The multiple activities of BAG3 protein: Mechanisms
BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 8; p. 129628 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.
Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.
Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.
BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.
•BAG3 protein modulates multiple pathways involved into cell stress response.•Apoptosis, autophagy, cytoskeleton dynamics are regulated by BAG3.•BAG3 supports cell survival in several tumor types under stressful conditions.•Recent advances reported a new paracrine activity of secreted BAG3 on macrophages.•BAG3/IFITM2 axis is a novel signaling pathway leading to tumor (PDAC) development. |
---|---|
AbstractList | BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.
Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.
Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.
BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.
•BAG3 protein modulates multiple pathways involved into cell stress response.•Apoptosis, autophagy, cytoskeleton dynamics are regulated by BAG3.•BAG3 supports cell survival in several tumor types under stressful conditions.•Recent advances reported a new paracrine activity of secreted BAG3 on macrophages.•BAG3/IFITM2 axis is a novel signaling pathway leading to tumor (PDAC) development. BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways. Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell. Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells. BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions. BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions. BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.BACKGROUNDBAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the chaperone and the nucleotide cycling. By interacting with Hsp70, BAG3 modulates the activities of this chaperone, including the delivery of client proteins to proteasome. BAG3 can also carry out Hsp70- independent functions, through its interactions with other proteins involved in apoptosis, cytoskeleton dynamics and other pathways.Here we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.SCOPE OF REVIEWHere we provide a summary of the main mechanisms which encompass BAG3 as an intracellular factor involved in different pathways which regulate and modulate the physiological cell response. Furthermore, it has been shown that BAG3 can be secreted by some cell types and is able to activate the monocytes through the binding on a membrane cell receptor, indicating that the protein can act like an alarmin with different functions inside and outside the cell.Whereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.MAJOR CONCLUSIONSWhereas intracellularly BAG3 sustains the levels of anti-apoptotic factors and other molecules, participates in protein quality control, drives the cytoskeleton dynamics, exerts structural and functional roles in myocytes, the discovery of a secreted BAG3 opened a new field of investigation in tumor development and progression, revealing its role in a new signaling pathway, mediated by the BAG3/BAG3R axis, which also includes monocytes and other stromal cells.BAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions.GENERAL SIGNIFICANCEBAG3 is a multifunctional protein that is involved cell stress response through its participation in several regulatory pathways which control cell homeostatic response in physiological and pathological conditions. |
ArticleNumber | 129628 |
Author | Turco, Maria Caterina De Marco, Margot Marzullo, Liberato |
Author_xml | – sequence: 1 givenname: Liberato surname: Marzullo fullname: Marzullo, Liberato email: marzullo@unisa.it – sequence: 2 givenname: Maria Caterina surname: Turco fullname: Turco, Maria Caterina email: mcturco@unisa.it – sequence: 3 givenname: Margot surname: De Marco fullname: De Marco, Margot email: mdemarco@unisa.it |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32360144$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlLBDEQhYMoOi7_QKSPXnrM1umMB0EHNxjxoueQrlQ0Qy9jJzPgv7eH1osHrUtB8b1H8d4h2W27Fgk5ZXTKKFMXy2lV2Tdsp5zy4cRniusdMmG65LmmVO2SCRVU5pKp4oAcxrikwxSzYp8cCC4UZVJOiHh5x6xZ1ymsaswspLAJKWDMOp_dXN-LbNV3CUN7mT0hvNs2xCYekz1v64gn3_uIvN7dvswf8sXz_eP8epGDlCzlM1agcqUTTvrKeVEALaxHXVUKADQrHaWgvBMawFegvS3lwCMFIamTKI7I-eg7_PCxxphMEyJgXdsWu3U0XJal4lJr_T8qZpoVnNMtevaNrqsGnVn1obH9p_nJZAAuRwD6LsYevYGQbApdm3obasOo2RZglmYswGwLMGMBg1j-Ev_4_yO7GmU45LkJ2JsIAVtAF3qEZFwX_jb4AsITn6s |
CitedBy_id | crossref_primary_10_1177_15353702211066908 crossref_primary_10_3390_cells9112416 crossref_primary_10_1172_JCI149415 crossref_primary_10_1016_j_taap_2022_116067 crossref_primary_10_1039_D4BM00286E crossref_primary_10_3389_fvets_2024_1393372 crossref_primary_10_1016_j_xphs_2021_02_025 crossref_primary_10_1002_jcb_30123 crossref_primary_10_1002_cm_21697 crossref_primary_10_3390_cells11071160 crossref_primary_10_3390_molecules29215051 crossref_primary_10_1016_j_trecan_2020_07_001 crossref_primary_10_3390_ijms22010142 crossref_primary_10_1016_j_nbd_2021_105527 crossref_primary_10_1186_s40001_024_01687_w crossref_primary_10_1002_jcp_30016 crossref_primary_10_3390_cells12060937 crossref_primary_10_3390_ijerph18157968 crossref_primary_10_3389_fbioe_2022_1027468 crossref_primary_10_1038_s41565_023_01378_3 crossref_primary_10_1038_s41420_024_02153_6 crossref_primary_10_1128_jvi_00284_23 crossref_primary_10_3390_cells9112350 crossref_primary_10_1016_j_imbio_2021_152153 crossref_primary_10_1016_j_bbcan_2022_188781 crossref_primary_10_1016_j_yexcr_2021_112790 |
Cites_doi | 10.1038/cddis.2015.280 10.1016/j.bbrc.2017.08.118 10.1016/j.bbrc.2015.07.006 10.1038/ajg.2013.128 10.1161/CIRCRESAHA.110.225649 10.1155/2018/5967890 10.1016/j.jacc.2018.08.2171 10.1038/emboj.2009.29 10.1002/cpbi.5 10.1161/CIRCHEARTFAILURE.117.004202 10.1007/s00109-011-0795-6 10.1371/journal.pgen.1005582 10.1210/jc.2011-0484 10.1158/1078-0432.CCR-18-2455 10.1016/j.jacc.2018.08.2181 10.1038/onc.2012.17 10.1016/j.ajpath.2012.07.016 10.1038/cddis.2013.8 10.1016/j.ajpath.2011.02.002 10.3390/ijms21041409 10.1016/j.biocel.2009.12.008 10.1073/pnas.0907696107 10.1038/ncomms9695 10.1242/jcs.203679 10.1158/0008-5472.CAN-07-0618 10.1002/1878-0261.12492 10.1093/nar/gkw1132 10.1007/s10741-015-9487-6 10.2353/ajpath.2006.060250 10.1038/s41467-019-13690-5 10.1038/cddis.2015.53 10.1172/jci.insight.94623 10.1074/jbc.M706304200 10.1016/j.smim.2018.08.004 10.1002/jcp.21397 10.1038/leu.2010.68 10.1016/j.tips.2016.04.007 10.4161/cc.10.5.14964 10.3389/fnmol.2017.00177 10.1074/jbc.M112.414177 10.1242/jcs.034355 10.1007/s12192-017-0780-2 10.1038/s41598-019-44139-w 10.1074/jbc.M209682200 10.1172/JCI95839 10.1038/sj.onc.1203797 10.1007/s10741-019-09899-7 10.1016/j.jchf.2014.05.012 10.1016/j.semcdb.2017.08.049 10.1038/s41467-018-06583-6 10.1038/s41467-018-07718-5 10.1038/onc.2008.142 10.1016/j.yjmcc.2016.01.015 10.1074/jbc.275.7.4613 10.1101/cshperspect.a033928 10.1016/j.cca.2015.02.048 10.1161/CIRCULATIONAHA.119.041161 10.1002/jcp.26093 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129628 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 32360144 10_1016_j_bbagen_2020_129628 S0304416520301409 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-915e6d7d3d4fbdf35c05afe8bb6ccc817d00c6fd38ccfbc8fa746d7e0c340d4e3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 15:59:38 EDT 2025 Fri Jul 11 08:22:38 EDT 2025 Thu Apr 03 07:06:37 EDT 2025 Tue Jul 01 00:22:13 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Fri Feb 23 02:47:39 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Cell survival Protein quality control BAG3 Monocyte activation Actin dynamics |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-915e6d7d3d4fbdf35c05afe8bb6ccc817d00c6fd38ccfbc8fa746d7e0c340d4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.bbagen.2020.129628 |
PMID | 32360144 |
PQID | 2398152208 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2477624888 proquest_miscellaneous_2398152208 pubmed_primary_32360144 crossref_citationtrail_10_1016_j_bbagen_2020_129628 crossref_primary_10_1016_j_bbagen_2020_129628 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Stelzer (bb0010) 2016; 54 Gandhi, Gaggin, Belcher (bb0290) 2015; 445 Fontanella, Birolo, Infusini (bb0140) 2010; 42 Iwasaki, Homma, Hishiya, Dolezal, Reed, Takayama (bb0135) 2007; 67 Iorio, De Marco, Basile (bb0270) 2019; 15 Varlet, Fuchs, Luthold, Lambert, Landry, Lavoie (bb0155) 2017; 22 Gamerdinger, Hajieva, Kaya, Wolfrum, Hartl, Behl (bb0120) 2009; 28 Doong, Price, Kim (bb0170) 2000; 19 Shah, Henry, Roselli (bb0180) 2020; 11 Vasilescu, Ojala, Brilhante (bb0235) 2018; 72 De Marco, D'Auria, Rosati (bb0285) 2014; 2 De Marco, Turco, Rosati (bb0220) 2011; 10 Gentilella, Passiatore, Deshmane, Turco, Khalili (bb0025) 2008; 27 Meister-Broekema, Freilich, Jagadeesan (bb0185) 2018; 9 Feldman, Kontos, McClung, Gerhard, Khalili, Cheung (bb0050) 2017; 10 Falco, Festa, Basile (bb0175) 2012; 31 Rosati, Basile, D’Auria (bb0255) 2015; 6 Iorio, Rosati, D’Auria (bb0275) 2018; 67 Lüders, Demand, Höhfeld (bb0080) 2000; 275 Judge, Perez-Bermejo, Truong (bb0195) 2017; 2 Sarparanta, Jonson, Kawan, Udd (bb0065) 2020; 21 Franceschelli, Rosati, Lerose, De Nicola, Turco, Pascale (bb0015) 2008; 215 Ganassi, Badodi, Ortuste Quiroga, Zammit, Hinits, Hughes (bb0225) 2018; 9 Festa, Del Valle, Khalili (bb0100) 2011; 178 Franceschelli, Bruno, Festa (bb0145) 2018; 2018 Carra, Seguin, Lambert, Landry (bb0115) 2008; 283 Yánez, Ross, Crompton (bb0260) 2019 d'Avenia, Citro, De Marco (bb0240) 2015; 6 Homma, Iwasaki, Shelton, Engvall, Reed, Takayama (bb0200) 2006; 169 Ammirante, Rosati, Arra (bb0075) 2010; 107 Basile, De Marco, Festa (bb0265) 2019; 13 Hishiya, Kitazawa, Takayama (bb0205) 2010; 107 Doong, Rizzo, Fang, Kulpa, Weissman, Kohn (bb0070) 2003; 278 Boiani, Daniel, Liu, Hogarty, Marnett (bb0090) 2013; 288 Derosa, Maffioli, Rosati (bb0295) 2018; 233 Knezevic, Myers, Gordon (bb0035) 2015; 20 Klimek, Kathage, Wördehoff, Höhfeld (bb0110) 2017; 130 Wang, Thurmond (bb0165) 2009; 122 Needham, Guerriero, Brodsky (bb0125) 2019; 11 Dziki, Hussey, Badylak (bb0300) 2018; 38 Domínguez, Cuenca, Bilińska (bb0055) 2018; 72 Jin, Ahn, Kim (bb0105) 2015; 464 Rosati, Bersani, Tavano (bb0245) 2012; 181 Aung, Vargas, Yang (bb0230) 2019; 140 Behl (bb0040) 2016; 37 Chiappetta, Basile, Arra (bb0085) 2012; 97 Kang, Yun, Lee (bb0095) 2017; 492 Feldman, Gordon, Wang (bb0210) 2016; 92 Stürner, Behl (bb0045) 2017; 10 Fuchs, Luthold, Guilbert (bb0150) 2015; 11 De Marco, Falco, Basile (bb0280) 2013; 4 Bienert, Waterhouse, de Beer, Tauriello, Studer, Bordoli, Schwede (bb0005) 2017; 45 Gamerdinger, Carra, Behl (bb0130) 2011; 89 Iorio, Festa, Rosati (bb0160) 2015; 6 De Marco, Basile, Iorio (bb0030) 2018; 78 Liu, Sun, Zhang, Tang, Xu (bb0060) 2019 Cesaro, Montano, Rosati, Crescitelli, Izzo, Turco, Costanzo (bb0020) 2010; 24 Ghasemi Tahrir, Gupta, Myers (bb0215) 2019; 9 Mizushima, Sadoshima (bb0190) 2017; 127 Falco, Rosati, Festa (bb0250) 2013; 108 Varlet (10.1016/j.bbagen.2020.129628_bb0155) 2017; 22 Festa (10.1016/j.bbagen.2020.129628_bb0100) 2011; 178 Aung (10.1016/j.bbagen.2020.129628_bb0230) 2019; 140 Yánez (10.1016/j.bbagen.2020.129628_bb0260) 2019 Gamerdinger (10.1016/j.bbagen.2020.129628_bb0130) 2011; 89 Ganassi (10.1016/j.bbagen.2020.129628_bb0225) 2018; 9 Chiappetta (10.1016/j.bbagen.2020.129628_bb0085) 2012; 97 Hishiya (10.1016/j.bbagen.2020.129628_bb0205) 2010; 107 Falco (10.1016/j.bbagen.2020.129628_bb0175) 2012; 31 Klimek (10.1016/j.bbagen.2020.129628_bb0110) 2017; 130 Feldman (10.1016/j.bbagen.2020.129628_bb0050) 2017; 10 Kang (10.1016/j.bbagen.2020.129628_bb0095) 2017; 492 Domínguez (10.1016/j.bbagen.2020.129628_bb0055) 2018; 72 Franceschelli (10.1016/j.bbagen.2020.129628_bb0145) 2018; 2018 Stelzer (10.1016/j.bbagen.2020.129628_bb0010) 2016; 54 Wang (10.1016/j.bbagen.2020.129628_bb0165) 2009; 122 Derosa (10.1016/j.bbagen.2020.129628_bb0295) 2018; 233 Knezevic (10.1016/j.bbagen.2020.129628_bb0035) 2015; 20 Fontanella (10.1016/j.bbagen.2020.129628_bb0140) 2010; 42 De Marco (10.1016/j.bbagen.2020.129628_bb0030) 2018; 78 Fuchs (10.1016/j.bbagen.2020.129628_bb0150) 2015; 11 Lüders (10.1016/j.bbagen.2020.129628_bb0080) 2000; 275 Doong (10.1016/j.bbagen.2020.129628_bb0170) 2000; 19 d'Avenia (10.1016/j.bbagen.2020.129628_bb0240) 2015; 6 Liu (10.1016/j.bbagen.2020.129628_bb0060) 2019 Iorio (10.1016/j.bbagen.2020.129628_bb0160) 2015; 6 Needham (10.1016/j.bbagen.2020.129628_bb0125) 2019; 11 Judge (10.1016/j.bbagen.2020.129628_bb0195) 2017; 2 Cesaro (10.1016/j.bbagen.2020.129628_bb0020) 2010; 24 Mizushima (10.1016/j.bbagen.2020.129628_bb0190) 2017; 127 Rosati (10.1016/j.bbagen.2020.129628_bb0255) 2015; 6 De Marco (10.1016/j.bbagen.2020.129628_bb0285) 2014; 2 Ammirante (10.1016/j.bbagen.2020.129628_bb0075) 2010; 107 Rosati (10.1016/j.bbagen.2020.129628_bb0245) 2012; 181 Vasilescu (10.1016/j.bbagen.2020.129628_bb0235) 2018; 72 Dziki (10.1016/j.bbagen.2020.129628_bb0300) 2018; 38 Jin (10.1016/j.bbagen.2020.129628_bb0105) 2015; 464 Gamerdinger (10.1016/j.bbagen.2020.129628_bb0120) 2009; 28 Doong (10.1016/j.bbagen.2020.129628_bb0070) 2003; 278 De Marco (10.1016/j.bbagen.2020.129628_bb0280) 2013; 4 Iorio (10.1016/j.bbagen.2020.129628_bb0270) 2019; 15 Boiani (10.1016/j.bbagen.2020.129628_bb0090) 2013; 288 Ghasemi Tahrir (10.1016/j.bbagen.2020.129628_bb0215) 2019; 9 Falco (10.1016/j.bbagen.2020.129628_bb0250) 2013; 108 Carra (10.1016/j.bbagen.2020.129628_bb0115) 2008; 283 Meister-Broekema (10.1016/j.bbagen.2020.129628_bb0185) 2018; 9 Behl (10.1016/j.bbagen.2020.129628_bb0040) 2016; 37 Sarparanta (10.1016/j.bbagen.2020.129628_bb0065) 2020; 21 Franceschelli (10.1016/j.bbagen.2020.129628_bb0015) 2008; 215 Iwasaki (10.1016/j.bbagen.2020.129628_bb0135) 2007; 67 Feldman (10.1016/j.bbagen.2020.129628_bb0210) 2016; 92 Gandhi (10.1016/j.bbagen.2020.129628_bb0290) 2015; 445 Basile (10.1016/j.bbagen.2020.129628_bb0265) 2019; 13 Homma (10.1016/j.bbagen.2020.129628_bb0200) 2006; 169 Gentilella (10.1016/j.bbagen.2020.129628_bb0025) 2008; 27 Stürner (10.1016/j.bbagen.2020.129628_bb0045) 2017; 10 De Marco (10.1016/j.bbagen.2020.129628_bb0220) 2011; 10 Iorio (10.1016/j.bbagen.2020.129628_bb0275) 2018; 67 Bienert (10.1016/j.bbagen.2020.129628_bb0005) 2017; 45 Shah (10.1016/j.bbagen.2020.129628_bb0180) 2020; 11 |
References_xml | – volume: 178 start-page: 2504 year: 2011 end-page: 2512 ident: bb0100 article-title: BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy publication-title: Am. J. Pathol. – volume: 21 year: 2020 ident: bb0065 article-title: Neuromuscular diseases due to chaperone mutations: a review and some new results publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 850 year: 2011 end-page: 852 ident: bb0220 article-title: BAG3 protein is induced during cardiomyoblast differentiation and modulates myogenin expression publication-title: Cell Cycle – volume: 11 year: 2015 ident: bb0150 article-title: A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis publication-title: PLoS Genet. – volume: 38 start-page: 33 year: 2018 end-page: 39 ident: bb0300 article-title: Alarmins of the extracellular space publication-title: Semin. Immunol. – volume: 278 start-page: 28490 year: 2003 end-page: 28500 ident: bb0070 article-title: CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins publication-title: J. Biol. Chem. – volume: 140 start-page: 1318 year: 2019 end-page: 1330 ident: bb0230 article-title: Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development publication-title: Circulation – volume: 89 start-page: 1175 year: 2011 end-page: 1182 ident: bb0130 article-title: Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins publication-title: J. Mol. Med. – volume: 15 start-page: 892 year: 2019 end-page: 893 ident: bb0270 article-title: CAF-derived IL6 and GM-CSF cooperate to induce M2-like TAMs publication-title: Clin. Cancer Res. – volume: 107 start-page: 7497 year: 2010 end-page: 7502 ident: bb0075 article-title: IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 423 year: 2015 end-page: 434 ident: bb0035 article-title: BAG3: a new player in the heart failure paradigm publication-title: Heart Fail. Rev. – volume: 169 start-page: 761 year: 2006 end-page: 773 ident: bb0200 article-title: BAG3 deficiency results in fulminant myopathy and early lethality publication-title: Am. J. Pathol. – volume: 233 start-page: 1791 year: 2018 end-page: 1795 ident: bb0295 article-title: Evaluation of BAG3 levels in healthy subjects, hypertensive patients, and hypertensive diabetic patients publication-title: J. Cell. Physiol. – volume: 19 start-page: 4385 year: 2000 end-page: 4395 ident: bb0170 article-title: CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70 publication-title: Oncogene – volume: 2 start-page: 673 year: 2014 end-page: 675 ident: bb0285 article-title: BAG3 protein in advanced-stage heart failure publication-title: JACC Heart Fail. – volume: 54 start-page: p. 1.30.1 year: 2016 end-page: p. 1.30.33 ident: bb0010 publication-title: Curr. Protoc. Bioinformatics. – volume: 288 start-page: 6980 year: 2013 end-page: 6990 ident: bb0090 article-title: The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737 publication-title: J. Biol. Chem. – year: 2019 ident: bb0260 article-title: The IFITM protein family in adaptive immunity publication-title: Immunology – volume: 78 start-page: 85 year: 2018 end-page: 92 ident: bb0030 article-title: Role of BAG3 in cancer progression: a therapeutic opportunity publication-title: Semin. Cell Dev. Biol. – volume: 108 start-page: 1178 year: 2013 end-page: 1180 ident: bb0250 article-title: BAG3 is a novel serum biomarker for pancreatic adenocarcinomas publication-title: Am. J. Gastroenterol. – volume: 22 start-page: 553 year: 2017 end-page: 567 ident: bb0155 article-title: Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division publication-title: Cell Stress Chaperones – volume: 445 start-page: 73 year: 2015 end-page: 78 ident: bb0290 article-title: Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure publication-title: Clin. Chim. Acta – volume: 72 start-page: 2471 year: 2018 end-page: 2481 ident: bb0055 article-title: Dilated cardiomyopathy due to BLC2-associated Athanogene 3 (BAG3) mutations publication-title: J. Am. Coll. Cardiol. – volume: 27 start-page: 5011 year: 2008 end-page: 5018 ident: bb0025 article-title: Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells publication-title: Oncogene – year: 2019 ident: bb0060 article-title: Advances in the role and mechanism of BAG3 in dilated cardiomyopathy publication-title: Heart Fail. Rev. – volume: 181 start-page: 1524 year: 2012 end-page: 1529 ident: bb0245 article-title: Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival publication-title: Am. J. Pathol. – volume: 92 year: 2016 ident: bb0210 article-title: BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes publication-title: J. Mol. Cell Cardiol. – volume: 28 start-page: 889 year: 2009 end-page: 901 ident: bb0120 article-title: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 publication-title: EMBO J. – volume: 130 start-page: 2781 year: 2017 end-page: 2788 ident: bb0110 article-title: BAG3-mediated proteostasis at a glance publication-title: J. Cell Sci. – volume: 492 start-page: 304 year: 2017 end-page: 309 ident: bb0095 article-title: KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, mule-dependent pathway in A549 non-small cell lung cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 215 start-page: 575 year: 2008 end-page: 577 ident: bb0015 article-title: gene expression is regulated by heat shock factor 1 publication-title: J. Cell Physiol. – volume: 10 start-page: 177 year: 2017 ident: bb0045 article-title: The role of the multifunctional BAG3 protein in cellular protein quality control and in disease publication-title: Front. Mol. Neurosci. – volume: 9 start-page: 5342 year: 2018 ident: bb0185 article-title: Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks publication-title: Nat. Commun. – volume: 122 start-page: 893 year: 2009 end-page: 903 ident: bb0165 article-title: Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins publication-title: J. Cell Sci. – volume: 31 start-page: 5153 year: 2012 end-page: 5161 ident: bb0175 article-title: BAG3 controls angiogenesis through regulation of ERK phosphorylation publication-title: Oncogene – volume: 6 start-page: 8695 year: 2015 ident: bb0255 article-title: BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages publication-title: Nat. Commun. – volume: 2 year: 2017 ident: bb0195 article-title: A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress publication-title: JCI Insight – volume: 13 start-page: 1388 year: 2019 end-page: 1399 ident: bb0265 article-title: Development of a humanized anti-BAG3 antibody for pancreatic cancer treatment publication-title: Mol. Oncol. – volume: 464 start-page: 561 year: 2015 end-page: 567 ident: bb0105 article-title: BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress publication-title: Biochem. Biophys. Res. Commun. – volume: 9 start-page: 7658 year: 2019 ident: bb0215 article-title: Role of Bcl2-associated Athanogene 3 in turnover of gap junction protein, Connexin 43, in neonatal cardiomyocytes publication-title: Sci. Rep. – volume: 4 year: 2013 ident: bb0280 article-title: Detection of soluble BAG3 and anti-BAG3 antibodies in patients with chronic heart failure publication-title: Cell Death Dis. – volume: 24 start-page: 1204 year: 2010 end-page: 1206 ident: bb0020 article-title: WT1 protein is a transcriptional activator of the antiapoptotic publication-title: Leukemia – volume: 6 year: 2015 ident: bb0240 article-title: A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy publication-title: Cell Death Dis. – volume: 72 start-page: 2324 year: 2018 end-page: 2338 ident: bb0235 article-title: Genetic basis of severe childhood-onset cardiomyopathies publication-title: J. Am. Coll. Cardiol. – volume: 10 year: 2017 ident: bb0050 article-title: Precision medicine for heart failure: lessons from oncology publication-title: Circ Heart Fail. – volume: 275 start-page: 4613 year: 2000 end-page: 4617 ident: bb0080 article-title: The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome publication-title: J. Biol. Chem. – volume: 67 start-page: 780 year: 2018 end-page: 782 ident: bb0275 article-title: Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer publication-title: Gut – volume: 42 start-page: 641 year: 2010 end-page: 650 ident: bb0140 article-title: The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding publication-title: Int. J. Biochem. Cell Biol. – volume: 11 start-page: a033928 year: 2019 ident: bb0125 article-title: Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases publication-title: Cold Spring Harb. Perspect. Biol. – volume: 6 year: 2015 ident: bb0160 article-title: BAG3 regulates formation of the SNARE complex and insulin secretion publication-title: Cell Death Dis. – volume: 283 start-page: 1437 year: 2008 end-page: 1444 ident: bb0115 article-title: HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy publication-title: J. Biol. Chem. – volume: 107 start-page: 1220 year: 2010 end-page: 1231 ident: bb0205 article-title: BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress publication-title: Circ. Res. – volume: 67 start-page: 10252 year: 2007 end-page: 10259 ident: bb0135 article-title: BAG3 regulates motility and adhesion of epithelial cancer cells publication-title: Cancer Res. – volume: 11 start-page: 163 year: 2020 ident: bb0180 article-title: Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure publication-title: Nat. Commun. – volume: 2018 start-page: 5967890 year: 2018 ident: bb0145 article-title: BAG3 protein is involved in endothelial cell response to phenethyl isothiocyanate publication-title: Oxidative Med. Cell. Longev. – volume: 45 start-page: D313 year: 2017 end-page: D319 ident: bb0005 article-title: The SWISS-MODEL Repository - new features and functionality publication-title: Nucleic Acids Res. – volume: 127 start-page: 2900 year: 2017 end-page: 2903 ident: bb0190 article-title: BAG3 plays a central role in proteostasis in the heart publication-title: J. Clin. Invest. – volume: 9 start-page: 4232 year: 2018 ident: bb0225 article-title: Myogenin promotes myocyte fusion to balance fibre number and size publication-title: Nat. Commun. – volume: 97 start-page: E115 year: 2012 end-page: E120 ident: bb0085 article-title: BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein publication-title: J. Clin. Endocrinol. Metab. – volume: 37 start-page: 672 year: 2016 end-page: 688 ident: bb0040 article-title: Breaking BAG: the co-chaperone BAG3 in health and disease publication-title: Trends Pharmacol. Sci. – volume: 6 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0240 article-title: A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.280 – volume: 492 start-page: 304 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0095 article-title: KRIBB11 accelerates Mcl-1 degradation through an HSF1-independent, mule-dependent pathway in A549 non-small cell lung cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.08.118 – volume: 464 start-page: 561 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0105 article-title: BAG3 affects the nucleocytoplasmic shuttling of HSF1 upon heat stress publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.07.006 – volume: 108 start-page: 1178 year: 2013 ident: 10.1016/j.bbagen.2020.129628_bb0250 article-title: BAG3 is a novel serum biomarker for pancreatic adenocarcinomas publication-title: Am. J. Gastroenterol. doi: 10.1038/ajg.2013.128 – volume: 107 start-page: 1220 year: 2010 ident: 10.1016/j.bbagen.2020.129628_bb0205 article-title: BAG3 and Hsc70 interact with actin capping protein CapZ to maintain myofibrillar integrity under mechanical stress publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.110.225649 – volume: 67 start-page: 780 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0275 article-title: Combined effect of anti-BAG3 and anti-PD-1 treatment on macrophage infiltrate, CD8+ T cell number and tumour growth in pancreatic cancer publication-title: Gut – volume: 2018 start-page: 5967890 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0145 article-title: BAG3 protein is involved in endothelial cell response to phenethyl isothiocyanate publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2018/5967890 – volume: 72 start-page: 2324 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0235 article-title: Genetic basis of severe childhood-onset cardiomyopathies publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.08.2171 – volume: 28 start-page: 889 year: 2009 ident: 10.1016/j.bbagen.2020.129628_bb0120 article-title: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 publication-title: EMBO J. doi: 10.1038/emboj.2009.29 – volume: 54 start-page: p. 1.30.1 year: 2016 ident: 10.1016/j.bbagen.2020.129628_bb0010 article-title: The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analysis publication-title: Curr. Protoc. Bioinformatics. doi: 10.1002/cpbi.5 – volume: 10 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0050 article-title: Precision medicine for heart failure: lessons from oncology publication-title: Circ Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.117.004202 – volume: 89 start-page: 1175 year: 2011 ident: 10.1016/j.bbagen.2020.129628_bb0130 article-title: Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins publication-title: J. Mol. Med. doi: 10.1007/s00109-011-0795-6 – volume: 11 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0150 article-title: A role for the chaperone complex BAG3-HSPB8 in actin dynamics, spindle orientation and proper chromosome segregation during mitosis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005582 – volume: 97 start-page: E115 year: 2012 ident: 10.1016/j.bbagen.2020.129628_bb0085 article-title: BAG3 down-modulation reduces anaplastic thyroid tumor growth by enhancing proteasome-mediated degradation of BRAF protein publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-0484 – volume: 15 start-page: 892 year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0270 article-title: CAF-derived IL6 and GM-CSF cooperate to induce M2-like TAMs publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2455 – volume: 72 start-page: 2471 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0055 article-title: Dilated cardiomyopathy due to BLC2-associated Athanogene 3 (BAG3) mutations publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2018.08.2181 – volume: 31 start-page: 5153 year: 2012 ident: 10.1016/j.bbagen.2020.129628_bb0175 article-title: BAG3 controls angiogenesis through regulation of ERK phosphorylation publication-title: Oncogene doi: 10.1038/onc.2012.17 – volume: 181 start-page: 1524 year: 2012 ident: 10.1016/j.bbagen.2020.129628_bb0245 article-title: Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2012.07.016 – volume: 4 year: 2013 ident: 10.1016/j.bbagen.2020.129628_bb0280 article-title: Detection of soluble BAG3 and anti-BAG3 antibodies in patients with chronic heart failure publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.8 – volume: 178 start-page: 2504 year: 2011 ident: 10.1016/j.bbagen.2020.129628_bb0100 article-title: BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.02.002 – volume: 21 year: 2020 ident: 10.1016/j.bbagen.2020.129628_bb0065 article-title: Neuromuscular diseases due to chaperone mutations: a review and some new results publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21041409 – volume: 42 start-page: 641 year: 2010 ident: 10.1016/j.bbagen.2020.129628_bb0140 article-title: The co-chaperone BAG3 interacts with the cytosolic chaperonin CCT: new hints for actin folding publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.12.008 – volume: 107 start-page: 7497 year: 2010 ident: 10.1016/j.bbagen.2020.129628_bb0075 article-title: IKK{gamma} protein is a target of BAG3 regulatory activity in human tumor growth publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0907696107 – volume: 6 start-page: 8695 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0255 article-title: BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages publication-title: Nat. Commun. doi: 10.1038/ncomms9695 – volume: 130 start-page: 2781 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0110 article-title: BAG3-mediated proteostasis at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.203679 – volume: 67 start-page: 10252 year: 2007 ident: 10.1016/j.bbagen.2020.129628_bb0135 article-title: BAG3 regulates motility and adhesion of epithelial cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-0618 – volume: 13 start-page: 1388 year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0265 article-title: Development of a humanized anti-BAG3 antibody for pancreatic cancer treatment publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12492 – volume: 45 start-page: D313 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0005 article-title: The SWISS-MODEL Repository - new features and functionality publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1132 – volume: 20 start-page: 423 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0035 article-title: BAG3: a new player in the heart failure paradigm publication-title: Heart Fail. Rev. doi: 10.1007/s10741-015-9487-6 – volume: 169 start-page: 761 year: 2006 ident: 10.1016/j.bbagen.2020.129628_bb0200 article-title: BAG3 deficiency results in fulminant myopathy and early lethality publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2006.060250 – volume: 11 start-page: 163 year: 2020 ident: 10.1016/j.bbagen.2020.129628_bb0180 article-title: Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure publication-title: Nat. Commun. doi: 10.1038/s41467-019-13690-5 – volume: 6 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0160 article-title: BAG3 regulates formation of the SNARE complex and insulin secretion publication-title: Cell Death Dis. doi: 10.1038/cddis.2015.53 – volume: 2 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0195 article-title: A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress publication-title: JCI Insight doi: 10.1172/jci.insight.94623 – volume: 283 start-page: 1437 issue: 3 year: 2008 ident: 10.1016/j.bbagen.2020.129628_bb0115 article-title: HspB8 chaperone activity toward poly(Q)-containing proteins depends on its association with Bag3, a stimulator of macroautophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M706304200 – volume: 38 start-page: 33 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0300 article-title: Alarmins of the extracellular space publication-title: Semin. Immunol. doi: 10.1016/j.smim.2018.08.004 – volume: 215 start-page: 575 year: 2008 ident: 10.1016/j.bbagen.2020.129628_bb0015 article-title: bag3 gene expression is regulated by heat shock factor 1 publication-title: J. Cell Physiol. doi: 10.1002/jcp.21397 – volume: 24 start-page: 1204 year: 2010 ident: 10.1016/j.bbagen.2020.129628_bb0020 article-title: WT1 protein is a transcriptional activator of the antiapoptotic bag3 gene publication-title: Leukemia doi: 10.1038/leu.2010.68 – volume: 37 start-page: 672 year: 2016 ident: 10.1016/j.bbagen.2020.129628_bb0040 article-title: Breaking BAG: the co-chaperone BAG3 in health and disease publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2016.04.007 – volume: 10 start-page: 850 year: 2011 ident: 10.1016/j.bbagen.2020.129628_bb0220 article-title: BAG3 protein is induced during cardiomyoblast differentiation and modulates myogenin expression publication-title: Cell Cycle doi: 10.4161/cc.10.5.14964 – volume: 10 start-page: 177 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0045 article-title: The role of the multifunctional BAG3 protein in cellular protein quality control and in disease publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00177 – volume: 288 start-page: 6980 year: 2013 ident: 10.1016/j.bbagen.2020.129628_bb0090 article-title: The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.414177 – volume: 122 start-page: 893 year: 2009 ident: 10.1016/j.bbagen.2020.129628_bb0165 article-title: Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins publication-title: J. Cell Sci. doi: 10.1242/jcs.034355 – volume: 22 start-page: 553 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0155 article-title: Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division publication-title: Cell Stress Chaperones doi: 10.1007/s12192-017-0780-2 – volume: 9 start-page: 7658 year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0215 article-title: Role of Bcl2-associated Athanogene 3 in turnover of gap junction protein, Connexin 43, in neonatal cardiomyocytes publication-title: Sci. Rep. doi: 10.1038/s41598-019-44139-w – year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0260 article-title: The IFITM protein family in adaptive immunity publication-title: Immunology – volume: 278 start-page: 28490 year: 2003 ident: 10.1016/j.bbagen.2020.129628_bb0070 article-title: CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209682200 – volume: 127 start-page: 2900 year: 2017 ident: 10.1016/j.bbagen.2020.129628_bb0190 article-title: BAG3 plays a central role in proteostasis in the heart publication-title: J. Clin. Invest. doi: 10.1172/JCI95839 – volume: 19 start-page: 4385 year: 2000 ident: 10.1016/j.bbagen.2020.129628_bb0170 article-title: CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70 publication-title: Oncogene doi: 10.1038/sj.onc.1203797 – year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0060 article-title: Advances in the role and mechanism of BAG3 in dilated cardiomyopathy publication-title: Heart Fail. Rev. doi: 10.1007/s10741-019-09899-7 – volume: 2 start-page: 673 year: 2014 ident: 10.1016/j.bbagen.2020.129628_bb0285 article-title: BAG3 protein in advanced-stage heart failure publication-title: JACC Heart Fail. doi: 10.1016/j.jchf.2014.05.012 – volume: 78 start-page: 85 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0030 article-title: Role of BAG3 in cancer progression: a therapeutic opportunity publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.08.049 – volume: 9 start-page: 4232 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0225 article-title: Myogenin promotes myocyte fusion to balance fibre number and size publication-title: Nat. Commun. doi: 10.1038/s41467-018-06583-6 – volume: 9 start-page: 5342 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0185 article-title: Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks publication-title: Nat. Commun. doi: 10.1038/s41467-018-07718-5 – volume: 27 start-page: 5011 year: 2008 ident: 10.1016/j.bbagen.2020.129628_bb0025 article-title: Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells publication-title: Oncogene doi: 10.1038/onc.2008.142 – volume: 92 year: 2016 ident: 10.1016/j.bbagen.2020.129628_bb0210 article-title: BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes publication-title: J. Mol. Cell Cardiol. doi: 10.1016/j.yjmcc.2016.01.015 – volume: 275 start-page: 4613 year: 2000 ident: 10.1016/j.bbagen.2020.129628_bb0080 article-title: The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.7.4613 – volume: 11 start-page: a033928 year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0125 article-title: Chaperoning endoplasmic reticulum-associated degradation (ERAD) and protein conformational diseases publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033928 – volume: 445 start-page: 73 year: 2015 ident: 10.1016/j.bbagen.2020.129628_bb0290 article-title: Analysis of BAG3 plasma concentrations in patients with acutely decompensated heart failure publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2015.02.048 – volume: 140 start-page: 1318 year: 2019 ident: 10.1016/j.bbagen.2020.129628_bb0230 article-title: Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041161 – volume: 233 start-page: 1791 year: 2018 ident: 10.1016/j.bbagen.2020.129628_bb0295 article-title: Evaluation of BAG3 levels in healthy subjects, hypertensive patients, and hypertensive diabetic patients publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26093 |
SSID | ssj0000595 |
Score | 2.448889 |
SecondaryResourceType | review_article |
Snippet | BAG3 was identified as a co-chaperone of the heat shock protein (Hsp) 70, which helps, through the binding to the ATPase domain, the ADP release from the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129628 |
SubjectTerms | Actin dynamics Adaptor Proteins, Signal Transducing - metabolism adenosine diphosphate adenosinetriphosphatase apoptosis Apoptosis Regulatory Proteins - metabolism BAG3 Cell survival cytoskeleton heat shock proteins Humans Monocyte activation monocytes myocytes neoplasms proteasome endopeptidase complex Protein quality control protein value signal transduction stress response |
Title | The multiple activities of BAG3 protein: Mechanisms |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129628 https://www.ncbi.nlm.nih.gov/pubmed/32360144 https://www.proquest.com/docview/2398152208 https://www.proquest.com/docview/2477624888 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lInoRra_6KCt4XZtukn14q8Valfaihd7C5gUV3RbbCl787U42uxVBLXjcZbJkv0wm35B5IHRO0zTR4HT5BtQJHBSB_UQFyqcCRwkwUkPyznP9Qdgb0rsRG1VQp8yFsWGVhe13Nj231sWbZoFmczoeNx_spR7QCRY4N8Em8VEaWS2_-PgK8wD6wNxNAvWtdJk-l8d4CQGb1lZBDWyZhSS0Pdl_Pp5-o5_5MdTdRlsFf_Taboo7qKKzGlp3HSXfa2ijUzZw20UEVMArAwY9m8DwlpdP9SbGu2rfEC-v0TDOLr2-tvm_49nLbA8Nu9ePnZ5f9EjwJfz8HGwV06GKFFHUCGUIk5ilRsdChFLKuBUpjGVoFImlNELGJo0oyGssCcWKarKPqtkk04fIg3VJMDNSYS2p0kTAp1uSxlhJoGGU1REpoeGyKCBu-1g88zJS7Ik7QLkFlDtA68hfjpq6Ahor5KMSdf5NETjY-BUjz8pF4oC0vfhIMz1ZzLitcQg8JcB_ydAIzgUwZyBz4FZ4OV8SkNB6nkf_ntsx2rRPLnLwBFXnrwt9CmxmLhq5ujbQWvv2vjf4BL1_8XA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qRfRFvG9dwdelcZPs4Vstaj3aFxV8C5sLKrottgr-eyeb3YrgAb7uTpbsl8lkhsx8A3DE8jwzGHSFFtUJAxRJwkxHOmSSJBl6pJaWned6_bh7z64e-EMDOnUtjEurrGy_t-mlta6etCo0W6PBoHXrLvXQneCRDxOyGZh17FS8CbPty-tu_9Mg87L5ipMP3YC6gq5M85IS960jQo0c00IWu7bs359QP3mg5Ul0vgSLlQsZtP0sl6FhihWY800l31dgvlP3cFsFiloQ1DmDgatheCsZVIOhDU7bFzQoaRoGxUnQM64EeDB-Hq_B_fnZXacbVm0SQoX_P0FzxU2sE001s1JbyhXhuTWplLFSKj1ONCEqtpqmSlmpUpsnDOUNUZQRzQxdh2YxLMwmBLg0GeFWaWIU04ZK_PSxYinRCj0xxreA1tAIVXGIu1YWT6JOFnsUHlDhABUe0C0Ip6NGnkPjD_mkRl180QWBZv6PkYf1IglE2t195IUZvo6FozlEVyUiv8mwBI8GtGgos-FXeDpfGtHYBZ_b_57bAcx373o34uayf70DC-6NTyTchebk5dXsoXMzkfuV8n4ACZn0IQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+multiple+activities+of+BAG3+protein%3A+Mechanisms&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Marzullo%2C+Liberato&rft.au=Turco%2C+Maria+Caterina&rft.au=De+Marco%2C+Margot&rft.date=2020-08-01&rft.issn=1872-8006&rft.eissn=1872-8006&rft.volume=1864&rft.issue=8&rft.spage=129628&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129628&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |