Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management
•Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation a...
Saved in:
Published in | International journal of heat and mass transfer Vol. 99; pp. 252 - 260 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation angle had minimal effect on the thermal performance of the coupling module.
In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature. |
---|---|
AbstractList | •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation angle had minimal effect on the thermal performance of the coupling module.
In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature. In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature. |
Author | Li, Yimin Rao, Zhonghao Liu, Chenzhen Zhao, Jiateng |
Author_xml | – sequence: 1 givenname: Jiateng surname: Zhao fullname: Zhao, Jiateng – sequence: 2 givenname: Zhonghao surname: Rao fullname: Rao, Zhonghao email: raozhonghao@cumt.edu.cn – sequence: 3 givenname: Chenzhen surname: Liu fullname: Liu, Chenzhen – sequence: 4 givenname: Yimin surname: Li fullname: Li, Yimin |
BookMark | eNqVkUGPFCEQhYlZE2dX_wPHvfQINE3TN81md9Vs4kXPpIYuZph0QwuMcS7-dumMXvSyngi8V1-F967JVYgBCbnlbMsZV2-PW388IJQZci4JQnaYtqIqW9ZWh35BNlz3QyO4Hq7IhjHeN0PL2StynfNxvTKpNuTn_Y8Fk58xFJrLaTzT6GjM1k8TFB_2dN1BF78ghTDS5QAZqT1A2COdodRRmDK18bRMOFIXEy0HTDNMFAOm_blCY4L9ZfqPNEOoT-vO1-SlqwB88_u8IV8f7r_cfWiePj9-vHv_1FgpeWl079p2J3cD7JTjrRs7oUAp6KSVQ89Fb60VbiesltaBGweBSnfYacFglGxob8jthbuk-O2EuZjZZ4v1kwHjKRuuRSeVVkJX68PFalPMOaEz1peaRQw1Zj8ZzsxagDmafwswawGGtdWxgt79BVpq0JDO_4P4dEFgzea7r2ptBoPF0Se0xYzRPx_2C7Amt70 |
CitedBy_id | crossref_primary_10_1016_j_rser_2025_115614 crossref_primary_10_1016_j_applthermaleng_2021_116574 crossref_primary_10_1016_j_apenergy_2020_115325 crossref_primary_10_1016_j_applthermaleng_2018_11_100 crossref_primary_10_1016_j_rser_2022_112783 crossref_primary_10_1016_j_applthermaleng_2021_117061 crossref_primary_10_1016_j_enss_2021_12_002 crossref_primary_10_1016_j_est_2024_111227 crossref_primary_10_3390_en15061963 crossref_primary_10_1007_s10973_019_08930_1 crossref_primary_10_1016_j_applthermaleng_2023_120070 crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_093 crossref_primary_10_1061__ASCE_EY_1943_7897_0000721 crossref_primary_10_1007_s42154_020_00114_0 crossref_primary_10_1016_j_rser_2022_112669 crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_040 crossref_primary_10_1016_j_est_2022_104857 crossref_primary_10_1016_j_rser_2018_04_042 crossref_primary_10_1002_ente_202200118 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_130 crossref_primary_10_1002_est2_47 crossref_primary_10_1016_j_desal_2022_115983 crossref_primary_10_1080_01411594_2020_1758319 crossref_primary_10_1016_j_enconman_2018_11_033 crossref_primary_10_1016_j_est_2023_106827 crossref_primary_10_3390_aerospace10020179 crossref_primary_10_1016_j_enconman_2017_08_016 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120385 crossref_primary_10_1016_j_applthermaleng_2019_114024 crossref_primary_10_1016_j_est_2024_112844 crossref_primary_10_1002_aenm_202202944 crossref_primary_10_1115_1_4063355 crossref_primary_10_1016_j_applthermaleng_2018_06_048 crossref_primary_10_1016_j_est_2024_111195 crossref_primary_10_3390_pr11123450 crossref_primary_10_1002_ese3_1418 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_014 crossref_primary_10_1016_j_icheatmasstransfer_2022_106152 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_012 crossref_primary_10_1016_j_applthermaleng_2018_10_090 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123018 crossref_primary_10_1016_j_est_2019_100986 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123415 crossref_primary_10_3390_app6110321 crossref_primary_10_1007_s00231_017_2049_9 crossref_primary_10_1016_j_est_2021_102255 crossref_primary_10_1016_j_enbuild_2024_114669 crossref_primary_10_3390_en17163873 crossref_primary_10_1016_j_expthermflusci_2017_02_022 crossref_primary_10_1016_j_est_2023_109360 crossref_primary_10_1016_j_solener_2024_112659 crossref_primary_10_2355_isijinternational_ISIJINT_2019_507 crossref_primary_10_3390_en15197391 crossref_primary_10_1002_est2_572 crossref_primary_10_1016_j_solener_2018_01_062 crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_068 crossref_primary_10_1016_j_molliq_2019_01_040 crossref_primary_10_1007_s10973_023_12100_9 crossref_primary_10_1016_j_enconman_2017_10_019 crossref_primary_10_1016_j_ijrefrig_2024_10_026 crossref_primary_10_1016_j_enconman_2017_12_023 crossref_primary_10_1016_j_apenergy_2018_04_020 crossref_primary_10_1016_j_energy_2023_130164 crossref_primary_10_1016_j_matpr_2020_03_317 crossref_primary_10_1016_j_icheatmasstransfer_2018_12_006 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_125 crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_062 crossref_primary_10_1016_j_rser_2024_114654 crossref_primary_10_1002_adem_201700753 crossref_primary_10_1016_j_applthermaleng_2022_119495 crossref_primary_10_1016_j_enconman_2018_12_051 crossref_primary_10_1016_j_expthermflusci_2016_11_017 crossref_primary_10_1142_S0218348X19500816 crossref_primary_10_3390_en14227738 crossref_primary_10_1016_j_enconman_2020_113352 crossref_primary_10_1016_j_ijthermalsci_2023_108634 crossref_primary_10_3390_en16093857 crossref_primary_10_1016_j_est_2020_101733 crossref_primary_10_1016_j_pecs_2017_08_003 crossref_primary_10_1016_j_est_2019_100887 crossref_primary_10_1016_j_est_2022_104402 crossref_primary_10_1007_s00231_022_03257_4 |
Cites_doi | 10.1016/j.enconman.2015.05.050 10.1016/j.ijheatmasstransfer.2014.08.002 10.1016/j.rser.2012.01.053 10.1016/j.energy.2011.02.021 10.1016/j.applthermaleng.2006.12.013 10.1016/j.ijheatmasstransfer.2014.11.022 10.1016/j.ijthermalsci.2014.12.023 10.1115/1.4028994 10.1016/j.ijheatmasstransfer.2015.01.019 10.1016/j.applthermaleng.2015.09.018 10.1016/j.ijthermalsci.2007.07.016 10.1016/j.enconman.2012.08.014 10.1016/j.enconman.2015.06.056 10.1016/j.apenergy.2010.12.004 10.1016/j.ijheatmasstransfer.2011.03.038 10.1016/j.rser.2012.01.038 10.1016/j.enconman.2008.05.002 10.1016/j.enconman.2005.06.004 10.1016/j.applthermaleng.2015.04.012 10.1016/j.rser.2011.07.096 10.1016/j.applthermaleng.2010.11.009 10.1016/j.enconman.2015.02.028 10.1016/j.ijheatmasstransfer.2010.03.035 10.1016/j.enconman.2015.08.044 10.1115/1.2780182 10.1016/j.expthermflusci.2014.03.017 10.1016/j.applthermaleng.2007.06.010 10.1016/j.applthermaleng.2015.02.031 10.1016/j.enconman.2011.07.009 10.1016/j.applthermaleng.2011.03.003 10.1016/j.apenergy.2012.09.056 10.1016/j.ijheatmasstransfer.2011.06.018 10.1016/j.icheatmasstransfer.2013.04.008 10.1016/j.enconman.2011.03.001 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2016.03.108 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 260 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2016_03_108 S0017931015312084 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c441t-87f33b4b9ab6f13fd526a66a54c497127ccc2fb2c84cfafd92e685e5820ad4093 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 11 01:30:03 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 02:16:42 EDT 2025 Fri Feb 23 02:24:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal management Phase change material Latent thermal storage Oscillating heat pipe |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-87f33b4b9ab6f13fd526a66a54c497127ccc2fb2c84cfafd92e685e5820ad4093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825468628 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1825468628 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2016_03_108 crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_108 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2016_03_108 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2016 2016-08-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
PublicationDecade | 2010 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Shabgard, Bergman, Sharifi, Faghri (b0075) 2010; 53 Rao, Wang, Wu, Lin, Li (b0095) 2013; 65 Xian, Xu, Zhang, Du, Yang (b0145) 2014; 79 Rao, Huo, Liu (b0150) 2014; 57 Zhao, Rao, Liu, Li (b0160) 2016; 93 Dmitrin, Pastukhov (b0155) 2010; 48 Luo, Yin, Li, Xu, Shao, Xu, Chang (b0165) 2015; 84 Lin, Wang, Huo, Hu, Chen, Zhang, Lee (b0115) 2011; 31 Nithyanandam, Pitchumani (b0065) 2013; 103 Fleming, Wen, Shi, da Silva (b0045) 2015; 82 Wang, Yap, Mujumdar (b0055) 2008; 47 Weng, Cho, Chang, Chen (b0120) 2011; 88 Rao, Wang, Zhang (b0100) 2011; 52 Nagose, Somani, Shrot, Narasimhan (b0060) 2008; 130 Wu, Zhang, Ke, Yang, Wang, Liu (b0035) 2015; 101 Rao, Wang (b0110) 2011; 15 Kibria, Anisur, Mahfuz, Saidur, Metselaar (b0040) 2015; 95 Hossain, Mahmud, Dutta, Pop (b0050) 2015; 91 Kandasamy, Wang, Mujumdar (b0080) 2007; 27 Mahdavi, Qiu, Tiari (b0070) 2015; 81 Robak, Bergman, Faghri (b0010) 2011; 54 Nithyanandam, Pitchumani (b0005) 2011; 54 Liu, Wang, Ma (b0020) 2006; 47 Kandasamy, Wang, Mujumdar (b0085) 2008; 28 Aboutalebi, Nikravan Moghaddam, Mohammadi, Shafii (b0175) 2013; 45 Chougule, Sahu (b0135) 2014; 137 Zhao, Rao, Huo, Liu, Li (b0090) 2015; 85 Zhao, Rao, Li (b0105) 2015; 103 Naghavi, Ong, Mehrali, Badruddin, Metselaar (b0015) 2015; 105 Rao, Wang, Zhang (b0025) 2012; 16 Chaudhry, Hughes, Ghani (b0140) 2012; 16 Singh, Mochizuki, Mashiko, Nguyen (b0030) 2011; 36 Chang, Cheng, Wang, Chen (b0125) 2008; 49 Elnaggar, Abdullah, Abdul Mujeebu (b0130) 2011; 52 Lin, Wang, Chen, Huo, Hu, Zhang (b0170) 2011; 31 Aboutalebi (10.1016/j.ijheatmasstransfer.2016.03.108_b0175) 2013; 45 Luo (10.1016/j.ijheatmasstransfer.2016.03.108_b0165) 2015; 84 Shabgard (10.1016/j.ijheatmasstransfer.2016.03.108_b0075) 2010; 53 Chougule (10.1016/j.ijheatmasstransfer.2016.03.108_b0135) 2014; 137 Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0025) 2012; 16 Kandasamy (10.1016/j.ijheatmasstransfer.2016.03.108_b0080) 2007; 27 Kibria (10.1016/j.ijheatmasstransfer.2016.03.108_b0040) 2015; 95 Liu (10.1016/j.ijheatmasstransfer.2016.03.108_b0020) 2006; 47 Naghavi (10.1016/j.ijheatmasstransfer.2016.03.108_b0015) 2015; 105 Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0095) 2013; 65 Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0090) 2015; 85 Fleming (10.1016/j.ijheatmasstransfer.2016.03.108_b0045) 2015; 82 Wang (10.1016/j.ijheatmasstransfer.2016.03.108_b0055) 2008; 47 Xian (10.1016/j.ijheatmasstransfer.2016.03.108_b0145) 2014; 79 Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0100) 2011; 52 Wu (10.1016/j.ijheatmasstransfer.2016.03.108_b0035) 2015; 101 Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0150) 2014; 57 Elnaggar (10.1016/j.ijheatmasstransfer.2016.03.108_b0130) 2011; 52 Chaudhry (10.1016/j.ijheatmasstransfer.2016.03.108_b0140) 2012; 16 Nithyanandam (10.1016/j.ijheatmasstransfer.2016.03.108_b0005) 2011; 54 Singh (10.1016/j.ijheatmasstransfer.2016.03.108_b0030) 2011; 36 Nithyanandam (10.1016/j.ijheatmasstransfer.2016.03.108_b0065) 2013; 103 Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0160) 2016; 93 Lin (10.1016/j.ijheatmasstransfer.2016.03.108_b0170) 2011; 31 Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0110) 2011; 15 Robak (10.1016/j.ijheatmasstransfer.2016.03.108_b0010) 2011; 54 Mahdavi (10.1016/j.ijheatmasstransfer.2016.03.108_b0070) 2015; 81 Dmitrin (10.1016/j.ijheatmasstransfer.2016.03.108_b0155) 2010; 48 Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0105) 2015; 103 Chang (10.1016/j.ijheatmasstransfer.2016.03.108_b0125) 2008; 49 Lin (10.1016/j.ijheatmasstransfer.2016.03.108_b0115) 2011; 31 Weng (10.1016/j.ijheatmasstransfer.2016.03.108_b0120) 2011; 88 Hossain (10.1016/j.ijheatmasstransfer.2016.03.108_b0050) 2015; 91 Nagose (10.1016/j.ijheatmasstransfer.2016.03.108_b0060) 2008; 130 Kandasamy (10.1016/j.ijheatmasstransfer.2016.03.108_b0085) 2008; 28 |
References_xml | – volume: 88 start-page: 1825 year: 2011 end-page: 1833 ident: b0120 article-title: Heat pipe with PCM for electronic cooling publication-title: Appl. Energy – volume: 105 start-page: 1178 year: 2015 end-page: 1204 ident: b0015 article-title: A state-of-the-art review on hybrid heat pipe latent heat storage systems publication-title: Energy Convers. Manage. – volume: 27 start-page: 2822 year: 2007 end-page: 2832 ident: b0080 article-title: Application of phase change materials in thermal management of electronics publication-title: Appl. Therm. Eng. – volume: 79 start-page: 332 year: 2014 end-page: 341 ident: b0145 article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating publication-title: Int. J. Heat Mass Transf. – volume: 54 start-page: 4596 year: 2011 end-page: 4610 ident: b0005 article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes publication-title: Int. J. Heat Mass Transf. – volume: 15 start-page: 4554 year: 2011 end-page: 4571 ident: b0110 article-title: A review of power battery thermal energy management publication-title: Renew. Sustain. Energy Rev. – volume: 103 start-page: 157 year: 2015 end-page: 165 ident: b0105 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers. Manage. – volume: 16 start-page: 2249 year: 2012 end-page: 2259 ident: b0140 article-title: A review of heat pipe systems for heat recovery and renewable energy applications publication-title: Renew. Sustain. Energy Rev. – volume: 93 start-page: 90 year: 2016 end-page: 100 ident: b0160 article-title: Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management publication-title: Appl. Therm. Eng. – volume: 16 start-page: 3136 year: 2012 end-page: 3145 ident: b0025 article-title: Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate publication-title: Renew. Sustain. Energy Rev. – volume: 82 start-page: 273 year: 2015 end-page: 281 ident: b0045 article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit publication-title: Int. J. Heat Mass Transf. – volume: 130 start-page: 011401 year: 2008 ident: b0060 article-title: Genetic algorithm based optimization of PCM based heat sinks and effect of heat sink parameters on operational time publication-title: J. Heat Transfer – volume: 65 start-page: 92 year: 2013 end-page: 97 ident: b0095 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manage. – volume: 49 start-page: 3398 year: 2008 end-page: 3404 ident: b0125 article-title: Heat pipe for cooling of electronic equipment publication-title: Energy Convers. Manage. – volume: 45 start-page: 137 year: 2013 end-page: 145 ident: b0175 article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe publication-title: Int. Commun. Heat Mass Transfer – volume: 101 start-page: 278 year: 2015 end-page: 284 ident: b0035 article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management publication-title: Energy Convers. Manage. – volume: 54 start-page: 3476 year: 2011 end-page: 3484 ident: b0010 article-title: Enhancement of latent heat energy storage using embedded heat pipes publication-title: Int. J. Heat Mass Transf. – volume: 31 start-page: 880 year: 2011 end-page: 886 ident: b0170 article-title: Experimental study on effective range of miniature oscillating heat pipes publication-title: Appl. Therm. Eng. – volume: 137 start-page: 021004 year: 2014 ident: b0135 article-title: Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling publication-title: J. Electron. Packag. – volume: 84 start-page: 237 year: 2015 end-page: 244 ident: b0165 article-title: Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material publication-title: Int. J. Heat Mass Transf. – volume: 95 start-page: 69 year: 2015 end-page: 89 ident: b0040 article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials publication-title: Energy Convers. Manage. – volume: 85 start-page: 33 year: 2015 end-page: 43 ident: b0090 article-title: Thermal management of cylindrical power battery module for publication-title: Appl. Therm. Eng. – volume: 91 start-page: 49 year: 2015 end-page: 58 ident: b0050 article-title: Energy storage system based on nanoparticle-enhanced phase change material inside porous medium publication-title: Int. J. Therm. Sci. – volume: 103 start-page: 400 year: 2013 end-page: 415 ident: b0065 article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power publication-title: Appl. Energy – volume: 52 start-page: 2937 year: 2011 end-page: 2944 ident: b0130 article-title: Experimental analysis and FEM simulation of finned U-shape multi heat pipe for desktop PC cooling publication-title: Energy Convers. Manage. – volume: 47 start-page: 1055 year: 2008 end-page: 1068 ident: b0055 article-title: A parametric study of phase change material (PCM)-based heat sinks publication-title: Int. J. Therm. Sci. – volume: 53 start-page: 2979 year: 2010 end-page: 2988 ident: b0075 article-title: High temperature latent heat thermal energy storage using heat pipes publication-title: Int. J. Heat Mass Transf. – volume: 48 start-page: 592 year: 2010 end-page: 599 ident: b0155 article-title: Development and investigation of compact cooler using a pulsating heat pipe publication-title: Heat Mass Transfer Phys. Gasdyn. – volume: 47 start-page: 944 year: 2006 end-page: 966 ident: b0020 article-title: An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes publication-title: Energ. Convers. Manage. – volume: 28 start-page: 1047 year: 2008 end-page: 1057 ident: b0085 article-title: Transient cooling of electronics using phase change material (PCM)-based heat sinks publication-title: Appl. Therm. Eng. – volume: 81 start-page: 325 year: 2015 end-page: 337 ident: b0070 article-title: Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems publication-title: Appl. Therm. Eng. – volume: 36 start-page: 2802 year: 2011 end-page: 2811 ident: b0030 article-title: Heat pipe based cold energy storage systems for datacenter energy conservation publication-title: Energy – volume: 52 start-page: 3408 year: 2011 end-page: 3414 ident: b0100 article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO publication-title: Energy Convers. Manage. – volume: 31 start-page: 2221 year: 2011 end-page: 2229 ident: b0115 article-title: Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes publication-title: Appl. Therm. Eng. – volume: 57 start-page: 20 year: 2014 end-page: 26 ident: b0150 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp. Thermal Fluid Sci. – volume: 101 start-page: 278 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0035 article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.05.050 – volume: 79 start-page: 332 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0145 article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.08.002 – volume: 16 start-page: 3136 issue: 5 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0025 article-title: Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.053 – volume: 36 start-page: 2802 issue: 5 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0030 article-title: Heat pipe based cold energy storage systems for datacenter energy conservation publication-title: Energy doi: 10.1016/j.energy.2011.02.021 – volume: 27 start-page: 2822 issue: 17–18 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0080 article-title: Application of phase change materials in thermal management of electronics publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2006.12.013 – volume: 82 start-page: 273 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0045 article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.11.022 – volume: 91 start-page: 49 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0050 article-title: Energy storage system based on nanoparticle-enhanced phase change material inside porous medium publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2014.12.023 – volume: 137 start-page: 021004 issue: 2 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0135 article-title: Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling publication-title: J. Electron. Packag. doi: 10.1115/1.4028994 – volume: 84 start-page: 237 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0165 article-title: Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.01.019 – volume: 93 start-page: 90 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0160 article-title: Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.09.018 – volume: 47 start-page: 1055 issue: 8 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0055 article-title: A parametric study of phase change material (PCM)-based heat sinks publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2007.07.016 – volume: 65 start-page: 92 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0095 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2012.08.014 – volume: 103 start-page: 157 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0105 article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.06.056 – volume: 88 start-page: 1825 issue: 5 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0120 article-title: Heat pipe with PCM for electronic cooling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.12.004 – volume: 54 start-page: 3476 issue: 15–16 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0010 article-title: Enhancement of latent heat energy storage using embedded heat pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.03.038 – volume: 16 start-page: 2249 issue: 4 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0140 article-title: A review of heat pipe systems for heat recovery and renewable energy applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.038 – volume: 49 start-page: 3398 issue: 11 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0125 article-title: Heat pipe for cooling of electronic equipment publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.05.002 – volume: 47 start-page: 944 issue: 7–8 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0020 article-title: An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2005.06.004 – volume: 85 start-page: 33 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0090 article-title: Thermal management of cylindrical power battery module forextending the life of new energy electric vehicles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.04.012 – volume: 48 start-page: 592 issue: 5 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0155 article-title: Development and investigation of compact cooler using a pulsating heat pipe publication-title: Heat Mass Transfer Phys. Gasdyn. – volume: 15 start-page: 4554 issue: 9 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0110 article-title: A review of power battery thermal energy management publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.096 – volume: 31 start-page: 880 issue: 5 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0170 article-title: Experimental study on effective range of miniature oscillating heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.11.009 – volume: 95 start-page: 69 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0040 article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.02.028 – volume: 53 start-page: 2979 issue: 15–16 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0075 article-title: High temperature latent heat thermal energy storage using heat pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.03.035 – volume: 105 start-page: 1178 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0015 article-title: A state-of-the-art review on hybrid heat pipe latent heat storage systems publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.08.044 – volume: 130 start-page: 011401 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0060 article-title: Genetic algorithm based optimization of PCM based heat sinks and effect of heat sink parameters on operational time publication-title: J. Heat Transfer doi: 10.1115/1.2780182 – volume: 57 start-page: 20 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0150 article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2014.03.017 – volume: 28 start-page: 1047 issue: 8–9 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0085 article-title: Transient cooling of electronics using phase change material (PCM)-based heat sinks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.06.010 – volume: 81 start-page: 325 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0070 article-title: Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.031 – volume: 52 start-page: 3408 issue: 12 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0100 article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2011.07.009 – volume: 31 start-page: 2221 issue: 14–15 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0115 article-title: Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.03.003 – volume: 103 start-page: 400 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0065 article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.056 – volume: 54 start-page: 4596 issue: 21–22 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0005 article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2011.06.018 – volume: 45 start-page: 137 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0175 article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2013.04.008 – volume: 52 start-page: 2937 issue: 8–9 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0130 article-title: Experimental analysis and FEM simulation of finned U-shape multi heat pipe for desktop PC cooling publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2011.03.001 |
SSID | ssj0017046 |
Score | 2.4834807 |
Snippet | •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase... In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 252 |
SubjectTerms | Coupling Heat pipes Latent thermal storage Oscillating Oscillating heat pipe Paraffins Phase change material Phase change materials Thermal energy Thermal management Thermal resistance |
Title | Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.108 https://www.proquest.com/docview/1825468628 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-iKF7EjxV1V4ngYS9d2yRN09MigzI66EFW9BbSNNGRmU7Rmat_-76XtiN-XARPpR9pQt7ryy_0936PkCOT5bEziYwUy1UkuCwjE5cuilXOvEgty4LO7OWV7N-Ii7v0boH0ulwYpFW2sb-J6SFat1eO29k8rodDzPFF5wKXAjdisUJNUCEy9PI_L3OaR5LFTbIORmN8eoX8fuV4DR8x4o0Bpk4DTHSoEJpIlD1NsODk50vVu6AdVqKzdbLWQkh60oxygyy4apMsByqnfd4iL6dz0X4axGPpxFOUrBwh7a26pzgYWg9rR01V0voB1jHa5P9SgK-NR1I7mdUjV1LAtBQx4hh6dCFPkCKfEqJQaN3dGs9ZND_Izdnpv14_aqssRBag0BTCoee8EEVuCukT7suUSSOlSYUVeZawzFrLfMGsEtYbX-bMSZW6FKCDKWF3yLfJYjWp3A6hnHuLueNZ4QGYFKXiQgpjnAPQENtU7ZK_3YRq20qQYyWMke64Zo_6o0k0mkTHHLVMd0k-f0PdyHF8oW2vs6F-42IaVo8vvOWwM7-GLxF_r5jKTWbPOgm1BWCHqPa-paefZBXPGrbhL7I4fZq5fUBA0-IguPgBWTo5H_Sv8Di4vh38Bz-HDw4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRTwuiPIQpdAaCSQuoYnjOM6hQqgPbenj1Eq9Gcexy1a72ai7K8Slf4o_2BknWUTLpRK9JspDnvE3X5RvvgH4YPIidiaRkeKFikQqq8jElYtiVXAvMsvz4DN7dCwHp-LbWXa2BL_7XhiSVXbY32J6QOvuyGa3mpvNcEg9vpRcmFKYRjxWolNWHrhfP_G7bbq1v4NB_sj53u7J9iDqRgtEFuv_DDHAp2kpysKU0ieprzIujZQmE1YUecJzay33JbdKWG98VXAnVeYyrJemEsGBCXH_gUC4oLEJn68WupIkj9vuIIJ_er1H8OmPqGx4QRA7Rl48C7zUkSVpIslnNaEJl_-ujTeqRCh9e8_gacdZ2dd2WVZgydXP4WHQjtrpC7jaXUwJYMGtlk08I4_MEens6nNGL8OaYeOYqSvW_MDCydqGY4Z8ud0CzE7mzchVDEk0I1I6xie60JjISMCJsBeu7k-NF7Kdl3B6L2v_CpbrSe1eA0tTb6lZPS89MqGyUqmQwhjnkKXENlOr8KVfUG07z3MavTHSvbjtQt8OiaaQ6Dgl89RVKBZ3aFr_jztcu93HUP-V0xrL1R3u8r4Pv8atT_9zTO0m86lOwjAD_CRVb_7Lkzbg8eDk6FAf7h8frMETOtNKHd_C8uxy7t4h_ZqV6yHdGXy_7_11DfUtSZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experiment+study+of+oscillating+heat+pipe+and+phase+change+materials+coupled+for+thermal+energy+storage+and+thermal+management&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhao%2C+Jiateng&rft.au=Rao%2C+Zhonghao&rft.au=Liu%2C+Chenzhen&rft.au=Li%2C+Yimin&rft.date=2016-08-01&rft.issn=0017-9310&rft.volume=99&rft.spage=252&rft.epage=260&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2016.03.108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |