  article-title: WT1 protein is a transcriptional activator of the antiapoptotic bag3 gene
  publication-title: Leukemia
  doi: 10.1038/leu.2010.68
– volume: 37
  start-page: 672
  year: 2016
  ident: 10.1016/j.bbagen.2020.129628_bb0040
  article-title: Breaking BAG: the co-chaperone BAG3 in health and disease
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2016.04.007
– volume: 10
  start-page: 850
  year: 2011
  ident: 10.1016/j.bbagen.2020.129628_bb0220
  article-title: BAG3 protein is induced during cardiomyoblast differentiation and modulates myogenin expression
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.5.14964
– volume: 10
  start-page: 177
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0045
  article-title: The role of the multifunctional BAG3 protein in cellular protein quality control and in disease
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00177
– volume: 288
  start-page: 6980
  year: 2013
  ident: 10.1016/j.bbagen.2020.129628_bb0090
  article-title: The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.414177
– volume: 122
  start-page: 893
  year: 2009
  ident: 10.1016/j.bbagen.2020.129628_bb0165
  article-title: Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.034355
– volume: 22
  start-page: 553
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0155
  article-title: Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-017-0780-2
– volume: 9
  start-page: 7658
  year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0215
  article-title: Role of Bcl2-associated Athanogene 3 in turnover of gap junction protein, Connexin 43, in neonatal cardiomyocytes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-44139-w
– year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0260
  article-title: The IFITM protein family in adaptive immunity
  publication-title: Immunology
– volume: 278
  start-page: 28490
  year: 2003
  ident: 10.1016/j.bbagen.2020.129628_bb0070
  article-title: CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209682200
– volume: 127
  start-page: 2900
  year: 2017
  ident: 10.1016/j.bbagen.2020.129628_bb0190
  article-title: BAG3 plays a central role in proteostasis in the heart
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI95839
– volume: 19
  start-page: 4385
  year: 2000
  ident: 10.1016/j.bbagen.2020.129628_bb0170
  article-title: CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203797
– year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0060
  article-title: Advances in the role and mechanism of BAG3 in dilated cardiomyopathy
  publication-title: Heart Fail. Rev.
  doi: 10.1007/s10741-019-09899-7
– volume: 2
  start-page: 673
  year: 2014
  ident: 10.1016/j.bbagen.2020.129628_bb0285
  article-title: BAG3 protein in advanced-stage heart failure
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2014.05.012
– volume: 78
  start-page: 85
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0030
  article-title: Role of BAG3 in cancer progression: a therapeutic opportunity
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.049
– volume: 9
  start-page: 4232
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0225
  article-title: Myogenin promotes myocyte fusion to balance fibre number and size
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06583-6
– volume: 9
  start-page: 5342
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0185
  article-title: Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07718-5
– volume: 27
  start-page: 5011
  year: 2008
  ident: 10.1016/j.bbagen.2020.129628_bb0025
  article-title: Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells
  publication-title: Oncogene
  doi: 10.1038/onc.2008.142
– volume: 92
  year: 2016
  ident: 10.1016/j.bbagen.2020.129628_bb0210
  article-title: BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes
  publication-title: J. Mol. Cell Cardiol.
  doi: 10.1016/j.yjmcc.2016.01.015
– volume: 275
  start-page: 4613
  year: 2000
  ident: 10.1016/j.bbagen.2020.129628_bb0080
  article-title: The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.7.4613
– volume: 11
  start-page: a033928
  year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0125
  article-title: Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a033928
– volume: 445
  start-page: 73
  year: 2015
  ident: 10.1016/j.bbagen.2020.129628_bb0290
  article-title: Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2015.02.048
– volume: 140
  start-page: 1318
  year: 2019
  ident: 10.1016/j.bbagen.2020.129628_bb0230
  article-title: Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041161
– volume: 233
  start-page: 1791
  year: 2018
  ident: 10.1016/j.bbagen.2020.129628_bb0295
  article-title: Evaluation of BAG3 levels in healthy subjects, hypertensive patients, and hypertensive diabetic patients
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26093
SSID ssj0000595
Score 2.448889
SecondaryResourceType review_article
Snippet BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129628
SubjectTerms Actin dynamics
Adaptor Proteins, Signal Transducing - metabolism
adenosine diphosphate
adenosinetriphosphatase
apoptosis
Apoptosis Regulatory Proteins - metabolism
BAG3
Cell survival
cytoskeleton
heat shock proteins
Humans
Monocyte activation
monocytes
myocytes
neoplasms
proteasome endopeptidase complex
Protein quality control
protein value
signal transduction
stress response
Title The multiple activities of BAG3 protein: Mechanisms
URI https://dx.doi.org/10.1016/j.bbagen.2020.129628
https://www.ncbi.nlm.nih.gov/pubmed/32360144
https://www.proquest.com/docview/2398152208
https://www.proquest.com/docview/2477624888
Volume 1864
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lInoRra_6KCt4XZtukn14q8Valfaihd7C5gUV3RbbCl787U42uxVBLXjcZbJkv0wm35B5IHRO0zTR4HT5BtQJHBSB_UQFyqcCRwkwUkPyznP9Qdgb0rsRG1VQp8yFsWGVhe13Nj231sWbZoFmczoeNx_spR7QCRY4N8Em8VEaWS2_-PgK8wD6wNxNAvWtdJk-l8d4CQGb1lZBDWyZhSS0Pdl_Pp5-o5_5MdTdRlsFf_Taboo7qKKzGlp3HSXfa2ijUzZw20UEVMArAwY9m8DwlpdP9SbGu2rfEC-v0TDOLr2-tvm_49nLbA8Nu9ePnZ5f9EjwJfz8HGwV06GKFFHUCGUIk5ilRsdChFLKuBUpjGVoFImlNELGJo0oyGssCcWKarKPqtkk04fIg3VJMDNSYS2p0kTAp1uSxlhJoGGU1REpoeGyKCBu-1g88zJS7Ik7QLkFlDtA68hfjpq6Ahor5KMSdf5NETjY-BUjz8pF4oC0vfhIMz1ZzLitcQg8JcB_ydAIzgUwZyBz4FZ4OV8SkNB6nkf_ntsx2rRPLnLwBFXnrwt9CmxmLhq5ujbQWvv2vjf4BL1_8XA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qRfRFvG9dwdelcZPs4Vstaj3aFxV8C5sLKrottgr-eyeb3YrgAb7uTpbsl8lkhsx8A3DE8jwzGHSFFtUJAxRJwkxHOmSSJBl6pJaWned6_bh7z64e-EMDOnUtjEurrGy_t-mlta6etCo0W6PBoHXrLvXQneCRDxOyGZh17FS8CbPty-tu_9Mg87L5ipMP3YC6gq5M85IS960jQo0c00IWu7bs359QP3mg5Ul0vgSLlQsZtP0sl6FhihWY800l31dgvlP3cFsFiloQ1DmDgatheCsZVIOhDU7bFzQoaRoGxUnQM64EeDB-Hq_B_fnZXacbVm0SQoX_P0FzxU2sE001s1JbyhXhuTWplLFSKj1ONCEqtpqmSlmpUpsnDOUNUZQRzQxdh2YxLMwmBLg0GeFWaWIU04ZK_PSxYinRCj0xxreA1tAIVXGIu1YWT6JOFnsUHlDhABUe0C0Ip6NGnkPjD_mkRl180QWBZv6PkYf1IglE2t195IUZvo6FozlEVyUiv8mwBI8GtGgos-FXeDpfGtHYBZ_b_57bAcx373o34uayf70DC-6NTyTchebk5dXsoXMzkfuV8n4ACZn0IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiple+activities+of+BAG3+protein%3A+Mechanisms&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Marzullo%2C+Liberato&rft.au=Turco%2C+Maria+Caterina&rft.au=De+Marco%2C+Margot&rft.date=2020-08-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=8&rft.spage=129628&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129628&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon