Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management

•Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 99; pp. 252 - 260
Main Authors Zhao, Jiateng, Rao, Zhonghao, Liu, Chenzhen, Li, Yimin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation angle had minimal effect on the thermal performance of the coupling module. In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature.
AbstractList •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase of heating power.•Thermal response time of PCM was short, oscillation and temperature variation had good synchronization.•The installation angle had minimal effect on the thermal performance of the coupling module. In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature.
In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling oscillating heat pipe (OHP) and phase change materials (PCM) was proposed and investigated in this paper. The advantages of PCM and OHP could be combined to overcome each shortcoming. The expanded graphite (EG)/paraffin composite material and the closed loop OHP used in the experiment were prepared and tested. The thermal performance of the coupling module was studied experimentally under different operating conditions. The results showed that the angle range where thermal resistance is obviously affected by the installation angle decreases with the increase of heating power. The trend of the temperature difference between the closed loop OHP and EG/paraffin composite before the PCM melting was similar to those filled with water under the same condition, but the difference value was larger. The working condition of the OHP directly affects the thermal efficiency of the coupling system. The oscillation and the temperature variation have good synchronization. Relative to the EG/paraffin composite, it took about two times time for the paraffin to release heat from the same starting temperature to the ambient temperature.
Author Li, Yimin
Rao, Zhonghao
Liu, Chenzhen
Zhao, Jiateng
Author_xml – sequence: 1
  givenname: Jiateng
  surname: Zhao
  fullname: Zhao, Jiateng
– sequence: 2
  givenname: Zhonghao
  surname: Rao
  fullname: Rao, Zhonghao
  email: raozhonghao@cumt.edu.cn
– sequence: 3
  givenname: Chenzhen
  surname: Liu
  fullname: Liu, Chenzhen
– sequence: 4
  givenname: Yimin
  surname: Li
  fullname: Li, Yimin
BookMark eNqVkUGPFCEQhYlZE2dX_wPHvfQINE3TN81md9Vs4kXPpIYuZph0QwuMcS7-dumMXvSyngi8V1-F967JVYgBCbnlbMsZV2-PW388IJQZci4JQnaYtqIqW9ZWh35BNlz3QyO4Hq7IhjHeN0PL2StynfNxvTKpNuTn_Y8Fk58xFJrLaTzT6GjM1k8TFB_2dN1BF78ghTDS5QAZqT1A2COdodRRmDK18bRMOFIXEy0HTDNMFAOm_blCY4L9ZfqPNEOoT-vO1-SlqwB88_u8IV8f7r_cfWiePj9-vHv_1FgpeWl079p2J3cD7JTjrRs7oUAp6KSVQ89Fb60VbiesltaBGweBSnfYacFglGxob8jthbuk-O2EuZjZZ4v1kwHjKRuuRSeVVkJX68PFalPMOaEz1peaRQw1Zj8ZzsxagDmafwswawGGtdWxgt79BVpq0JDO_4P4dEFgzea7r2ptBoPF0Se0xYzRPx_2C7Amt70
CitedBy_id crossref_primary_10_1016_j_rser_2025_115614
crossref_primary_10_1016_j_applthermaleng_2021_116574
crossref_primary_10_1016_j_apenergy_2020_115325
crossref_primary_10_1016_j_applthermaleng_2018_11_100
crossref_primary_10_1016_j_rser_2022_112783
crossref_primary_10_1016_j_applthermaleng_2021_117061
crossref_primary_10_1016_j_enss_2021_12_002
crossref_primary_10_1016_j_est_2024_111227
crossref_primary_10_3390_en15061963
crossref_primary_10_1007_s10973_019_08930_1
crossref_primary_10_1016_j_applthermaleng_2023_120070
crossref_primary_10_1016_j_ijheatmasstransfer_2016_12_093
crossref_primary_10_1061__ASCE_EY_1943_7897_0000721
crossref_primary_10_1007_s42154_020_00114_0
crossref_primary_10_1016_j_rser_2022_112669
crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_040
crossref_primary_10_1016_j_est_2022_104857
crossref_primary_10_1016_j_rser_2018_04_042
crossref_primary_10_1002_ente_202200118
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_130
crossref_primary_10_1002_est2_47
crossref_primary_10_1016_j_desal_2022_115983
crossref_primary_10_1080_01411594_2020_1758319
crossref_primary_10_1016_j_enconman_2018_11_033
crossref_primary_10_1016_j_est_2023_106827
crossref_primary_10_3390_aerospace10020179
crossref_primary_10_1016_j_enconman_2017_08_016
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120385
crossref_primary_10_1016_j_applthermaleng_2019_114024
crossref_primary_10_1016_j_est_2024_112844
crossref_primary_10_1002_aenm_202202944
crossref_primary_10_1115_1_4063355
crossref_primary_10_1016_j_applthermaleng_2018_06_048
crossref_primary_10_1016_j_est_2024_111195
crossref_primary_10_3390_pr11123450
crossref_primary_10_1002_ese3_1418
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_014
crossref_primary_10_1016_j_icheatmasstransfer_2022_106152
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_012
crossref_primary_10_1016_j_applthermaleng_2018_10_090
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123018
crossref_primary_10_1016_j_est_2019_100986
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123415
crossref_primary_10_3390_app6110321
crossref_primary_10_1007_s00231_017_2049_9
crossref_primary_10_1016_j_est_2021_102255
crossref_primary_10_1016_j_enbuild_2024_114669
crossref_primary_10_3390_en17163873
crossref_primary_10_1016_j_expthermflusci_2017_02_022
crossref_primary_10_1016_j_est_2023_109360
crossref_primary_10_1016_j_solener_2024_112659
crossref_primary_10_2355_isijinternational_ISIJINT_2019_507
crossref_primary_10_3390_en15197391
crossref_primary_10_1002_est2_572
crossref_primary_10_1016_j_solener_2018_01_062
crossref_primary_10_1016_j_ijheatmasstransfer_2017_02_068
crossref_primary_10_1016_j_molliq_2019_01_040
crossref_primary_10_1007_s10973_023_12100_9
crossref_primary_10_1016_j_enconman_2017_10_019
crossref_primary_10_1016_j_ijrefrig_2024_10_026
crossref_primary_10_1016_j_enconman_2017_12_023
crossref_primary_10_1016_j_apenergy_2018_04_020
crossref_primary_10_1016_j_energy_2023_130164
crossref_primary_10_1016_j_matpr_2020_03_317
crossref_primary_10_1016_j_icheatmasstransfer_2018_12_006
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_125
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_062
crossref_primary_10_1016_j_rser_2024_114654
crossref_primary_10_1002_adem_201700753
crossref_primary_10_1016_j_applthermaleng_2022_119495
crossref_primary_10_1016_j_enconman_2018_12_051
crossref_primary_10_1016_j_expthermflusci_2016_11_017
crossref_primary_10_1142_S0218348X19500816
crossref_primary_10_3390_en14227738
crossref_primary_10_1016_j_enconman_2020_113352
crossref_primary_10_1016_j_ijthermalsci_2023_108634
crossref_primary_10_3390_en16093857
crossref_primary_10_1016_j_est_2020_101733
crossref_primary_10_1016_j_pecs_2017_08_003
crossref_primary_10_1016_j_est_2019_100887
crossref_primary_10_1016_j_est_2022_104402
crossref_primary_10_1007_s00231_022_03257_4
Cites_doi 10.1016/j.enconman.2015.05.050
10.1016/j.ijheatmasstransfer.2014.08.002
10.1016/j.rser.2012.01.053
10.1016/j.energy.2011.02.021
10.1016/j.applthermaleng.2006.12.013
10.1016/j.ijheatmasstransfer.2014.11.022
10.1016/j.ijthermalsci.2014.12.023
10.1115/1.4028994
10.1016/j.ijheatmasstransfer.2015.01.019
10.1016/j.applthermaleng.2015.09.018
10.1016/j.ijthermalsci.2007.07.016
10.1016/j.enconman.2012.08.014
10.1016/j.enconman.2015.06.056
10.1016/j.apenergy.2010.12.004
10.1016/j.ijheatmasstransfer.2011.03.038
10.1016/j.rser.2012.01.038
10.1016/j.enconman.2008.05.002
10.1016/j.enconman.2005.06.004
10.1016/j.applthermaleng.2015.04.012
10.1016/j.rser.2011.07.096
10.1016/j.applthermaleng.2010.11.009
10.1016/j.enconman.2015.02.028
10.1016/j.ijheatmasstransfer.2010.03.035
10.1016/j.enconman.2015.08.044
10.1115/1.2780182
10.1016/j.expthermflusci.2014.03.017
10.1016/j.applthermaleng.2007.06.010
10.1016/j.applthermaleng.2015.02.031
10.1016/j.enconman.2011.07.009
10.1016/j.applthermaleng.2011.03.003
10.1016/j.apenergy.2012.09.056
10.1016/j.ijheatmasstransfer.2011.06.018
10.1016/j.icheatmasstransfer.2013.04.008
10.1016/j.enconman.2011.03.001
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2016.03.108
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 260
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2016_03_108
S0017931015312084
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c441t-87f33b4b9ab6f13fd526a66a54c497127ccc2fb2c84cfafd92e685e5820ad4093
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 11 01:30:03 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 02:16:42 EDT 2025
Fri Feb 23 02:24:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal management
Phase change material
Latent thermal storage
Oscillating heat pipe
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-87f33b4b9ab6f13fd526a66a54c497127ccc2fb2c84cfafd92e685e5820ad4093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825468628
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1825468628
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2016_03_108
crossref_primary_10_1016_j_ijheatmasstransfer_2016_03_108
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2016_03_108
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle International journal of heat and mass transfer
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shabgard, Bergman, Sharifi, Faghri (b0075) 2010; 53
Rao, Wang, Wu, Lin, Li (b0095) 2013; 65
Xian, Xu, Zhang, Du, Yang (b0145) 2014; 79
Rao, Huo, Liu (b0150) 2014; 57
Zhao, Rao, Liu, Li (b0160) 2016; 93
Dmitrin, Pastukhov (b0155) 2010; 48
Luo, Yin, Li, Xu, Shao, Xu, Chang (b0165) 2015; 84
Lin, Wang, Huo, Hu, Chen, Zhang, Lee (b0115) 2011; 31
Nithyanandam, Pitchumani (b0065) 2013; 103
Fleming, Wen, Shi, da Silva (b0045) 2015; 82
Wang, Yap, Mujumdar (b0055) 2008; 47
Weng, Cho, Chang, Chen (b0120) 2011; 88
Rao, Wang, Zhang (b0100) 2011; 52
Nagose, Somani, Shrot, Narasimhan (b0060) 2008; 130
Wu, Zhang, Ke, Yang, Wang, Liu (b0035) 2015; 101
Rao, Wang (b0110) 2011; 15
Kibria, Anisur, Mahfuz, Saidur, Metselaar (b0040) 2015; 95
Hossain, Mahmud, Dutta, Pop (b0050) 2015; 91
Kandasamy, Wang, Mujumdar (b0080) 2007; 27
Mahdavi, Qiu, Tiari (b0070) 2015; 81
Robak, Bergman, Faghri (b0010) 2011; 54
Nithyanandam, Pitchumani (b0005) 2011; 54
Liu, Wang, Ma (b0020) 2006; 47
Kandasamy, Wang, Mujumdar (b0085) 2008; 28
Aboutalebi, Nikravan Moghaddam, Mohammadi, Shafii (b0175) 2013; 45
Chougule, Sahu (b0135) 2014; 137
Zhao, Rao, Huo, Liu, Li (b0090) 2015; 85
Zhao, Rao, Li (b0105) 2015; 103
Naghavi, Ong, Mehrali, Badruddin, Metselaar (b0015) 2015; 105
Rao, Wang, Zhang (b0025) 2012; 16
Chaudhry, Hughes, Ghani (b0140) 2012; 16
Singh, Mochizuki, Mashiko, Nguyen (b0030) 2011; 36
Chang, Cheng, Wang, Chen (b0125) 2008; 49
Elnaggar, Abdullah, Abdul Mujeebu (b0130) 2011; 52
Lin, Wang, Chen, Huo, Hu, Zhang (b0170) 2011; 31
Aboutalebi (10.1016/j.ijheatmasstransfer.2016.03.108_b0175) 2013; 45
Luo (10.1016/j.ijheatmasstransfer.2016.03.108_b0165) 2015; 84
Shabgard (10.1016/j.ijheatmasstransfer.2016.03.108_b0075) 2010; 53
Chougule (10.1016/j.ijheatmasstransfer.2016.03.108_b0135) 2014; 137
Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0025) 2012; 16
Kandasamy (10.1016/j.ijheatmasstransfer.2016.03.108_b0080) 2007; 27
Kibria (10.1016/j.ijheatmasstransfer.2016.03.108_b0040) 2015; 95
Liu (10.1016/j.ijheatmasstransfer.2016.03.108_b0020) 2006; 47
Naghavi (10.1016/j.ijheatmasstransfer.2016.03.108_b0015) 2015; 105
Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0095) 2013; 65
Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0090) 2015; 85
Fleming (10.1016/j.ijheatmasstransfer.2016.03.108_b0045) 2015; 82
Wang (10.1016/j.ijheatmasstransfer.2016.03.108_b0055) 2008; 47
Xian (10.1016/j.ijheatmasstransfer.2016.03.108_b0145) 2014; 79
Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0100) 2011; 52
Wu (10.1016/j.ijheatmasstransfer.2016.03.108_b0035) 2015; 101
Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0150) 2014; 57
Elnaggar (10.1016/j.ijheatmasstransfer.2016.03.108_b0130) 2011; 52
Chaudhry (10.1016/j.ijheatmasstransfer.2016.03.108_b0140) 2012; 16
Nithyanandam (10.1016/j.ijheatmasstransfer.2016.03.108_b0005) 2011; 54
Singh (10.1016/j.ijheatmasstransfer.2016.03.108_b0030) 2011; 36
Nithyanandam (10.1016/j.ijheatmasstransfer.2016.03.108_b0065) 2013; 103
Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0160) 2016; 93
Lin (10.1016/j.ijheatmasstransfer.2016.03.108_b0170) 2011; 31
Rao (10.1016/j.ijheatmasstransfer.2016.03.108_b0110) 2011; 15
Robak (10.1016/j.ijheatmasstransfer.2016.03.108_b0010) 2011; 54
Mahdavi (10.1016/j.ijheatmasstransfer.2016.03.108_b0070) 2015; 81
Dmitrin (10.1016/j.ijheatmasstransfer.2016.03.108_b0155) 2010; 48
Zhao (10.1016/j.ijheatmasstransfer.2016.03.108_b0105) 2015; 103
Chang (10.1016/j.ijheatmasstransfer.2016.03.108_b0125) 2008; 49
Lin (10.1016/j.ijheatmasstransfer.2016.03.108_b0115) 2011; 31
Weng (10.1016/j.ijheatmasstransfer.2016.03.108_b0120) 2011; 88
Hossain (10.1016/j.ijheatmasstransfer.2016.03.108_b0050) 2015; 91
Nagose (10.1016/j.ijheatmasstransfer.2016.03.108_b0060) 2008; 130
Kandasamy (10.1016/j.ijheatmasstransfer.2016.03.108_b0085) 2008; 28
References_xml – volume: 88
  start-page: 1825
  year: 2011
  end-page: 1833
  ident: b0120
  article-title: Heat pipe with PCM for electronic cooling
  publication-title: Appl. Energy
– volume: 105
  start-page: 1178
  year: 2015
  end-page: 1204
  ident: b0015
  article-title: A state-of-the-art review on hybrid heat pipe latent heat storage systems
  publication-title: Energy Convers. Manage.
– volume: 27
  start-page: 2822
  year: 2007
  end-page: 2832
  ident: b0080
  article-title: Application of phase change materials in thermal management of electronics
  publication-title: Appl. Therm. Eng.
– volume: 79
  start-page: 332
  year: 2014
  end-page: 341
  ident: b0145
  article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 4596
  year: 2011
  end-page: 4610
  ident: b0005
  article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
  publication-title: Int. J. Heat Mass Transf.
– volume: 15
  start-page: 4554
  year: 2011
  end-page: 4571
  ident: b0110
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
– volume: 103
  start-page: 157
  year: 2015
  end-page: 165
  ident: b0105
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manage.
– volume: 16
  start-page: 2249
  year: 2012
  end-page: 2259
  ident: b0140
  article-title: A review of heat pipe systems for heat recovery and renewable energy applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 93
  start-page: 90
  year: 2016
  end-page: 100
  ident: b0160
  article-title: Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management
  publication-title: Appl. Therm. Eng.
– volume: 16
  start-page: 3136
  year: 2012
  end-page: 3145
  ident: b0025
  article-title: Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate
  publication-title: Renew. Sustain. Energy Rev.
– volume: 82
  start-page: 273
  year: 2015
  end-page: 281
  ident: b0045
  article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit
  publication-title: Int. J. Heat Mass Transf.
– volume: 130
  start-page: 011401
  year: 2008
  ident: b0060
  article-title: Genetic algorithm based optimization of PCM based heat sinks and effect of heat sink parameters on operational time
  publication-title: J. Heat Transfer
– volume: 65
  start-page: 92
  year: 2013
  end-page: 97
  ident: b0095
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manage.
– volume: 49
  start-page: 3398
  year: 2008
  end-page: 3404
  ident: b0125
  article-title: Heat pipe for cooling of electronic equipment
  publication-title: Energy Convers. Manage.
– volume: 45
  start-page: 137
  year: 2013
  end-page: 145
  ident: b0175
  article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 101
  start-page: 278
  year: 2015
  end-page: 284
  ident: b0035
  article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management
  publication-title: Energy Convers. Manage.
– volume: 54
  start-page: 3476
  year: 2011
  end-page: 3484
  ident: b0010
  article-title: Enhancement of latent heat energy storage using embedded heat pipes
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  start-page: 880
  year: 2011
  end-page: 886
  ident: b0170
  article-title: Experimental study on effective range of miniature oscillating heat pipes
  publication-title: Appl. Therm. Eng.
– volume: 137
  start-page: 021004
  year: 2014
  ident: b0135
  article-title: Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling
  publication-title: J. Electron. Packag.
– volume: 84
  start-page: 237
  year: 2015
  end-page: 244
  ident: b0165
  article-title: Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material
  publication-title: Int. J. Heat Mass Transf.
– volume: 95
  start-page: 69
  year: 2015
  end-page: 89
  ident: b0040
  article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials
  publication-title: Energy Convers. Manage.
– volume: 85
  start-page: 33
  year: 2015
  end-page: 43
  ident: b0090
  article-title: Thermal management of cylindrical power battery module for
  publication-title: Appl. Therm. Eng.
– volume: 91
  start-page: 49
  year: 2015
  end-page: 58
  ident: b0050
  article-title: Energy storage system based on nanoparticle-enhanced phase change material inside porous medium
  publication-title: Int. J. Therm. Sci.
– volume: 103
  start-page: 400
  year: 2013
  end-page: 415
  ident: b0065
  article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power
  publication-title: Appl. Energy
– volume: 52
  start-page: 2937
  year: 2011
  end-page: 2944
  ident: b0130
  article-title: Experimental analysis and FEM simulation of finned U-shape multi heat pipe for desktop PC cooling
  publication-title: Energy Convers. Manage.
– volume: 47
  start-page: 1055
  year: 2008
  end-page: 1068
  ident: b0055
  article-title: A parametric study of phase change material (PCM)-based heat sinks
  publication-title: Int. J. Therm. Sci.
– volume: 53
  start-page: 2979
  year: 2010
  end-page: 2988
  ident: b0075
  article-title: High temperature latent heat thermal energy storage using heat pipes
  publication-title: Int. J. Heat Mass Transf.
– volume: 48
  start-page: 592
  year: 2010
  end-page: 599
  ident: b0155
  article-title: Development and investigation of compact cooler using a pulsating heat pipe
  publication-title: Heat Mass Transfer Phys. Gasdyn.
– volume: 47
  start-page: 944
  year: 2006
  end-page: 966
  ident: b0020
  article-title: An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes
  publication-title: Energ. Convers. Manage.
– volume: 28
  start-page: 1047
  year: 2008
  end-page: 1057
  ident: b0085
  article-title: Transient cooling of electronics using phase change material (PCM)-based heat sinks
  publication-title: Appl. Therm. Eng.
– volume: 81
  start-page: 325
  year: 2015
  end-page: 337
  ident: b0070
  article-title: Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 2802
  year: 2011
  end-page: 2811
  ident: b0030
  article-title: Heat pipe based cold energy storage systems for datacenter energy conservation
  publication-title: Energy
– volume: 52
  start-page: 3408
  year: 2011
  end-page: 3414
  ident: b0100
  article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO
  publication-title: Energy Convers. Manage.
– volume: 31
  start-page: 2221
  year: 2011
  end-page: 2229
  ident: b0115
  article-title: Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes
  publication-title: Appl. Therm. Eng.
– volume: 57
  start-page: 20
  year: 2014
  end-page: 26
  ident: b0150
  article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery
  publication-title: Exp. Thermal Fluid Sci.
– volume: 101
  start-page: 278
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0035
  article-title: Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.05.050
– volume: 79
  start-page: 332
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0145
  article-title: Thermal characteristics and flow patterns of oscillating heat pipe with pulse heating
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.08.002
– volume: 16
  start-page: 3136
  issue: 5
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0025
  article-title: Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.053
– volume: 36
  start-page: 2802
  issue: 5
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0030
  article-title: Heat pipe based cold energy storage systems for datacenter energy conservation
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.021
– volume: 27
  start-page: 2822
  issue: 17–18
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0080
  article-title: Application of phase change materials in thermal management of electronics
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2006.12.013
– volume: 82
  start-page: 273
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0045
  article-title: Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.11.022
– volume: 91
  start-page: 49
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0050
  article-title: Energy storage system based on nanoparticle-enhanced phase change material inside porous medium
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2014.12.023
– volume: 137
  start-page: 021004
  issue: 2
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0135
  article-title: Thermal performance of nanofluid charged heat pipe with phase change material for electronics cooling
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.4028994
– volume: 84
  start-page: 237
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0165
  article-title: Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.01.019
– volume: 93
  start-page: 90
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0160
  article-title: Experimental investigation on thermal performance of phase change material coupled with closed-loop oscillating heat pipe (PCM/CLOHP) used in thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.09.018
– volume: 47
  start-page: 1055
  issue: 8
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0055
  article-title: A parametric study of phase change material (PCM)-based heat sinks
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2007.07.016
– volume: 65
  start-page: 92
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0095
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2012.08.014
– volume: 103
  start-page: 157
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0105
  article-title: Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.06.056
– volume: 88
  start-page: 1825
  issue: 5
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0120
  article-title: Heat pipe with PCM for electronic cooling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.12.004
– volume: 54
  start-page: 3476
  issue: 15–16
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0010
  article-title: Enhancement of latent heat energy storage using embedded heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.03.038
– volume: 16
  start-page: 2249
  issue: 4
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0140
  article-title: A review of heat pipe systems for heat recovery and renewable energy applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.038
– volume: 49
  start-page: 3398
  issue: 11
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0125
  article-title: Heat pipe for cooling of electronic equipment
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.05.002
– volume: 47
  start-page: 944
  issue: 7–8
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0020
  article-title: An experimental study on heat transfer characteristics of heat pipe heat exchanger with latent heat storage. Part I: Charging only and discharging only modes
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2005.06.004
– volume: 85
  start-page: 33
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0090
  article-title: Thermal management of cylindrical power battery module forextending the life of new energy electric vehicles
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.04.012
– volume: 48
  start-page: 592
  issue: 5
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0155
  article-title: Development and investigation of compact cooler using a pulsating heat pipe
  publication-title: Heat Mass Transfer Phys. Gasdyn.
– volume: 15
  start-page: 4554
  issue: 9
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0110
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.07.096
– volume: 31
  start-page: 880
  issue: 5
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0170
  article-title: Experimental study on effective range of miniature oscillating heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.11.009
– volume: 95
  start-page: 69
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0040
  article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.02.028
– volume: 53
  start-page: 2979
  issue: 15–16
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0075
  article-title: High temperature latent heat thermal energy storage using heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.03.035
– volume: 105
  start-page: 1178
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0015
  article-title: A state-of-the-art review on hybrid heat pipe latent heat storage systems
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.08.044
– volume: 130
  start-page: 011401
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0060
  article-title: Genetic algorithm based optimization of PCM based heat sinks and effect of heat sink parameters on operational time
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2780182
– volume: 57
  start-page: 20
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0150
  article-title: Experimental study of an OHP-cooled thermal management system for electric vehicle power battery
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.03.017
– volume: 28
  start-page: 1047
  issue: 8–9
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0085
  article-title: Transient cooling of electronics using phase change material (PCM)-based heat sinks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.06.010
– volume: 81
  start-page: 325
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0070
  article-title: Numerical investigation of hydrodynamics and thermal performance of a specially configured heat pipe for high-temperature thermal energy storage systems
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.031
– volume: 52
  start-page: 3408
  issue: 12
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0100
  article-title: Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2011.07.009
– volume: 31
  start-page: 2221
  issue: 14–15
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0115
  article-title: Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.03.003
– volume: 103
  start-page: 400
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0065
  article-title: Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.056
– volume: 54
  start-page: 4596
  issue: 21–22
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0005
  article-title: Analysis and optimization of a latent thermal energy storage system with embedded heat pipes
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2011.06.018
– volume: 45
  start-page: 137
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0175
  article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2013.04.008
– volume: 52
  start-page: 2937
  issue: 8–9
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2016.03.108_b0130
  article-title: Experimental analysis and FEM simulation of finned U-shape multi heat pipe for desktop PC cooling
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2011.03.001
SSID ssj0017046
Score 2.4834807
Snippet •Coupling oscillating heat pipe and phase change materials was proposed.•The angle range with obviously affected thermal resistance decreases with the increase...
In order to enhance the thermal performance of latent heat thermal energy storage (LHTES) system and thermal management system, a novel method that coupling...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 252
SubjectTerms Coupling
Heat pipes
Latent thermal storage
Oscillating
Oscillating heat pipe
Paraffins
Phase change material
Phase change materials
Thermal energy
Thermal management
Thermal resistance
Title Experiment study of oscillating heat pipe and phase change materials coupled for thermal energy storage and thermal management
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.108
https://www.proquest.com/docview/1825468628
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-iKF7EjxV1V4ngYS9d2yRN09MigzI66EFW9BbSNNGRmU7Rmat_-76XtiN-XARPpR9pQt7ryy_0936PkCOT5bEziYwUy1UkuCwjE5cuilXOvEgty4LO7OWV7N-Ii7v0boH0ulwYpFW2sb-J6SFat1eO29k8rodDzPFF5wKXAjdisUJNUCEy9PI_L3OaR5LFTbIORmN8eoX8fuV4DR8x4o0Bpk4DTHSoEJpIlD1NsODk50vVu6AdVqKzdbLWQkh60oxygyy4apMsByqnfd4iL6dz0X4axGPpxFOUrBwh7a26pzgYWg9rR01V0voB1jHa5P9SgK-NR1I7mdUjV1LAtBQx4hh6dCFPkCKfEqJQaN3dGs9ZND_Izdnpv14_aqssRBag0BTCoee8EEVuCukT7suUSSOlSYUVeZawzFrLfMGsEtYbX-bMSZW6FKCDKWF3yLfJYjWp3A6hnHuLueNZ4QGYFKXiQgpjnAPQENtU7ZK_3YRq20qQYyWMke64Zo_6o0k0mkTHHLVMd0k-f0PdyHF8oW2vs6F-42IaVo8vvOWwM7-GLxF_r5jKTWbPOgm1BWCHqPa-paefZBXPGrbhL7I4fZq5fUBA0-IguPgBWTo5H_Sv8Di4vh38Bz-HDw4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRTwuiPIQpdAaCSQuoYnjOM6hQqgPbenj1Eq9Gcexy1a72ai7K8Slf4o_2BknWUTLpRK9JspDnvE3X5RvvgH4YPIidiaRkeKFikQqq8jElYtiVXAvMsvz4DN7dCwHp-LbWXa2BL_7XhiSVXbY32J6QOvuyGa3mpvNcEg9vpRcmFKYRjxWolNWHrhfP_G7bbq1v4NB_sj53u7J9iDqRgtEFuv_DDHAp2kpysKU0ieprzIujZQmE1YUecJzay33JbdKWG98VXAnVeYyrJemEsGBCXH_gUC4oLEJn68WupIkj9vuIIJ_er1H8OmPqGx4QRA7Rl48C7zUkSVpIslnNaEJl_-ujTeqRCh9e8_gacdZ2dd2WVZgydXP4WHQjtrpC7jaXUwJYMGtlk08I4_MEens6nNGL8OaYeOYqSvW_MDCydqGY4Z8ud0CzE7mzchVDEk0I1I6xie60JjISMCJsBeu7k-NF7Kdl3B6L2v_CpbrSe1eA0tTb6lZPS89MqGyUqmQwhjnkKXENlOr8KVfUG07z3MavTHSvbjtQt8OiaaQ6Dgl89RVKBZ3aFr_jztcu93HUP-V0xrL1R3u8r4Pv8atT_9zTO0m86lOwjAD_CRVb_7Lkzbg8eDk6FAf7h8frMETOtNKHd_C8uxy7t4h_ZqV6yHdGXy_7_11DfUtSZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experiment+study+of+oscillating+heat+pipe+and+phase+change+materials+coupled+for+thermal+energy+storage+and+thermal+management&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Zhao%2C+Jiateng&rft.au=Rao%2C+Zhonghao&rft.au=Liu%2C+Chenzhen&rft.au=Li%2C+Yimin&rft.date=2016-08-01&rft.issn=0017-9310&rft.volume=99&rft.spage=252&rft.epage=260&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2016.03.108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon