Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars
Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS...
Saved in:
Published in | Journal of hazardous materials Vol. 419; p. 126486 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-3894 1873-3336 1873-3336 |
DOI | 10.1016/j.jhazmat.2021.126486 |
Cover
Loading…
Abstract | Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal.
[Display omitted]
•Mg/Zn-MBCs were prepared as adsorbents for microplastic removal.•The modification by Mg and Zn-MBC enhanced removal efficiency significantly.•Zn-MBC maintained stable adsorption performance in various conditions.•MBCs promoted MPs degradation by thermal treatment for adsorbents regeneration.•Recycled Zn-MBC showed the highest removal efficiency of reported adsorbents. |
---|---|
AbstractList | Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal.Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal. Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H2PO4- and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal. [Display omitted] •Mg/Zn-MBCs were prepared as adsorbents for microplastic removal.•The modification by Mg and Zn-MBC enhanced removal efficiency significantly.•Zn-MBC maintained stable adsorption performance in various conditions.•MBCs promoted MPs degradation by thermal treatment for adsorbents regeneration.•Recycled Zn-MBC showed the highest removal efficiency of reported adsorbents. Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential threats to organisms. This study proposes efficient Mg/Zn modified magnetic biochar adsorbents for microplastic removal. For polystyrene (PS) microspheres (1 µm, 100 mg/mL) in aqueous solution, the removal efficiencies of magnetic biochar (MBC), Mg modified magnetic biochar (Mg-MBC), and Zn modified magnetic biochar (Zn-MBC) were 94.81%, 98.75%, and 99.46%, respectively. It is supposed that the adsorption process was a result of electrostatic interaction and chemical bonding interaction between microplastics and biochar. The coexisting H₂PO₄⁻ and organic matters in real water significantly affected the removal efficiency of Zn-MBC due to competitive adsorption effect. Microplastic degradation and adsorbent regeneration were accomplished by thermal treatment simultaneously. The degradation of adsorbed MPs was promoted by the catalytic active sites originated from Mg and Zn, releasing adsorption sites. Thermal regeneration maintained the adsorption capability. Even after five adsorption-pyrolysis cycles, MBC (95.02%), Mg-MBC (94.60%), and Zn-MBC (95.79%) showed high microplastic removal efficiency. Therefore, the low-cost, eco-friendly, and robust Mg/Zn-MBCs have promising potential for application in microplastic removal. |
ArticleNumber | 126486 |
Author | Sun, Chen Huang, Qun-Xing Yan, Jian-Hua Chi, Yong Wang, Jun |
Author_xml | – sequence: 1 givenname: Jun surname: Wang fullname: Wang, Jun – sequence: 2 givenname: Chen surname: Sun fullname: Sun, Chen – sequence: 3 givenname: Qun-Xing surname: Huang fullname: Huang, Qun-Xing email: hqx@zju.edu.cn – sequence: 4 givenname: Yong surname: Chi fullname: Chi, Yong – sequence: 5 givenname: Jian-Hua surname: Yan fullname: Yan, Jian-Hua |
BookMark | eNqFkUtrGzEUhUVJoc7jJwS07GZsaa6kmaGLEkIehZRssupG3JE0tsyM5EpyIPn1HcdZdePVhcv5DodzzslZiMERcs3ZkjOuVtvldoPvE5ZlzWq-5LUSrfpCFrxtoAIAdUYWDJiooO3EN3Ke85YxxhspFiTc2BzTrvgYKAZLy8alCUdq3TqhxY9_HOjkTYq7EXPxJtMhxYni372L-0xzHPcHWab9G_29Xv0JdIrWD95ZOuE6uBmhvY9mgylfkq8Djtldfd4L8nJ_93L7WD09P_y6vXmqjBC8VB2rZY3M1k0LtTQSwEjOnG0d50pYZlGCsBIQFR-4gF5Bq4ahNbbvERhckO9H212Kc8xc9OSzceOI4ZBZ10pxxqBh3WmpFC10XcNhlsqjdO4i5-QGvUt-wvSmOdOHJfRWfy6hD0vo4xIz9-M_zvjyUW1J6MeT9M8j7ea-Xr1LOhvvgnHWJ2eKttGfcPgHp7WrcA |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2023_119332 crossref_primary_10_1016_j_cscee_2024_100726 crossref_primary_10_3390_w16101363 crossref_primary_10_1016_j_jece_2024_112333 crossref_primary_10_1021_acssensors_4c00957 crossref_primary_10_1016_j_scitotenv_2023_169524 crossref_primary_10_1016_j_cej_2022_139302 crossref_primary_10_1016_j_emcon_2024_100383 crossref_primary_10_1016_j_envpol_2022_120696 crossref_primary_10_2139_ssrn_3991525 crossref_primary_10_1016_j_jenvman_2025_124251 crossref_primary_10_1016_j_cscee_2024_101025 crossref_primary_10_1016_j_jconhyd_2024_104485 crossref_primary_10_1186_s13765_024_00903_9 crossref_primary_10_3390_ijerph20031679 crossref_primary_10_1016_j_wroa_2023_100167 crossref_primary_10_3390_pr11030810 crossref_primary_10_1016_j_dwt_2024_100871 crossref_primary_10_1016_j_enmm_2024_101007 crossref_primary_10_1016_j_seppur_2025_132487 crossref_primary_10_20517_wecn_2023_74 crossref_primary_10_1016_j_dwt_2024_100198 crossref_primary_10_1016_j_scitotenv_2024_173194 crossref_primary_10_1016_j_seppur_2025_132008 crossref_primary_10_1021_acsnano_4c02511 crossref_primary_10_1016_j_envpol_2022_120334 crossref_primary_10_1016_j_jclepro_2022_130766 crossref_primary_10_21926_aeer_2303039 crossref_primary_10_1016_j_seppur_2024_128935 crossref_primary_10_3390_ijms26052207 crossref_primary_10_2166_wst_2024_112 crossref_primary_10_1016_j_marpolbul_2023_114580 crossref_primary_10_1016_j_seppur_2024_128813 crossref_primary_10_1016_j_scitotenv_2024_173963 crossref_primary_10_1016_j_envpol_2024_125121 crossref_primary_10_54097_hset_v69i_11841 crossref_primary_10_4236_gsc_2023_134014 crossref_primary_10_1016_j_jhazmat_2022_128756 crossref_primary_10_3390_soilsystems7040110 crossref_primary_10_1016_j_nxsust_2025_100119 crossref_primary_10_1021_acsestwater_4c00558 crossref_primary_10_1016_j_chemosphere_2022_136455 crossref_primary_10_1002_ange_202212013 crossref_primary_10_1002_adsu_202400172 crossref_primary_10_1002_ldr_5459 crossref_primary_10_1016_j_clce_2025_100162 crossref_primary_10_1002_admi_202201882 crossref_primary_10_1016_j_jece_2024_114094 crossref_primary_10_1016_j_jenvman_2023_119907 crossref_primary_10_1016_j_scitotenv_2024_172627 crossref_primary_10_1016_j_cej_2025_160095 crossref_primary_10_3390_microplastics2030023 crossref_primary_10_1016_j_watres_2023_120314 crossref_primary_10_1089_ees_2023_0332 crossref_primary_10_3390_w14233968 crossref_primary_10_1002_jctb_7819 crossref_primary_10_1016_j_trac_2023_117106 crossref_primary_10_1016_j_seppur_2024_127264 crossref_primary_10_1016_j_jwpe_2025_107270 crossref_primary_10_1016_j_cherd_2024_05_027 crossref_primary_10_1016_j_jclepro_2022_133814 crossref_primary_10_1007_s10311_024_01730_6 crossref_primary_10_1016_j_envres_2023_116605 crossref_primary_10_1016_j_chemosphere_2023_139358 crossref_primary_10_1021_acsami_3c19398 crossref_primary_10_1016_j_cej_2023_146562 crossref_primary_10_1016_j_chemosphere_2022_137433 crossref_primary_10_1016_j_ese_2022_100222 crossref_primary_10_1016_j_plaphy_2023_01_022 crossref_primary_10_1016_j_seppur_2024_126614 crossref_primary_10_1016_j_coesh_2023_100516 crossref_primary_10_1016_j_jece_2024_113067 crossref_primary_10_1016_j_plaphy_2024_108795 crossref_primary_10_32402_dovkil2023_04_060 crossref_primary_10_1016_j_jhazmat_2022_128611 crossref_primary_10_1002_adfm_202212570 crossref_primary_10_1016_j_apsusc_2023_158372 crossref_primary_10_1016_j_chemosphere_2024_142152 crossref_primary_10_1016_j_cej_2023_143848 crossref_primary_10_1016_j_greeac_2022_100042 crossref_primary_10_1007_s10661_024_13247_0 crossref_primary_10_1007_s11356_023_28513_w crossref_primary_10_1016_j_scitotenv_2023_165404 crossref_primary_10_1016_j_seppur_2024_128468 crossref_primary_10_1016_j_envpol_2024_124607 crossref_primary_10_3389_fenvs_2023_1114752 crossref_primary_10_35414_akufemubid_1446078 crossref_primary_10_1080_15440478_2023_2218623 crossref_primary_10_1016_j_cej_2023_146430 crossref_primary_10_1007_s11356_024_33726_8 crossref_primary_10_1016_j_xinn_2024_100655 crossref_primary_10_1039_D4EN00267A crossref_primary_10_1002_adsu_202300033 crossref_primary_10_1177_02636174241273522 crossref_primary_10_1016_j_chemosphere_2022_134418 crossref_primary_10_1155_joch_8217730 crossref_primary_10_1016_j_jwpe_2024_105854 crossref_primary_10_1080_10807039_2022_2071209 crossref_primary_10_1016_j_jwpe_2023_103495 crossref_primary_10_1016_j_jhazmat_2024_135262 crossref_primary_10_1016_j_scitotenv_2022_159097 crossref_primary_10_3390_toxics10020070 crossref_primary_10_1007_s11356_022_24130_1 crossref_primary_10_1016_j_jece_2024_112646 crossref_primary_10_1016_j_envres_2022_112724 crossref_primary_10_1016_j_scitotenv_2023_167258 crossref_primary_10_1016_j_watres_2022_119526 crossref_primary_10_1038_s41598_024_56973_8 crossref_primary_10_1016_j_seppur_2022_122999 crossref_primary_10_51249_jid_v4i03_1471 crossref_primary_10_1016_j_joei_2024_101662 crossref_primary_10_37394_232031_2024_3_10 crossref_primary_10_1016_j_decarb_2024_100064 crossref_primary_10_1016_j_jenvman_2023_119158 crossref_primary_10_1016_j_seppur_2024_126709 crossref_primary_10_1016_j_jhazmat_2022_129802 crossref_primary_10_1002_gch2_202300047 crossref_primary_10_1002_wer_10819 crossref_primary_10_1007_s11356_023_30314_0 crossref_primary_10_1016_j_jhazmat_2024_133435 crossref_primary_10_3389_fenvs_2024_1388606 crossref_primary_10_1016_j_chemosphere_2024_143936 crossref_primary_10_1016_j_seppur_2024_129418 crossref_primary_10_1016_j_cej_2023_147615 crossref_primary_10_1016_j_watres_2022_118895 crossref_primary_10_1016_j_scitotenv_2023_169534 crossref_primary_10_1016_j_watres_2024_122399 crossref_primary_10_1016_j_psep_2024_11_011 crossref_primary_10_1016_j_ecoenv_2024_115935 crossref_primary_10_1016_j_cej_2024_157387 crossref_primary_10_1016_j_scitotenv_2024_170382 crossref_primary_10_1016_j_enmm_2024_100977 crossref_primary_10_1016_j_algal_2024_103418 crossref_primary_10_3390_pr13030843 crossref_primary_10_1016_j_scitotenv_2023_165971 crossref_primary_10_1016_j_chemosphere_2023_138741 crossref_primary_10_1016_j_biortech_2023_129081 crossref_primary_10_1007_s11356_024_32088_5 crossref_primary_10_1016_j_envpol_2024_125501 crossref_primary_10_1515_psr_2023_0041 crossref_primary_10_1016_j_scitotenv_2023_164359 crossref_primary_10_1007_s40201_023_00872_z crossref_primary_10_1515_psr_2023_0048 crossref_primary_10_1016_j_enceco_2024_07_001 crossref_primary_10_1016_j_scitotenv_2023_165443 crossref_primary_10_1016_j_jwpe_2024_106620 crossref_primary_10_1016_j_jece_2024_113377 crossref_primary_10_1016_j_jece_2024_112965 crossref_primary_10_1016_j_cej_2023_143910 crossref_primary_10_1016_j_colsurfa_2022_129728 crossref_primary_10_1080_15422119_2022_2096071 crossref_primary_10_1016_j_scitotenv_2025_178892 crossref_primary_10_1002_anie_202212013 crossref_primary_10_1021_acs_langmuir_3c01700 crossref_primary_10_1039_D4VA00039K crossref_primary_10_1016_j_agwat_2024_109202 crossref_primary_10_1016_j_ijbiomac_2025_141401 crossref_primary_10_1016_j_microc_2024_111880 crossref_primary_10_1016_j_watres_2023_119628 crossref_primary_10_1007_s11356_024_35166_w crossref_primary_10_1016_j_chemosphere_2022_135672 crossref_primary_10_1016_j_jclepro_2023_139678 crossref_primary_10_1016_j_jhazmat_2022_128261 crossref_primary_10_3390_su16229749 crossref_primary_10_1016_j_cej_2022_140390 crossref_primary_10_1016_j_jenvman_2023_118784 crossref_primary_10_1007_s11783_025_1953_3 crossref_primary_10_1016_j_chemosphere_2024_141566 crossref_primary_10_1016_j_seppur_2022_121133 crossref_primary_10_2139_ssrn_4171698 crossref_primary_10_1016_j_jece_2025_115509 crossref_primary_10_1016_j_jcis_2025_01_047 crossref_primary_10_1016_j_scitotenv_2023_161618 crossref_primary_10_1016_j_jece_2023_111107 crossref_primary_10_3390_w16131837 crossref_primary_10_1016_j_cej_2025_160918 crossref_primary_10_1016_j_molliq_2023_123016 crossref_primary_10_1039_D2EN00131D crossref_primary_10_1016_j_jhazmat_2024_133754 crossref_primary_10_1016_j_chemosphere_2022_137704 crossref_primary_10_1021_acssuschemeng_3c02582 crossref_primary_10_1016_j_colsurfa_2024_133996 crossref_primary_10_1016_j_seppur_2023_124245 crossref_primary_10_1016_j_seppur_2023_123278 crossref_primary_10_1016_j_seppur_2023_124367 crossref_primary_10_1016_j_cscee_2021_100151 crossref_primary_10_1016_j_seppur_2024_128889 crossref_primary_10_1007_s11270_023_06677_y crossref_primary_10_1016_j_cej_2023_146961 crossref_primary_10_1016_j_scitotenv_2024_174426 crossref_primary_10_1016_j_seppur_2022_122453 crossref_primary_10_1016_j_watres_2024_122632 crossref_primary_10_1016_j_chroma_2024_465382 crossref_primary_10_3390_ma17225428 crossref_primary_10_1016_j_cscee_2025_101108 crossref_primary_10_1016_j_scitotenv_2024_176281 crossref_primary_10_1016_j_jclepro_2023_136708 crossref_primary_10_1016_j_seppur_2023_125582 crossref_primary_10_1016_j_scitotenv_2022_157576 crossref_primary_10_1016_j_envres_2021_111919 crossref_primary_10_1016_j_scitotenv_2023_162021 crossref_primary_10_1016_j_psep_2024_04_021 crossref_primary_10_1016_j_jclepro_2024_143877 crossref_primary_10_1149_2162_8777_ada4d8 crossref_primary_10_1016_j_jwpe_2024_105681 crossref_primary_10_1016_j_scitotenv_2022_153413 crossref_primary_10_1016_j_envres_2023_117864 crossref_primary_10_1016_j_hazadv_2024_100518 crossref_primary_10_1007_s11356_024_34070_7 crossref_primary_10_1016_j_jwpe_2023_103543 crossref_primary_10_1016_j_scitotenv_2023_162647 crossref_primary_10_1016_j_envpol_2024_124335 crossref_primary_10_1016_j_cej_2021_133122 crossref_primary_10_1007_s11356_023_31185_1 crossref_primary_10_1016_j_apsusc_2025_162364 crossref_primary_10_1002_jctb_7548 crossref_primary_10_1016_j_resconrec_2022_106720 crossref_primary_10_1016_j_chemosphere_2022_134493 crossref_primary_10_1016_j_jenvman_2023_119522 crossref_primary_10_1016_j_device_2025_100725 crossref_primary_10_1016_j_etap_2023_104193 crossref_primary_10_1021_acs_iecr_3c03971 crossref_primary_10_1016_j_rineng_2024_102776 crossref_primary_10_18359_rfcb_7046 crossref_primary_10_1016_j_jenvman_2024_122413 crossref_primary_10_1016_j_jaap_2023_106096 crossref_primary_10_1016_j_jes_2024_07_007 crossref_primary_10_1007_s41742_024_00635_0 crossref_primary_10_1016_j_jwpe_2023_103777 crossref_primary_10_1039_D4EW00709C crossref_primary_10_1016_j_mtsust_2024_100833 crossref_primary_10_1016_j_watres_2022_119481 crossref_primary_10_1007_s13399_023_04374_8 crossref_primary_10_3390_polym14235189 crossref_primary_10_1016_j_envpol_2022_120897 crossref_primary_10_1016_j_eti_2023_103250 crossref_primary_10_1016_j_jwpe_2024_104919 crossref_primary_10_3390_ma18061306 crossref_primary_10_1016_j_biombioe_2023_106800 crossref_primary_10_1016_j_jclepro_2022_133676 crossref_primary_10_1016_j_scitotenv_2022_157991 crossref_primary_10_1007_s11356_023_28460_6 crossref_primary_10_1016_j_colsurfa_2024_134159 crossref_primary_10_5004_dwt_2022_28849 crossref_primary_10_1063_5_0258086 crossref_primary_10_1016_j_envres_2023_116307 crossref_primary_10_1016_j_chemosphere_2022_135232 crossref_primary_10_1016_j_talanta_2024_127195 crossref_primary_10_1016_j_jenvman_2023_119433 crossref_primary_10_1016_j_chemosphere_2024_141365 crossref_primary_10_1016_j_jenvman_2024_123778 crossref_primary_10_1016_j_seppur_2023_125816 crossref_primary_10_1016_j_seppur_2025_132036 crossref_primary_10_1016_j_chemosphere_2023_139206 crossref_primary_10_1016_j_surfin_2025_106090 crossref_primary_10_3390_su151712698 crossref_primary_10_1016_j_jhazmat_2022_128672 crossref_primary_10_1016_j_jhazmat_2022_129881 crossref_primary_10_1007_s13399_022_03011_0 crossref_primary_10_1016_j_ces_2024_121091 crossref_primary_10_1016_j_jclepro_2024_143606 crossref_primary_10_1016_j_jhazmat_2022_128566 crossref_primary_10_1080_19397038_2024_2374003 crossref_primary_10_1016_j_envpol_2023_122323 crossref_primary_10_1016_j_cej_2024_151453 crossref_primary_10_1016_j_jclepro_2024_143288 crossref_primary_10_1063_5_0137651 crossref_primary_10_1016_j_envpol_2023_122319 crossref_primary_10_1007_s10661_024_13000_7 crossref_primary_10_1016_j_cej_2022_140405 crossref_primary_10_1016_j_ceja_2023_100529 crossref_primary_10_1016_j_ijbiomac_2023_127292 crossref_primary_10_1007_s10661_025_13883_0 crossref_primary_10_1016_j_jhazmat_2022_129771 crossref_primary_10_1007_s10853_023_08806_8 |
Cites_doi | 10.1071/EN15069 10.1016/j.marpolbul.2011.09.025 10.1016/j.envpol.2019.113326 10.1016/j.envsci.2020.06.015 10.1016/j.marpolbul.2020.111432 10.1016/j.matchemphys.2019.122240 10.1016/j.jcis.2005.08.056 10.1002/jobm.201800174 10.1007/s11356-018-4033-4 10.1021/acs.est.5b05416 10.1002/apj.2391 10.1016/j.cej.2020.124796 10.1016/j.ceramint.2020.12.234 10.1038/s41893-020-0567-9 10.1016/j.ecoenv.2020.110910 10.1016/j.watres.2018.04.003 10.1016/j.scitotenv.2016.03.248 10.1016/S0920-5861(00)00409-0 10.1016/j.envpol.2018.09.073 10.1016/0141-3910(90)90030-B 10.1016/j.saa.2016.05.049 10.1016/j.jhazmat.2020.124991 10.1038/s41467-020-19069-1 10.1016/j.jhazmat.2020.124697 10.1006/jcis.1998.5602 10.1007/s11356-020-11811-y 10.1016/j.envint.2020.106277 10.1016/j.colsurfa.2016.05.101 10.1038/srep05295 10.1016/j.cej.2020.126804 10.1016/j.scitotenv.2020.143902 10.1007/s11356-017-9825-4 10.1016/j.cis.2010.12.004 10.1126/science.1260352 10.1080/10937404.2019.1700598 10.1039/D0TA04891G 10.1016/j.jhazmat.2020.122769 10.1021/cr60234a002 10.1016/j.cej.2013.05.041 10.1021/acs.est.6b04048 10.1016/j.jhazmat.2019.120797 10.1016/j.cej.2018.11.155 10.1016/j.jenvman.2021.112397 10.1111/j.1365-2389.2005.00776.x 10.1016/j.scitotenv.2019.04.007 10.1016/j.scitotenv.2019.03.368 10.1016/j.jaap.2015.05.009 10.1016/j.fuel.2015.04.019 10.1016/j.chemosphere.2018.11.151 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2021.126486 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2021_126486 S0304389421014515 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-90252a0d278325c533c510ed8e1164d0da534d53aa61f143b6386ff8cdbba303 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 01:00:41 EDT 2025 Thu Aug 07 14:50:35 EDT 2025 Tue Jul 01 00:49:49 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Fri Feb 23 02:43:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regeneration Microplastic removal Magnetic biochar Thermal treatment |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-90252a0d278325c533c510ed8e1164d0da534d53aa61f143b6386ff8cdbba303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2548399713 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2661003709 proquest_miscellaneous_2548399713 crossref_primary_10_1016_j_jhazmat_2021_126486 crossref_citationtrail_10_1016_j_jhazmat_2021_126486 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2021_126486 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-05 |
PublicationDateYYYYMMDD | 2021-10-05 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Zhang, Liu, Guo, Zhang, Yao, Cao, Zhang (bib21) 2021; 146 Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bib14) 2015; 347 Wamba, Lima, Ndi, Thue, Kayem, Rodembusch, dos Reis, de Alencar (bib41) 2017; 24 Audisio, Bertini, Beltrame, Carniti (bib1) 1990; 29 Tiwari, Singh, Khandelwal, Monikh, Darbha (bib39) 2020; 397 Bekiaris, Peltre, Jensen, Bruun (bib2) 2016; 168 Mahon, O’Connell, Healy, O’Connor, Officer, Nash, Morrison (bib23) 2017; 51 Liang, Fang, Luo, Zeng, Deng, Tan, Tang, Li, He, Feng, Ye (bib20) 2019; 26 Cole, Lindeque, Halsband, Galloway (bib6) 2011; 62 Oberbeckmann, Löder, Labrenz (bib30) 2015; 12 Chen, Huang, Liu, Wu, Zheng, Cui (bib4) 2021; 406 Zhao, Xu, Zhang, Cui (bib49) 2021; 28 Murphy, Ewins, Carbonnier, Quinn (bib27) 2016; 50 Chen, Chen, Miao, Wang, Gao, Yang, Zhu, Wang, Li, Lan (bib3) 2020; 8 Ferraro, Failler (bib10) 2020; 112 Kang, Yu, Tong, Ge, Zuo, Cao, Song (bib15) 2013; 228 Corradini, Meza, Eguiluz, Casado, Huerta-Lwanga, Geissen (bib7) 2019; 671 Yang, Li, Chen, Chen, Pu, Wang, Yu, Hu, Chen, Wang (bib47) 2019; 379 Parks (bib31) 1965; 65 Hussain, Imtiaz, Khan, Naz, Khaled, Khan (bib13) 2020; 15 Rubio, Marcos, Hernández (bib34) 2020; 23 Ukei, Hirose, Horikawa, Takai, Taka, Azuma, Ueno (bib40) 2000; 62 Tang, Zhang, Su, Wu, Zhao, Xie (bib38) 2021; 406 Zhang, Qu, Lu, Ke, Zhu, Zhang, Zhang, Du, Pan, Sun, Qian (bib48) 2018; 243 Mitrano, Wohlleben (bib26) 2020; 11 Cui, Fang, Yao, Li, Ni, Yang, He (bib8) 2016; 562 Sen Gupta, Bhattacharyya (bib35) 2011; 162 Leng, Yuan, Zeng, Shao, Chen, Wu, Wang, Peng (bib18) 2015; 155 Hossain, Jiang, Wei, Leff (bib12) 2019; 59 Li, Luo, Li, Zhou, Peijnenburg, Yin, Yang, Tu, Zhang (bib19) 2020; 3 Qiu, Sun, Jin, Gao, Yan, Han, Wu, Xing (bib32) 2014; 4 Maia, Soares, Alves Gurgel (bib24) 2021; 288 Leifeld (bib17) 2006; 57 Maliwan, Pungrasmi, Lohwacharin (bib25) 2021; 411 Guo, Jiang, Li, Jia, Liang, Qian (bib11) 2020; 240 Kilduff, Karanfil, Weber (bib16) 1998; 205 Wang, Wong, Chen, Lu, Wang, Zeng (bib42) 2018; 139 Sun, Wang, Chen, Li (bib37) 2020; 393 Wu, Tang, Wu, Liu, Yang (bib45) 2021; 757 Nadeem, Munawar, Mukhtar, Naveed ur Rahman, Riaz, Iqbal (bib28) 2021; 47 Ma, Xue, Hu, Liu, Qu, Li (bib22) 2019; 359 Shah, Jan, Adnan (bib36) 2015; 114 Ngo, Pramanik, Shah, Roychand (bib29) 2019; 255 Choi, Kan (bib5) 2019; 218 Xia, Wang, Wang, Song, Wang, Zhang, Zhao (bib46) 2016; 506 Wu, Yang, Du, Liu (bib44) 2020; 202 Ruan, Zhang, Wu, Wu, Lam (bib33) 2019; 674 Ding, Qu (bib9) 2005; 291 Wong, Nyakuma, Wong, Lee, Lee, Lee (bib43) 2020; 158 Murphy (10.1016/j.jhazmat.2021.126486_bib27) 2016; 50 Mahon (10.1016/j.jhazmat.2021.126486_bib23) 2017; 51 Hussain (10.1016/j.jhazmat.2021.126486_bib13) 2020; 15 Kang (10.1016/j.jhazmat.2021.126486_bib15) 2013; 228 Sen Gupta (10.1016/j.jhazmat.2021.126486_bib35) 2011; 162 Audisio (10.1016/j.jhazmat.2021.126486_bib1) 1990; 29 Ruan (10.1016/j.jhazmat.2021.126486_bib33) 2019; 674 Yang (10.1016/j.jhazmat.2021.126486_bib47) 2019; 379 Liang (10.1016/j.jhazmat.2021.126486_bib20) 2019; 26 Jambeck (10.1016/j.jhazmat.2021.126486_bib14) 2015; 347 Wu (10.1016/j.jhazmat.2021.126486_bib44) 2020; 202 Chen (10.1016/j.jhazmat.2021.126486_bib3) 2020; 8 Wu (10.1016/j.jhazmat.2021.126486_bib45) 2021; 757 Ma (10.1016/j.jhazmat.2021.126486_bib22) 2019; 359 Nadeem (10.1016/j.jhazmat.2021.126486_bib28) 2021; 47 Cole (10.1016/j.jhazmat.2021.126486_bib6) 2011; 62 Hossain (10.1016/j.jhazmat.2021.126486_bib12) 2019; 59 Chen (10.1016/j.jhazmat.2021.126486_bib4) 2021; 406 Kilduff (10.1016/j.jhazmat.2021.126486_bib16) 1998; 205 Bekiaris (10.1016/j.jhazmat.2021.126486_bib2) 2016; 168 Li (10.1016/j.jhazmat.2021.126486_bib19) 2020; 3 Parks (10.1016/j.jhazmat.2021.126486_bib31) 1965; 65 Wamba (10.1016/j.jhazmat.2021.126486_bib41) 2017; 24 Qiu (10.1016/j.jhazmat.2021.126486_bib32) 2014; 4 Guo (10.1016/j.jhazmat.2021.126486_bib11) 2020; 240 Maliwan (10.1016/j.jhazmat.2021.126486_bib25) 2021; 411 Mitrano (10.1016/j.jhazmat.2021.126486_bib26) 2020; 11 Liu (10.1016/j.jhazmat.2021.126486_bib21) 2021; 146 Sun (10.1016/j.jhazmat.2021.126486_bib37) 2020; 393 Zhang (10.1016/j.jhazmat.2021.126486_bib48) 2018; 243 Ngo (10.1016/j.jhazmat.2021.126486_bib29) 2019; 255 Ukei (10.1016/j.jhazmat.2021.126486_bib40) 2000; 62 Tiwari (10.1016/j.jhazmat.2021.126486_bib39) 2020; 397 Ferraro (10.1016/j.jhazmat.2021.126486_bib10) 2020; 112 Shah (10.1016/j.jhazmat.2021.126486_bib36) 2015; 114 Choi (10.1016/j.jhazmat.2021.126486_bib5) 2019; 218 Wong (10.1016/j.jhazmat.2021.126486_bib43) 2020; 158 Leifeld (10.1016/j.jhazmat.2021.126486_bib17) 2006; 57 Leng (10.1016/j.jhazmat.2021.126486_bib18) 2015; 155 Ding (10.1016/j.jhazmat.2021.126486_bib9) 2005; 291 Oberbeckmann (10.1016/j.jhazmat.2021.126486_bib30) 2015; 12 Rubio (10.1016/j.jhazmat.2021.126486_bib34) 2020; 23 Maia (10.1016/j.jhazmat.2021.126486_bib24) 2021; 288 Zhao (10.1016/j.jhazmat.2021.126486_bib49) 2021; 28 Tang (10.1016/j.jhazmat.2021.126486_bib38) 2021; 406 Cui (10.1016/j.jhazmat.2021.126486_bib8) 2016; 562 Wang (10.1016/j.jhazmat.2021.126486_bib42) 2018; 139 Xia (10.1016/j.jhazmat.2021.126486_bib46) 2016; 506 Corradini (10.1016/j.jhazmat.2021.126486_bib7) 2019; 671 |
References_xml | – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bib6 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 243 start-page: 1106 year: 2018 end-page: 1112 ident: bib48 article-title: The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth publication-title: Environ. Pollut. – volume: 29 start-page: 191 year: 1990 end-page: 200 ident: bib1 article-title: Catalytic degradation of polymers: part III—degradation of polystyrene publication-title: Polym. Degrad. Stab. – volume: 671 start-page: 411 year: 2019 end-page: 420 ident: bib7 article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal publication-title: Sci. Total Environ. – volume: 8 start-page: 14644 year: 2020 end-page: 14652 ident: bib3 article-title: Metal–organic framework-based foams for efficient microplastics removal publication-title: J. Mater. Chem. A – volume: 57 start-page: 846 year: 2006 end-page: 857 ident: bib17 article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter publication-title: Eur. J. Soil Sci. – volume: 12 start-page: 551 year: 2015 end-page: 562 ident: bib30 article-title: Marine microplastic-associated biofilms – a review publication-title: Environ. Chem. – volume: 406 year: 2021 ident: bib4 article-title: Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal publication-title: J. Hazard. Mater. – volume: 393 year: 2020 ident: bib37 article-title: Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups publication-title: Chem. Eng. J. – volume: 757 year: 2021 ident: bib45 article-title: Fate and effects of microplastics in wastewater treatment processes publication-title: Sci. Total Environ. – volume: 4 start-page: 5295 year: 2014 ident: bib32 article-title: Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene publication-title: Sci. Rep. – volume: 202 year: 2020 ident: bib44 article-title: Microplastics in waters and soils: occurrence, analytical methods and ecotoxicological effects publication-title: Ecotoxicol. Environ. Saf. – volume: 139 start-page: 208 year: 2018 end-page: 219 ident: bib42 article-title: Interaction of toxic chemicals with microplastics: a critical review publication-title: Water Res. – volume: 359 start-page: 159 year: 2019 end-page: 167 ident: bib22 article-title: Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment publication-title: Chem. Eng. J. – volume: 50 start-page: 5800 year: 2016 end-page: 5808 ident: bib27 article-title: Wastewater Treatment Works (WwTW) as a source of microplastics in the aquatic environment publication-title: Environ. Sci. Technol. – volume: 15 year: 2020 ident: bib13 article-title: White cement and burnt brick powder catalyzed pyrolysis of waste polystyrene for production of liquid and gaseous fuels publication-title: Asia Pac. J. Chem. Eng. – volume: 158 year: 2020 ident: bib43 article-title: Microplastics and nanoplastics in global food webs: a bibliometric analysis (2009–2019) publication-title: Mar. Pollut. Bull. – volume: 411 year: 2021 ident: bib25 article-title: Effects of microplastic accumulation on floc characteristics and fouling behavior in a membrane bioreactor publication-title: J. Hazard. Mater. – volume: 155 start-page: 77 year: 2015 end-page: 85 ident: bib18 article-title: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption publication-title: Fuel – volume: 255 year: 2019 ident: bib29 article-title: Pathway, classification and removal efficiency of microplastics in wastewater treatment plants publication-title: Environ. Pollut. – volume: 291 start-page: 13 year: 2005 end-page: 18 ident: bib9 article-title: Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerization publication-title: J. Colloid Interface Sci. – volume: 562 start-page: 517 year: 2016 end-page: 525 ident: bib8 article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar publication-title: Sci. Total Environ. – volume: 26 start-page: 5892 year: 2019 end-page: 5903 ident: bib20 article-title: Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride publication-title: Environ. Sci. Pollut. Res. – volume: 347 start-page: 768 year: 2015 end-page: 771 ident: bib14 article-title: Marine pollution. Plastic waste inputs from land into the ocean publication-title: Science – volume: 11 start-page: 5324 year: 2020 ident: bib26 article-title: Microplastic regulation should be more precise to incentivize both innovation and environmental safety publication-title: Nat. Commun. – volume: 218 start-page: 741 year: 2019 end-page: 748 ident: bib5 article-title: Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water publication-title: Chemosphere – volume: 674 start-page: 171 year: 2019 end-page: 178 ident: bib33 article-title: A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants publication-title: Sci. Total Environ. – volume: 228 start-page: 731 year: 2013 end-page: 740 ident: bib15 article-title: Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution publication-title: Chem. Eng. J. – volume: 65 start-page: 177 year: 1965 end-page: 198 ident: bib31 article-title: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems publication-title: Chem. Rev. – volume: 3 start-page: 929 year: 2020 end-page: 937 ident: bib19 article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode publication-title: Nat. Sustain. – volume: 240 year: 2020 ident: bib11 article-title: Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green publication-title: Mater. Chem. Phys. – volume: 162 start-page: 39 year: 2011 end-page: 58 ident: bib35 article-title: Kinetics of adsorption of metal ions on inorganic materials: a review publication-title: Adv. Colloid Interface Sci. – volume: 379 year: 2019 ident: bib47 article-title: Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2 publication-title: J. Hazard. Mater. – volume: 288 year: 2021 ident: bib24 article-title: A review on the use of lignocellulosic materials for arsenic adsorption publication-title: J. Environ. Manag. – volume: 205 start-page: 271 year: 1998 end-page: 279 ident: bib16 article-title: Competitive effects of nondisplaceable organic compounds on trichloroethylene uptake by activated carbon. I. Thermodynamic predictions and model sensitivity analyses publication-title: J. Colloid Interface Sci. – volume: 406 year: 2021 ident: bib38 article-title: Removal of microplastics from aqueous solutions by magnetic carbon nanotubes publication-title: Chem. Eng. J. – volume: 51 start-page: 810 year: 2017 end-page: 818 ident: bib23 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. – volume: 506 start-page: 220 year: 2016 end-page: 227 ident: bib46 article-title: Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 59 start-page: 54 year: 2019 end-page: 61 ident: bib12 article-title: Microplastic surface properties affect bacterial colonization in freshwater publication-title: J. Basic Microbiol. – volume: 28 start-page: 16408 year: 2021 end-page: 16419 ident: bib49 article-title: Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass publication-title: Environ. Sci. Pollut. Res. – volume: 62 start-page: 67 year: 2000 end-page: 75 ident: bib40 article-title: Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts publication-title: Catal. Today – volume: 114 start-page: 163 year: 2015 end-page: 171 ident: bib36 article-title: Tertiary recycling of waste polystyrene using magnesium impregnated catalysts into valuable products publication-title: J. Anal. Appl. Pyrolysis – volume: 146 year: 2021 ident: bib21 article-title: A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms publication-title: Environ. Int. – volume: 47 start-page: 11109 year: 2021 end-page: 11121 ident: bib28 article-title: Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping publication-title: Ceram. Int. – volume: 23 start-page: 51 year: 2020 end-page: 68 ident: bib34 article-title: Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models publication-title: J. Toxicol. Environ. Health Part B – volume: 397 year: 2020 ident: bib39 article-title: Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems publication-title: J. Hazard. Mater. – volume: 112 start-page: 453 year: 2020 end-page: 460 ident: bib10 article-title: Governing plastic pollution in the oceans: institutional challenges and areas for action publication-title: Environ. Sci. Policy – volume: 168 start-page: 29 year: 2016 end-page: 36 ident: bib2 article-title: Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 24 start-page: 21807 year: 2017 end-page: 21820 ident: bib41 article-title: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions publication-title: Environ. Sci. Pollut. Res. – volume: 12 start-page: 551 year: 2015 ident: 10.1016/j.jhazmat.2021.126486_bib30 article-title: Marine microplastic-associated biofilms – a review publication-title: Environ. Chem. doi: 10.1071/EN15069 – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.jhazmat.2021.126486_bib6 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 255 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib29 article-title: Pathway, classification and removal efficiency of microplastics in wastewater treatment plants publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113326 – volume: 112 start-page: 453 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib10 article-title: Governing plastic pollution in the oceans: institutional challenges and areas for action publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2020.06.015 – volume: 158 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib43 article-title: Microplastics and nanoplastics in global food webs: a bibliometric analysis (2009–2019) publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2020.111432 – volume: 240 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib11 article-title: Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122240 – volume: 291 start-page: 13 year: 2005 ident: 10.1016/j.jhazmat.2021.126486_bib9 article-title: Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerization publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.08.056 – volume: 59 start-page: 54 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib12 article-title: Microplastic surface properties affect bacterial colonization in freshwater publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201800174 – volume: 26 start-page: 5892 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib20 article-title: Magnetic nanoferromanganese oxides modified biochar derived from pine sawdust for adsorption of tetracycline hydrochloride publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-4033-4 – volume: 50 start-page: 5800 year: 2016 ident: 10.1016/j.jhazmat.2021.126486_bib27 article-title: Wastewater Treatment Works (WwTW) as a source of microplastics in the aquatic environment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05416 – volume: 15 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib13 article-title: White cement and burnt brick powder catalyzed pyrolysis of waste polystyrene for production of liquid and gaseous fuels publication-title: Asia Pac. J. Chem. Eng. doi: 10.1002/apj.2391 – volume: 393 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib37 article-title: Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124796 – volume: 47 start-page: 11109 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib28 article-title: Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.12.234 – volume: 3 start-page: 929 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib19 article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0567-9 – volume: 202 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib44 article-title: Microplastics in waters and soils: occurrence, analytical methods and ecotoxicological effects publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110910 – volume: 139 start-page: 208 year: 2018 ident: 10.1016/j.jhazmat.2021.126486_bib42 article-title: Interaction of toxic chemicals with microplastics: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.04.003 – volume: 562 start-page: 517 year: 2016 ident: 10.1016/j.jhazmat.2021.126486_bib8 article-title: Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.03.248 – volume: 62 start-page: 67 year: 2000 ident: 10.1016/j.jhazmat.2021.126486_bib40 article-title: Catalytic degradation of polystyrene into styrene and a design of recyclable polystyrene with dispersed catalysts publication-title: Catal. Today doi: 10.1016/S0920-5861(00)00409-0 – volume: 243 start-page: 1106 year: 2018 ident: 10.1016/j.jhazmat.2021.126486_bib48 article-title: The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.073 – volume: 29 start-page: 191 year: 1990 ident: 10.1016/j.jhazmat.2021.126486_bib1 article-title: Catalytic degradation of polymers: part III—degradation of polystyrene publication-title: Polym. Degrad. Stab. doi: 10.1016/0141-3910(90)90030-B – volume: 168 start-page: 29 year: 2016 ident: 10.1016/j.jhazmat.2021.126486_bib2 article-title: Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2016.05.049 – volume: 411 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib25 article-title: Effects of microplastic accumulation on floc characteristics and fouling behavior in a membrane bioreactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124991 – volume: 11 start-page: 5324 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib26 article-title: Microplastic regulation should be more precise to incentivize both innovation and environmental safety publication-title: Nat. Commun. doi: 10.1038/s41467-020-19069-1 – volume: 406 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib4 article-title: Phase transition of Mg/Al-flocs to Mg/Al-layered double hydroxides during flocculation and polystyrene nanoplastics removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124697 – volume: 205 start-page: 271 year: 1998 ident: 10.1016/j.jhazmat.2021.126486_bib16 article-title: Competitive effects of nondisplaceable organic compounds on trichloroethylene uptake by activated carbon. I. Thermodynamic predictions and model sensitivity analyses publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1998.5602 – volume: 28 start-page: 16408 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib49 article-title: Remediation of Cu(II) and its adsorption mechanism in aqueous system by novel magnetic biochar derived from co-pyrolysis of sewage sludge and biomass publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11811-y – volume: 146 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib21 article-title: A review of the removal of microplastics in global wastewater treatment plants: characteristics and mechanisms publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106277 – volume: 506 start-page: 220 year: 2016 ident: 10.1016/j.jhazmat.2021.126486_bib46 article-title: Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO loaded diatomite publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.05.101 – volume: 4 start-page: 5295 year: 2014 ident: 10.1016/j.jhazmat.2021.126486_bib32 article-title: Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene publication-title: Sci. Rep. doi: 10.1038/srep05295 – volume: 406 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib38 article-title: Removal of microplastics from aqueous solutions by magnetic carbon nanotubes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126804 – volume: 757 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib45 article-title: Fate and effects of microplastics in wastewater treatment processes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143902 – volume: 24 start-page: 21807 year: 2017 ident: 10.1016/j.jhazmat.2021.126486_bib41 article-title: Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9825-4 – volume: 162 start-page: 39 year: 2011 ident: 10.1016/j.jhazmat.2021.126486_bib35 article-title: Kinetics of adsorption of metal ions on inorganic materials: a review publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2010.12.004 – volume: 347 start-page: 768 year: 2015 ident: 10.1016/j.jhazmat.2021.126486_bib14 article-title: Marine pollution. Plastic waste inputs from land into the ocean publication-title: Science doi: 10.1126/science.1260352 – volume: 23 start-page: 51 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib34 article-title: Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models publication-title: J. Toxicol. Environ. Health Part B doi: 10.1080/10937404.2019.1700598 – volume: 8 start-page: 14644 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib3 article-title: Metal–organic framework-based foams for efficient microplastics removal publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04891G – volume: 397 year: 2020 ident: 10.1016/j.jhazmat.2021.126486_bib39 article-title: Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122769 – volume: 65 start-page: 177 year: 1965 ident: 10.1016/j.jhazmat.2021.126486_bib31 article-title: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems publication-title: Chem. Rev. doi: 10.1021/cr60234a002 – volume: 228 start-page: 731 year: 2013 ident: 10.1016/j.jhazmat.2021.126486_bib15 article-title: Performance and mechanism of Mg/Fe layered double hydroxides for fluoride and arsenate removal from aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.05.041 – volume: 51 start-page: 810 year: 2017 ident: 10.1016/j.jhazmat.2021.126486_bib23 article-title: Microplastics in sewage sludge: effects of treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04048 – volume: 379 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib47 article-title: Ultrahigh sorption and reduction of Cr(VI) by two novel core-shell composites combined with Fe3O4 and MoS2 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120797 – volume: 359 start-page: 159 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib22 article-title: Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.155 – volume: 288 year: 2021 ident: 10.1016/j.jhazmat.2021.126486_bib24 article-title: A review on the use of lignocellulosic materials for arsenic adsorption publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112397 – volume: 57 start-page: 846 year: 2006 ident: 10.1016/j.jhazmat.2021.126486_bib17 article-title: Application of diffuse reflectance FT-IR spectroscopy and partial least-squares regression to predict NMR properties of soil organic matter publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2005.00776.x – volume: 674 start-page: 171 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib33 article-title: A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.04.007 – volume: 671 start-page: 411 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib7 article-title: Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.368 – volume: 114 start-page: 163 year: 2015 ident: 10.1016/j.jhazmat.2021.126486_bib36 article-title: Tertiary recycling of waste polystyrene using magnesium impregnated catalysts into valuable products publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2015.05.009 – volume: 155 start-page: 77 year: 2015 ident: 10.1016/j.jhazmat.2021.126486_bib18 article-title: Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption publication-title: Fuel doi: 10.1016/j.fuel.2015.04.019 – volume: 218 start-page: 741 year: 2019 ident: 10.1016/j.jhazmat.2021.126486_bib5 article-title: Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.151 |
SSID | ssj0001754 |
Score | 2.712336 |
Snippet | Microplastics (MPs) derived from plastic wastes have attracted wide attention throughout the world due to the wide distribution, easy transition, and potential... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 126486 |
SubjectTerms | adsorbents adsorption aqueous solutions biochar electrostatic interactions heat treatment Magnetic biochar magnetism microparticles Microplastic removal microplastics polystyrenes Regeneration thermal degradation Thermal treatment |
Title | Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars |
URI | https://dx.doi.org/10.1016/j.jhazmat.2021.126486 https://www.proquest.com/docview/2548399713 https://www.proquest.com/docview/2661003709 |
Volume | 419 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXvRgFDXig6yJ11JatqUcCZHgAy5iQrxsdrtbhNiW8IjRg7_dmT5ATZTEY5tOut2Znfmm8yLkSmnRcAWzDFtZgcE8PHNgGAy7WdO-dOugl_GHfq_vdh_Z7dAZFkg7r4XBtMpM96c6PdHW2R0z201zOh6bDxjUA3PL7HTcLBaaM9ZAKa9-rNM8wDymLaQwAgBPr6t4zEl18izeARiCm2hbVQuTvdzf7NMPTZ2Yn84-2ctwI22lSzsgBR2VyO6XboIlsnUvXg9J1FLzeJYoAioiRRHghUCpsCtEOkCJxgENMRFvCtAZ2zRTLDKhAl4cL-d0JY1UvtHeyHyKaBircQBglYZiFGHZI5XjGAu25kdk0LketLtGNlTB8AH5LAwMK9qipnDChu34gPZ8OJZaedoCz0nVlHDqTDl1IVwrADAF_PLcIPB8JaUAe3dMilEc6RNCBWAHLEsFQKABBjApG1I3HA2QC6ffBGXC8p3kftZwHOdevPA8s2zCMwZwZABPGVAm1RXZNO24sYnAy9nEv4kOB6uwifQyZyuHY4WxEhHhVnPwm-E7muDC__EMYBvs31Nrnv5_CWdkB6-S_EDnnBQXs6W-AJyzkJVEkCtku3Vz1-1_Ak4d_TY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4oHNSD8RnxuSZeS2lpSzkSI6kKXMSEeNnsdrcKkZYAxuivd6YPfCRK4rXtpNud3ZlvOzPfAFwoLRqecCzDVlZkOD7tOXQMht2s6VB6dbTL9EO_2_OCe-dm4A5W4LKohaG0ytz2ZzY9tdb5FTOfTXMyHJp3FNRDd-vYWbtZdxXKxE7llqDcur4NeguDjB4yY5GiIAAKfBbymKPq6Em8IzbEk6JtVS3K9_J-c1E_jHXqgdpbsJlDR9bKRrcNKzregY0vhII7sNoRr7sQt9Qsmaa2gIlYMcJ4Y5RURAyR9VBiScTGlIs3QfRMTM2M6kyYwBcnLzO2WJBMvrHuo_kQs3GihhHiVTYWjzFVPjI5TKhma7YH_fZV_zIw8r4KRojgZ25QZNEWNUVNNmw3RMAX4s7UytcWHp5UTQm37ii3LoRnRYinUGW-F0V-qKQU6PL2oRQnsT4AJhA-UGUqYgKNSMCRsiF1w9WIuqgBTlQBp5hJHuac49T64pkXyWUjniuAkwJ4poAKVBdik4x0Y5mAX6iJf1s9HB3DMtHzQq0cdxaFS0RMU83x6Izf0cRT_B_PILwhCp9a8_D_QziDtaDf7fDOde_2CNbpTpou6B5DaT590ScIe-byNF_WH_aW_-c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+thermal+degradation+of+microplastics+from+aqueous+solutions+by+Mg%2FZn+modified+magnetic+biochars&rft.jtitle=Journal+of+hazardous+materials&rft.au=Wang%2C+Jun&rft.au=Sun%2C+Chen&rft.au=Huang%2C+Qun-Xing&rft.au=Chi%2C+Yong&rft.date=2021-10-05&rft.issn=0304-3894&rft.volume=419&rft.spage=126486&rft_id=info:doi/10.1016%2Fj.jhazmat.2021.126486&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2021_126486 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |