PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation
Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to...
Saved in:
Published in | Artificial cells, nanomedicine, and biotechnology Vol. 45; no. 2; pp. 330 - 339 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.03.2017
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research. |
---|---|
AbstractList | Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research. |
Author | Xu, Xiaolong Yin, Jie Min, Shaoxiong Qiu, Sujun Zhang, Yuxian |
Author_xml | – sequence: 1 givenname: Xiaolong surname: Xu fullname: Xu, Xiaolong organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University – sequence: 2 givenname: Sujun surname: Qiu fullname: Qiu, Sujun organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University – sequence: 3 givenname: Yuxian surname: Zhang fullname: Zhang, Yuxian organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University – sequence: 4 givenname: Jie surname: Yin fullname: Yin, Jie organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University – sequence: 5 givenname: Shaoxiong surname: Min fullname: Min, Shaoxiong email: msxbear24@163.com organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26961803$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9u1DAQxi1UREvpI4AsceHQbD2JkyY32qr8kRbRA0jcIq897rpy7GA7qvp0vBq2drsHDszF1vg3nz_N95ocOe-QkLfAVg2w4aKGbgDOYFUz6FYAbcN79oKclH4FHH4dHe4MjslZjA8sVw_dZctfkeO6GzroWXNC_tzdrq_oZGTwcd5iwEgfTdpSdFLMcbEioaIi3BtnHFZya5KPwl3M19_uqpo64fwsQjLS5kHj1CKR7t-kdyl4a1FVAS2KiOc0BeGiRllEfUzoN1bEPE3n4O_RZfFAJVobz6lwqnQnf2ALIKkyWmebLhmRjHdvyEstbMSz_XlKfn66_XHzpVp___z15mpdSc4hVX3PQYsaFRfN0LTQ6LZu2AZR5TsMlwh64Cg2meix1bXu6lbpXH2DLUfenJIPO93s6feCMY2TicWqcOiXOEJfd10HwIeMvv8HffBLcNldpjKSQ-iLYLujyuZjQD3OwUwiPI3AxhLy-BzyWEIe9yHnuXd79WUzoTpMPUeagY87wDjtwyQefbBqTOLJ-qDz_qWJRf9_f_wFrUq8Rw |
CitedBy_id | crossref_primary_10_1016_j_xphs_2024_05_011 crossref_primary_10_1002_adtp_201800038 crossref_primary_10_1016_j_lfs_2023_122379 crossref_primary_10_23868_202012005 crossref_primary_10_1016_j_biopha_2019_109796 crossref_primary_10_1186_s12951_024_02462_z crossref_primary_10_1016_j_scp_2021_100441 crossref_primary_10_1016_j_ijbiomac_2022_06_079 crossref_primary_10_3892_ijmm_2018_3997 crossref_primary_10_3390_md21050304 crossref_primary_10_1007_s10856_018_6160_3 crossref_primary_10_1016_j_pmatsci_2023_101087 crossref_primary_10_3390_ma16062235 crossref_primary_10_1080_00914037_2020_1713783 crossref_primary_10_1098_rsos_201331 crossref_primary_10_1080_21691401_2018_1465947 crossref_primary_10_1155_2017_7457865 crossref_primary_10_1007_s12274_022_4292_8 crossref_primary_10_18632_aging_103717 crossref_primary_10_1007_s00344_023_11126_5 crossref_primary_10_18632_oncotarget_19146 |
Cites_doi | 10.1007/s10439-009-9888-6 10.3109/21691401.2013.832685 10.1016/j.biomaterials.2008.10.029 10.1016/j.biomaterials.2014.04.068 10.1016/j.jtemb.2010.03.003 10.2217/nnm.13.183 10.1016/j.saa.2012.12.098 10.1007/s10856-004-5672-1 10.22203/eCM.v021a18 10.1016/S0168-3659(00)00361-8 10.1016/j.jconrel.2004.10.018 10.1016/j.jconrel.2007.03.018 10.1097/00003086-200006000-00039 10.3892/etm.2013.1464 10.1088/1748-6041/10/1/015002 10.1186/1471-2474-12-163 10.1016/j.colsurfb.2014.08.023 10.1016/j.ijpharm.2008.03.037 10.1016/j.cellsig.2014.06.015 10.1055/s-0032-1331165 10.1016/S0378-5173(02)00267-3 10.1002/jgm.1515 10.1371/journal.pone.0084703 10.1016/j.carbpol.2012.12.058 10.1016/j.carbpol.2013.12.023 10.1177/0885328213519691 10.1038/sj.mt.6300172 |
ContentType | Journal Article |
Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 2016 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.3109/21691401.2016.1153480 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-141X |
EndPage | 339 |
ExternalDocumentID | 4307108311 10_3109_21691401_2016_1153480 26961803 1153480 |
Genre | Original Articles Journal Article Feature |
GroupedDBID | 00X 0R~ 0YH 4.4 53G AALUX ABBKH ABDBF ABPTK ABUPF ACGFS ACIWK ACPRK ADCVX ADFCX ADRBQ AENEX AEYQI AIJEM AIRBT ALIIL ALMA_UNASSIGNED_HOLDINGS ARJSQ BABNJ BLEHA CCCUG EAP EBD EBS EJD EMB EMK EMOBN EPL ESX GROUPED_DOAJ H13 HZ~ J.N KTTOD M4Z ML0 O9- OK1 QZIEQ SV3 TFDNU TFL TFW TUS V1S ~1N CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c441t-8841fa2ed4a393513f5230beed513197e1f94eab2ed8e5f2f625dffff83e54e43 |
ISSN | 2169-1401 |
IngestDate | Tue Aug 27 04:56:07 EDT 2024 Thu Oct 10 21:56:57 EDT 2024 Fri Aug 23 02:03:57 EDT 2024 Tue Aug 27 13:46:06 EDT 2024 Tue Jun 13 19:23:22 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Arginine-modified chitosan DNA nanoparticle osteogenic differentiation non-viral vector |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-8841fa2ed4a393513f5230beed513197e1f94eab2ed8e5f2f625dffff83e54e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.3109/21691401.2016.1153480?needAccess=true |
PMID | 26961803 |
PQID | 1861116784 |
PQPubID | 2043353 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1861116784 crossref_primary_10_3109_21691401_2016_1153480 proquest_miscellaneous_1826661149 pubmed_primary_26961803 informaworld_taylorfrancis_310_3109_21691401_2016_1153480 |
PublicationCentury | 2000 |
PublicationDate | 2017-Mar |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-Mar |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Artificial cells, nanomedicine, and biotechnology |
PublicationTitleAlternate | Artif Cells Nanomed Biotechnol |
PublicationYear | 2017 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 Li X (CIT0014) 2015; 7 CIT0012 CIT0011 Qiao C (CIT0028) 2013; 8 Jin H (CIT0009) 2014; 9 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0001 CIT0023 CIT0022 Lu H (CIT0020) 2014; 9 CIT0003 CIT0025 CIT0002 Li X (CIT0013) 2015; 10 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 Lin Z (CIT0016) 2014; 7 CIT0008 |
References_xml | – ident: CIT0008 doi: 10.1007/s10439-009-9888-6 – ident: CIT0021 doi: 10.3109/21691401.2013.832685 – ident: CIT0025 doi: 10.1016/j.biomaterials.2008.10.029 – ident: CIT0017 doi: 10.1016/j.biomaterials.2014.04.068 – ident: CIT0006 doi: 10.1016/j.jtemb.2010.03.003 – ident: CIT0022 doi: 10.2217/nnm.13.183 – volume: 9 start-page: 2179 year: 2014 ident: CIT0009 publication-title: Int J Nanomedicine contributor: fullname: Jin H – ident: CIT0029 doi: 10.1016/j.saa.2012.12.098 – ident: CIT0018 doi: 10.1007/s10856-004-5672-1 – ident: CIT0030 doi: 10.22203/eCM.v021a18 – ident: CIT0023 doi: 10.1016/S0168-3659(00)00361-8 – ident: CIT0011 doi: 10.1016/j.jconrel.2004.10.018 – ident: CIT0026 doi: 10.1016/j.jconrel.2007.03.018 – volume: 8 start-page: 2985 year: 2013 ident: CIT0028 publication-title: Int J Nanomedicine contributor: fullname: Qiao C – ident: CIT0010 doi: 10.1097/00003086-200006000-00039 – volume: 7 start-page: 625 year: 2014 ident: CIT0016 publication-title: Exp Ther Med doi: 10.3892/etm.2013.1464 contributor: fullname: Lin Z – volume: 10 start-page: 015002 year: 2015 ident: CIT0013 publication-title: Biomed Mater doi: 10.1088/1748-6041/10/1/015002 contributor: fullname: Li X – ident: CIT0004 doi: 10.1186/1471-2474-12-163 – ident: CIT0001 doi: 10.1016/j.colsurfb.2014.08.023 – ident: CIT0005 doi: 10.1016/j.ijpharm.2008.03.037 – ident: CIT0015 doi: 10.1016/j.cellsig.2014.06.015 – ident: CIT0024 doi: 10.1055/s-0032-1331165 – ident: CIT0002 doi: 10.1016/S0378-5173(02)00267-3 – ident: CIT0027 doi: 10.1002/jgm.1515 – volume: 9 start-page: e84703 year: 2014 ident: CIT0020 publication-title: PLoS One doi: 10.1371/journal.pone.0084703 contributor: fullname: Lu H – ident: CIT0019 doi: 10.1016/j.carbpol.2012.12.058 – ident: CIT0012 doi: 10.1016/j.carbpol.2013.12.023 – volume: 7 start-page: 1417 year: 2015 ident: CIT0014 publication-title: Am J Transl Res contributor: fullname: Li X – ident: CIT0007 doi: 10.1177/0885328213519691 – ident: CIT0003 doi: 10.1038/sj.mt.6300172 |
SSID | ssj0000816754 |
Score | 2.2410188 |
Snippet | Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to... |
SourceID | proquest crossref pubmed informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 330 |
SubjectTerms | Animals Arginine - chemistry Arginine - pharmacokinetics Arginine - pharmacology Arginine-modified chitosan Bone Morphogenetic Protein 2 - biosynthesis Bone Morphogenetic Protein 2 - genetics Cell Differentiation Chitosan - chemistry Chitosan - pharmacokinetics Chitosan - pharmacology Delayed-Action Preparations - chemistry Delayed-Action Preparations - pharmacokinetics Delayed-Action Preparations - pharmacology DNA nanoparticle Gene expression Lactates - chemistry Lactates - pharmacokinetics Lactates - pharmacology Mice Microspheres Nanoparticles non-viral vector Osteoblasts - metabolism Osteogenesis osteogenic differentiation Polyethylene Glycols - chemistry Polyethylene Glycols - pharmacokinetics Polyethylene Glycols - pharmacology Proteins Transfection - methods |
Title | PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation |
URI | https://www.tandfonline.com/doi/abs/10.3109/21691401.2016.1153480 https://www.ncbi.nlm.nih.gov/pubmed/26961803 https://www.proquest.com/docview/1861116784 https://search.proquest.com/docview/1826661149 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxJvCgozErZvdJnFS59jCVisEaA-7UvcUOc1kVbSkVZtIiD_HP0PMxI7r0oJ49BAltuNYnc_zsMczjL3OxSyXgyEd-5Cxh1zS91QufC_KUP_FkaPK23j5fozPLsW7aTTtdL47Xkt1lR3Pvu49V_IvVMUypCudkv0LytpOsQDvkb54RQrj9Y9ofH76ftT_TC51a4oOAOaoGg5RofF7o0ibVKtrygEBHm0YLNa03jlZjj-ce0G_VCWazMYzro_GOZK5b-qMC_sN5B6lVVE6_2LVqLnII7FjOh2yyFD5ppCv5OYFxB1WfdoKWLdOocvG269tTU1mNidL5aDCxsFtXJdoFd92Q6NsPQDabrP5otrZE5jWVD2dKyw18phWdOe19j76VNt5YFfJr-ovzvS4MpnJ5uCuhaB8tc5gDXovdtKSbLhp4MeJR9akFnxuWZOzx4oDHd3SwD5weHtoNpDAPCX7JFCoA7hSz_Qx8h2MUSxFoZCDjci1jpCm5hY7CJBRyi47GI3fjid2lZDSogybVH52_PoYGn3nZO9XthSsrfC7vzaiGmXq4h67a6wgPtLYu886UD5gd5zYmA_ZNwI3d8HNCdzcBTffAfeJhi_fgjbX0OambhfaR9wBNneBzTfA5g0ijzjij7ew5htY859g_YhdTk4v3px5JtuIN0OToPKkFH6hAsiFouPqfljQhkmGOiTe-8kQ_CIRoDJsISEqgiIOorzAnwwhEiDCx6xbLkp4yvhwAEkIkORFFgg5TBIIwR9QFI5Y5vEs6bHjlkTpUgeVSdEYJ5qmLU1TomlqaNpjiUvItGqAXmiM03u_ffewpXpqeNc69WXs0w6sFD32ylajZKG_UpWwqKkNKu_YTOB4n2i02NEGMWWKGoTP_mNgz9ntzRw-ZN1qVcML1PCr7KWZBj8ARb3_Lg |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PELA+microspheres+with+encapsulated+arginine-chitosan%2FpBMP-2+nanoparticles+induce+pBMP-2+controlled-release%2C+transfected+osteoblastic+progenitor+cells%2C+and+promoted+osteogenic+differentiation&rft.jtitle=Artificial+cells%2C+nanomedicine%2C+and+biotechnology&rft.au=Xu%2C+Xiaolong&rft.au=Qiu%2C+Sujun&rft.au=Zhang%2C+Yuxian&rft.au=Yin%2C+Jie&rft.date=2017-03-01&rft.pub=Taylor+%26+Francis&rft.issn=2169-1401&rft.eissn=2169-141X&rft.volume=45&rft.issue=2&rft.spage=330&rft.epage=339&rft_id=info:doi/10.3109%2F21691401.2016.1153480&rft.externalDocID=1153480 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-1401&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-1401&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-1401&client=summon |