EEG-Based Sleep Staging Analysis with Functional Connectivity

Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few c...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 6; p. 1988
Main Authors Huang, Hui, Zhang, Jianhai, Zhu, Li, Tang, Jiajia, Lin, Guang, Kong, Wanzeng, Lei, Xu, Zhu, Lei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 11.03.2021
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21061988

Cover

Loading…
Abstract Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.
AbstractList Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.
Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable outcomes. However, most of current studies focus on time-domain or frequency-domain measures as classification features using single or very few channels, which only obtain the local features but ignore the global information exchanging between different brain regions. Meanwhile, brain functional connectivity is considered to be closely related to brain activity and can be used to study the interaction relationship between brain areas. To explore the electroencephalography (EEG)-based brain mechanisms of sleep stages through functional connectivity, especially from different frequency bands, we applied phase-locked value (PLV) to build the functional connectivity network and analyze the brain interaction during sleep stages for different frequency bands. Then, we performed the feature-level, decision-level and hybrid fusion methods to discuss the performance of different frequency bands for sleep stages. The results show that (1) PLV increases in the lower frequency band (delta and alpha bands) and vice versa during different stages of non-rapid eye movement (NREM); (2) alpha band shows a better discriminative ability for sleeping stages; (3) the classification accuracy of feature-level fusion (six frequency bands) reaches 96.91% and 96.14% for intra-subject and inter-subjects respectively, which outperforms decision-level and hybrid fusion methods.
Author Zhu, Lei
Zhang, Jianhai
Zhu, Li
Huang, Hui
Kong, Wanzeng
Tang, Jiajia
Lin, Guang
Lei, Xu
AuthorAffiliation 3 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; xlei@swu.edu.cn
1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Hyoui7890@gmail.com (H.H.); jhzhang@hdu.edu.cn (J.Z.); hdutangjiajia@163.com (J.T.); lindandan@hdu.edu.cn (G.L.)
2 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; kongwanzeng@hdu.edu.cn
4 Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
5 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; zhulei@hdu.edu.cn
AuthorAffiliation_xml – name: 5 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; zhulei@hdu.edu.cn
– name: 4 Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
– name: 1 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China; Hyoui7890@gmail.com (H.H.); jhzhang@hdu.edu.cn (J.Z.); hdutangjiajia@163.com (J.T.); lindandan@hdu.edu.cn (G.L.)
– name: 2 Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China; kongwanzeng@hdu.edu.cn
– name: 3 Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China; xlei@swu.edu.cn
Author_xml – sequence: 1
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
– sequence: 2
  givenname: Jianhai
  orcidid: 0000-0002-5992-0405
  surname: Zhang
  fullname: Zhang, Jianhai
– sequence: 3
  givenname: Li
  surname: Zhu
  fullname: Zhu, Li
– sequence: 4
  givenname: Jiajia
  surname: Tang
  fullname: Tang, Jiajia
– sequence: 5
  givenname: Guang
  surname: Lin
  fullname: Lin, Guang
– sequence: 6
  givenname: Wanzeng
  orcidid: 0000-0002-0113-6968
  surname: Kong
  fullname: Kong, Wanzeng
– sequence: 7
  givenname: Xu
  orcidid: 0000-0003-2271-1287
  surname: Lei
  fullname: Lei, Xu
– sequence: 8
  givenname: Lei
  surname: Zhu
  fullname: Zhu, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33799850$$D View this record in MEDLINE/PubMed
BookMark eNptkU1vEzEQhi1URD_gwB9Ae4TDUq_H648DSCVKS6VKHApny2tPUlcbO6ydovx7HFKiFnGyPX7neUfznpKjmCIS8rajHwE0Pc-so6LTSr0gJx1nvFWM0aMn92NymvM9pQwA1CtyDCC1Vj09IZ_m86v2i83om9sRcd3cFrsMcdlcRDtuc8jNr1DumstNdCWkWmtmKUasj4dQtq_Jy4UdM755PM_Ij8v599nX9ubb1fXs4qZ1nHelVQNbaC9c5_kArkPNKaIHqQZlexQUOLMgUAquWa-ZpuAFWAVO9GJgPYczcr3n-mTvzXoKKzttTbLB_CmkaWnsVIIb0SjpOUesRGmree1HvxCDZE5YSkFX1uc9a70ZVugdxjLZ8Rn0-U8Md2aZHkxdmdZyN8z7R8CUfm4wF7MK2eE42ohpkw3rqeolldBX6bunXgeTv_uvgg97gZtSzhMuDpKOml225pBt1Z7_o3Wh2F0qdcww_qfjNxAyo9E
CitedBy_id crossref_primary_10_1186_s12868_024_00877_w
crossref_primary_10_1109_JBHI_2024_3386885
crossref_primary_10_1016_j_knosys_2021_108098
crossref_primary_10_1140_epjs_s11734_024_01290_4
crossref_primary_10_3390_brainsci14101007
crossref_primary_10_3390_s21144743
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_3390_s21217061
crossref_primary_10_1016_j_sleep_2024_03_024
crossref_primary_10_1142_S0218348X23500111
crossref_primary_10_34133_cbsystems_0130
crossref_primary_10_1109_LSENS_2024_3523427
crossref_primary_10_1007_s40846_025_00928_5
crossref_primary_10_2183_pjab_101_008
crossref_primary_10_1109_JBHI_2024_3404146
crossref_primary_10_3389_fpsyt_2024_1433316
crossref_primary_10_1016_j_sleep_2023_11_032
crossref_primary_10_3390_s22041477
crossref_primary_10_3389_fncom_2022_785397
crossref_primary_10_1109_JBHI_2024_3478380
crossref_primary_10_1038_s41598_025_86192_8
crossref_primary_10_1016_j_ienj_2023_101352
crossref_primary_10_1038_s41598_024_56384_9
crossref_primary_10_1080_10447318_2024_2358461
crossref_primary_10_1111_jocn_16738
Cites_doi 10.1038/s41467-019-08934-3
10.1007/978-1-4757-2851-4
10.1073/pnas.1312848110
10.1007/s10916-015-0219-1
10.1016/j.neuron.2014.03.020
10.1007/BF00117832
10.1016/j.compbiomed.2019.01.013
10.1016/j.clinph.2019.04.715
10.1016/j.knosys.2013.02.014
10.1109/EMBC.2015.7318431
10.1016/j.neuroimage.2015.02.061
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1007/s11517-016-1519-4
10.1111/jsr.12301
10.1016/j.jneumeth.2011.12.022
10.1109/JBHI.2014.2303991
10.1109/JBHI.2020.2993644
10.1155/2014/756952
10.1109/ACCESS.2020.2982434
10.1016/j.compbiomed.2018.04.025
10.1109/BIBE.2012.6399688
10.1109/SAMI.2017.7880336
10.1111/j.1439-054X.2006.00101.x
10.1016/j.measurement.2018.01.024
10.1109/TNSRE.2016.2552539
10.1016/j.neuroimage.2007.01.051
10.1109/ICBBE.2010.5516372
10.1103/PhysRevE.65.041903
10.1016/S1389-9457(01)00149-6
10.1109/EMBC.2018.8512286
10.1002/acs.1147
10.1145/1961189.1961199
10.1093/sleep/27.7.1255
10.1016/j.jneumeth.2015.01.022
10.5664/jcsm.2172
10.1016/j.bbe.2020.01.013
10.1007/s12021-013-9186-1
10.1016/j.bspc.2017.12.001
10.1109/BHI.2019.8834483
10.1016/B978-1-4160-6645-3.00002-5
10.1016/j.biopsycho.2012.08.009
10.1093/sleep/zsy227
10.1371/journal.pone.0137297
10.1152/jn.90989.2008
10.1111/j.1469-8986.2010.01061.x
10.1161/01.CIR.101.23.e215
10.1016/j.smrv.2009.04.002
10.1093/sleep/zsx024
10.3389/fnhum.2018.00121
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21061988
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_87d44ee42a7a4416b2edf6b72c6a0039
PMC7999974
33799850
10_3390_s21061988
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No.61633010
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PJZUB
PPXIY
5PM
PUEGO
ID FETCH-LOGICAL-c441t-8b2f9d6c1d4b3c1e940eed378b8a5e60342a36e76492592903d63a83c656b2543
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:07:40 EDT 2025
Thu Aug 21 13:38:27 EDT 2025
Tue Aug 05 10:57:03 EDT 2025
Thu Apr 03 07:07:37 EDT 2025
Tue Jul 01 03:56:07 EDT 2025
Thu Apr 24 22:54:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords electroencephalography (EEG)
brain functional connectivity
frequency band fusion
phase-locked value (PLV)
sleep staging
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-8b2f9d6c1d4b3c1e940eed378b8a5e60342a36e76492592903d63a83c656b2543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5992-0405
0000-0003-2271-1287
0000-0002-0113-6968
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21061988
PMID 33799850
PQID 2508570735
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_87d44ee42a7a4416b2edf6b72c6a0039
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7999974
proquest_miscellaneous_2508570735
pubmed_primary_33799850
crossref_primary_10_3390_s21061988
crossref_citationtrail_10_3390_s21061988
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210311
PublicationDateYYYYMMDD 2021-03-11
PublicationDate_xml – month: 3
  year: 2021
  text: 20210311
  day: 11
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Chapotot (ref_5) 2010; 24
Ohayon (ref_31) 2004; 27
Lachaux (ref_38) 2015; 8
Zhou (ref_14) 2020; 8
Quiroga (ref_39) 2002; 65
Sunwoo (ref_51) 2019; 42
ref_13
ref_10
Diykh (ref_12) 2018; 119
Lajnef (ref_54) 2015; 250
ref_19
Patrick (ref_20) 2018; 12
ref_15
Gao (ref_9) 2015; 32
Stevner (ref_23) 2019; 10
Sharma (ref_53) 2018; 98
Riemann (ref_49) 2010; 14
Spiegelhalder (ref_50) 2012; 91
Younes (ref_2) 2017; 1
Carskadon (ref_46) 2011; 5
ref_28
ref_27
Berry (ref_32) 2012; 8
Tunga (ref_7) 2015; 39
Kozakevicius (ref_16) 2017; 55
Blankertz (ref_41) 2007; 37
Zhang (ref_17) 2020; 25
Ludwig (ref_35) 2009; 101
Sors (ref_52) 2018; 42
ref_36
Landwehr (ref_26) 2014; 2014
ref_33
Mognon (ref_37) 2011; 48
Niso (ref_40) 2013; 11
Zhu (ref_21) 2014; 18
Gopika (ref_22) 2020; 40
Diykh (ref_11) 2016; 24
Michielli (ref_55) 2019; 106
Acharya (ref_6) 2013; 45
Wilson (ref_34) 2015; 112
Terzano (ref_29) 2002; 2
Saebipour (ref_56) 2015; 24
Goldberger (ref_30) 2000; 101
Tagliazucchi (ref_24) 2013; 110
Knaut (ref_48) 2019; 130
Cantero (ref_45) 2000; 23
ref_47
(ref_25) 2014; 82
ref_42
ref_1
ref_3
Rodenbeck (ref_44) 2006; 10
Breiman (ref_43) 1996; 24
ref_8
ref_4
Liang (ref_18) 2012; 205
References_xml – volume: 10
  start-page: 1035
  year: 2019
  ident: ref_23
  article-title: Discovery of Key Whole-brain Transitions and Dynamics during Human Wakefulness and Non-REM Sleep
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08934-3
– ident: ref_36
  doi: 10.1007/978-1-4757-2851-4
– volume: 110
  start-page: 15419
  year: 2013
  ident: ref_24
  article-title: Breakdown of Long-range Temporal Dependence in Default Mode and Attention Networks during Deep Sleep
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1312848110
– volume: 39
  start-page: 43
  year: 2015
  ident: ref_7
  article-title: Mutual Information Analysis of Sleep EEG in Detecting Psycho-physiological Insomnia
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0219-1
– volume: 82
  start-page: 695
  year: 2014
  ident: ref_25
  article-title: Decoding Wakefulness Levels from Typical FMRI Resting-state Data Reveals Reliable Drifts between Wakefulness and Sleep
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.03.020
– ident: ref_1
– volume: 24
  start-page: 49
  year: 1996
  ident: ref_43
  article-title: Stacked Regressions
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– volume: 106
  start-page: 71
  year: 2019
  ident: ref_55
  article-title: Cascaded LSTM Recurrent Neural Network for Automated Sleep Stage Classification Using Single-channel EEG Signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 32
  start-page: 531
  year: 2015
  ident: ref_9
  article-title: Automatic Sleep Staging Method Based on Energy Features and Least Squares Support Vector Machine Classifier
  publication-title: Journal of Biomedical Engineering
– volume: 130
  start-page: 1375
  year: 2019
  ident: ref_48
  article-title: EEG-correlated FMRI of Human Alpha (De-) synchronization
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2019.04.715
– volume: 45
  start-page: 147
  year: 2013
  ident: ref_6
  article-title: Automated EEG Analysis of Epilepsy: A Review
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.02.014
– ident: ref_19
  doi: 10.1109/EMBC.2015.7318431
– volume: 112
  start-page: 169
  year: 2015
  ident: ref_34
  article-title: Influence of Epoch Length on Measurement of Dynamic Functional Connectivity in Wakefulness and Behavioural Validation in Sleep
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.061
– ident: ref_4
– ident: ref_10
– volume: 8
  start-page: 194
  year: 2015
  ident: ref_38
  article-title: Measuring Phase Synchrony in Brain Signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 1
  start-page: 1
  year: 2017
  ident: ref_2
  article-title: The Case for Using Digital EEG Analysis in Clinical Sleep Medicine
  publication-title: Sleep Sci. Pract.
– volume: 55
  start-page: 343
  year: 2017
  ident: ref_16
  article-title: Single-channel EEG Sleep Stage Classification Based on a Streamlined set of statistical features in wavelet domain
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-016-1519-4
– volume: 24
  start-page: 518
  year: 2015
  ident: ref_56
  article-title: Slow Oscillating Transcranial Direct Current Stimulation during Sleep has A Sleep-stabilizing Effect in Chronic Insomnia: A Pilot Study
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12301
– volume: 205
  start-page: 169
  year: 2012
  ident: ref_18
  article-title: A Rule-based Automatic Sleep Staging Method
  publication-title: J. Neuroence Methods
  doi: 10.1016/j.jneumeth.2011.12.022
– volume: 18
  start-page: 1813
  year: 2014
  ident: ref_21
  article-title: Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2303991
– volume: 25
  start-page: 577
  year: 2020
  ident: ref_17
  article-title: Sleep Staging Using Plausibility Score: A Novel Feature Selection Method Based on Metric Learning
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2993644
– volume: 2014
  start-page: 756952
  year: 2014
  ident: ref_26
  article-title: A Recurrent Increase of Synchronization in the EEG Continues from Waking throughout NREM and REM Sleep
  publication-title: ISRN Neurosci.
  doi: 10.1155/2014/756952
– volume: 8
  start-page: 57283
  year: 2020
  ident: ref_14
  article-title: Automatic Sleep Stage Classification with Single Channel EEG Signal Based on Two-layer Stacked Ensemble Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982434
– volume: 98
  start-page: 58
  year: 2018
  ident: ref_53
  article-title: An Accurate Sleep Stages Classification System Using a New Class of Optimally Time-frequency Localized Three-band Wavelet Filter Bank
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.025
– ident: ref_33
  doi: 10.1109/BIBE.2012.6399688
– ident: ref_47
  doi: 10.1109/SAMI.2017.7880336
– ident: ref_3
– volume: 10
  start-page: 159
  year: 2006
  ident: ref_44
  article-title: A Review of Sleep EEG Patterns. Part I: A Compilation of Amended Rules for their Visual Recognition According to Rechtschaffen and Kales
  publication-title: Somnologie
  doi: 10.1111/j.1439-054X.2006.00101.x
– volume: 119
  start-page: 178
  year: 2018
  ident: ref_12
  article-title: Complex Networks Approach for Depth of Anesthesia Assessment
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.01.024
– volume: 24
  start-page: 1159
  year: 2016
  ident: ref_11
  article-title: EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2552539
– volume: 37
  start-page: 539
  year: 2007
  ident: ref_41
  article-title: The Non-invasive Berlin Brain-Computer Interface: Fast acquisition of Effective Performance in Untrained Subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.01.051
– ident: ref_8
  doi: 10.1109/ICBBE.2010.5516372
– volume: 65
  start-page: 041903
  year: 2002
  ident: ref_39
  article-title: Performance of Different Synchronization Measures in Real Data: A Case Study on Electroencephalographic Signals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.65.041903
– volume: 2
  start-page: 537
  year: 2002
  ident: ref_29
  article-title: Atlas, Rules, and Recording Techniques for the Scoring of Cyclic Alternating Pattern (CAP) in human sleep
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(01)00149-6
– ident: ref_13
  doi: 10.1109/EMBC.2018.8512286
– volume: 24
  start-page: 409
  year: 2010
  ident: ref_5
  article-title: Automated Sleep-Wake Staging Combining Robust Feature Extraction, Artificial Neural Network Classification, and Flexible Decision Rules
  publication-title: International Journal of Adaptive Control and Signal Processing.
  doi: 10.1002/acs.1147
– ident: ref_42
  doi: 10.1145/1961189.1961199
– volume: 27
  start-page: 1255
  year: 2004
  ident: ref_31
  article-title: Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan
  publication-title: Sleep
  doi: 10.1093/sleep/27.7.1255
– volume: 250
  start-page: 94
  year: 2015
  ident: ref_54
  article-title: Learning Machines and Sleeping Brains: Automatic Sleep Stage Classification Using Decision-tree Multi-class Support Vector Machines
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.022
– volume: 8
  start-page: 597
  year: 2012
  ident: ref_32
  article-title: Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.2172
– volume: 40
  start-page: 527
  year: 2020
  ident: ref_22
  article-title: Sleep EEG Analysis Utilizing Inter-channel Covariance Matrices
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.013
– volume: 11
  start-page: 405
  year: 2013
  ident: ref_40
  article-title: HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9186-1
– volume: 23
  start-page: 746
  year: 2000
  ident: ref_45
  article-title: Spectral Features of EEG Alpha Activity in Human REM Sleep: Two Variants with Different Functional Roles?
  publication-title: Sleep N. Y.
– volume: 42
  start-page: 107
  year: 2018
  ident: ref_52
  article-title: A Convolutional Neural Network for Sleep Stage Scoring from Raw Single-channel EEG
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2017.12.001
– ident: ref_15
  doi: 10.1109/BHI.2019.8834483
– volume: 5
  start-page: 16
  year: 2011
  ident: ref_46
  article-title: Monitoring and Staging Human Sleep
  publication-title: Princ. Pract. Sleep Med.
  doi: 10.1016/B978-1-4160-6645-3.00002-5
– volume: 91
  start-page: 329
  year: 2012
  ident: ref_50
  article-title: Increased EEG Sigma and Beta Power during NREM Sleep in Primary Insomnia
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2012.08.009
– volume: 42
  start-page: zsy227
  year: 2019
  ident: ref_51
  article-title: Abnormal Activation of Motor Cortical Network during Phasic REM Sleep in Idiopathic REM Sleep Behavior Disorder
  publication-title: Sleep
  doi: 10.1093/sleep/zsy227
– ident: ref_27
  doi: 10.1371/journal.pone.0137297
– volume: 101
  start-page: 1679
  year: 2009
  ident: ref_35
  article-title: Using a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90989.2008
– volume: 48
  start-page: 229
  year: 2011
  ident: ref_37
  article-title: ADJUST: An Automatic EEG Artifact Detector Based on the Joint Use of Spatial and Temporal Features
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 101
  start-page: 215
  year: 2000
  ident: ref_30
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 14
  start-page: 19
  year: 2010
  ident: ref_49
  article-title: The Hyperarousa Model of Insomnia: A Review of the Concept and its Evidence
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2009.04.002
– ident: ref_28
  doi: 10.1093/sleep/zsx024
– volume: 12
  start-page: 121
  year: 2018
  ident: ref_20
  article-title: Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00121
SSID ssj0023338
Score 2.469385
Snippet Sleep staging is important in sleep research since it is the basis for sleep evaluation and disease diagnosis. Related works have acquired many desirable...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1988
SubjectTerms Brain
brain functional connectivity
Electroencephalography
electroencephalography (EEG)
frequency band fusion
phase-locked value (PLV)
Sleep
Sleep Stages
sleep staging
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQb8JLATGwRE1zjp0MDBS1VEiwQKVuke3YAqlKK9r-f-7yKC2qxMKa2MrlLsl9n3P-jrFbDToPbaiD2Lk04C4SQQKaB-A4RGmoFZTq-i-vYjDkz6N4tNLqi2rCKnngynHtROacW8sjJRWmbqEjmzuhZWSEoo2l9PXFnNeQqZpqATKvSkcIkNS3ZxExn7Rsr_KTfUqR_k3I8neB5ErG6e-x3Roq-g-ViftsyxYHbGdFQPCQ3fd6T0EXE1Huv42tnfqIHanrkN9ojfi0zur3MXlVa35-WdhiqpYRR2zY770_DoK6IUJg8NbnQaIjl-bCdHKuwXRsykNMcSATnajYClLzUyCsFKQ4iLgnhFyASsAgaNO06_2YtYpJYU-Zj_5BIGGcMhJ4mJNMvFWJ4gnOc9wpj901jspMrRZOTSvGGbIG8mm29KnHbpZDp5VExqZBXfL2cgCpWpcHMNZZHevsr1h77LqJVYZvAf3aUIWdLGYZAjlS6pcQe-ykit3yUgASOWUcekyuRXXNlvUzxedHqbSNE1MkXGf_Yfw5246oHoZqATsXrDX_WthLBDRzfVU-u9_Dm_MH
  priority: 102
  providerName: Directory of Open Access Journals
Title EEG-Based Sleep Staging Analysis with Functional Connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/33799850
https://www.proquest.com/docview/2508570735
https://pubmed.ncbi.nlm.nih.gov/PMC7999974
https://doaj.org/article/87d44ee42a7a4416b2edf6b72c6a0039
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3dT9swED_xIU3wMLGNQTaowrSHvYSlsWs7D2iiUwtCAk3bKvUtsh0bkKqUtUUa_z13-VKLykseknNi38W639nn3wF8NczksYtN1PM-jbhPRKSY4RHznCVpbDQr2fWvb8TliF-Ne-MNaGps1gqcrw3tqJ7UaDY5_f_v6QdO-DOKODFk_z5PKK5JldqEbXRIkubnNW83ExKGYVhFKrQqvgNvGJMYb9Ch-yWvVJL3r0OcLxMnlzzRcA_e1hAyPK9s_g42XPEedpeIBT_A2WBwEfXRQeXhn4lzDyFiSqpGFDYcJCGtv4ZDdGrVWmBYJrzYqpTEPoyGg78_L6O6UEJkEc0sImUSn-bCdnNumO26lMfo-phURumeE8Typ5lwUhATIeKhmOWCacUsgjlDp-E_wlYxLdwhhKgqBBjWaysZj3Oij3daaa6wnedeB_CtUVRmaxZxKmYxyTCaIPVmrXoD-NKKPlTUGeuE-qTtVoDYrssb09ltVk-eTMmcc-dwFFLjgLHPLvfCyMQKTYeLAzhpbJXh7KAtD1246eM8Q4BHDP6S9QI4qGzXfqqxfQByxaorfVl9UtzflQzc2DDFQOzTq-_8DDsJJb9Q4l_3CLYWs0d3jOhlYTqwKccSr2p40YHt_uDm1-9OuRLQKf_aZ1aT8C8
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Sleep+Staging+Analysis+with+Functional+Connectivity&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Hui&rft.au=Zhang%2C+Jianhai&rft.au=Zhu%2C+Li&rft.au=Tang%2C+Jiajia&rft.date=2021-03-11&rft.eissn=1424-8220&rft.volume=21&rft.issue=6&rft_id=info:doi/10.3390%2Fs21061988&rft_id=info%3Apmid%2F33799850&rft.externalDocID=33799850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon