EEG-Based Sleep Staging Analysis with Functional Connectivity
Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few c...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 6; p. 1988 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
11.03.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21061988 |
Cover
Loading…
Abstract | Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods. |
---|---|
AbstractList | Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods. Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods. |
Author | Zhu, Lei Zhang, Jianhai Zhu, Li Huang, Hui Kong, Wanzeng Tang, Jiajia Lin, Guang Lei, Xu |
AuthorAffiliation | 3 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; xlei@swu.edu.cn 1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Hyoui7890@gmail.com (H.H.); jhzhang@hdu.edu.cn (J.Z.); hdutangjiajia@163.com (J.T.); lindandan@hdu.edu.cn (G.L.) 2 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; kongwanzeng@hdu.edu.cn 4 Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China 5 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; zhulei@hdu.edu.cn |
AuthorAffiliation_xml | – name: 5 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; zhulei@hdu.edu.cn – name: 4 Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China – name: 1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Hyoui7890@gmail.com (H.H.); jhzhang@hdu.edu.cn (J.Z.); hdutangjiajia@163.com (J.T.); lindandan@hdu.edu.cn (G.L.) – name: 2 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; kongwanzeng@hdu.edu.cn – name: 3 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; xlei@swu.edu.cn |
Author_xml | – sequence: 1 givenname: Hui surname: Huang fullname: Huang, Hui – sequence: 2 givenname: Jianhai orcidid: 0000-0002-5992-0405 surname: Zhang fullname: Zhang, Jianhai – sequence: 3 givenname: Li surname: Zhu fullname: Zhu, Li – sequence: 4 givenname: Jiajia surname: Tang fullname: Tang, Jiajia – sequence: 5 givenname: Guang surname: Lin fullname: Lin, Guang – sequence: 6 givenname: Wanzeng orcidid: 0000-0002-0113-6968 surname: Kong fullname: Kong, Wanzeng – sequence: 7 givenname: Xu orcidid: 0000-0003-2271-1287 surname: Lei fullname: Lei, Xu – sequence: 8 givenname: Lei surname: Zhu fullname: Zhu, Lei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33799850$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1vEzEQhi1URD_gwB9Ae4TDUq_H648DSCVKS6VKHApny2tPUlcbO6ydovx7HFKiFnGyPX7neUfznpKjmCIS8rajHwE0Pc-so6LTSr0gJx1nvFWM0aMn92NymvM9pQwA1CtyDCC1Vj09IZ_m86v2i83om9sRcd3cFrsMcdlcRDtuc8jNr1DumstNdCWkWmtmKUasj4dQtq_Jy4UdM755PM_Ij8v599nX9ubb1fXs4qZ1nHelVQNbaC9c5_kArkPNKaIHqQZlexQUOLMgUAquWa-ZpuAFWAVO9GJgPYczcr3n-mTvzXoKKzttTbLB_CmkaWnsVIIb0SjpOUesRGmree1HvxCDZE5YSkFX1uc9a70ZVugdxjLZ8Rn0-U8Md2aZHkxdmdZyN8z7R8CUfm4wF7MK2eE42ohpkw3rqeolldBX6bunXgeTv_uvgg97gZtSzhMuDpKOml225pBt1Z7_o3Wh2F0qdcww_qfjNxAyo9E |
CitedBy_id | crossref_primary_10_1186_s12868_024_00877_w crossref_primary_10_1109_JBHI_2024_3386885 crossref_primary_10_1016_j_knosys_2021_108098 crossref_primary_10_1140_epjs_s11734_024_01290_4 crossref_primary_10_3390_brainsci14101007 crossref_primary_10_3390_s21144743 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_3390_s21217061 crossref_primary_10_1016_j_sleep_2024_03_024 crossref_primary_10_1142_S0218348X23500111 crossref_primary_10_34133_cbsystems_0130 crossref_primary_10_1109_LSENS_2024_3523427 crossref_primary_10_1007_s40846_025_00928_5 crossref_primary_10_2183_pjab_101_008 crossref_primary_10_1109_JBHI_2024_3404146 crossref_primary_10_3389_fpsyt_2024_1433316 crossref_primary_10_1016_j_sleep_2023_11_032 crossref_primary_10_3390_s22041477 crossref_primary_10_3389_fncom_2022_785397 crossref_primary_10_1109_JBHI_2024_3478380 crossref_primary_10_1038_s41598_025_86192_8 crossref_primary_10_1016_j_ienj_2023_101352 crossref_primary_10_1038_s41598_024_56384_9 crossref_primary_10_1080_10447318_2024_2358461 crossref_primary_10_1111_jocn_16738 |
Cites_doi | 10.1038/s41467-019-08934-3 10.1007/978-1-4757-2851-4 10.1073/pnas.1312848110 10.1007/s10916-015-0219-1 10.1016/j.neuron.2014.03.020 10.1007/BF00117832 10.1016/j.compbiomed.2019.01.013 10.1016/j.clinph.2019.04.715 10.1016/j.knosys.2013.02.014 10.1109/EMBC.2015.7318431 10.1016/j.neuroimage.2015.02.061 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1007/s11517-016-1519-4 10.1111/jsr.12301 10.1016/j.jneumeth.2011.12.022 10.1109/JBHI.2014.2303991 10.1109/JBHI.2020.2993644 10.1155/2014/756952 10.1109/ACCESS.2020.2982434 10.1016/j.compbiomed.2018.04.025 10.1109/BIBE.2012.6399688 10.1109/SAMI.2017.7880336 10.1111/j.1439-054X.2006.00101.x 10.1016/j.measurement.2018.01.024 10.1109/TNSRE.2016.2552539 10.1016/j.neuroimage.2007.01.051 10.1109/ICBBE.2010.5516372 10.1103/PhysRevE.65.041903 10.1016/S1389-9457(01)00149-6 10.1109/EMBC.2018.8512286 10.1002/acs.1147 10.1145/1961189.1961199 10.1093/sleep/27.7.1255 10.1016/j.jneumeth.2015.01.022 10.5664/jcsm.2172 10.1016/j.bbe.2020.01.013 10.1007/s12021-013-9186-1 10.1016/j.bspc.2017.12.001 10.1109/BHI.2019.8834483 10.1016/B978-1-4160-6645-3.00002-5 10.1016/j.biopsycho.2012.08.009 10.1093/sleep/zsy227 10.1371/journal.pone.0137297 10.1152/jn.90989.2008 10.1111/j.1469-8986.2010.01061.x 10.1161/01.CIR.101.23.e215 10.1016/j.smrv.2009.04.002 10.1093/sleep/zsx024 10.3389/fnhum.2018.00121 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s21061988 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_87d44ee42a7a4416b2edf6b72c6a0039 PMC7999974 33799850 10_3390_s21061988 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No.61633010 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 7X8 PJZUB PPXIY 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-8b2f9d6c1d4b3c1e940eed378b8a5e60342a36e76492592903d63a83c656b2543 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:07:40 EDT 2025 Thu Aug 21 13:38:27 EDT 2025 Tue Aug 05 10:57:03 EDT 2025 Thu Apr 03 07:07:37 EDT 2025 Tue Jul 01 03:56:07 EDT 2025 Thu Apr 24 22:54:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | electroencephalography (EEG) brain functional connectivity frequency band fusion phase-locked value (PLV) sleep staging |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-8b2f9d6c1d4b3c1e940eed378b8a5e60342a36e76492592903d63a83c656b2543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5992-0405 0000-0003-2271-1287 0000-0002-0113-6968 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21061988 |
PMID | 33799850 |
PQID | 2508570735 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_87d44ee42a7a4416b2edf6b72c6a0039 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7999974 proquest_miscellaneous_2508570735 pubmed_primary_33799850 crossref_primary_10_3390_s21061988 crossref_citationtrail_10_3390_s21061988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210311 |
PublicationDateYYYYMMDD | 2021-03-11 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210311 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Chapotot (ref_5) 2010; 24 Ohayon (ref_31) 2004; 27 Lachaux (ref_38) 2015; 8 Zhou (ref_14) 2020; 8 Quiroga (ref_39) 2002; 65 Sunwoo (ref_51) 2019; 42 ref_13 ref_10 Diykh (ref_12) 2018; 119 Lajnef (ref_54) 2015; 250 ref_19 Patrick (ref_20) 2018; 12 ref_15 Gao (ref_9) 2015; 32 Stevner (ref_23) 2019; 10 Sharma (ref_53) 2018; 98 Riemann (ref_49) 2010; 14 Spiegelhalder (ref_50) 2012; 91 Younes (ref_2) 2017; 1 Carskadon (ref_46) 2011; 5 ref_28 ref_27 Berry (ref_32) 2012; 8 Tunga (ref_7) 2015; 39 Kozakevicius (ref_16) 2017; 55 Blankertz (ref_41) 2007; 37 Zhang (ref_17) 2020; 25 Ludwig (ref_35) 2009; 101 Sors (ref_52) 2018; 42 ref_36 Landwehr (ref_26) 2014; 2014 ref_33 Mognon (ref_37) 2011; 48 Niso (ref_40) 2013; 11 Zhu (ref_21) 2014; 18 Gopika (ref_22) 2020; 40 Diykh (ref_11) 2016; 24 Michielli (ref_55) 2019; 106 Acharya (ref_6) 2013; 45 Wilson (ref_34) 2015; 112 Terzano (ref_29) 2002; 2 Saebipour (ref_56) 2015; 24 Goldberger (ref_30) 2000; 101 Tagliazucchi (ref_24) 2013; 110 Knaut (ref_48) 2019; 130 Cantero (ref_45) 2000; 23 ref_47 (ref_25) 2014; 82 ref_42 ref_1 ref_3 Rodenbeck (ref_44) 2006; 10 Breiman (ref_43) 1996; 24 ref_8 ref_4 Liang (ref_18) 2012; 205 |
References_xml | – volume: 10 start-page: 1035 year: 2019 ident: ref_23 article-title: Discovery of Key Whole-brain Transitions and Dynamics during Human Wakefulness and Non-REM Sleep publication-title: Nat. Commun. doi: 10.1038/s41467-019-08934-3 – ident: ref_36 doi: 10.1007/978-1-4757-2851-4 – volume: 110 start-page: 15419 year: 2013 ident: ref_24 article-title: Breakdown of Long-range Temporal Dependence in Default Mode and Attention Networks during Deep Sleep publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1312848110 – volume: 39 start-page: 43 year: 2015 ident: ref_7 article-title: Mutual Information Analysis of Sleep EEG in Detecting Psycho-physiological Insomnia publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0219-1 – volume: 82 start-page: 695 year: 2014 ident: ref_25 article-title: Decoding Wakefulness Levels from Typical FMRI Resting-state Data Reveals Reliable Drifts between Wakefulness and Sleep publication-title: Neuron doi: 10.1016/j.neuron.2014.03.020 – ident: ref_1 – volume: 24 start-page: 49 year: 1996 ident: ref_43 article-title: Stacked Regressions publication-title: Mach. Learn. doi: 10.1007/BF00117832 – volume: 106 start-page: 71 year: 2019 ident: ref_55 article-title: Cascaded LSTM Recurrent Neural Network for Automated Sleep Stage Classification Using Single-channel EEG Signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.013 – volume: 32 start-page: 531 year: 2015 ident: ref_9 article-title: Automatic Sleep Staging Method Based on Energy Features and Least Squares Support Vector Machine Classifier publication-title: Journal of Biomedical Engineering – volume: 130 start-page: 1375 year: 2019 ident: ref_48 article-title: EEG-correlated FMRI of Human Alpha (De-) synchronization publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2019.04.715 – volume: 45 start-page: 147 year: 2013 ident: ref_6 article-title: Automated EEG Analysis of Epilepsy: A Review publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.02.014 – ident: ref_19 doi: 10.1109/EMBC.2015.7318431 – volume: 112 start-page: 169 year: 2015 ident: ref_34 article-title: Influence of Epoch Length on Measurement of Dynamic Functional Connectivity in Wakefulness and Behavioural Validation in Sleep publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.061 – ident: ref_4 – ident: ref_10 – volume: 8 start-page: 194 year: 2015 ident: ref_38 article-title: Measuring Phase Synchrony in Brain Signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 1 start-page: 1 year: 2017 ident: ref_2 article-title: The Case for Using Digital EEG Analysis in Clinical Sleep Medicine publication-title: Sleep Sci. Pract. – volume: 55 start-page: 343 year: 2017 ident: ref_16 article-title: Single-channel EEG Sleep Stage Classification Based on a Streamlined set of statistical features in wavelet domain publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-016-1519-4 – volume: 24 start-page: 518 year: 2015 ident: ref_56 article-title: Slow Oscillating Transcranial Direct Current Stimulation during Sleep has A Sleep-stabilizing Effect in Chronic Insomnia: A Pilot Study publication-title: J. Sleep Res. doi: 10.1111/jsr.12301 – volume: 205 start-page: 169 year: 2012 ident: ref_18 article-title: A Rule-based Automatic Sleep Staging Method publication-title: J. Neuroence Methods doi: 10.1016/j.jneumeth.2011.12.022 – volume: 18 start-page: 1813 year: 2014 ident: ref_21 article-title: Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2303991 – volume: 25 start-page: 577 year: 2020 ident: ref_17 article-title: Sleep Staging Using Plausibility Score: A Novel Feature Selection Method Based on Metric Learning publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2993644 – volume: 2014 start-page: 756952 year: 2014 ident: ref_26 article-title: A Recurrent Increase of Synchronization in the EEG Continues from Waking throughout NREM and REM Sleep publication-title: ISRN Neurosci. doi: 10.1155/2014/756952 – volume: 8 start-page: 57283 year: 2020 ident: ref_14 article-title: Automatic Sleep Stage Classification with Single Channel EEG Signal Based on Two-layer Stacked Ensemble Model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982434 – volume: 98 start-page: 58 year: 2018 ident: ref_53 article-title: An Accurate Sleep Stages Classification System Using a New Class of Optimally Time-frequency Localized Three-band Wavelet Filter Bank publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.025 – ident: ref_33 doi: 10.1109/BIBE.2012.6399688 – ident: ref_47 doi: 10.1109/SAMI.2017.7880336 – ident: ref_3 – volume: 10 start-page: 159 year: 2006 ident: ref_44 article-title: A Review of Sleep EEG Patterns. Part I: A Compilation of Amended Rules for their Visual Recognition According to Rechtschaffen and Kales publication-title: Somnologie doi: 10.1111/j.1439-054X.2006.00101.x – volume: 119 start-page: 178 year: 2018 ident: ref_12 article-title: Complex Networks Approach for Depth of Anesthesia Assessment publication-title: Measurement doi: 10.1016/j.measurement.2018.01.024 – volume: 24 start-page: 1159 year: 2016 ident: ref_11 article-title: EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2552539 – volume: 37 start-page: 539 year: 2007 ident: ref_41 article-title: The Non-invasive Berlin Brain-Computer Interface: Fast acquisition of Effective Performance in Untrained Subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.051 – ident: ref_8 doi: 10.1109/ICBBE.2010.5516372 – volume: 65 start-page: 041903 year: 2002 ident: ref_39 article-title: Performance of Different Synchronization Measures in Real Data: A Case Study on Electroencephalographic Signals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.65.041903 – volume: 2 start-page: 537 year: 2002 ident: ref_29 article-title: Atlas, Rules, and Recording Techniques for the Scoring of Cyclic Alternating Pattern (CAP) in human sleep publication-title: Sleep Med. doi: 10.1016/S1389-9457(01)00149-6 – ident: ref_13 doi: 10.1109/EMBC.2018.8512286 – volume: 24 start-page: 409 year: 2010 ident: ref_5 article-title: Automated Sleep-Wake Staging Combining Robust Feature Extraction, Artificial Neural Network Classification, and Flexible Decision Rules publication-title: International Journal of Adaptive Control and Signal Processing. doi: 10.1002/acs.1147 – ident: ref_42 doi: 10.1145/1961189.1961199 – volume: 27 start-page: 1255 year: 2004 ident: ref_31 article-title: Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan publication-title: Sleep doi: 10.1093/sleep/27.7.1255 – volume: 250 start-page: 94 year: 2015 ident: ref_54 article-title: Learning Machines and Sleeping Brains: Automatic Sleep Stage Classification Using Decision-tree Multi-class Support Vector Machines publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.022 – volume: 8 start-page: 597 year: 2012 ident: ref_32 article-title: Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.2172 – volume: 40 start-page: 527 year: 2020 ident: ref_22 article-title: Sleep EEG Analysis Utilizing Inter-channel Covariance Matrices publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.01.013 – volume: 11 start-page: 405 year: 2013 ident: ref_40 article-title: HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity publication-title: Neuroinformatics doi: 10.1007/s12021-013-9186-1 – volume: 23 start-page: 746 year: 2000 ident: ref_45 article-title: Spectral Features of EEG Alpha Activity in Human REM Sleep: Two Variants with Different Functional Roles? publication-title: Sleep N. Y. – volume: 42 start-page: 107 year: 2018 ident: ref_52 article-title: A Convolutional Neural Network for Sleep Stage Scoring from Raw Single-channel EEG publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2017.12.001 – ident: ref_15 doi: 10.1109/BHI.2019.8834483 – volume: 5 start-page: 16 year: 2011 ident: ref_46 article-title: Monitoring and Staging Human Sleep publication-title: Princ. Pract. Sleep Med. doi: 10.1016/B978-1-4160-6645-3.00002-5 – volume: 91 start-page: 329 year: 2012 ident: ref_50 article-title: Increased EEG Sigma and Beta Power during NREM Sleep in Primary Insomnia publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2012.08.009 – volume: 42 start-page: zsy227 year: 2019 ident: ref_51 article-title: Abnormal Activation of Motor Cortical Network during Phasic REM Sleep in Idiopathic REM Sleep Behavior Disorder publication-title: Sleep doi: 10.1093/sleep/zsy227 – ident: ref_27 doi: 10.1371/journal.pone.0137297 – volume: 101 start-page: 1679 year: 2009 ident: ref_35 article-title: Using a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays publication-title: J. Neurophysiol. doi: 10.1152/jn.90989.2008 – volume: 48 start-page: 229 year: 2011 ident: ref_37 article-title: ADJUST: An Automatic EEG Artifact Detector Based on the Joint Use of Spatial and Temporal Features publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – volume: 101 start-page: 215 year: 2000 ident: ref_30 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 14 start-page: 19 year: 2010 ident: ref_49 article-title: The Hyperarousa Model of Insomnia: A Review of the Concept and its Evidence publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2009.04.002 – ident: ref_28 doi: 10.1093/sleep/zsx024 – volume: 12 start-page: 121 year: 2018 ident: ref_20 article-title: Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00121 |
SSID | ssj0023338 |
Score | 2.469385 |
Snippet | Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1988 |
SubjectTerms | Brain brain functional connectivity Electroencephalography electroencephalography (EEG) frequency band fusion phase-locked value (PLV) Sleep Sleep Stages sleep staging |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQb8JLATGwRE1zjp0MDBS1VEiwQKVuke3YAqlKK9r-f-7yKC2qxMKa2MrlLsl9n3P-jrFbDToPbaiD2Lk04C4SQQKaB-A4RGmoFZTq-i-vYjDkz6N4tNLqi2rCKnngynHtROacW8sjJRWmbqEjmzuhZWSEoo2l9PXFnNeQqZpqATKvSkcIkNS3ZxExn7Rsr_KTfUqR_k3I8neB5ErG6e-x3Roq-g-ViftsyxYHbGdFQPCQ3fd6T0EXE1Huv42tnfqIHanrkN9ojfi0zur3MXlVa35-WdhiqpYRR2zY770_DoK6IUJg8NbnQaIjl-bCdHKuwXRsykNMcSATnajYClLzUyCsFKQ4iLgnhFyASsAgaNO06_2YtYpJYU-Zj_5BIGGcMhJ4mJNMvFWJ4gnOc9wpj901jspMrRZOTSvGGbIG8mm29KnHbpZDp5VExqZBXfL2cgCpWpcHMNZZHevsr1h77LqJVYZvAf3aUIWdLGYZAjlS6pcQe-ykit3yUgASOWUcekyuRXXNlvUzxedHqbSNE1MkXGf_Yfw5246oHoZqATsXrDX_WthLBDRzfVU-u9_Dm_MH priority: 102 providerName: Directory of Open Access Journals |
Title | EEG-Based Sleep Staging Analysis with Functional Connectivity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33799850 https://www.proquest.com/docview/2508570735 https://pubmed.ncbi.nlm.nih.gov/PMC7999974 https://doaj.org/article/87d44ee42a7a4416b2edf6b72c6a0039 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xIU3wMLGNQTaowrSHvYSlsWs7D2iiUwtCAk3bKvUtsh0bkKqUtUUa_z13-VKLykseknNi38W639nn3wF8NczksYtN1PM-jbhPRKSY4RHznCVpbDQr2fWvb8TliF-Ne-MNaGps1gqcrw3tqJ7UaDY5_f_v6QdO-DOKODFk_z5PKK5JldqEbXRIkubnNW83ExKGYVhFKrQqvgNvGJMYb9Ch-yWvVJL3r0OcLxMnlzzRcA_e1hAyPK9s_g42XPEedpeIBT_A2WBwEfXRQeXhn4lzDyFiSqpGFDYcJCGtv4ZDdGrVWmBYJrzYqpTEPoyGg78_L6O6UEJkEc0sImUSn-bCdnNumO26lMfo-phURumeE8Typ5lwUhATIeKhmOWCacUsgjlDp-E_wlYxLdwhhKgqBBjWaysZj3Oij3daaa6wnedeB_CtUVRmaxZxKmYxyTCaIPVmrXoD-NKKPlTUGeuE-qTtVoDYrssb09ltVk-eTMmcc-dwFFLjgLHPLvfCyMQKTYeLAzhpbJXh7KAtD1246eM8Q4BHDP6S9QI4qGzXfqqxfQByxaorfVl9UtzflQzc2DDFQOzTq-_8DDsJJb9Q4l_3CLYWs0d3jOhlYTqwKccSr2p40YHt_uDm1-9OuRLQKf_aZ1aT8C8 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Sleep+Staging+Analysis+with+Functional+Connectivity&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Hui&rft.au=Zhang%2C+Jianhai&rft.au=Zhu%2C+Li&rft.au=Tang%2C+Jiajia&rft.date=2021-03-11&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21061988&rft_id=info%3Apmid%2F33799850&rft.externalDocID=33799850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |