Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface
[Display omitted] •CQDs significantly improved the photocatalytic activity of TiO2 NPs.•The photodegradation of mixed VOCs on CQDs/TiO2 nanocomposite was examined.•Adsorption mechanism of mixed VOCs on TiO2 was rationalized using DFT.•The CQDs/TiO2 interface was studied using DFT. In this work, we h...
Saved in:
Published in | Journal of hazardous materials Vol. 401; p. 123402 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
05.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•CQDs significantly improved the photocatalytic activity of TiO2 NPs.•The photodegradation of mixed VOCs on CQDs/TiO2 nanocomposite was examined.•Adsorption mechanism of mixed VOCs on TiO2 was rationalized using DFT.•The CQDs/TiO2 interface was studied using DFT.
In this work, we have developed and optimized TiO2 nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic oxidation of aromatic ring containing gas-phase mixed volatile organic compounds, e.g., benzene, toluene, and p-xylene. Carbon quantum dots decorated TiO2 demonstrated good photodegradation efficiency in contrast to pure TiO2 under UV–vis light illumination. For example, with 0.5 wt% carbon quantum dots decorated on TiO2, 64 % of the mixed volatile organic compounds were photodegraded, while pure TiO2 only exhibited 44 % of the photodegradation efficiency. Also, the carbon quantum dots (0.5 wt%)/TiO2 nanocomposite demonstrated considerable photocatalytic activity within the visible region. On the other hand, pure TiO2 remained inactive within the visible region. The density functional theory study of the carbon quantum dots/TiO2 interface revealed that C 2p states of carbon quantum dots incorporated new energy states around the Fermi level near the lowest conduction band. This might be accountable for the improved charge separation process and better conductivity of the photogenerated electrons. The improved photocatalytic performance of the carbon quantum dots/TiO2 nanocomposites can be attributed to good light harvesting within the UV–vis region, charge separation, and adsorption capability. |
---|---|
AbstractList | In this work, we have developed and optimized TiO₂ nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic oxidation of aromatic ring containing gas-phase mixed volatile organic compounds, e.g., benzene, toluene, and p-xylene. Carbon quantum dots decorated TiO₂ demonstrated good photodegradation efficiency in contrast to pure TiO₂ under UV–vis light illumination. For example, with 0.5 wt% carbon quantum dots decorated on TiO₂, 64 % of the mixed volatile organic compounds were photodegraded, while pure TiO₂ only exhibited 44 % of the photodegradation efficiency. Also, the carbon quantum dots (0.5 wt%)/TiO₂ nanocomposite demonstrated considerable photocatalytic activity within the visible region. On the other hand, pure TiO₂ remained inactive within the visible region. The density functional theory study of the carbon quantum dots/TiO₂ interface revealed that C 2p states of carbon quantum dots incorporated new energy states around the Fermi level near the lowest conduction band. This might be accountable for the improved charge separation process and better conductivity of the photogenerated electrons. The improved photocatalytic performance of the carbon quantum dots/TiO₂ nanocomposites can be attributed to good light harvesting within the UV–vis region, charge separation, and adsorption capability. In this work, we have developed and optimized TiO2 nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic oxidation of aromatic ring containing gas-phase mixed volatile organic compounds, e.g., benzene, toluene, and p-xylene. Carbon quantum dots decorated TiO2 demonstrated good photodegradation efficiency in contrast to pure TiO2 under UV-vis light illumination. For example, with 0.5 wt% carbon quantum dots decorated on TiO2, 64 % of the mixed volatile organic compounds were photodegraded, while pure TiO2 only exhibited 44 % of the photodegradation efficiency. Also, the carbon quantum dots (0.5 wt%)/TiO2 nanocomposite demonstrated considerable photocatalytic activity within the visible region. On the other hand, pure TiO2 remained inactive within the visible region. The density functional theory study of the carbon quantum dots/TiO2 interface revealed that C 2p states of carbon quantum dots incorporated new energy states around the Fermi level near the lowest conduction band. This might be accountable for the improved charge separation process and better conductivity of the photogenerated electrons. The improved photocatalytic performance of the carbon quantum dots/TiO2 nanocomposites can be attributed to good light harvesting within the UV-vis region, charge separation, and adsorption capability.In this work, we have developed and optimized TiO2 nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic oxidation of aromatic ring containing gas-phase mixed volatile organic compounds, e.g., benzene, toluene, and p-xylene. Carbon quantum dots decorated TiO2 demonstrated good photodegradation efficiency in contrast to pure TiO2 under UV-vis light illumination. For example, with 0.5 wt% carbon quantum dots decorated on TiO2, 64 % of the mixed volatile organic compounds were photodegraded, while pure TiO2 only exhibited 44 % of the photodegradation efficiency. Also, the carbon quantum dots (0.5 wt%)/TiO2 nanocomposite demonstrated considerable photocatalytic activity within the visible region. On the other hand, pure TiO2 remained inactive within the visible region. The density functional theory study of the carbon quantum dots/TiO2 interface revealed that C 2p states of carbon quantum dots incorporated new energy states around the Fermi level near the lowest conduction band. This might be accountable for the improved charge separation process and better conductivity of the photogenerated electrons. The improved photocatalytic performance of the carbon quantum dots/TiO2 nanocomposites can be attributed to good light harvesting within the UV-vis region, charge separation, and adsorption capability. [Display omitted] •CQDs significantly improved the photocatalytic activity of TiO2 NPs.•The photodegradation of mixed VOCs on CQDs/TiO2 nanocomposite was examined.•Adsorption mechanism of mixed VOCs on TiO2 was rationalized using DFT.•The CQDs/TiO2 interface was studied using DFT. In this work, we have developed and optimized TiO2 nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic oxidation of aromatic ring containing gas-phase mixed volatile organic compounds, e.g., benzene, toluene, and p-xylene. Carbon quantum dots decorated TiO2 demonstrated good photodegradation efficiency in contrast to pure TiO2 under UV–vis light illumination. For example, with 0.5 wt% carbon quantum dots decorated on TiO2, 64 % of the mixed volatile organic compounds were photodegraded, while pure TiO2 only exhibited 44 % of the photodegradation efficiency. Also, the carbon quantum dots (0.5 wt%)/TiO2 nanocomposite demonstrated considerable photocatalytic activity within the visible region. On the other hand, pure TiO2 remained inactive within the visible region. The density functional theory study of the carbon quantum dots/TiO2 interface revealed that C 2p states of carbon quantum dots incorporated new energy states around the Fermi level near the lowest conduction band. This might be accountable for the improved charge separation process and better conductivity of the photogenerated electrons. The improved photocatalytic performance of the carbon quantum dots/TiO2 nanocomposites can be attributed to good light harvesting within the UV–vis region, charge separation, and adsorption capability. |
ArticleNumber | 123402 |
Author | Xiao, Wang Shi, Gansheng Wang, Zhuang Rao, Zepeng Xie, Xiaofeng Sun, Jing Mahmood, Asad |
Author_xml | – sequence: 1 givenname: Asad surname: Mahmood fullname: Mahmood, Asad email: amkhan036@yahoo.com – sequence: 2 givenname: Gansheng surname: Shi fullname: Shi, Gansheng – sequence: 3 givenname: Zhuang surname: Wang fullname: Wang, Zhuang – sequence: 4 givenname: Zepeng surname: Rao fullname: Rao, Zepeng – sequence: 5 givenname: Wang surname: Xiao fullname: Xiao, Wang – sequence: 6 givenname: Xiaofeng surname: Xie fullname: Xie, Xiaofeng – sequence: 7 givenname: Jing surname: Sun fullname: Sun, Jing email: jingsun@mail.sic.ac.cn |
BookMark | eNqFkc1uEzEUhS1UJNLAIyB5yWaC_zI_sEBVoIBUKZvA1nLs68bRjD21PVXLu_IueJKu2GRl6_qcz1fnXKMrHzwg9J6SFSW0_nhcHQ_qz6DyihFWZowLwl6hBW0bXnHO6yu0IJyIiredeIOuUzoSQmizFgv0d6PiPnj8MCmfpwGbkFO1c1uGvfJBh2EMyWXAKmHlMVjrtAOf8XgIOWiVVf-cMrYh4nyA89TAfVRGZVewwWIVQ1nNaRydv6908Fk5X654cE9g8O_tJn3CN4X9NEJ0Q4Grvvxl8NfbHU55Mg7SiWNSiOOJOr9CDzrH4As45TjpPEWYZfMazmeIVml4i15b1Sd493Iu0a_bb7vNj-pu-_3n5uau0kLQXLWa7IGrrtPGtqo1jNcNI9BZaqDb1xRAcC54uweg-zVdA7dNVzfATcNqSwVfog9n7hjDwwQpy8ElDX2vPIQpSbZmgnFWd_VlqeC0ZYSW3pbo81mqY0gpgpXa5VOuOSrXS0rk3L88ypf-5dy_PPdf3Ov_3GOJV8Xni74vZx-UwB4dRJnmyjUYF0vk0gR3gfAPVSTVPQ |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2024_142310 crossref_primary_10_1016_j_scitotenv_2024_171521 crossref_primary_10_2139_ssrn_3990794 crossref_primary_10_1007_s11244_023_01889_2 crossref_primary_10_1016_j_jwpe_2024_105164 crossref_primary_10_1002_mame_202200156 crossref_primary_10_1016_j_jallcom_2022_165896 crossref_primary_10_1142_S1793292020501519 crossref_primary_10_1016_j_seppur_2024_129919 crossref_primary_10_1016_j_jece_2023_111680 crossref_primary_10_1007_s13399_024_05306_w crossref_primary_10_20964_2021_06_65 crossref_primary_10_1002_admt_202301073 crossref_primary_10_1016_j_chemosphere_2023_140723 crossref_primary_10_3390_polym15092077 crossref_primary_10_1246_bcsj_20220250 crossref_primary_10_1016_j_jece_2023_109487 crossref_primary_10_1016_j_jhazmat_2022_130663 crossref_primary_10_1021_acscatal_3c06279 crossref_primary_10_1016_j_jhazmat_2023_131237 crossref_primary_10_1016_j_cej_2022_134978 crossref_primary_10_1016_j_seppur_2023_123533 crossref_primary_10_1016_j_seppur_2023_125316 crossref_primary_10_1016_j_diamond_2024_111547 crossref_primary_10_1016_j_ijbiomac_2023_125200 crossref_primary_10_2147_IJN_S334012 crossref_primary_10_1007_s10562_022_04107_y crossref_primary_10_1002_slct_202102156 crossref_primary_10_1016_j_snb_2022_131590 crossref_primary_10_1016_j_apsusc_2024_160420 crossref_primary_10_1016_j_surfin_2024_104902 crossref_primary_10_1039_D3NA00268C crossref_primary_10_1007_s10854_025_14529_0 crossref_primary_10_1016_j_cej_2022_135033 crossref_primary_10_1088_1361_6528_ac30ef crossref_primary_10_1016_j_matchemphys_2022_125921 crossref_primary_10_1016_j_chemosphere_2022_136522 crossref_primary_10_1016_j_cej_2022_139436 crossref_primary_10_3390_nano11030611 crossref_primary_10_1007_s13399_024_06315_5 crossref_primary_10_3390_inorganics13020045 crossref_primary_10_1016_j_apcatb_2023_123683 crossref_primary_10_1007_s42452_021_04287_z crossref_primary_10_1016_j_apsadv_2023_100487 crossref_primary_10_3389_fchem_2022_881495 crossref_primary_10_1016_j_envres_2023_117526 crossref_primary_10_1016_j_jece_2023_110052 crossref_primary_10_1007_s10311_022_01436_7 crossref_primary_10_1016_j_watres_2025_123499 crossref_primary_10_1016_j_jhazmat_2025_137115 crossref_primary_10_1016_j_diamond_2024_111050 crossref_primary_10_1016_j_jallcom_2022_167213 crossref_primary_10_1016_j_jece_2022_108690 crossref_primary_10_1016_j_mtsust_2024_100945 crossref_primary_10_1016_j_ceramint_2021_04_112 crossref_primary_10_1016_j_apcata_2023_119306 crossref_primary_10_1007_s42773_024_00364_9 crossref_primary_10_1016_j_ijhydene_2024_06_066 crossref_primary_10_1016_j_apsusc_2022_154629 crossref_primary_10_1016_j_jece_2021_105069 crossref_primary_10_1016_j_ese_2022_100219 crossref_primary_10_1016_j_apcatb_2021_120622 crossref_primary_10_1016_j_diamond_2023_110115 crossref_primary_10_1039_D3CP00030C crossref_primary_10_1021_acsestwater_3c00595 crossref_primary_10_1016_j_apsusc_2024_159519 crossref_primary_10_1016_j_jallcom_2024_173860 crossref_primary_10_1016_j_seppur_2024_127836 crossref_primary_10_1016_j_snb_2024_136356 crossref_primary_10_1021_acs_est_2c05444 crossref_primary_10_1002_adsu_202300095 crossref_primary_10_1016_j_jiec_2022_08_003 crossref_primary_10_1016_j_apsusc_2022_155273 crossref_primary_10_3389_fmats_2024_1478418 crossref_primary_10_1002_cplu_202100486 crossref_primary_10_1002_smll_202200744 crossref_primary_10_1016_j_jwpe_2025_107551 crossref_primary_10_1016_j_efmat_2023_02_002 crossref_primary_10_1016_j_jhazmat_2021_125318 crossref_primary_10_1016_j_jwpe_2024_105833 crossref_primary_10_1016_j_matchemphys_2023_127707 crossref_primary_10_1016_j_envres_2022_114160 crossref_primary_10_1016_j_chemosphere_2022_135655 crossref_primary_10_1039_D2MH01583H crossref_primary_10_1016_j_seppur_2024_130750 crossref_primary_10_3390_ma16010366 crossref_primary_10_1016_j_apsusc_2022_153369 crossref_primary_10_1016_j_chemosphere_2021_131553 crossref_primary_10_1016_j_jenvman_2024_122087 crossref_primary_10_3390_w13121622 crossref_primary_10_1016_j_jhazmat_2021_127134 crossref_primary_10_1016_j_apsusc_2023_157306 crossref_primary_10_1016_j_apcatb_2022_122036 crossref_primary_10_3390_catal12101263 |
Cites_doi | 10.1016/j.apcatb.2016.12.048 10.1021/acssuschemeng.9b00027 10.1016/1010-6030(95)04052-H 10.1021/acs.langmuir.5b04308 10.1016/j.jhazmat.2018.10.009 10.1016/j.chemosphere.2018.11.175 10.1016/j.jece.2013.11.002 10.1016/j.apr.2019.07.008 10.1038/s41598-019-44697-z 10.1016/j.cattod.2018.09.004 10.1021/cm903260f 10.1016/j.cattod.2012.10.017 10.1016/j.apcatb.2017.04.012 10.1021/acs.iecr.8b01731 10.1038/s41598-017-08599-2 10.1038/srep32355 10.1016/j.apcatb.2010.05.009 10.1021/cm901593y 10.1021/jacs.6b02990 10.1021/acsami.8b02804 10.1021/acs.langmuir.6b02011 10.1016/j.jcat.2017.10.007 10.1016/j.cej.2017.06.130 10.1016/j.apcatb.2017.06.070 10.1016/j.jhazmat.2017.03.019 10.1021/acsanm.8b02310 10.1021/acs.est.6b04460 10.1006/jcat.1996.0299 10.1021/acs.iecr.9b00970 10.1016/j.cej.2018.09.092 10.1016/j.jechem.2020.03.011 10.1002/admi.201901032 10.1021/acssuschemeng.8b05426 10.1039/C4CS00269E 10.1016/j.cej.2019.123032 10.1016/j.apcatb.2013.02.047 10.1021/jacs.5b01650 10.1016/j.jhazmat.2013.05.051 10.1016/j.apsusc.2018.01.104 10.1016/j.eiar.2019.106313 10.1016/j.jhazmat.2018.01.021 10.1021/acs.jpcc.9b02093 10.1021/acs.nanolett.6b05177 10.1016/j.cattod.2016.05.048 10.1002/anie.200906623 10.1016/j.cej.2018.05.107 10.1016/j.apcatb.2017.08.036 10.1016/j.jhazmat.2020.122102 10.1016/j.jcis.2018.03.075 10.1016/j.jhazmat.2017.05.013 10.1016/j.apcatb.2017.10.023 10.1155/2014/205636 10.1021/jp403241d 10.1021/acscatal.8b05050 10.1021/acscatal.8b04068 10.1021/acsami.5b05268 10.1021/acsami.9b04059 10.1021/acscatal.9b00161 10.1016/j.jhazmat.2009.06.129 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jhazmat.2020.123402 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Law |
EISSN | 1873-3336 |
ExternalDocumentID | 10_1016_j_jhazmat_2020_123402 S0304389420313911 |
GroupedDBID | --- --K --M -~X ..I .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LX7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSZ T5K XPP ZMT ~02 ~G- .HR 29K AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HLY HMC HVGLF HZ~ NDZJH R2- RIG SCE SEN SEW SSH T9H TAE VH1 WUQ 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-8c0be3a99cdf8a8d236720e9f1de9b61ee433438bee1b515e3f7967e3d726f143 |
IEDL.DBID | .~1 |
ISSN | 0304-3894 1873-3336 |
IngestDate | Fri Jul 11 00:54:10 EDT 2025 Thu Jul 10 19:22:57 EDT 2025 Tue Jul 01 00:49:31 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Fri Feb 23 02:47:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Volatile organic compounds Carbon quantum dots Photocatalytic oxidation Oxide semiconductor materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-8c0be3a99cdf8a8d236720e9f1de9b61ee433438bee1b515e3f7967e3d726f143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2431820133 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524232696 proquest_miscellaneous_2431820133 crossref_citationtrail_10_1016_j_jhazmat_2020_123402 crossref_primary_10_1016_j_jhazmat_2020_123402 elsevier_sciencedirect_doi_10_1016_j_jhazmat_2020_123402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-05 |
PublicationDateYYYYMMDD | 2021-01-05 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Journal of hazardous materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ferrighi, Datteo, Fazio, Di Valentin (bib0065) 2016; 138 Petronella, Truppi, Ingrosso, Placido, Striccoli, Curri, Agostiano, Comparelli (bib0190) 2017; 281 Lim, Shen, Gao (bib0135) 2015; 44 Shen, Dong, Wang, Ye, Sun (bib0215) 2019; 6 Yang, Ye, Cao, Gao, Qiu, Liu, Yang (bib0265) 2018; 10 Di, Xia, Ji, Wang, Yin, Zhang, Chen, Li (bib0050) 2015; 7 Naldoni, Altomare, Zoppellaro, Liu, Kment, Zboril, Schmuki (bib0175) 2019; 9 Mustafa, Fu, Liu, Abbas, Wang, Lu (bib0170) 2018; 347 Bai, Zhou, Zhang, Chen, Zhang, Liu, Wang, Wang, Chen, Li, Li, Li (bib0010) 2019; 9 Zhou, Yang, Fan, Reilly, Zhang, Yao, Huang (bib0285) 2019; 2 Liang, Li, Jin (bib0125) 2010; 45 Moulis, Krýsa (bib0160) 2013; 209 Broday, Dayan, Aharonov, Laufer, Adel (bib0030) 2020; 80 Zou, Gao, Ok, Dong (bib0300) 2019; 218 Abdol, Sadeghzadeh, Jalaly, Khatibi (bib0005) 2019; 9 Bharti, Kumar, Lee, Kumar (bib0020) 2016; 6 Chen, Ma, Zhang, Wang, Li, Zhang, He (bib0040) 2018; 223 Yao, Liu, Wang, Chen, Li, An (bib0270) 2018; 522 Huang, Liang, Rao, Zhu, Cao, Shen, Ho, Lee (bib0085) 2017; 51 Peng, Travas-Sejdic (bib0185) 2009; 21 Lin, Xie, Wang, Wang, Segets, Sun (bib0140) 2018; 349 Sauer, Hale, Ollis (bib0210) 1995; 88 Jones, Ott, Tardio, Morrison, Rosenberg, Gunda, Bhargava (bib0100) 2014; 2 Munoz, Souza, Glittmann, Perez, Quija (bib0165) 2013; 260 Hu, Xie, Wang, Wang, Zeng, Pui, Sun (bib0080) 2018; 440 Challagulla, Tarafder, Ganesan, Roy (bib0035) 2017; 7 Ramimoghadam, Bagheri, Abd Hamid (bib0200) 2014; 2014 Martindale, Hutton, Caputo, Reisner (bib0155) 2015; 137 Jing, Zhao, Sun, Zhong, Peng (bib0095) 2019; 7 Weon, Choi, Park, Choi (bib0255) 2017; 205 Lee, Hwang, Lee, Kim (bib0105) 2020; 382 Liang, Hou, Fang, Gao, Wang, Chen, Yang (bib0130) 2019; 11 Etacheri, Seery, Hinder, Pillai (bib0060) 2010; 22 Shi, Chen, Mao, Fahlman, Wang (bib0220) 2017; 356 Wang, Han, Rao, Hu, Huang, Cao, Lee (bib0240) 2018; 57 Zheng, Xu, Zhang, Wang, Yang, Jin, Yang (bib0280) 2019; 10 Tofighi, Yu, Lichtenberg, Doronkin, Wang, Wöll, Wang, Grunwaldt (bib0230) 2019; 9 Zhang, Gao, Creamer, Cao, Li (bib0275) 2017; 338 Li, Lu, Ke, Guo, Guo (bib0115) 2017; 333 Pradhan, Uyar (bib0195) 2019; 58 Li, Liu, Wu, Chen, Zhao, Jin, Na (bib0120) 2018; 224 Wang, Wu, Wang, Li, Jin, Zhang, Li, Yan, Liu, Feng, Liu, Lv (bib0245) 2019; 356 Di, Xia, Ji, Wang, Yin, Xu, Chen, Li (bib0055) 2016; 32 Zorn, Hay, Anderson (bib0295) 2010; 99 Ma, Li, Yang, Xu, Zhang, Su, Hu, Lu, Feng, Zhang (bib0150) 2016; 32 Fu, Zheng, Zhou, Ni, Xia (bib0070) 2019; 363 Li, Shi, Huang, Yao, Han, Chen, Liu, Shen, Wang, Yang (bib0110) 2017; 17 Suárez, Jansson, Ohtani, Sánchez (bib0225) 2019; 326 Zhu, Shen, Luo (bib0290) 2020; 389 Nie, Duan, Lu, Zhang (bib0180) 2018; 7 Bianchi, Gatto, Pirola, Naldoni, Di Michele, Cerrato, Crocellà, Capucci (bib0025) 2014; 146 Debono, Hequet, Le Coq, Locoge, Thevenet (bib0045) 2017; 218 Ji, Xu, Huang, He, Liu, Liu, Xie, Feng, Shu, Zhan, Fang, Ye, Leung (bib0090) 2017; 327 Luo, Ollis (bib0145) 1996; 163 Weon, Kim, Choi (bib0260) 2018; 220 Rao, Xie, Wang, Mahmood, Tong, Ge, Sun (bib0205) 2019; 123 Wang, Tan, Kan, Wu, Sang, Liu, Liu (bib0250) 2020; 49 Baker, Baker (bib0015) 2010; 49 Wang, Xi, Hu, Yao (bib0235) 2009; 171 Gao, Li, Lv, Liu (bib0075) 2013; 117 Ramimoghadam (10.1016/j.jhazmat.2020.123402_bib0200) 2014; 2014 Weon (10.1016/j.jhazmat.2020.123402_bib0260) 2018; 220 Lee (10.1016/j.jhazmat.2020.123402_bib0105) 2020; 382 Baker (10.1016/j.jhazmat.2020.123402_bib0015) 2010; 49 Bharti (10.1016/j.jhazmat.2020.123402_bib0020) 2016; 6 Li (10.1016/j.jhazmat.2020.123402_bib0120) 2018; 224 Zheng (10.1016/j.jhazmat.2020.123402_bib0280) 2019; 10 Shi (10.1016/j.jhazmat.2020.123402_bib0220) 2017; 356 Naldoni (10.1016/j.jhazmat.2020.123402_bib0175) 2019; 9 Wang (10.1016/j.jhazmat.2020.123402_bib0240) 2018; 57 Jing (10.1016/j.jhazmat.2020.123402_bib0095) 2019; 7 Wang (10.1016/j.jhazmat.2020.123402_bib0245) 2019; 356 Liang (10.1016/j.jhazmat.2020.123402_bib0130) 2019; 11 Luo (10.1016/j.jhazmat.2020.123402_bib0145) 1996; 163 Munoz (10.1016/j.jhazmat.2020.123402_bib0165) 2013; 260 Lin (10.1016/j.jhazmat.2020.123402_bib0140) 2018; 349 Liang (10.1016/j.jhazmat.2020.123402_bib0125) 2010; 45 Ji (10.1016/j.jhazmat.2020.123402_bib0090) 2017; 327 Moulis (10.1016/j.jhazmat.2020.123402_bib0160) 2013; 209 Pradhan (10.1016/j.jhazmat.2020.123402_bib0195) 2019; 58 Martindale (10.1016/j.jhazmat.2020.123402_bib0155) 2015; 137 Mustafa (10.1016/j.jhazmat.2020.123402_bib0170) 2018; 347 Abdol (10.1016/j.jhazmat.2020.123402_bib0005) 2019; 9 Zhang (10.1016/j.jhazmat.2020.123402_bib0275) 2017; 338 Broday (10.1016/j.jhazmat.2020.123402_bib0030) 2020; 80 Jones (10.1016/j.jhazmat.2020.123402_bib0100) 2014; 2 Zhou (10.1016/j.jhazmat.2020.123402_bib0285) 2019; 2 Bai (10.1016/j.jhazmat.2020.123402_bib0010) 2019; 9 Di (10.1016/j.jhazmat.2020.123402_bib0055) 2016; 32 Petronella (10.1016/j.jhazmat.2020.123402_bib0190) 2017; 281 Bianchi (10.1016/j.jhazmat.2020.123402_bib0025) 2014; 146 Di (10.1016/j.jhazmat.2020.123402_bib0050) 2015; 7 Weon (10.1016/j.jhazmat.2020.123402_bib0255) 2017; 205 Wang (10.1016/j.jhazmat.2020.123402_bib0235) 2009; 171 Wang (10.1016/j.jhazmat.2020.123402_bib0250) 2020; 49 Peng (10.1016/j.jhazmat.2020.123402_bib0185) 2009; 21 Hu (10.1016/j.jhazmat.2020.123402_bib0080) 2018; 440 Shen (10.1016/j.jhazmat.2020.123402_bib0215) 2019; 6 Suárez (10.1016/j.jhazmat.2020.123402_bib0225) 2019; 326 Chen (10.1016/j.jhazmat.2020.123402_bib0040) 2018; 223 Lim (10.1016/j.jhazmat.2020.123402_bib0135) 2015; 44 Challagulla (10.1016/j.jhazmat.2020.123402_bib0035) 2017; 7 Debono (10.1016/j.jhazmat.2020.123402_bib0045) 2017; 218 Nie (10.1016/j.jhazmat.2020.123402_bib0180) 2018; 7 Zorn (10.1016/j.jhazmat.2020.123402_bib0295) 2010; 99 Tofighi (10.1016/j.jhazmat.2020.123402_bib0230) 2019; 9 Zhu (10.1016/j.jhazmat.2020.123402_bib0290) 2020; 389 Li (10.1016/j.jhazmat.2020.123402_bib0110) 2017; 17 Gao (10.1016/j.jhazmat.2020.123402_bib0075) 2013; 117 Zou (10.1016/j.jhazmat.2020.123402_bib0300) 2019; 218 Ma (10.1016/j.jhazmat.2020.123402_bib0150) 2016; 32 Yang (10.1016/j.jhazmat.2020.123402_bib0265) 2018; 10 Fu (10.1016/j.jhazmat.2020.123402_bib0070) 2019; 363 Yao (10.1016/j.jhazmat.2020.123402_bib0270) 2018; 522 Huang (10.1016/j.jhazmat.2020.123402_bib0085) 2017; 51 Rao (10.1016/j.jhazmat.2020.123402_bib0205) 2019; 123 Sauer (10.1016/j.jhazmat.2020.123402_bib0210) 1995; 88 Ferrighi (10.1016/j.jhazmat.2020.123402_bib0065) 2016; 138 Li (10.1016/j.jhazmat.2020.123402_bib0115) 2017; 333 Etacheri (10.1016/j.jhazmat.2020.123402_bib0060) 2010; 22 |
References_xml | – volume: 205 start-page: 386 year: 2017 end-page: 392 ident: bib0255 article-title: Freestanding doubly open-ended TiO publication-title: Appl. Catal. B: Environ. – volume: 326 start-page: 2 year: 2019 end-page: 7 ident: bib0225 article-title: From titania nanoparticles to decahedral anatase particles: photocatalytic activity of TiO publication-title: Catal. Today – volume: 80 start-page: 106313 year: 2020 ident: bib0030 article-title: Emissions from gas processing platforms to the atmosphere-case studies versus benchmarks publication-title: Environ. Impact Assess. Rev. – volume: 382 start-page: 123032 year: 2020 ident: bib0105 article-title: A new combined electrolysis and catalytic system for removal of VOCS publication-title: Chem. Eng. J. – volume: 57 start-page: 10226 year: 2018 end-page: 10233 ident: bib0240 article-title: Visible-light-driven nitrogen-doped carbon quantum dots/CaTiO publication-title: Ind. Eng. Chem. Res. – volume: 2014 start-page: 205636 year: 2014 ident: bib0200 article-title: Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material publication-title: Biomed Res. Int. – volume: 99 start-page: 420 year: 2010 end-page: 427 ident: bib0295 article-title: Effect of molecular functionality on the photocatalytic oxidation of gas-phase mixtures publication-title: Appl. Catal. B: Environ. – volume: 2 start-page: 1027 year: 2019 end-page: 1032 ident: bib0285 article-title: Carbon quantum dot/TiO2 nanohybrids: efficient photocatalysts for hydrogen generation via intimate contact and efficient charge separation publication-title: ACS Appl. Nano Mater. – volume: 224 start-page: 508 year: 2018 end-page: 517 ident: bib0120 article-title: Carbon dots-TiO publication-title: Appl. Catal. B: Environ. – volume: 7 start-page: 1658 year: 2018 end-page: 1666 ident: bib0180 article-title: Pd/TiO publication-title: ACS Sustain. Chem. Eng. – volume: 220 start-page: 1 year: 2018 end-page: 8 ident: bib0260 article-title: Dual-components modified TiO publication-title: Appl. Catal. B: Environ. – volume: 356 start-page: 857 year: 2019 end-page: 868 ident: bib0245 article-title: Construction of novel z-scheme nitrogen-doped carbon dots/{001} TiO publication-title: Chem. Eng. J. – volume: 260 start-page: 442 year: 2013 end-page: 450 ident: bib0165 article-title: Biological anoxic treatment of O( publication-title: J. Hazard. Mater. – volume: 9 start-page: 5462 year: 2019 end-page: 5473 ident: bib0230 article-title: Chemical nature of microfluidically synthesized aupd nanoalloys supported on TiO publication-title: ACS Catal. – volume: 21 start-page: 5563 year: 2009 end-page: 5565 ident: bib0185 article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates publication-title: Chem. Mater. – volume: 32 start-page: 9418 year: 2016 end-page: 9427 ident: bib0150 article-title: Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots publication-title: Langmuir – volume: 7 start-page: 7833 year: 2019 end-page: 7843 ident: bib0095 article-title: Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition publication-title: ACS Sustain. Chem. Eng. – volume: 522 start-page: 174 year: 2018 end-page: 182 ident: bib0270 article-title: Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 6726 year: 2010 end-page: 6744 ident: bib0015 article-title: Luminescent carbon nanodots: emergent nanolights publication-title: Angew. Chem. Int. Ed. Engl. – volume: 347 start-page: 317 year: 2018 end-page: 324 ident: bib0170 article-title: Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor publication-title: J. Hazard. Mater. – volume: 7 start-page: 8783 year: 2017 ident: bib0035 article-title: Structure sensitive photocatalytic reduction of nitroarenes over TiO publication-title: Sci. Rep. – volume: 137 start-page: 6018 year: 2015 end-page: 6025 ident: bib0155 article-title: Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 626 year: 2014 end-page: 631 ident: bib0100 article-title: VOC emission from alumina calcination stacks caused by thermal decomposition of organic additives publication-title: J. Environ. Chem. Eng. – volume: 327 start-page: 490 year: 2017 end-page: 499 ident: bib0090 article-title: Mesoporous TiO publication-title: Chem. Eng. J. – volume: 32 start-page: 2075 year: 2016 end-page: 2084 ident: bib0055 article-title: Carbon quantum dots induced ultrasmall bioi nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight publication-title: Langmuir – volume: 9 start-page: 8127 year: 2019 ident: bib0005 article-title: Constructing a three-dimensional graphene structure via bonding layers by ion beam irradiation publication-title: Sci. Rep. – volume: 209 start-page: 153 year: 2013 end-page: 158 ident: bib0160 article-title: Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO publication-title: Catal. Today – volume: 45 start-page: 1384 year: 2010 end-page: 1390 ident: bib0125 article-title: Photocatalytic degradation of gaseous acetone, toluene, and p-xylene using a TiO publication-title: J. Environ. Sci. Health A. Tox. Subst. Environ. Eng. – volume: 9 start-page: 345 year: 2019 end-page: 364 ident: bib0175 article-title: Photocatalysis with reduced TiO publication-title: ACS Catal. – volume: 10 start-page: 1766 year: 2019 end-page: 1779 ident: bib0280 article-title: Characteristics and sources of VOCs in urban and suburban environments in Shanghai, China, during the 2016 G20 Summit publication-title: Atmos. Pollut. Res. – volume: 58 start-page: 12535 year: 2019 end-page: 12550 ident: bib0195 article-title: Electrospun Fe publication-title: Ind. Eng. Chem. Res. – volume: 223 start-page: 209 year: 2018 end-page: 215 ident: bib0040 article-title: Facet-dependent performance of anatase TiO publication-title: Appl. Catal. B: Environ. – volume: 349 start-page: 708 year: 2018 end-page: 718 ident: bib0140 article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO publication-title: Chem. Eng. J. – volume: 6 start-page: 1901032 year: 2019 ident: bib0215 article-title: Enhancing photocatalytic activity of no removal through an in situ control of oxygen vacancies in growth of TiO publication-title: Adv. Mater. Interfaces – volume: 17 start-page: 2328 year: 2017 end-page: 2335 ident: bib0110 article-title: Carbon quantum dots/TiO publication-title: Nano Lett. – volume: 163 start-page: 1 year: 1996 end-page: 11 ident: bib0145 article-title: Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity publication-title: J. Catal. – volume: 10 start-page: 19633 year: 2018 end-page: 19638 ident: bib0265 article-title: Efficient charge separation from F(-) selective etching and doping of anatase-TiO publication-title: ACS Appl. Mater. Interfaces – volume: 88 start-page: 169 year: 1995 end-page: 178 ident: bib0210 article-title: Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air publication-title: J. Photochem. Photobiol. A: Chem. – volume: 117 start-page: 16022 year: 2013 end-page: 16027 ident: bib0075 article-title: Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO publication-title: J. Phys. Chem. C – volume: 123 start-page: 12321 year: 2019 end-page: 12334 ident: bib0205 article-title: Defect chemistry of Er publication-title: J. Phys. Chem. C – volume: 171 start-page: 1120 year: 2009 end-page: 1125 ident: bib0235 article-title: Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene publication-title: J. Hazard. Mater. – volume: 218 start-page: 359 year: 2017 end-page: 369 ident: bib0045 article-title: VOC ternary mixture effect on ppb level photocatalytic oxidation: removal kinetic, reaction intermediates and mineralization publication-title: Appl. Catal. B: Environ. – volume: 22 start-page: 3843 year: 2010 end-page: 3853 ident: bib0060 article-title: Highly visible light active TiO publication-title: Chem. Mater. – volume: 146 start-page: 123 year: 2014 end-page: 130 ident: bib0025 article-title: Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO publication-title: Appl. Catal. B: Environ. – volume: 44 start-page: 362 year: 2015 end-page: 381 ident: bib0135 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. – volume: 49 start-page: 316 year: 2020 end-page: 322 ident: bib0250 article-title: In-situ assembly of TiO publication-title: J. Energy Chem. – volume: 6 start-page: 32355 year: 2016 ident: bib0020 article-title: Formation of oxygen vacancies and Ti(3+) state in TiO publication-title: Sci. Rep. – volume: 138 start-page: 7365 year: 2016 end-page: 7376 ident: bib0065 article-title: Catalysis under cover: enhanced reactivity at the interface between (doped) graphene and anatase TiO publication-title: J. Am. Chem. Soc. – volume: 440 start-page: 266 year: 2018 end-page: 274 ident: bib0080 article-title: Visible-light upconversion carbon quantum dots decorated TiO publication-title: Appl. Surf. Sci. – volume: 281 start-page: 85 year: 2017 end-page: 100 ident: bib0190 article-title: Nanocomposite materials for photocatalytic degradation of pollutants publication-title: Catal. Today – volume: 51 start-page: 2924 year: 2017 end-page: 2933 ident: bib0085 article-title: Environment-friendly carbon quantum dots/ZnFe publication-title: Environ. Sci. Technol. – volume: 7 start-page: 20111 year: 2015 end-page: 20123 ident: bib0050 article-title: Carbon quantum dots modified biocl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight publication-title: ACS Appl. Mater. Interfaces – volume: 333 start-page: 88 year: 2017 end-page: 98 ident: bib0115 article-title: Synergetic effect between adsorption and photodegradation on nanostructured TiO publication-title: J. Hazard. Mater. – volume: 11 start-page: 19167 year: 2019 end-page: 19175 ident: bib0130 article-title: Hydrogenated TiO publication-title: ACS Appl. Mater. Interfaces – volume: 218 start-page: 845 year: 2019 end-page: 859 ident: bib0300 article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review publication-title: Chemosphere – volume: 338 start-page: 102 year: 2017 end-page: 123 ident: bib0275 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. – volume: 9 start-page: 3242 year: 2019 end-page: 3252 ident: bib0010 article-title: Homophase junction for promoting spatial charge separation in photocatalytic water splitting publication-title: ACS Catal. – volume: 356 start-page: 22 year: 2017 end-page: 31 ident: bib0220 article-title: Construction of z-scheme heterostructure with enhanced photocatalytic H publication-title: J. Catal. – volume: 363 start-page: 41 year: 2019 end-page: 54 ident: bib0070 article-title: Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides: influencing factors, kinetics and mechanism publication-title: J. Hazard. Mater. – volume: 389 start-page: 122102 year: 2020 ident: bib0290 article-title: A critical review on vocs adsorption by different porous materials: species, mechanisms and modification methods publication-title: J. Hazard. Mater. – volume: 205 start-page: 386 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0255 article-title: Freestanding doubly open-ended TiO2 nanotubes for efficient photocatalytic degradation of volatile organic compounds publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.12.048 – volume: 7 start-page: 7833 issue: 8 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0095 article-title: Facile and high-yield synthesis of carbon quantum dots from biomass-derived carbons at mild condition publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b00027 – volume: 88 start-page: 169 year: 1995 ident: 10.1016/j.jhazmat.2020.123402_bib0210 article-title: Heterogeneous photocatalytic oxidation of dilute toluene-chlorocarbon mixtures in air publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/1010-6030(95)04052-H – volume: 32 start-page: 2075 issue: 8 year: 2016 ident: 10.1016/j.jhazmat.2020.123402_bib0055 article-title: Carbon quantum dots induced ultrasmall bioi nanosheets with assembled hollow structures for broad spectrum photocatalytic activity and mechanism insight publication-title: Langmuir doi: 10.1021/acs.langmuir.5b04308 – volume: 363 start-page: 41 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0070 article-title: Visible light promoted degradation of gaseous volatile organic compounds catalyzed by Au supported layered double hydroxides: influencing factors, kinetics and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.009 – volume: 218 start-page: 845 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0300 article-title: Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: a critical review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.11.175 – volume: 2 start-page: 626 issue: 1 year: 2014 ident: 10.1016/j.jhazmat.2020.123402_bib0100 article-title: VOC emission from alumina calcination stacks caused by thermal decomposition of organic additives publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.11.002 – volume: 10 start-page: 1766 issue: 6 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0280 article-title: Characteristics and sources of VOCs in urban and suburban environments in Shanghai, China, during the 2016 G20 Summit publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2019.07.008 – volume: 9 start-page: 8127 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0005 article-title: Constructing a three-dimensional graphene structure via bonding layers by ion beam irradiation publication-title: Sci. Rep. doi: 10.1038/s41598-019-44697-z – volume: 326 start-page: 2 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0225 article-title: From titania nanoparticles to decahedral anatase particles: photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation publication-title: Catal. Today doi: 10.1016/j.cattod.2018.09.004 – volume: 22 start-page: 3843 issue: 13 year: 2010 ident: 10.1016/j.jhazmat.2020.123402_bib0060 article-title: Highly visible light active TiO2−xNx heterojunction photocatalysts publication-title: Chem. Mater. doi: 10.1021/cm903260f – volume: 209 start-page: 153 year: 2013 ident: 10.1016/j.jhazmat.2020.123402_bib0160 article-title: Photocatalytic degradation of several VOCs (n-hexane, n-butyl acetate and toluene) on TiO2 layer in a closed-loop reactor publication-title: Catal. Today doi: 10.1016/j.cattod.2012.10.017 – volume: 223 start-page: 209 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0040 article-title: Facet-dependent performance of anatase TiO2 for photocatalytic oxidation of gaseous ammonia publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.04.012 – volume: 57 start-page: 10226 issue: 31 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0240 article-title: Visible-light-driven nitrogen-doped carbon quantum dots/CaTiO3 composite catalyst with enhanced no adsorption for no removal publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01731 – volume: 7 start-page: 8783 issue: 1 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0035 article-title: Structure sensitive photocatalytic reduction of nitroarenes over TiO2’ publication-title: Sci. Rep. doi: 10.1038/s41598-017-08599-2 – volume: 6 start-page: 32355 year: 2016 ident: 10.1016/j.jhazmat.2020.123402_bib0020 article-title: Formation of oxygen vacancies and Ti(3+) state in TiO2 thin film and enhanced optical properties by air plasma treatment publication-title: Sci. Rep. doi: 10.1038/srep32355 – volume: 99 start-page: 420 issue: 3–4 year: 2010 ident: 10.1016/j.jhazmat.2020.123402_bib0295 article-title: Effect of molecular functionality on the photocatalytic oxidation of gas-phase mixtures publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2010.05.009 – volume: 21 start-page: 5563 issue: 23 year: 2009 ident: 10.1016/j.jhazmat.2020.123402_bib0185 article-title: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates publication-title: Chem. Mater. doi: 10.1021/cm901593y – volume: 138 start-page: 7365 issue: 23 year: 2016 ident: 10.1016/j.jhazmat.2020.123402_bib0065 article-title: Catalysis under cover: enhanced reactivity at the interface between (doped) graphene and anatase TiO2 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02990 – volume: 10 start-page: 19633 issue: 23 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0265 article-title: Efficient charge separation from F(-) selective etching and doping of anatase-TiO2{001} for enhanced photocatalytic hydrogen production publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02804 – volume: 32 start-page: 9418 issue: 37 year: 2016 ident: 10.1016/j.jhazmat.2020.123402_bib0150 article-title: Morphology control and photocatalysis enhancement by in situ hybridization of cuprous oxide with nitrogen-doped carbon quantum dots publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02011 – volume: 356 start-page: 22 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0220 article-title: Construction of z-scheme heterostructure with enhanced photocatalytic H2 evolution for G-C3N4 nanosheets via loading porous silicon publication-title: J. Catal. doi: 10.1016/j.jcat.2017.10.007 – volume: 327 start-page: 490 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0090 article-title: Mesoporous TiO2 under Vuv irradiation: enhanced photocatalytic oxidation for VOCs degradation at room temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.130 – volume: 218 start-page: 359 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0045 article-title: VOC ternary mixture effect on ppb level photocatalytic oxidation: removal kinetic, reaction intermediates and mineralization publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.06.070 – volume: 333 start-page: 88 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0115 article-title: Synergetic effect between adsorption and photodegradation on nanostructured TiO2/Activated carbon fiber felt porous composites for toluene removal publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.03.019 – volume: 2 start-page: 1027 issue: 2 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0285 article-title: Carbon quantum dot/TiO2 nanohybrids: efficient photocatalysts for hydrogen generation via intimate contact and efficient charge separation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.8b02310 – volume: 51 start-page: 2924 issue: 5 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0085 article-title: Environment-friendly carbon quantum dots/ZnFe2O4 photocatalysts: characterization, biocompatibility, and mechanisms for no removal publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04460 – volume: 163 start-page: 1 year: 1996 ident: 10.1016/j.jhazmat.2020.123402_bib0145 article-title: Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity publication-title: J. Catal. doi: 10.1006/jcat.1996.0299 – volume: 58 start-page: 12535 issue: 28 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0195 article-title: Electrospun Fe2O3 entrenched SiO2 supported N and S dual incorporated TiO2 nanofibers derived from mixed polymeric template/surfactant: enriched mesoporosity within nanofibers, effective charge separation, and visible light photocatalysis activity publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00970 – volume: 356 start-page: 857 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0245 article-title: Construction of novel z-scheme nitrogen-doped carbon dots/{001} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: mechanism insight, products and effects of natural water matrices publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.092 – volume: 49 start-page: 316 year: 2020 ident: 10.1016/j.jhazmat.2020.123402_bib0250 article-title: In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.011 – volume: 6 start-page: 1901032 issue: 19 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0215 article-title: Enhancing photocatalytic activity of no removal through an in situ control of oxygen vacancies in growth of TiO2 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901032 – volume: 7 start-page: 1658 issue: 1 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0180 article-title: Pd/TiO2@carbon microspheres derived from chitin for highly efficient photocatalytic degradation of volatile organic compounds publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05426 – volume: 44 start-page: 362 issue: 1 year: 2015 ident: 10.1016/j.jhazmat.2020.123402_bib0135 article-title: Carbon quantum dots and their applications publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00269E – volume: 382 start-page: 123032 year: 2020 ident: 10.1016/j.jhazmat.2020.123402_bib0105 article-title: A new combined electrolysis and catalytic system for removal of VOCS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123032 – volume: 146 start-page: 123 year: 2014 ident: 10.1016/j.jhazmat.2020.123402_bib0025 article-title: Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: comparison between nano and micro-sized TiO2 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2013.02.047 – volume: 137 start-page: 6018 issue: 18 year: 2015 ident: 10.1016/j.jhazmat.2020.123402_bib0155 article-title: Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01650 – volume: 260 start-page: 442 year: 2013 ident: 10.1016/j.jhazmat.2020.123402_bib0165 article-title: Biological anoxic treatment of O(2)-free VOC emissions from the petrochemical industry: a proof of concept study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.05.051 – volume: 440 start-page: 266 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0080 article-title: Visible-light upconversion carbon quantum dots decorated TiO2 for the photodegradation of flowing gaseous acetaldehyde publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.01.104 – volume: 80 start-page: 106313 year: 2020 ident: 10.1016/j.jhazmat.2020.123402_bib0030 article-title: Emissions from gas processing platforms to the atmosphere-case studies versus benchmarks publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2019.106313 – volume: 347 start-page: 317 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0170 article-title: Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.01.021 – volume: 123 start-page: 12321 issue: 19 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0205 article-title: Defect chemistry of Er3+-Doped TiO2 and its photocatalytic activity for the degradation of flowing gas-phase VOCs publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b02093 – volume: 17 start-page: 2328 issue: 4 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0110 article-title: Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05177 – volume: 281 start-page: 85 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0190 article-title: Nanocomposite materials for photocatalytic degradation of pollutants publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.048 – volume: 49 start-page: 6726 issue: 38 year: 2010 ident: 10.1016/j.jhazmat.2020.123402_bib0015 article-title: Luminescent carbon nanodots: emergent nanolights publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200906623 – volume: 349 start-page: 708 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0140 article-title: Efficient adsorption and sustainable degradation of gaseous acetaldehyde and o-xylene using rGO-TiO2 photocatalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.107 – volume: 45 start-page: 1384 issue: 11 year: 2010 ident: 10.1016/j.jhazmat.2020.123402_bib0125 article-title: Photocatalytic degradation of gaseous acetone, toluene, and p-xylene using a TiO2 Thin Film’ publication-title: J. Environ. Sci. Health A. Tox. Subst. Environ. Eng. – volume: 220 start-page: 1 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0260 article-title: Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.08.036 – volume: 389 start-page: 122102 year: 2020 ident: 10.1016/j.jhazmat.2020.123402_bib0290 article-title: A critical review on vocs adsorption by different porous materials: species, mechanisms and modification methods publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122102 – volume: 522 start-page: 174 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0270 article-title: Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.03.075 – volume: 338 start-page: 102 year: 2017 ident: 10.1016/j.jhazmat.2020.123402_bib0275 article-title: Adsorption of VOCs onto engineered carbon materials: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.013 – volume: 224 start-page: 508 year: 2018 ident: 10.1016/j.jhazmat.2020.123402_bib0120 article-title: Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(Vi) under sunlight illumination: favorable role of carbon dots publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.10.023 – volume: 2014 start-page: 205636 year: 2014 ident: 10.1016/j.jhazmat.2020.123402_bib0200 article-title: Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material publication-title: Biomed Res. Int. doi: 10.1155/2014/205636 – volume: 117 start-page: 16022 issue: 31 year: 2013 ident: 10.1016/j.jhazmat.2020.123402_bib0075 article-title: Interfacial charge transfer and enhanced photocatalytic mechanisms for the hybrid graphene/anatase TiO2(001) nanocomposites publication-title: J. Phys. Chem. C doi: 10.1021/jp403241d – volume: 9 start-page: 3242 issue: 4 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0010 article-title: Homophase junction for promoting spatial charge separation in photocatalytic water splitting publication-title: ACS Catal. doi: 10.1021/acscatal.8b05050 – volume: 9 start-page: 345 issue: 1 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0175 article-title: Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production’ publication-title: ACS Catal. doi: 10.1021/acscatal.8b04068 – volume: 7 start-page: 20111 issue: 36 year: 2015 ident: 10.1016/j.jhazmat.2020.123402_bib0050 article-title: Carbon quantum dots modified biocl ultrathin nanosheets with enhanced molecular oxygen activation ability for broad spectrum photocatalytic properties and mechanism insight publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05268 – volume: 11 start-page: 19167 issue: 21 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0130 article-title: Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04059 – volume: 9 start-page: 5462 issue: 6 year: 2019 ident: 10.1016/j.jhazmat.2020.123402_bib0230 article-title: Chemical nature of microfluidically synthesized aupd nanoalloys supported on TiO2 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00161 – volume: 171 start-page: 1120 issue: 1–3 year: 2009 ident: 10.1016/j.jhazmat.2020.123402_bib0235 article-title: Advantages of combined UV photodegradation and biofiltration processes to treat gaseous chlorobenzene publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.06.129 |
SSID | ssj0001754 |
Score | 2.6086967 |
Snippet | [Display omitted]
•CQDs significantly improved the photocatalytic activity of TiO2 NPs.•The photodegradation of mixed VOCs on CQDs/TiO2 nanocomposite was... In this work, we have developed and optimized TiO2 nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic... In this work, we have developed and optimized TiO₂ nanoparticles decorated with carbon quantum dots to examine its potential use in the photocatalytic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123402 |
SubjectTerms | adsorption benzene Carbon quantum dots density functional theory energy lighting nanocomposites oxidation Oxide semiconductor materials photocatalysis photocatalysts Photocatalytic oxidation photolysis toluene Volatile organic compounds xylene |
Title | Carbon quantum dots-TiO2 nanocomposite as an efficient photocatalyst for the photodegradation of aromatic ring-containing mixed VOCs: An experimental and DFT studies of adsorption and electronic structure of the interface |
URI | https://dx.doi.org/10.1016/j.jhazmat.2020.123402 https://www.proquest.com/docview/2431820133 https://www.proquest.com/docview/2524232696 |
Volume | 401 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5QIHBAuI5bEyEte0Sew8zK0qVOW1e6CL9hbZ8Vjbik1K0orHgX_Kf2EmTuiCECtxdfySZzzzxR5_w9izSDowWZIEqcohkCIzgY6MCqQzLoHEhtLSece743R-Kl-fJWd7bDq8haGwyt72e5veWeu-ZNyv5ni9XI7f06UeulsZE_2g6t73SpmRlo--78I80D16Cim6AcDau1c849Voda6_ITDE38SYeBaE7E9X_uKf_rDUnfuZ3Wa3etzIJ35qd9geVAfs5iU2wQN27a3-fJf9mOrG1BX_tMU1215w_Otsg8XyJOaVrmqKIKcwLeC65bri0DFIoOPh6_N6U3eHOV_bDUcoyxEa-lJLhBI-9xKvHddN3fG8cho2oFh3n2WCXyy_gOUfTqbtcz7Bvi8lD8CxLH8xW_DWxy12_di2bjqL1X3dJeThntR22wBVo2kQqUXjdAn32Ons5WI6D_ocDkGJQGsT5GVoQGilSutynVsijItDUC6yoEwaAUghUIwGIDKIrUC4TKUZCJvFqUMwd5_tV3UFDxhXxqTgrHBGKClMqEMLqE-qjMoozcrokMlBckXZE5xTno2PxRDJtip6gRck8MIL_JCNfjVbe4aPqxrkg1oUv6lqgV7oqqZPBzUqcBvT3YyuoN62RYxAjsCYEP-okxD4jVOVPvz_KTxiN2IKy6FTpOQx20eBwhPEVRtz1G2cI3Z98urN_Pgns98ozg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacgAOCAqo5WkkOGZ3EzsPI3Gotqy2dNse2KLegh2P1V3RZEl2VcqBP8Xv4b8wk2TZghCVkHp14ocy9nxj-8s3jL30pQMTh6EXqQQ8KWLjad8oTzrjQghtT1o67zg4jIbH8t1JeLLGvi__hSFaZev7G59ee-u2pNt-ze5sMum-p0s9hFsZkPwgrtmWWbkPF-e4b6ve7O2ikV8FweDtuD_02tQCXob4P_eSrGdAaKUy6xKdWNIxC3qgnG9BmcgHkEJg6wbANwj5IFysohiEjYPIYYyB7a6zGxLdBaVN6Hxb8UoQjxvNKrpywOGtfhvqTjvTU_0VI1HclwYk7CBke5zzF0D8AxpqvBvcZXfaQJXvNN_iHluDfJPdviRfuMnWR_r8PvvR16Upcv55gUZanHHc5lbeeHIU8FznBVHWiRcGXFdc5xxqyQpEOj47LeZFfXp0Uc05xs4cY9Gm1JKCRZPsiReO67KohWU5desRub5Ja8HPJl_A8g9H_eo138G2L2UrwL4s3x2MedUQJet2bFWUtYusn64yAPFGRXdRAr1GwyAVjdLpDB6w42ux7EO2kRc5bDGujInAWeGMUFKYnu5ZwAmsMj_zozjzt5lcWi7NWkV1SuzxKV1S56Zpa_CUDJ42Bt9mnV_VZo2kyFUVkuW0SH9bGynC3lVVXyynUYp-gy6DdA7FokoDjBwp-hPiH--EFG0HkYoe_f8QnrObw_HBKB3tHe4_ZrcC4gTREVb4hG2gceEpBnVz86xeRJx9vO5V-xPAXGS8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+quantum+dots-TiO2+nanocomposite+as+an+efficient+photocatalyst+for+the+photodegradation+of+aromatic+ring-containing+mixed+VOCs%3A+An+experimental+and+DFT+studies+of+adsorption+and+electronic+structure+of+the+interface&rft.jtitle=Journal+of+hazardous+materials&rft.au=Mahmood%2C+Asad&rft.au=Shi%2C+Gansheng&rft.au=Wang%2C+Zhuang&rft.au=Rao%2C+Zepeng&rft.date=2021-01-05&rft.issn=0304-3894&rft.volume=401&rft.spage=123402&rft_id=info:doi/10.1016%2Fj.jhazmat.2020.123402&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhazmat_2020_123402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3894&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3894&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3894&client=summon |