PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation

Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to...

Full description

Saved in:
Bibliographic Details
Published inArtificial cells, nanomedicine, and biotechnology Vol. 45; no. 2; pp. 330 - 339
Main Authors Xu, Xiaolong, Qiu, Sujun, Zhang, Yuxian, Yin, Jie, Min, Shaoxiong
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.03.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
AbstractList Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.
Author Xu, Xiaolong
Yin, Jie
Min, Shaoxiong
Qiu, Sujun
Zhang, Yuxian
Author_xml – sequence: 1
  givenname: Xiaolong
  surname: Xu
  fullname: Xu, Xiaolong
  organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University
– sequence: 2
  givenname: Sujun
  surname: Qiu
  fullname: Qiu, Sujun
  organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University
– sequence: 3
  givenname: Yuxian
  surname: Zhang
  fullname: Zhang, Yuxian
  organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University
– sequence: 4
  givenname: Jie
  surname: Yin
  fullname: Yin, Jie
  organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University
– sequence: 5
  givenname: Shaoxiong
  surname: Min
  fullname: Min, Shaoxiong
  email: msxbear24@163.com
  organization: Department of Orthopedics, Zhujiang Hospital, Southern Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26961803$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1UREvpI4AsceHQbD2JkyY32qr8kRbRA0jcIq897rpy7GA7qvp0vBq2drsHDszF1vg3nz_N95ocOe-QkLfAVg2w4aKGbgDOYFUz6FYAbcN79oKclH4FHH4dHe4MjslZjA8sVw_dZctfkeO6GzroWXNC_tzdrq_oZGTwcd5iwEgfTdpSdFLMcbEioaIi3BtnHFZya5KPwl3M19_uqpo64fwsQjLS5kHj1CKR7t-kdyl4a1FVAS2KiOc0BeGiRllEfUzoN1bEPE3n4O_RZfFAJVobz6lwqnQnf2ALIKkyWmebLhmRjHdvyEstbMSz_XlKfn66_XHzpVp___z15mpdSc4hVX3PQYsaFRfN0LTQ6LZu2AZR5TsMlwh64Cg2meix1bXu6lbpXH2DLUfenJIPO93s6feCMY2TicWqcOiXOEJfd10HwIeMvv8HffBLcNldpjKSQ-iLYLujyuZjQD3OwUwiPI3AxhLy-BzyWEIe9yHnuXd79WUzoTpMPUeagY87wDjtwyQefbBqTOLJ-qDz_qWJRf9_f_wFrUq8Rw
CitedBy_id crossref_primary_10_1016_j_xphs_2024_05_011
crossref_primary_10_1002_adtp_201800038
crossref_primary_10_1016_j_lfs_2023_122379
crossref_primary_10_23868_202012005
crossref_primary_10_1016_j_biopha_2019_109796
crossref_primary_10_1186_s12951_024_02462_z
crossref_primary_10_1016_j_scp_2021_100441
crossref_primary_10_1016_j_ijbiomac_2022_06_079
crossref_primary_10_3892_ijmm_2018_3997
crossref_primary_10_3390_md21050304
crossref_primary_10_1007_s10856_018_6160_3
crossref_primary_10_1016_j_pmatsci_2023_101087
crossref_primary_10_3390_ma16062235
crossref_primary_10_1080_00914037_2020_1713783
crossref_primary_10_1098_rsos_201331
crossref_primary_10_1080_21691401_2018_1465947
crossref_primary_10_1155_2017_7457865
crossref_primary_10_1007_s12274_022_4292_8
crossref_primary_10_18632_aging_103717
crossref_primary_10_1007_s00344_023_11126_5
crossref_primary_10_18632_oncotarget_19146
Cites_doi 10.1007/s10439-009-9888-6
10.3109/21691401.2013.832685
10.1016/j.biomaterials.2008.10.029
10.1016/j.biomaterials.2014.04.068
10.1016/j.jtemb.2010.03.003
10.2217/nnm.13.183
10.1016/j.saa.2012.12.098
10.1007/s10856-004-5672-1
10.22203/eCM.v021a18
10.1016/S0168-3659(00)00361-8
10.1016/j.jconrel.2004.10.018
10.1016/j.jconrel.2007.03.018
10.1097/00003086-200006000-00039
10.3892/etm.2013.1464
10.1088/1748-6041/10/1/015002
10.1186/1471-2474-12-163
10.1016/j.colsurfb.2014.08.023
10.1016/j.ijpharm.2008.03.037
10.1016/j.cellsig.2014.06.015
10.1055/s-0032-1331165
10.1016/S0378-5173(02)00267-3
10.1002/jgm.1515
10.1371/journal.pone.0084703
10.1016/j.carbpol.2012.12.058
10.1016/j.carbpol.2013.12.023
10.1177/0885328213519691
10.1038/sj.mt.6300172
ContentType Journal Article
Copyright 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
2016 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016
– notice: 2016 Informa UK Limited, trading as Taylor & Francis Group
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.3109/21691401.2016.1153480
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-141X
EndPage 339
ExternalDocumentID 4307108311
10_3109_21691401_2016_1153480
26961803
1153480
Genre Original Articles
Journal Article
Feature
GroupedDBID 00X
0R~
0YH
4.4
53G
AALUX
ABBKH
ABDBF
ABPTK
ABUPF
ACGFS
ACIWK
ACPRK
ADCVX
ADFCX
ADRBQ
AENEX
AEYQI
AIJEM
AIRBT
ALIIL
ALMA_UNASSIGNED_HOLDINGS
ARJSQ
BABNJ
BLEHA
CCCUG
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EPL
ESX
GROUPED_DOAJ
H13
HZ~
J.N
KTTOD
M4Z
ML0
O9-
OK1
QZIEQ
SV3
TFDNU
TFL
TFW
TUS
V1S
~1N
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c441t-8841fa2ed4a393513f5230beed513197e1f94eab2ed8e5f2f625dffff83e54e43
ISSN 2169-1401
IngestDate Tue Aug 27 04:56:07 EDT 2024
Thu Oct 10 21:56:57 EDT 2024
Fri Aug 23 02:03:57 EDT 2024
Tue Aug 27 13:46:06 EDT 2024
Tue Jun 13 19:23:22 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Arginine-modified chitosan
DNA nanoparticle
osteogenic differentiation
non-viral vector
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-8841fa2ed4a393513f5230beed513197e1f94eab2ed8e5f2f625dffff83e54e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.3109/21691401.2016.1153480?needAccess=true
PMID 26961803
PQID 1861116784
PQPubID 2043353
PageCount 10
ParticipantIDs proquest_journals_1861116784
crossref_primary_10_3109_21691401_2016_1153480
proquest_miscellaneous_1826661149
pubmed_primary_26961803
informaworld_taylorfrancis_310_3109_21691401_2016_1153480
PublicationCentury 2000
PublicationDate 2017-Mar
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-Mar
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Artificial cells, nanomedicine, and biotechnology
PublicationTitleAlternate Artif Cells Nanomed Biotechnol
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
Li X (CIT0014) 2015; 7
CIT0012
CIT0011
Qiao C (CIT0028) 2013; 8
Jin H (CIT0009) 2014; 9
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0001
CIT0023
CIT0022
Lu H (CIT0020) 2014; 9
CIT0003
CIT0025
CIT0002
Li X (CIT0013) 2015; 10
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
Lin Z (CIT0016) 2014; 7
CIT0008
References_xml – ident: CIT0008
  doi: 10.1007/s10439-009-9888-6
– ident: CIT0021
  doi: 10.3109/21691401.2013.832685
– ident: CIT0025
  doi: 10.1016/j.biomaterials.2008.10.029
– ident: CIT0017
  doi: 10.1016/j.biomaterials.2014.04.068
– ident: CIT0006
  doi: 10.1016/j.jtemb.2010.03.003
– ident: CIT0022
  doi: 10.2217/nnm.13.183
– volume: 9
  start-page: 2179
  year: 2014
  ident: CIT0009
  publication-title: Int J Nanomedicine
  contributor:
    fullname: Jin H
– ident: CIT0029
  doi: 10.1016/j.saa.2012.12.098
– ident: CIT0018
  doi: 10.1007/s10856-004-5672-1
– ident: CIT0030
  doi: 10.22203/eCM.v021a18
– ident: CIT0023
  doi: 10.1016/S0168-3659(00)00361-8
– ident: CIT0011
  doi: 10.1016/j.jconrel.2004.10.018
– ident: CIT0026
  doi: 10.1016/j.jconrel.2007.03.018
– volume: 8
  start-page: 2985
  year: 2013
  ident: CIT0028
  publication-title: Int J Nanomedicine
  contributor:
    fullname: Qiao C
– ident: CIT0010
  doi: 10.1097/00003086-200006000-00039
– volume: 7
  start-page: 625
  year: 2014
  ident: CIT0016
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2013.1464
  contributor:
    fullname: Lin Z
– volume: 10
  start-page: 015002
  year: 2015
  ident: CIT0013
  publication-title: Biomed Mater
  doi: 10.1088/1748-6041/10/1/015002
  contributor:
    fullname: Li X
– ident: CIT0004
  doi: 10.1186/1471-2474-12-163
– ident: CIT0001
  doi: 10.1016/j.colsurfb.2014.08.023
– ident: CIT0005
  doi: 10.1016/j.ijpharm.2008.03.037
– ident: CIT0015
  doi: 10.1016/j.cellsig.2014.06.015
– ident: CIT0024
  doi: 10.1055/s-0032-1331165
– ident: CIT0002
  doi: 10.1016/S0378-5173(02)00267-3
– ident: CIT0027
  doi: 10.1002/jgm.1515
– volume: 9
  start-page: e84703
  year: 2014
  ident: CIT0020
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0084703
  contributor:
    fullname: Lu H
– ident: CIT0019
  doi: 10.1016/j.carbpol.2012.12.058
– ident: CIT0012
  doi: 10.1016/j.carbpol.2013.12.023
– volume: 7
  start-page: 1417
  year: 2015
  ident: CIT0014
  publication-title: Am J Transl Res
  contributor:
    fullname: Li X
– ident: CIT0007
  doi: 10.1177/0885328213519691
– ident: CIT0003
  doi: 10.1038/sj.mt.6300172
SSID ssj0000816754
Score 2.2410188
Snippet Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to...
SourceID proquest
crossref
pubmed
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 330
SubjectTerms Animals
Arginine - chemistry
Arginine - pharmacokinetics
Arginine - pharmacology
Arginine-modified chitosan
Bone Morphogenetic Protein 2 - biosynthesis
Bone Morphogenetic Protein 2 - genetics
Cell Differentiation
Chitosan - chemistry
Chitosan - pharmacokinetics
Chitosan - pharmacology
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - pharmacokinetics
Delayed-Action Preparations - pharmacology
DNA nanoparticle
Gene expression
Lactates - chemistry
Lactates - pharmacokinetics
Lactates - pharmacology
Mice
Microspheres
Nanoparticles
non-viral vector
Osteoblasts - metabolism
Osteogenesis
osteogenic differentiation
Polyethylene Glycols - chemistry
Polyethylene Glycols - pharmacokinetics
Polyethylene Glycols - pharmacology
Proteins
Transfection - methods
Title PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation
URI https://www.tandfonline.com/doi/abs/10.3109/21691401.2016.1153480
https://www.ncbi.nlm.nih.gov/pubmed/26961803
https://www.proquest.com/docview/1861116784
https://search.proquest.com/docview/1826661149
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK9wIHxJvCgozErZvdJnFS59jCVisEaA-7UvcUOc1kVbSkVZtIiD_HP0PMxI7r0oJ49BAltuNYnc_zsMczjL3OxSyXgyEd-5Cxh1zS91QufC_KUP_FkaPK23j5fozPLsW7aTTtdL47Xkt1lR3Pvu49V_IvVMUypCudkv0LytpOsQDvkb54RQrj9Y9ofH76ftT_TC51a4oOAOaoGg5RofF7o0ibVKtrygEBHm0YLNa03jlZjj-ce0G_VCWazMYzro_GOZK5b-qMC_sN5B6lVVE6_2LVqLnII7FjOh2yyFD5ppCv5OYFxB1WfdoKWLdOocvG269tTU1mNidL5aDCxsFtXJdoFd92Q6NsPQDabrP5otrZE5jWVD2dKyw18phWdOe19j76VNt5YFfJr-ovzvS4MpnJ5uCuhaB8tc5gDXovdtKSbLhp4MeJR9akFnxuWZOzx4oDHd3SwD5weHtoNpDAPCX7JFCoA7hSz_Qx8h2MUSxFoZCDjci1jpCm5hY7CJBRyi47GI3fjid2lZDSogybVH52_PoYGn3nZO9XthSsrfC7vzaiGmXq4h67a6wgPtLYu886UD5gd5zYmA_ZNwI3d8HNCdzcBTffAfeJhi_fgjbX0OambhfaR9wBNneBzTfA5g0ijzjij7ew5htY859g_YhdTk4v3px5JtuIN0OToPKkFH6hAsiFouPqfljQhkmGOiTe-8kQ_CIRoDJsISEqgiIOorzAnwwhEiDCx6xbLkp4yvhwAEkIkORFFgg5TBIIwR9QFI5Y5vEs6bHjlkTpUgeVSdEYJ5qmLU1TomlqaNpjiUvItGqAXmiM03u_ffewpXpqeNc69WXs0w6sFD32ylajZKG_UpWwqKkNKu_YTOB4n2i02NEGMWWKGoTP_mNgz9ntzRw-ZN1qVcML1PCr7KWZBj8ARb3_Lg
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PELA+microspheres+with+encapsulated+arginine-chitosan%2FpBMP-2+nanoparticles+induce+pBMP-2+controlled-release%2C+transfected+osteoblastic+progenitor+cells%2C+and+promoted+osteogenic+differentiation&rft.jtitle=Artificial+cells%2C+nanomedicine%2C+and+biotechnology&rft.au=Xu%2C+Xiaolong&rft.au=Qiu%2C+Sujun&rft.au=Zhang%2C+Yuxian&rft.au=Yin%2C+Jie&rft.date=2017-03-01&rft.pub=Taylor+%26+Francis&rft.issn=2169-1401&rft.eissn=2169-141X&rft.volume=45&rft.issue=2&rft.spage=330&rft.epage=339&rft_id=info:doi/10.3109%2F21691401.2016.1153480&rft.externalDocID=1153480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-1401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-1401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-1401&client=summon