Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES)

Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and ene...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1865; no. 2; p. 129770
Main Authors Gordon, Fiona, Elcoroaristizabal, Saioa, Ryder, Alan G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. [Display omitted] •Reports a novel approach for analysis of FRET.•Uses polarized multidimensional fluorescence measurements.•Resolves overlapped donor and acceptor spectra using chemometrics.•Enables calculation of more accurate quenching and energy transfer parameters.
AbstractList Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.BACKGROUNDFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.METHODSWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.RESULTSpEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.CONCLUSIONSFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.GENERAL SIGNIFICANCEShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. [Display omitted] •Reports a novel approach for analysis of FRET.•Uses polarized multidimensional fluorescence measurements.•Resolves overlapped donor and acceptor spectra using chemometrics.•Enables calculation of more accurate quenching and energy transfer parameters.
Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
ArticleNumber 129770
Author Gordon, Fiona
Elcoroaristizabal, Saioa
Ryder, Alan G.
Author_xml – sequence: 1
  givenname: Fiona
  surname: Gordon
  fullname: Gordon, Fiona
  email: F.GORDON2@nuigalway.ie
– sequence: 2
  givenname: Saioa
  surname: Elcoroaristizabal
  fullname: Elcoroaristizabal, Saioa
  email: elcoroaristizabal@nuigalway.ie
– sequence: 3
  givenname: Alan G.
  surname: Ryder
  fullname: Ryder, Alan G.
  email: alan.ryder@nuigalway.ie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33214128$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFu3CAYhVGVqpmkvUFVeTlZeMpvY2O6qBRFM02kRJGSdI0w_B4xsvEU7Eiz6LV6gV6suE42WSSwAMH3nuC9E3LkeoeEfAa6Agrl192qrtUW3SqjWTzKBOf0HVlAxbO0orQ8IguaU5YyKItjchLCjsZRiOIDOc7zDBhk1YL8vukNtq1122Tz948PA_rEY-idchoTdOi3h2TwyoUm3iw3d-uHs2QME6-cDf3g-_3hv6J9RJN0YzvY1NgOXbDRpE2ws2HaJmGPOtJBT4Ll-d3N-v7sI3nfqDbgp6f1lPzcrB8uLtPr2x9XF-fXqWYMhrQqOXBGs1rVWpU05zU0uqJMFCLXiusCTFMWgoIomakM1BxExWrOgOdZnPkpWc6-e9__GjEMMr5Kx38rh_0YZFYUICgvQbyNsjKP-VcVRPTLEzrWHRq597ZT_iCf043AtxnQ8d_BYyO1HdQQ04iJ2lYClVOVcifnKuVUpZyrjGL2Qvzs_4bs-yzDmOejRS-DthjLNNbHAqTp7esG_wDKUrmq
CitedBy_id crossref_primary_10_15407_fm30_03_424
crossref_primary_10_1016_j_jphotobiol_2023_112693
crossref_primary_10_3103_S1063457624030031
crossref_primary_10_1016_j_foodchem_2022_133732
crossref_primary_10_1021_acs_molpharmaceut_3c00875
crossref_primary_10_3103_S1063457624050034
crossref_primary_10_1002_bio_4553
crossref_primary_10_3390_app14209202
crossref_primary_10_1039_D2NH00548D
crossref_primary_10_3103_S1063457623030140
crossref_primary_10_1088_2050_6120_ac5389
crossref_primary_10_3103_S1063457623010045
crossref_primary_10_1016_j_abb_2023_109533
crossref_primary_10_1016_j_bpr_2022_100089
crossref_primary_10_1039_D1CP05159H
crossref_primary_10_1016_j_colsurfb_2021_112310
crossref_primary_10_3103_S1063457622050021
crossref_primary_10_3103_S106345762302003X
crossref_primary_10_3103_S106345762404004X
Cites_doi 10.1016/j.chemolab.2019.103871
10.1110/ps.04809404
10.1007/BF00726724
10.1021/ac3008576
10.1248/bpb.25.695
10.1529/biophysj.103.036194
10.1146/annurev.pc.37.100186.001015
10.1021/ja3081555
10.1021/cr900267p
10.1002/bit.27483
10.1016/j.chemolab.2004.12.007
10.1021/bi701575n
10.1371/journal.pone.0040845
10.1016/S0065-3233(08)60065-0
10.1007/BF01327227
10.1016/j.saa.2013.06.007
10.1016/j.jpha.2015.07.001
10.1016/S0022-2860(02)00256-9
10.1016/j.chemolab.2010.05.022
10.3390/ijms151222518
10.1016/S0006-3495(04)74308-8
10.1016/j.chemolab.2018.12.007
10.1002/cem.978
10.1002/sapm192761164
10.1016/j.jpha.2013.01.004
10.1016/S0006-3495(01)76211-X
10.1016/S0169-7439(97)00032-4
10.1021/ar300273v
10.1371/journal.pone.0064760
10.1016/j.chemolab.2014.01.005
10.1088/2050-6120/aa7763
10.1117/1.3156842
10.1002/andp.19484370105
10.1002/anie.201304157
10.1021/acsomega.8b01079
10.1016/j.bpj.2014.02.020
10.1007/BF02310791
10.1021/bi0255773
10.1021/bi00793a015
10.1016/j.aca.2015.06.011
10.1146/annurev.bi.47.070178.004131
10.1016/S0165-9936(02)01201-3
10.1002/cem.662
10.1007/BF02289464
10.1021/ac50012a016
10.1016/j.aca.2017.11.031
10.1021/jp207374g
10.1006/abio.1997.2468
10.1016/j.aca.2020.09.007
10.1007/BF02294485
10.12693/APhysPolA.123.673
10.1023/B:JOPC.0000016261.97474.2e
10.1117/1.JBO.18.2.026024
10.1007/s10895-007-0294-x
10.1007/s10895-009-0566-8
10.1016/j.snb.2015.06.102
10.1021/ar00080a005
10.1016/j.aca.2012.02.028
10.1016/j.coph.2010.09.013
10.4319/lom.2013.11.616
10.1042/bj0510145
10.1039/C1AN15805H
10.1016/j.bioorg.2017.10.013
10.1016/j.chemolab.2015.08.008
10.1016/S0006-3495(98)77976-7
10.1016/S0304-4203(03)00072-0
10.1134/S1990793114030154
10.1016/j.bbapap.2007.01.002
10.1021/nn9011187
10.1016/j.foodchem.2014.11.162
10.1016/j.chemolab.2011.05.009
10.1016/j.talanta.2007.08.024
10.1021/bi00870a017
10.5599/admet.2.2.28
10.1016/j.aca.2019.12.020
10.3390/ijms12084964
10.1016/j.chemolab.2014.08.009
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.bbagen.2020.129770
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 33214128
10_1016_j_bbagen_2020_129770
S0304416520302816
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c441t-86717402babca6037b1fc8049593ca7c51df65901964d8d1b71984b7417323233
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Fri Jul 11 05:30:12 EDT 2025
Tue Aug 05 09:46:21 EDT 2025
Wed Feb 19 02:28:48 EST 2025
Thu Apr 24 23:06:58 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Fri Feb 23 02:46:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords HH
VV
Förster resonance energy transfer
Fluorescence
IFE
HV
MDF
pEEM
ARMES
Trp
HSA
Modelling
FRET
ANS, 1
TSFS
EEM
Tyr
pTSFS
Protein
LOR
VH
Anisotropy
PARAFAC
MCR
Chemometrics
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-86717402babca6037b1fc8049593ca7c51df65901964d8d1b71984b7417323233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304416520302816
PMID 33214128
PQID 2463101881
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551907619
proquest_miscellaneous_2463101881
pubmed_primary_33214128
crossref_citationtrail_10_1016_j_bbagen_2020_129770
crossref_primary_10_1016_j_bbagen_2020_129770
elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129770
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ghisaidoobe, Chung (bb0010) 2014; 15
Hoppe, Scott, Welliver, Straight, Swanson (bb0045) 2013; 8
Kosower (bb0205) 1982; 15
Lehrer (bb0410) 1971; 10
Kosower, Huppert (bb0200) 1986; 37
Chen, Kenny (bb0110) 2012; 137
Shi, Basran, Seward, Childs, Bagshaw, Boxer (bb0375) 2007; 46
Ferrer, Duchowicz, Carrasco, de la Torre, Acuna (bb0160) 2001; 80
Togashi, Ryder (bb0150) 2008; 18
Kuznetsova, Sulatskaya, Povarova, Turoverov (bb0190) 2012; 7
Elcoroaristizabal, de Juan, Garcia, Durana, Alonso (bb0260) 2014; 132
Zolmajd-Haghighi, Hanley (bb0335) 2014; 106
Valeur (bb0030) 2002
Förster (bb0005) 1948; 437
Yuan, Lin, Zheng, Zhu (bb0020) 2013; 46
Stedmon, Markager, Bro (bb0100) 2003; 82
Cheng, Liu, Jiang (bb0250) 2013; 115
Cvijetić, Petrovic, Verbić, Juranic, Drakulic (bb0400) 2014; 2
Weber (bb0320) 1952; 51
Song, Liu, Yin, Wang (bb0395) 2011; 12
Weber, Laurence (bb0210) 1954; 56
de Faria e Silva, Elcoroaristizabal, Ryder (bb0075) 2020; 1101
Yengo, Berger (bb0140) 2010; 10
Kompany-Zareh, Gholami (bb0135) 2014; 139
Castellano, Dattelbaum, Lakowicz (bb0365) 1998; 255
Cheng, Zhao, Xu, Liu (bb0415) 2013; 3
Sudlow, Birkett, Wade (bb0185) 1975; 11
Gordon, Berry, Liang, Levine, Herman (bb0055) 1998; 74
Casamayou-Boucau, Ryder (bb0090) 2017; 5
Vlasova, Zhuravleva, Saletsky (bb0390) 2014; 8
Steiner-Browne, Elcoroaristizabal, Ryder (bb0070) 2019; 194
Groza, Li, Ryder (bb0085) 2015; 886
de Faria e Silva, Elcoroaristizabal, Ryder (bb0080) 2020; 117
Kumar, Mishra (bb0235) 2015; 147
Sulkowska (bb0215) 2002; 614
Lacerda, Park, Meuse, Pristinski, Becker, Karim, Douglas (bb0220) 2010; 4
Carroll, D (bb0270) 1970; 35
Mustafa, Hannagan, Rigby, Pfleger, Corry (bb0050) 2013; 18
Peters (bb0165) 1985; 37
Harshman (bb0275) 1970
Khrapunov, Pastor, Brenowitz (bb0385) 2002; 41
Kompany-Zareh, Akhlaghi, Bro (bb0345) 2012; 723
Casamayou-Boucau, Ryder (bb0430) 2020; 1138
Bagatolli, Kivatinitz, Aguilar, Soto, Sotomayor, Fidelio (bb0195) 1996; 6
Jameson, Ross (bb0315) 2010; 110
Joshi, Jadhao, Kumar, Ghosh (bb0175) 2017; 75
Kiers (bb0295) 1991; 56
Patra, Mishra (bb0065) 2002; 21
Kragh-Hansen, Chuang, Otagiri (bb0340) 2002; 25
Lakowicz (bb0035) 2006
Kothawala, Murphy, Stedmon, Weyhenmeyer, Tranvik (bb0230) 2013; 11
Gasymov, Glasgow (bb0170) 2007; 1774
Job (bb0305) 1928; 10
Akhlaghi, Kompany-Zareh, Hormozi-Nezhad (bb0130) 2012; 84
E, P (bb0310) 1924; 24
Sarkar, Koushik, Vogel, Gryczynski, Gryczynski (bb0370) 2009; 14
Casamayou-Boucau, Ryder (bb0380) 2018; 1000
Lenhardt, Bro, Zekovic, Dramicanin, Dramicanin (bb0280) 2015; 175
Weber, Daniel (bb0330) 1966; 5
Jaumot, Gargallo, de Juan, Tauler (bb0245) 2005; 76
Moens, Helms, Jameson (bb0325) 2004; 23
Ma̧ciazek-Jurczyk, Równicka Zubik, Dyja, Sułkowska (bb0425) 2013; 123
Suryawanshi, Walekar, Gore, Anbhule, Kolekar (bb0420) 2016; 6
Bahram, Bro, Stedmon, Afkhami (bb0240) 2006; 20
Akhlaghi, Kompany-Zareh, Ebrahimi (bb0125) 2015; 221
de Juan, Tauler (bb0290) 2001; 15
Steiner-Browne, Elcoroaristizabal, Casamayou-Boucau, Ryder (bb0225) 2019; 185
Kroonenberg, ten Berge (bb0120) 2011; 106
Kumar, Devaraji, Joshi, Wankar, Ghosh (bb0180) 2018; 3
Salem, Lotfy, Amin, Ghattas (bb0405) 2019; 20
Sen, Mandal, Haldar, Chattopadhyay, Patra (bb0350) 2011; 115
Azzouz, Tauler (bb0255) 2008; 74
Abdollahi, Tauler (bb0285) 2011; 108
Fuentealba, Kato, Nishijima, Fukuhara, Mori, Inoue, Bohne (bb0355) 2013; 135
Renny, Tomasevich, Tallmadge, Collum (bb0300) 2013; 52
Bro (bb0095) 1997; 38
Mattheyses, Hoppe, Axelrod (bb0145) 2004; 87
Zorrilla, Rivas, Acuna, Lillo (bb0360) 2004; 13
Warner, Christian, Davidson, Callis (bb0060) 1977; 49
Tucker (bb0115) 1966
Gadella (bb0040) 2011
Togashi, Ryder, O’Shaughnessy (bb0155) 2010; 20
Hitchcock (bb0265) 1927; 6
Murphy, Rasnik, Cheng, Lohman, Ha (bb0015) 2004; 86
Stryer (bb0025) 1978; 47
de Faria e Silva (10.1016/j.bbagen.2020.129770_bb0075) 2020; 1101
de Faria e Silva (10.1016/j.bbagen.2020.129770_bb0080) 2020; 117
Castellano (10.1016/j.bbagen.2020.129770_bb0365) 1998; 255
Kothawala (10.1016/j.bbagen.2020.129770_bb0230) 2013; 11
Groza (10.1016/j.bbagen.2020.129770_bb0085) 2015; 886
Zolmajd-Haghighi (10.1016/j.bbagen.2020.129770_bb0335) 2014; 106
Steiner-Browne (10.1016/j.bbagen.2020.129770_bb0070) 2019; 194
Harshman (10.1016/j.bbagen.2020.129770_bb0275) 1970
Hitchcock (10.1016/j.bbagen.2020.129770_bb0265) 1927; 6
Fuentealba (10.1016/j.bbagen.2020.129770_bb0355) 2013; 135
Akhlaghi (10.1016/j.bbagen.2020.129770_bb0130) 2012; 84
Kosower (10.1016/j.bbagen.2020.129770_bb0200) 1986; 37
Kumar (10.1016/j.bbagen.2020.129770_bb0235) 2015; 147
Ferrer (10.1016/j.bbagen.2020.129770_bb0160) 2001; 80
Cheng (10.1016/j.bbagen.2020.129770_bb0415) 2013; 3
Peters (10.1016/j.bbagen.2020.129770_bb0165) 1985; 37
Hoppe (10.1016/j.bbagen.2020.129770_bb0045) 2013; 8
Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0090) 2017; 5
Togashi (10.1016/j.bbagen.2020.129770_bb0155) 2010; 20
Valeur (10.1016/j.bbagen.2020.129770_bb0030) 2002
Sudlow (10.1016/j.bbagen.2020.129770_bb0185) 1975; 11
Job (10.1016/j.bbagen.2020.129770_bb0305) 1928; 10
Weber (10.1016/j.bbagen.2020.129770_bb0330) 1966; 5
Renny (10.1016/j.bbagen.2020.129770_bb0300) 2013; 52
Bro (10.1016/j.bbagen.2020.129770_bb0095) 1997; 38
Chen (10.1016/j.bbagen.2020.129770_bb0110) 2012; 137
Yuan (10.1016/j.bbagen.2020.129770_bb0020) 2013; 46
Kiers (10.1016/j.bbagen.2020.129770_bb0295) 1991; 56
Moens (10.1016/j.bbagen.2020.129770_bb0325) 2004; 23
E (10.1016/j.bbagen.2020.129770_bb0310) 1924; 24
Patra (10.1016/j.bbagen.2020.129770_bb0065) 2002; 21
Abdollahi (10.1016/j.bbagen.2020.129770_bb0285) 2011; 108
Suryawanshi (10.1016/j.bbagen.2020.129770_bb0420) 2016; 6
Kragh-Hansen (10.1016/j.bbagen.2020.129770_bb0340) 2002; 25
Kumar (10.1016/j.bbagen.2020.129770_bb0180) 2018; 3
Zorrilla (10.1016/j.bbagen.2020.129770_bb0360) 2004; 13
Steiner-Browne (10.1016/j.bbagen.2020.129770_bb0225) 2019; 185
Jameson (10.1016/j.bbagen.2020.129770_bb0315) 2010; 110
Sen (10.1016/j.bbagen.2020.129770_bb0350) 2011; 115
Murphy (10.1016/j.bbagen.2020.129770_bb0015) 2004; 86
Cheng (10.1016/j.bbagen.2020.129770_bb0250) 2013; 115
Weber (10.1016/j.bbagen.2020.129770_bb0320) 1952; 51
Gasymov (10.1016/j.bbagen.2020.129770_bb0170) 2007; 1774
Shi (10.1016/j.bbagen.2020.129770_bb0375) 2007; 46
Yengo (10.1016/j.bbagen.2020.129770_bb0140) 2010; 10
Lenhardt (10.1016/j.bbagen.2020.129770_bb0280) 2015; 175
Kuznetsova (10.1016/j.bbagen.2020.129770_bb0190) 2012; 7
Elcoroaristizabal (10.1016/j.bbagen.2020.129770_bb0260) 2014; 132
Gadella (10.1016/j.bbagen.2020.129770_bb0040) 2011
Khrapunov (10.1016/j.bbagen.2020.129770_bb0385) 2002; 41
Akhlaghi (10.1016/j.bbagen.2020.129770_bb0125) 2015; 221
Azzouz (10.1016/j.bbagen.2020.129770_bb0255) 2008; 74
Mattheyses (10.1016/j.bbagen.2020.129770_bb0145) 2004; 87
Vlasova (10.1016/j.bbagen.2020.129770_bb0390) 2014; 8
Togashi (10.1016/j.bbagen.2020.129770_bb0150) 2008; 18
Kosower (10.1016/j.bbagen.2020.129770_bb0205) 1982; 15
Bagatolli (10.1016/j.bbagen.2020.129770_bb0195) 1996; 6
Stedmon (10.1016/j.bbagen.2020.129770_bb0100) 2003; 82
Kroonenberg (10.1016/j.bbagen.2020.129770_bb0120) 2011; 106
Kompany-Zareh (10.1016/j.bbagen.2020.129770_bb0135) 2014; 139
Lakowicz (10.1016/j.bbagen.2020.129770_bb0035) 2006
Förster (10.1016/j.bbagen.2020.129770_bb0005) 1948; 437
Weber (10.1016/j.bbagen.2020.129770_bb0210) 1954; 56
Jaumot (10.1016/j.bbagen.2020.129770_bb0245) 2005; 76
Tucker (10.1016/j.bbagen.2020.129770_bb0115) 1966
Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0380) 2018; 1000
Bahram (10.1016/j.bbagen.2020.129770_bb0240) 2006; 20
Salem (10.1016/j.bbagen.2020.129770_bb0405) 2019; 20
Song (10.1016/j.bbagen.2020.129770_bb0395) 2011; 12
Warner (10.1016/j.bbagen.2020.129770_bb0060) 1977; 49
Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0430) 2020; 1138
Gordon (10.1016/j.bbagen.2020.129770_bb0055) 1998; 74
Sulkowska (10.1016/j.bbagen.2020.129770_bb0215) 2002; 614
Kompany-Zareh (10.1016/j.bbagen.2020.129770_bb0345) 2012; 723
Joshi (10.1016/j.bbagen.2020.129770_bb0175) 2017; 75
de Juan (10.1016/j.bbagen.2020.129770_bb0290) 2001; 15
Sarkar (10.1016/j.bbagen.2020.129770_bb0370) 2009; 14
Ma̧ciazek-Jurczyk (10.1016/j.bbagen.2020.129770_bb0425) 2013; 123
Stryer (10.1016/j.bbagen.2020.129770_bb0025) 1978; 47
Carroll (10.1016/j.bbagen.2020.129770_bb0270) 1970; 35
Ghisaidoobe (10.1016/j.bbagen.2020.129770_bb0010) 2014; 15
Lehrer (10.1016/j.bbagen.2020.129770_bb0410) 1971; 10
Lacerda (10.1016/j.bbagen.2020.129770_bb0220) 2010; 4
Cvijetić (10.1016/j.bbagen.2020.129770_bb0400) 2014; 2
Mustafa (10.1016/j.bbagen.2020.129770_bb0050) 2013; 18
References_xml – volume: 6
  year: 1927
  ident: bb0265
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
– volume: 2
  start-page: 126
  year: 2014
  end-page: 142
  ident: bb0400
  article-title: Human serum albumin binding of 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-(4-tert-butylphenyl)butanoic acid and its mono-me Ester
  publication-title: ADMET & DMPK
– volume: 110
  start-page: 2685
  year: 2010
  end-page: 2708
  ident: bb0315
  article-title: Fluorescence polarization/anisotropy in diagnostics and imaging
  publication-title: Chem. Rev.
– volume: 8
  year: 2013
  ident: bb0045
  article-title: N-way FRET microscopy of multiple protein-protein interactions in live cells
  publication-title: PLoS One
– volume: 12
  start-page: 4964
  year: 2011
  end-page: 4974
  ident: bb0395
  article-title: Interaction of human serum album and C₆₀ aggregates in solution
  publication-title: Int. J. Mol. Sci.
– volume: 25
  start-page: 695
  year: 2002
  end-page: 704
  ident: bb0340
  article-title: Practical aspects of the ligand-binding and enzymatic properties of human serum albumin
  publication-title: Biol. Pharm. Bull.
– volume: 14
  start-page: 034047
  year: 2009
  ident: bb0370
  article-title: Photophysical properties of cerulean and venus fluorescent proteins
  publication-title: J. Biomed. Opt.
– volume: 10
  start-page: 113
  year: 1928
  end-page: 203
  ident: bb0305
  article-title: Formation and stability of inorganic complexes in solution
  publication-title: Ann. Chim.
– volume: 82
  start-page: 239
  year: 2003
  end-page: 254
  ident: bb0100
  article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy
  publication-title: Mar. Chem.
– volume: 5
  year: 2017
  ident: bb0090
  article-title: Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods
  publication-title: Methods Appl. Fluoresc.
– volume: 41
  start-page: 9559
  year: 2002
  end-page: 9571
  ident: bb0385
  article-title: Solution structural studies of the saccharomyces cerevisiae TATA binding protein (TBP) †
  publication-title: Biochemistry
– volume: 4
  start-page: 365
  year: 2010
  end-page: 379
  ident: bb0220
  article-title: Interaction of gold nanoparticles with common human blood proteins
  publication-title: ACS Nano
– volume: 1000
  start-page: 132
  year: 2018
  end-page: 143
  ident: bb0380
  article-title: Accurate anisotropy recovery from fluorophore mixtures using multivariate curve resolution (MCR)
  publication-title: Anal. Chim. Acta
– year: 2006
  ident: bb0035
  article-title: Principles of Fluorescence Spectroscopy
– volume: 15
  start-page: 259
  year: 1982
  end-page: 266
  ident: bb0205
  article-title: Intramolecular donor-acceptor systems. 9. Photophysics of (phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer
  publication-title: Acc. Chem. Res.
– volume: 18
  year: 2013
  ident: bb0050
  article-title: Quantitative forster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra
  publication-title: J. Biomed. Opt.
– volume: 175
  start-page: 284
  year: 2015
  end-page: 291
  ident: bb0280
  article-title: Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey
  publication-title: Food Chem.
– volume: 7
  start-page: 9
  year: 2012
  ident: bb0190
  article-title: Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization
  publication-title: PLoS One
– volume: 20
  start-page: 441
  year: 2010
  end-page: 452
  ident: bb0155
  article-title: Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy
  publication-title: J. Fluoresc.
– volume: 3
  start-page: 10114
  year: 2018
  end-page: 10128
  ident: bb0180
  article-title: A chalcone-based potential therapeutic small molecule that binds to subdomain IIA in HSA precisely controls the rotamerization of Trp-214
  publication-title: ACS Omega
– volume: 11
  start-page: 824
  year: 1975
  end-page: 832
  ident: bb0185
  article-title: The characterization of two specific drug binding sites on human serum albumin
  publication-title: Mol. Pharmacol.
– volume: 6
  start-page: 56
  year: 2016
  end-page: 63
  ident: bb0420
  article-title: Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin
  publication-title: J. Pharm. Anal.
– volume: 37
  start-page: 127
  year: 1986
  end-page: 156
  ident: bb0200
  article-title: Excited state Electron and proton transfers
  publication-title: Annu. Rev. Phys. Chem.
– volume: 80
  start-page: 2422
  year: 2001
  end-page: 2430
  ident: bb0160
  article-title: The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study
  publication-title: Biophys. J.
– volume: 11
  start-page: 616
  year: 2013
  end-page: 630
  ident: bb0230
  article-title: Inner filter correction of dissolved organic matter fluorescence
  publication-title: Limnol. Oceanogr. Methods
– volume: 108
  start-page: 100
  year: 2011
  end-page: 111
  ident: bb0285
  article-title: Uniqueness and rotation ambiguities in multivariate curve resolution methods
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 135
  start-page: 203
  year: 2013
  end-page: 209
  ident: bb0355
  article-title: Explaining the highly enantiomeric photocyclodimerization of 2-Anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 24
  year: 1924
  end-page: 36
  ident: bb0310
  article-title: Einfluss der konzentration auf die polarisation der fluoreszenz von farbstofflosenungen
  publication-title: Physik
– volume: 13
  start-page: 2960
  year: 2004
  end-page: 2969
  ident: bb0360
  article-title: Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study
  publication-title: Protein Sci.
– volume: 15
  start-page: 22518
  year: 2014
  end-page: 22538
  ident: bb0010
  article-title: Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on forster resonance energy transfer techniques
  publication-title: Int. J. Mol. Sci.
– volume: 106
  start-page: 1457
  year: 2014
  end-page: 1466
  ident: bb0335
  article-title: When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins
  publication-title: Biophys. J.
– volume: 106
  start-page: 21
  year: 2011
  end-page: 26
  ident: bb0120
  article-title: The equivalence of Tucker3 and Parafac models with two components
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 76
  start-page: 101
  year: 2005
  end-page: 110
  ident: bb0245
  article-title: A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 886
  start-page: 133
  year: 2015
  end-page: 142
  ident: bb0085
  article-title: Anisotropy resolved multidimensional emission spectroscopy (ARMES): a new tool for protein analysis
  publication-title: Anal. Chim. Acta
– year: 2002
  ident: bb0030
  article-title: Molecular Fluorescence: Principles and Applications
– volume: 56
  start-page: R31
  year: 1954
  ident: bb0210
  article-title: Fluorescent indicators of adsorption in aqueous solution and on the solid phase
  publication-title: Biochem. J.
– volume: 86
  start-page: 2530
  year: 2004
  end-page: 2537
  ident: bb0015
  article-title: Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy
  publication-title: Biophys. J.
– volume: 185
  start-page: 1
  year: 2019
  end-page: 11
  ident: bb0225
  article-title: Investigating native state fluorescence emission of immunoglobulin G using polarized excitation emission matrix (pEEM) spectroscopy and PARAFAC
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 74
  start-page: 1201
  year: 2008
  end-page: 1210
  ident: bb0255
  article-title: Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples
  publication-title: Talanta
– volume: 51
  start-page: 145
  year: 1952
  end-page: 155
  ident: bb0320
  article-title: Polarizaion of the fluorescence of macromolecules 1. Theory and experimental method
  publication-title: Biochem. J.
– volume: 46
  start-page: 14403
  year: 2007
  end-page: 14417
  ident: bb0375
  article-title: Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers
  publication-title: Biochemistry
– volume: 20
  start-page: 99
  year: 2006
  end-page: 105
  ident: bb0240
  article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation
  publication-title: J. Chemom.
– volume: 6
  start-page: 33
  year: 1996
  end-page: 40
  ident: bb0195
  article-title: Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin
  publication-title: J. Fluoresc.
– volume: 1774
  start-page: 403
  year: 2007
  end-page: 411
  ident: bb0170
  article-title: ANS fluorescence: potential to augment the identification of the external binding sites of proteins
  publication-title: Bba-Proteins Proteom.
– volume: 1138
  start-page: 18
  year: 2020
  end-page: 29
  ident: bb0430
  article-title: Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 437
  start-page: 55
  year: 1948
  end-page: 75
  ident: bb0005
  article-title: Zwischenmolekulare energiewanderung und fluoreszenz
  publication-title: Ann. Phys.
– volume: 221
  start-page: 45
  year: 2015
  end-page: 54
  ident: bb0125
  article-title: Model-based approaches to investigate the interactions between unmodified gold nanoparticles and DNA strands
  publication-title: Sens. Actuator B-Chem.
– volume: 47
  start-page: 819
  year: 1978
  end-page: 846
  ident: bb0025
  article-title: Fluorescence energy transfer as a spectroscopic ruler
  publication-title: Annu. Rev. Biochem.
– volume: 23
  start-page: 79
  year: 2004
  end-page: 83
  ident: bb0325
  article-title: Detection of tryptophan to tryptophan energy transfer in proteins
  publication-title: Protein J.
– volume: 10
  start-page: 731
  year: 2010
  end-page: 737
  ident: bb0140
  article-title: Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment
  publication-title: Curr. Opin. Pharmacol.
– volume: 74
  start-page: 2702
  year: 1998
  end-page: 2713
  ident: bb0055
  article-title: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy
  publication-title: Biophys. J.
– volume: 137
  start-page: 153
  year: 2012
  end-page: 162
  ident: bb0110
  article-title: Application of PARAFAC to a two-component system exhibiting fluorescence resonance energy transfer: from theoretical prediction to experimental validation
  publication-title: Analyst
– start-page: 279
  year: 1966
  end-page: 311
  ident: bb0115
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
– volume: 37
  start-page: 161
  year: 1985
  end-page: 245
  ident: bb0165
  article-title: Serum albumin
  publication-title: Adv. Protein Chem.
– volume: 3
  start-page: 257
  year: 2013
  end-page: 269
  ident: bb0415
  article-title: Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches
  publication-title: J. Pharm. Anal.
– volume: 75
  start-page: 332
  year: 2017
  end-page: 346
  ident: bb0175
  article-title: Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: a combined spectroscopic and docking simulation approach
  publication-title: Bioorg. Chem.
– volume: 255
  start-page: 165
  year: 1998
  end-page: 170
  ident: bb0365
  article-title: Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups
  publication-title: Anal. Biochem.
– volume: 56
  start-page: 449
  year: 1991
  end-page: 470
  ident: bb0295
  article-title: Hierarchical relations among 3-way methods
  publication-title: Psychometrika
– volume: 21
  start-page: 787
  year: 2002
  end-page: 798
  ident: bb0065
  article-title: Recent developments in multi-component synchronous fluorescence scan analysis
  publication-title: TrAC Trends Anal. Chem.
– volume: 132
  start-page: 63
  year: 2014
  end-page: 74
  ident: bb0260
  article-title: Comparison of second-order multivariate methods for screening and determination of PAHs by total fluorescence spectroscopy
  publication-title: Chemometr. Intell. Lab.
– volume: 46
  start-page: 1462
  year: 2013
  end-page: 1473
  ident: bb0020
  article-title: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications
  publication-title: Acc. Chem. Res.
– volume: 123
  start-page: 673
  year: 2013
  end-page: 680
  ident: bb0425
  article-title: Comparative analysis of KP-HSA complex by spectroscopic methods
  publication-title: Acta Phys. Pol. A
– volume: 5
  year: 1966
  ident: bb0330
  article-title: Cooperative effects in binding by bovine serum albumin 2. Binding of 1-anilino-8-naphthalene sulfonate. Polarization of ligand fluorescence and quenching of protein fluorescence
  publication-title: Biochemistry
– volume: 194
  year: 2019
  ident: bb0070
  article-title: Using polarized total synchronous fluorescence spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 87
  start-page: 2787
  year: 2004
  end-page: 2797
  ident: bb0145
  article-title: Polarized fluorescence resonance energy transfer microscopy
  publication-title: Biophys. J.
– volume: 614
  start-page: 227
  year: 2002
  end-page: 232
  ident: bb0215
  article-title: Interaction of drugs with bovine and human serum albumin
  publication-title: J. Mol. Struct.
– volume: 15
  start-page: 749
  year: 2001
  end-page: 772
  ident: bb0290
  article-title: Comparison of three-way resolution methods for non-trilinear chemical data sets
  publication-title: J. Chemom.
– volume: 20
  year: 2019
  ident: bb0405
  article-title: Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques
  publication-title: Biochem. Biophys. Rep.
– volume: 52
  start-page: 11998
  year: 2013
  end-page: 12013
  ident: bb0300
  article-title: Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry
  publication-title: Angew. Chem. Int. Ed. Eng.
– volume: 139
  start-page: 33
  year: 2014
  end-page: 41
  ident: bb0135
  article-title: Soft and hard multiway FRET-based investigation of interaction between drug and QD labeled DNA
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 1101
  start-page: 99
  year: 2020
  end-page: 110
  ident: bb0075
  article-title: Multi-attribute quality screening of immunoglobulin G using polarized excitation emission matrix spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 723
  start-page: 18
  year: 2012
  end-page: 26
  ident: bb0345
  article-title: Tucker core consistency for validation of restricted Tucker3 models
  publication-title: Anal. Chim. Acta
– volume: 10
  start-page: 3254
  year: 1971
  end-page: 3263
  ident: bb0410
  article-title: Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion
  publication-title: Biochemistry
– volume: 147
  start-page: 121
  year: 2015
  end-page: 130
  ident: bb0235
  article-title: Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: certain practical aspects
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: bb0270
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of an ‘Eckart-Young’ decomposition
  publication-title: Psychometrika
– volume: 38
  start-page: 149
  year: 1997
  end-page: 171
  ident: bb0095
  article-title: PARAFAC. Tutorial and applications
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 8
  start-page: 385
  year: 2014
  end-page: 390
  ident: bb0390
  article-title: Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein
  publication-title: Russ. J. Phys. Chem. B
– volume: 117
  start-page: 2969
  year: 2020
  end-page: 2984
  ident: bb0080
  article-title: Characterization of lysozyme PEGylation products using polarized excitation-emission matrix spectroscopy
  publication-title: Biotechnol. Bioeng.
– start-page: 1
  year: 1970
  end-page: 84
  ident: bb0275
  article-title: Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis. , UCLA work. Pap
  publication-title: Phon.
– volume: 84
  start-page: 6603
  year: 2012
  end-page: 6610
  ident: bb0130
  article-title: Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles
  publication-title: Anal. Chem.
– volume: 18
  start-page: 519
  year: 2008
  end-page: 526
  ident: bb0150
  article-title: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer
  publication-title: J. Fluoresc.
– volume: 115
  start-page: 92
  year: 2013
  end-page: 105
  ident: bb0250
  article-title: Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods
  publication-title: Spectrochim. Acta A
– year: 2011
  ident: bb0040
  article-title: FRET and FLIM techniques
– volume: 49
  start-page: 564
  year: 1977
  end-page: 573
  ident: bb0060
  article-title: Analysis of multicomponent fluorescence data
  publication-title: Anal. Chem.
– volume: 115
  start-page: 24037
  year: 2011
  end-page: 24044
  ident: bb0350
  article-title: Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer
  publication-title: J. Phys. Chem. C
– volume: 56
  start-page: R31
  year: 1954
  ident: 10.1016/j.bbagen.2020.129770_bb0210
  article-title: Fluorescent indicators of adsorption in aqueous solution and on the solid phase
  publication-title: Biochem. J.
– volume: 194
  year: 2019
  ident: 10.1016/j.bbagen.2020.129770_bb0070
  article-title: Using polarized total synchronous fluorescence spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.103871
– volume: 13
  start-page: 2960
  year: 2004
  ident: 10.1016/j.bbagen.2020.129770_bb0360
  article-title: Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study
  publication-title: Protein Sci.
  doi: 10.1110/ps.04809404
– volume: 6
  start-page: 33
  year: 1996
  ident: 10.1016/j.bbagen.2020.129770_bb0195
  article-title: Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin
  publication-title: J. Fluoresc.
  doi: 10.1007/BF00726724
– volume: 84
  start-page: 6603
  year: 2012
  ident: 10.1016/j.bbagen.2020.129770_bb0130
  article-title: Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles
  publication-title: Anal. Chem.
  doi: 10.1021/ac3008576
– volume: 25
  start-page: 695
  year: 2002
  ident: 10.1016/j.bbagen.2020.129770_bb0340
  article-title: Practical aspects of the ligand-binding and enzymatic properties of human serum albumin
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.25.695
– volume: 87
  start-page: 2787
  year: 2004
  ident: 10.1016/j.bbagen.2020.129770_bb0145
  article-title: Polarized fluorescence resonance energy transfer microscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.103.036194
– volume: 37
  start-page: 127
  year: 1986
  ident: 10.1016/j.bbagen.2020.129770_bb0200
  article-title: Excited state Electron and proton transfers
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.37.100186.001015
– volume: 10
  start-page: 113
  year: 1928
  ident: 10.1016/j.bbagen.2020.129770_bb0305
  article-title: Formation and stability of inorganic complexes in solution
  publication-title: Ann. Chim.
– volume: 135
  start-page: 203
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0355
  article-title: Explaining the highly enantiomeric photocyclodimerization of 2-Anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3081555
– volume: 110
  start-page: 2685
  year: 2010
  ident: 10.1016/j.bbagen.2020.129770_bb0315
  article-title: Fluorescence polarization/anisotropy in diagnostics and imaging
  publication-title: Chem. Rev.
  doi: 10.1021/cr900267p
– volume: 117
  start-page: 2969
  year: 2020
  ident: 10.1016/j.bbagen.2020.129770_bb0080
  article-title: Characterization of lysozyme PEGylation products using polarized excitation-emission matrix spectroscopy
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.27483
– volume: 76
  start-page: 101
  year: 2005
  ident: 10.1016/j.bbagen.2020.129770_bb0245
  article-title: A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.12.007
– volume: 46
  start-page: 14403
  year: 2007
  ident: 10.1016/j.bbagen.2020.129770_bb0375
  article-title: Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers
  publication-title: Biochemistry
  doi: 10.1021/bi701575n
– volume: 7
  start-page: 9
  year: 2012
  ident: 10.1016/j.bbagen.2020.129770_bb0190
  article-title: Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040845
– volume: 37
  start-page: 161
  year: 1985
  ident: 10.1016/j.bbagen.2020.129770_bb0165
  article-title: Serum albumin
  publication-title: Adv. Protein Chem.
  doi: 10.1016/S0065-3233(08)60065-0
– volume: 24
  start-page: 24
  year: 1924
  ident: 10.1016/j.bbagen.2020.129770_bb0310
  article-title: Einfluss der konzentration auf die polarisation der fluoreszenz von farbstofflosenungen
  publication-title: Physik
  doi: 10.1007/BF01327227
– start-page: 1
  year: 1970
  ident: 10.1016/j.bbagen.2020.129770_bb0275
  article-title: Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis. , UCLA work. Pap
  publication-title: Phon.
– volume: 115
  start-page: 92
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0250
  article-title: Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods
  publication-title: Spectrochim. Acta A
  doi: 10.1016/j.saa.2013.06.007
– volume: 6
  start-page: 56
  year: 2016
  ident: 10.1016/j.bbagen.2020.129770_bb0420
  article-title: Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2015.07.001
– volume: 614
  start-page: 227
  year: 2002
  ident: 10.1016/j.bbagen.2020.129770_bb0215
  article-title: Interaction of drugs with bovine and human serum albumin
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(02)00256-9
– volume: 106
  start-page: 21
  year: 2011
  ident: 10.1016/j.bbagen.2020.129770_bb0120
  article-title: The equivalence of Tucker3 and Parafac models with two components
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.05.022
– volume: 15
  start-page: 22518
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0010
  article-title: Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on forster resonance energy transfer techniques
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms151222518
– volume: 86
  start-page: 2530
  year: 2004
  ident: 10.1016/j.bbagen.2020.129770_bb0015
  article-title: Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(04)74308-8
– volume: 185
  start-page: 1
  year: 2019
  ident: 10.1016/j.bbagen.2020.129770_bb0225
  article-title: Investigating native state fluorescence emission of immunoglobulin G using polarized excitation emission matrix (pEEM) spectroscopy and PARAFAC
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.12.007
– volume: 20
  start-page: 99
  year: 2006
  ident: 10.1016/j.bbagen.2020.129770_bb0240
  article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation
  publication-title: J. Chemom.
  doi: 10.1002/cem.978
– volume: 6
  year: 1927
  ident: 10.1016/j.bbagen.2020.129770_bb0265
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– volume: 3
  start-page: 257
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0415
  article-title: Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches
  publication-title: J. Pharm. Anal.
  doi: 10.1016/j.jpha.2013.01.004
– volume: 80
  start-page: 2422
  year: 2001
  ident: 10.1016/j.bbagen.2020.129770_bb0160
  article-title: The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76211-X
– volume: 38
  start-page: 149
  year: 1997
  ident: 10.1016/j.bbagen.2020.129770_bb0095
  article-title: PARAFAC. Tutorial and applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00032-4
– volume: 46
  start-page: 1462
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0020
  article-title: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300273v
– volume: 8
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0045
  article-title: N-way FRET microscopy of multiple protein-protein interactions in live cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0064760
– volume: 20
  year: 2019
  ident: 10.1016/j.bbagen.2020.129770_bb0405
  article-title: Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques
  publication-title: Biochem. Biophys. Rep.
– volume: 132
  start-page: 63
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0260
  article-title: Comparison of second-order multivariate methods for screening and determination of PAHs by total fluorescence spectroscopy
  publication-title: Chemometr. Intell. Lab.
  doi: 10.1016/j.chemolab.2014.01.005
– volume: 5
  year: 2017
  ident: 10.1016/j.bbagen.2020.129770_bb0090
  article-title: Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods
  publication-title: Methods Appl. Fluoresc.
  doi: 10.1088/2050-6120/aa7763
– year: 2002
  ident: 10.1016/j.bbagen.2020.129770_bb0030
– volume: 14
  start-page: 034047
  year: 2009
  ident: 10.1016/j.bbagen.2020.129770_bb0370
  article-title: Photophysical properties of cerulean and venus fluorescent proteins
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3156842
– volume: 437
  start-page: 55
  year: 1948
  ident: 10.1016/j.bbagen.2020.129770_bb0005
  article-title: Zwischenmolekulare energiewanderung und fluoreszenz
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19484370105
– volume: 52
  start-page: 11998
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0300
  article-title: Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry
  publication-title: Angew. Chem. Int. Ed. Eng.
  doi: 10.1002/anie.201304157
– volume: 3
  start-page: 10114
  year: 2018
  ident: 10.1016/j.bbagen.2020.129770_bb0180
  article-title: A chalcone-based potential therapeutic small molecule that binds to subdomain IIA in HSA precisely controls the rotamerization of Trp-214
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b01079
– year: 2006
  ident: 10.1016/j.bbagen.2020.129770_bb0035
– volume: 106
  start-page: 1457
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0335
  article-title: When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.02.020
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.bbagen.2020.129770_bb0270
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of an ‘Eckart-Young’ decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– volume: 41
  start-page: 9559
  year: 2002
  ident: 10.1016/j.bbagen.2020.129770_bb0385
  article-title: Solution structural studies of the saccharomyces cerevisiae TATA binding protein (TBP) †
  publication-title: Biochemistry
  doi: 10.1021/bi0255773
– volume: 10
  start-page: 3254
  year: 1971
  ident: 10.1016/j.bbagen.2020.129770_bb0410
  article-title: Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion
  publication-title: Biochemistry
  doi: 10.1021/bi00793a015
– volume: 886
  start-page: 133
  year: 2015
  ident: 10.1016/j.bbagen.2020.129770_bb0085
  article-title: Anisotropy resolved multidimensional emission spectroscopy (ARMES): a new tool for protein analysis
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2015.06.011
– volume: 47
  start-page: 819
  year: 1978
  ident: 10.1016/j.bbagen.2020.129770_bb0025
  article-title: Fluorescence energy transfer as a spectroscopic ruler
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.47.070178.004131
– volume: 21
  start-page: 787
  year: 2002
  ident: 10.1016/j.bbagen.2020.129770_bb0065
  article-title: Recent developments in multi-component synchronous fluorescence scan analysis
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/S0165-9936(02)01201-3
– volume: 11
  start-page: 824
  year: 1975
  ident: 10.1016/j.bbagen.2020.129770_bb0185
  article-title: The characterization of two specific drug binding sites on human serum albumin
  publication-title: Mol. Pharmacol.
– volume: 15
  start-page: 749
  year: 2001
  ident: 10.1016/j.bbagen.2020.129770_bb0290
  article-title: Comparison of three-way resolution methods for non-trilinear chemical data sets
  publication-title: J. Chemom.
  doi: 10.1002/cem.662
– start-page: 279
  year: 1966
  ident: 10.1016/j.bbagen.2020.129770_bb0115
  article-title: Some mathematical notes on three-mode factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 49
  start-page: 564
  year: 1977
  ident: 10.1016/j.bbagen.2020.129770_bb0060
  article-title: Analysis of multicomponent fluorescence data
  publication-title: Anal. Chem.
  doi: 10.1021/ac50012a016
– volume: 1000
  start-page: 132
  year: 2018
  ident: 10.1016/j.bbagen.2020.129770_bb0380
  article-title: Accurate anisotropy recovery from fluorophore mixtures using multivariate curve resolution (MCR)
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.11.031
– volume: 115
  start-page: 24037
  year: 2011
  ident: 10.1016/j.bbagen.2020.129770_bb0350
  article-title: Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp207374g
– volume: 255
  start-page: 165
  year: 1998
  ident: 10.1016/j.bbagen.2020.129770_bb0365
  article-title: Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2468
– volume: 1138
  start-page: 18
  year: 2020
  ident: 10.1016/j.bbagen.2020.129770_bb0430
  article-title: Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.09.007
– volume: 56
  start-page: 449
  year: 1991
  ident: 10.1016/j.bbagen.2020.129770_bb0295
  article-title: Hierarchical relations among 3-way methods
  publication-title: Psychometrika
  doi: 10.1007/BF02294485
– volume: 123
  start-page: 673
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0425
  article-title: Comparative analysis of KP-HSA complex by spectroscopic methods
  publication-title: Acta Phys. Pol. A
  doi: 10.12693/APhysPolA.123.673
– volume: 23
  start-page: 79
  year: 2004
  ident: 10.1016/j.bbagen.2020.129770_bb0325
  article-title: Detection of tryptophan to tryptophan energy transfer in proteins
  publication-title: Protein J.
  doi: 10.1023/B:JOPC.0000016261.97474.2e
– volume: 18
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0050
  article-title: Quantitative forster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.18.2.026024
– volume: 18
  start-page: 519
  year: 2008
  ident: 10.1016/j.bbagen.2020.129770_bb0150
  article-title: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-007-0294-x
– volume: 20
  start-page: 441
  year: 2010
  ident: 10.1016/j.bbagen.2020.129770_bb0155
  article-title: Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy
  publication-title: J. Fluoresc.
  doi: 10.1007/s10895-009-0566-8
– volume: 221
  start-page: 45
  year: 2015
  ident: 10.1016/j.bbagen.2020.129770_bb0125
  article-title: Model-based approaches to investigate the interactions between unmodified gold nanoparticles and DNA strands
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2015.06.102
– volume: 15
  start-page: 259
  year: 1982
  ident: 10.1016/j.bbagen.2020.129770_bb0205
  article-title: Intramolecular donor-acceptor systems. 9. Photophysics of (phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00080a005
– volume: 723
  start-page: 18
  year: 2012
  ident: 10.1016/j.bbagen.2020.129770_bb0345
  article-title: Tucker core consistency for validation of restricted Tucker3 models
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.02.028
– volume: 10
  start-page: 731
  year: 2010
  ident: 10.1016/j.bbagen.2020.129770_bb0140
  article-title: Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2010.09.013
– volume: 11
  start-page: 616
  year: 2013
  ident: 10.1016/j.bbagen.2020.129770_bb0230
  article-title: Inner filter correction of dissolved organic matter fluorescence
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.4319/lom.2013.11.616
– volume: 51
  start-page: 145
  year: 1952
  ident: 10.1016/j.bbagen.2020.129770_bb0320
  article-title: Polarizaion of the fluorescence of macromolecules 1. Theory and experimental method
  publication-title: Biochem. J.
  doi: 10.1042/bj0510145
– volume: 137
  start-page: 153
  year: 2012
  ident: 10.1016/j.bbagen.2020.129770_bb0110
  article-title: Application of PARAFAC to a two-component system exhibiting fluorescence resonance energy transfer: from theoretical prediction to experimental validation
  publication-title: Analyst
  doi: 10.1039/C1AN15805H
– volume: 75
  start-page: 332
  year: 2017
  ident: 10.1016/j.bbagen.2020.129770_bb0175
  article-title: Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: a combined spectroscopic and docking simulation approach
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2017.10.013
– volume: 147
  start-page: 121
  year: 2015
  ident: 10.1016/j.bbagen.2020.129770_bb0235
  article-title: Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: certain practical aspects
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.008
– volume: 74
  start-page: 2702
  year: 1998
  ident: 10.1016/j.bbagen.2020.129770_bb0055
  article-title: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)77976-7
– volume: 82
  start-page: 239
  year: 2003
  ident: 10.1016/j.bbagen.2020.129770_bb0100
  article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy
  publication-title: Mar. Chem.
  doi: 10.1016/S0304-4203(03)00072-0
– volume: 8
  start-page: 385
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0390
  article-title: Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793114030154
– volume: 1774
  start-page: 403
  year: 2007
  ident: 10.1016/j.bbagen.2020.129770_bb0170
  article-title: ANS fluorescence: potential to augment the identification of the external binding sites of proteins
  publication-title: Bba-Proteins Proteom.
  doi: 10.1016/j.bbapap.2007.01.002
– volume: 4
  start-page: 365
  year: 2010
  ident: 10.1016/j.bbagen.2020.129770_bb0220
  article-title: Interaction of gold nanoparticles with common human blood proteins
  publication-title: ACS Nano
  doi: 10.1021/nn9011187
– volume: 175
  start-page: 284
  year: 2015
  ident: 10.1016/j.bbagen.2020.129770_bb0280
  article-title: Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.11.162
– volume: 108
  start-page: 100
  year: 2011
  ident: 10.1016/j.bbagen.2020.129770_bb0285
  article-title: Uniqueness and rotation ambiguities in multivariate curve resolution methods
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.05.009
– volume: 74
  start-page: 1201
  year: 2008
  ident: 10.1016/j.bbagen.2020.129770_bb0255
  article-title: Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples
  publication-title: Talanta
  doi: 10.1016/j.talanta.2007.08.024
– volume: 5
  year: 1966
  ident: 10.1016/j.bbagen.2020.129770_bb0330
  article-title: Cooperative effects in binding by bovine serum albumin 2. Binding of 1-anilino-8-naphthalene sulfonate. Polarization of ligand fluorescence and quenching of protein fluorescence
  publication-title: Biochemistry
  doi: 10.1021/bi00870a017
– volume: 2
  start-page: 126
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0400
  article-title: Human serum albumin binding of 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-(4-tert-butylphenyl)butanoic acid and its mono-me Ester
  publication-title: ADMET & DMPK
  doi: 10.5599/admet.2.2.28
– volume: 1101
  start-page: 99
  year: 2020
  ident: 10.1016/j.bbagen.2020.129770_bb0075
  article-title: Multi-attribute quality screening of immunoglobulin G using polarized excitation emission matrix spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.12.020
– volume: 12
  start-page: 4964
  year: 2011
  ident: 10.1016/j.bbagen.2020.129770_bb0395
  article-title: Interaction of human serum album and C₆₀ aggregates in solution
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12084964
– year: 2011
  ident: 10.1016/j.bbagen.2020.129770_bb0040
– volume: 139
  start-page: 33
  year: 2014
  ident: 10.1016/j.bbagen.2020.129770_bb0135
  article-title: Soft and hard multiway FRET-based investigation of interaction between drug and QD labeled DNA
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2014.08.009
SSID ssj0000595
Score 2.4370906
Snippet Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129770
SubjectTerms Algorithms
Anilino Naphthalenesulfonates - chemistry
Anisotropy
Chemometrics
energy transfer
Fluorescence
Fluorescence Resonance Energy Transfer - methods
fluorescent dyes
Fluorescent Dyes - chemistry
Förster resonance energy transfer
human serum albumin
Humans
Modelling
Models, Molecular
multivariate analysis
Protein
Serum Albumin, Human - chemistry
spectroscopy
sulfonates
tryptophan
tyrosine
Title Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES)
URI https://dx.doi.org/10.1016/j.bbagen.2020.129770
https://www.ncbi.nlm.nih.gov/pubmed/33214128
https://www.proquest.com/docview/2463101881
https://www.proquest.com/docview/2551907619
Volume 1865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CQmgvpUlf2yZBhR6Sg7trS7bs47Lssm1oDnlAbsJ6uGwI9rJxCjkkP6t_oH8sM5KdkkMa6M3YEhYzY-mT9c03AF-qLKlSjcEbO64jUVZZVEg7QiCXVsKMbF5Zz7Y4yuZn4vt5er4Gkz4XhmiV3dwf5nQ_W3d3hp01h8vFYnhCh3oIJ9IEL5I8JtltISRF-de7vzQPhA9pOEkQEbXu0-c8x0tr_GhJBTUhmQWEQqOnlqen4Kdfhmav4VWHH9k4DHEL1ly9DZuhouTNNryY9AXc3sAt1Tnzktts9uf3ihQRGG6uG5LYcMz5pD_WeuCKT_Znx9PTA0Y8-J-srBdXTbtqlje-x-UvZ5mnHkaWqgEEJQ9Gb6JL5tM1SRaTOuyPj39MTw7ewtlsejqZR121hcigGduIhO4k7iZ1qU2ZjbjUcWVy3ECkBTelNGlsq4wyVYtM2NzGWsZFLjQiEskRlnH-DtbrpnYfgFU8wUdWCuuM4GVaOETFpTBGZ2hqIQfAeyMr00mRU0WMS9Vzzi5UcI0i16jgmgFED72WQYrjmfay9596FFIKV4tnen7u3a3QknSEUtauub5Sicg4aZzl8T_aIAgt_O-hAbwPsfIwXk51oRASfPzvsX2ClwnRajxxfAfW29W120Vc1Oo9H_h7sDH-djg_ugdliwwc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7RRRW9VC3927a0rtQDHKLdxE6cHFerXS0F9gCLxM2Kf4K2QslqCUgceK2-QF-sM04C4gBIvUWxR7Fm7PHneOYbgJ9FEhWxxskbOq4DkRdJkEk7RCAXF8IMbVpYH20xT2an4tdZfLYB4y4XhsIqW9_f-HTvrds3g1abg9VyOTihSz2EE3GED1EaJi9gk9ip4h5sjvYPZvN7hxz74ivUPyCBLoPOh3lpjeuWiFAjYlpANDR8bId6DIH6nWj6Bl63EJKNmlG-hQ1XbsPLpqjkzTZsjbsabu_glkqdedZtNv37Z02kCAzP1xWxbDjmfN4fqz12xZbd6fFksccoFP6c5eXysqrX1erGS1xcO8t89GFgqSBAQ-bB6Ev0yHzGJjFjksDu6PhocrL3Hk6nk8V4FrQFFwKDmqwD4rqTeKDUuTZ5MuRSh4VJ8QwRZ9zk0sShLRJKVs0SYVMbahlmqdAISiRHZMb5B-iVVek-ASt4hE1WCuuM4HmcOQTGuTBGJ6hqIfvAOyUr07KRU1GMC9WFnf1WjWkUmUY1pulDcCe1atg4nukvO_upB7NK4YbxjOSPztwKNUm3KHnpqqtLFYmEE81ZGj7RB3Fo5v8Q9eFjM1fuxsupNBSigs__PbbvsDVbHB2qw_35wRd4FVGUjY8j_wq9en3ldhAm1fpbuwz-AYz3Ds0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+F%C3%B6rster+resonance+energy+transfer+%28FRET%29+using+anisotropy+resolved+multi-dimensional+emission+spectroscopy+%28ARMES%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Gordon%2C+Fiona&rft.au=Elcoroaristizabal%2C+Saioa&rft.au=Ryder%2C+Alan+G&rft.date=2021-02-01&rft.eissn=1872-8006&rft.volume=1865&rft.issue=2&rft.spage=129770&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129770&rft_id=info%3Apmid%2F33214128&rft.externalDocID=33214128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon