Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES)
Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and ene...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1865; no. 2; p. 129770 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.
We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.
pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.
FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.
Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
[Display omitted]
•Reports a novel approach for analysis of FRET.•Uses polarized multidimensional fluorescence measurements.•Resolves overlapped donor and acceptor spectra using chemometrics.•Enables calculation of more accurate quenching and energy transfer parameters. |
---|---|
AbstractList | Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.BACKGROUNDFörster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.METHODSWe demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.RESULTSpEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.CONCLUSIONSFRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.GENERAL SIGNIFICANCEShows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. [Display omitted] •Reports a novel approach for analysis of FRET.•Uses polarized multidimensional fluorescence measurements.•Resolves overlapped donor and acceptor spectra using chemometrics.•Enables calculation of more accurate quenching and energy transfer parameters. Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical.We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions.pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores.FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods.Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins. |
ArticleNumber | 129770 |
Author | Gordon, Fiona Elcoroaristizabal, Saioa Ryder, Alan G. |
Author_xml | – sequence: 1 givenname: Fiona surname: Gordon fullname: Gordon, Fiona email: F.GORDON2@nuigalway.ie – sequence: 2 givenname: Saioa surname: Elcoroaristizabal fullname: Elcoroaristizabal, Saioa email: elcoroaristizabal@nuigalway.ie – sequence: 3 givenname: Alan G. surname: Ryder fullname: Ryder, Alan G. email: alan.ryder@nuigalway.ie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33214128$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFu3CAYhVGVqpmkvUFVeTlZeMpvY2O6qBRFM02kRJGSdI0w_B4xsvEU7Eiz6LV6gV6suE42WSSwAMH3nuC9E3LkeoeEfAa6Agrl192qrtUW3SqjWTzKBOf0HVlAxbO0orQ8IguaU5YyKItjchLCjsZRiOIDOc7zDBhk1YL8vukNtq1122Tz948PA_rEY-idchoTdOi3h2TwyoUm3iw3d-uHs2QME6-cDf3g-_3hv6J9RJN0YzvY1NgOXbDRpE2ws2HaJmGPOtJBT4Ll-d3N-v7sI3nfqDbgp6f1lPzcrB8uLtPr2x9XF-fXqWYMhrQqOXBGs1rVWpU05zU0uqJMFCLXiusCTFMWgoIomakM1BxExWrOgOdZnPkpWc6-e9__GjEMMr5Kx38rh_0YZFYUICgvQbyNsjKP-VcVRPTLEzrWHRq597ZT_iCf043AtxnQ8d_BYyO1HdQQ04iJ2lYClVOVcifnKuVUpZyrjGL2Qvzs_4bs-yzDmOejRS-DthjLNNbHAqTp7esG_wDKUrmq |
CitedBy_id | crossref_primary_10_15407_fm30_03_424 crossref_primary_10_1016_j_jphotobiol_2023_112693 crossref_primary_10_3103_S1063457624030031 crossref_primary_10_1016_j_foodchem_2022_133732 crossref_primary_10_1021_acs_molpharmaceut_3c00875 crossref_primary_10_3103_S1063457624050034 crossref_primary_10_1002_bio_4553 crossref_primary_10_3390_app14209202 crossref_primary_10_1039_D2NH00548D crossref_primary_10_3103_S1063457623030140 crossref_primary_10_1088_2050_6120_ac5389 crossref_primary_10_3103_S1063457623010045 crossref_primary_10_1016_j_abb_2023_109533 crossref_primary_10_1016_j_bpr_2022_100089 crossref_primary_10_1039_D1CP05159H crossref_primary_10_1016_j_colsurfb_2021_112310 crossref_primary_10_3103_S1063457622050021 crossref_primary_10_3103_S106345762302003X crossref_primary_10_3103_S106345762404004X |
Cites_doi | 10.1016/j.chemolab.2019.103871 10.1110/ps.04809404 10.1007/BF00726724 10.1021/ac3008576 10.1248/bpb.25.695 10.1529/biophysj.103.036194 10.1146/annurev.pc.37.100186.001015 10.1021/ja3081555 10.1021/cr900267p 10.1002/bit.27483 10.1016/j.chemolab.2004.12.007 10.1021/bi701575n 10.1371/journal.pone.0040845 10.1016/S0065-3233(08)60065-0 10.1007/BF01327227 10.1016/j.saa.2013.06.007 10.1016/j.jpha.2015.07.001 10.1016/S0022-2860(02)00256-9 10.1016/j.chemolab.2010.05.022 10.3390/ijms151222518 10.1016/S0006-3495(04)74308-8 10.1016/j.chemolab.2018.12.007 10.1002/cem.978 10.1002/sapm192761164 10.1016/j.jpha.2013.01.004 10.1016/S0006-3495(01)76211-X 10.1016/S0169-7439(97)00032-4 10.1021/ar300273v 10.1371/journal.pone.0064760 10.1016/j.chemolab.2014.01.005 10.1088/2050-6120/aa7763 10.1117/1.3156842 10.1002/andp.19484370105 10.1002/anie.201304157 10.1021/acsomega.8b01079 10.1016/j.bpj.2014.02.020 10.1007/BF02310791 10.1021/bi0255773 10.1021/bi00793a015 10.1016/j.aca.2015.06.011 10.1146/annurev.bi.47.070178.004131 10.1016/S0165-9936(02)01201-3 10.1002/cem.662 10.1007/BF02289464 10.1021/ac50012a016 10.1016/j.aca.2017.11.031 10.1021/jp207374g 10.1006/abio.1997.2468 10.1016/j.aca.2020.09.007 10.1007/BF02294485 10.12693/APhysPolA.123.673 10.1023/B:JOPC.0000016261.97474.2e 10.1117/1.JBO.18.2.026024 10.1007/s10895-007-0294-x 10.1007/s10895-009-0566-8 10.1016/j.snb.2015.06.102 10.1021/ar00080a005 10.1016/j.aca.2012.02.028 10.1016/j.coph.2010.09.013 10.4319/lom.2013.11.616 10.1042/bj0510145 10.1039/C1AN15805H 10.1016/j.bioorg.2017.10.013 10.1016/j.chemolab.2015.08.008 10.1016/S0006-3495(98)77976-7 10.1016/S0304-4203(03)00072-0 10.1134/S1990793114030154 10.1016/j.bbapap.2007.01.002 10.1021/nn9011187 10.1016/j.foodchem.2014.11.162 10.1016/j.chemolab.2011.05.009 10.1016/j.talanta.2007.08.024 10.1021/bi00870a017 10.5599/admet.2.2.28 10.1016/j.aca.2019.12.020 10.3390/ijms12084964 10.1016/j.chemolab.2014.08.009 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2020.129770 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 33214128 10_1016_j_bbagen_2020_129770 S0304416520302816 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-86717402babca6037b1fc8049593ca7c51df65901964d8d1b71984b7417323233 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Jul 11 05:30:12 EDT 2025 Tue Aug 05 09:46:21 EDT 2025 Wed Feb 19 02:28:48 EST 2025 Thu Apr 24 23:06:58 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Feb 23 02:46:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | HH VV Förster resonance energy transfer Fluorescence IFE HV MDF pEEM ARMES Trp HSA Modelling FRET ANS, 1 TSFS EEM Tyr pTSFS Protein LOR VH Anisotropy PARAFAC MCR Chemometrics |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-86717402babca6037b1fc8049593ca7c51df65901964d8d1b71984b7417323233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304416520302816 |
PMID | 33214128 |
PQID | 2463101881 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551907619 proquest_miscellaneous_2463101881 pubmed_primary_33214128 crossref_citationtrail_10_1016_j_bbagen_2020_129770 crossref_primary_10_1016_j_bbagen_2020_129770 elsevier_sciencedirect_doi_10_1016_j_bbagen_2020_129770 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ghisaidoobe, Chung (bb0010) 2014; 15 Hoppe, Scott, Welliver, Straight, Swanson (bb0045) 2013; 8 Kosower (bb0205) 1982; 15 Lehrer (bb0410) 1971; 10 Kosower, Huppert (bb0200) 1986; 37 Chen, Kenny (bb0110) 2012; 137 Shi, Basran, Seward, Childs, Bagshaw, Boxer (bb0375) 2007; 46 Ferrer, Duchowicz, Carrasco, de la Torre, Acuna (bb0160) 2001; 80 Togashi, Ryder (bb0150) 2008; 18 Kuznetsova, Sulatskaya, Povarova, Turoverov (bb0190) 2012; 7 Elcoroaristizabal, de Juan, Garcia, Durana, Alonso (bb0260) 2014; 132 Zolmajd-Haghighi, Hanley (bb0335) 2014; 106 Valeur (bb0030) 2002 Förster (bb0005) 1948; 437 Yuan, Lin, Zheng, Zhu (bb0020) 2013; 46 Stedmon, Markager, Bro (bb0100) 2003; 82 Cheng, Liu, Jiang (bb0250) 2013; 115 Cvijetić, Petrovic, Verbić, Juranic, Drakulic (bb0400) 2014; 2 Weber (bb0320) 1952; 51 Song, Liu, Yin, Wang (bb0395) 2011; 12 Weber, Laurence (bb0210) 1954; 56 de Faria e Silva, Elcoroaristizabal, Ryder (bb0075) 2020; 1101 Yengo, Berger (bb0140) 2010; 10 Kompany-Zareh, Gholami (bb0135) 2014; 139 Castellano, Dattelbaum, Lakowicz (bb0365) 1998; 255 Cheng, Zhao, Xu, Liu (bb0415) 2013; 3 Sudlow, Birkett, Wade (bb0185) 1975; 11 Gordon, Berry, Liang, Levine, Herman (bb0055) 1998; 74 Casamayou-Boucau, Ryder (bb0090) 2017; 5 Vlasova, Zhuravleva, Saletsky (bb0390) 2014; 8 Steiner-Browne, Elcoroaristizabal, Ryder (bb0070) 2019; 194 Groza, Li, Ryder (bb0085) 2015; 886 de Faria e Silva, Elcoroaristizabal, Ryder (bb0080) 2020; 117 Kumar, Mishra (bb0235) 2015; 147 Sulkowska (bb0215) 2002; 614 Lacerda, Park, Meuse, Pristinski, Becker, Karim, Douglas (bb0220) 2010; 4 Carroll, D (bb0270) 1970; 35 Mustafa, Hannagan, Rigby, Pfleger, Corry (bb0050) 2013; 18 Peters (bb0165) 1985; 37 Harshman (bb0275) 1970 Khrapunov, Pastor, Brenowitz (bb0385) 2002; 41 Kompany-Zareh, Akhlaghi, Bro (bb0345) 2012; 723 Casamayou-Boucau, Ryder (bb0430) 2020; 1138 Bagatolli, Kivatinitz, Aguilar, Soto, Sotomayor, Fidelio (bb0195) 1996; 6 Jameson, Ross (bb0315) 2010; 110 Joshi, Jadhao, Kumar, Ghosh (bb0175) 2017; 75 Kiers (bb0295) 1991; 56 Patra, Mishra (bb0065) 2002; 21 Kragh-Hansen, Chuang, Otagiri (bb0340) 2002; 25 Lakowicz (bb0035) 2006 Kothawala, Murphy, Stedmon, Weyhenmeyer, Tranvik (bb0230) 2013; 11 Gasymov, Glasgow (bb0170) 2007; 1774 Job (bb0305) 1928; 10 Akhlaghi, Kompany-Zareh, Hormozi-Nezhad (bb0130) 2012; 84 E, P (bb0310) 1924; 24 Sarkar, Koushik, Vogel, Gryczynski, Gryczynski (bb0370) 2009; 14 Casamayou-Boucau, Ryder (bb0380) 2018; 1000 Lenhardt, Bro, Zekovic, Dramicanin, Dramicanin (bb0280) 2015; 175 Weber, Daniel (bb0330) 1966; 5 Jaumot, Gargallo, de Juan, Tauler (bb0245) 2005; 76 Moens, Helms, Jameson (bb0325) 2004; 23 Ma̧ciazek-Jurczyk, Równicka Zubik, Dyja, Sułkowska (bb0425) 2013; 123 Suryawanshi, Walekar, Gore, Anbhule, Kolekar (bb0420) 2016; 6 Bahram, Bro, Stedmon, Afkhami (bb0240) 2006; 20 Akhlaghi, Kompany-Zareh, Ebrahimi (bb0125) 2015; 221 de Juan, Tauler (bb0290) 2001; 15 Steiner-Browne, Elcoroaristizabal, Casamayou-Boucau, Ryder (bb0225) 2019; 185 Kroonenberg, ten Berge (bb0120) 2011; 106 Kumar, Devaraji, Joshi, Wankar, Ghosh (bb0180) 2018; 3 Salem, Lotfy, Amin, Ghattas (bb0405) 2019; 20 Sen, Mandal, Haldar, Chattopadhyay, Patra (bb0350) 2011; 115 Azzouz, Tauler (bb0255) 2008; 74 Abdollahi, Tauler (bb0285) 2011; 108 Fuentealba, Kato, Nishijima, Fukuhara, Mori, Inoue, Bohne (bb0355) 2013; 135 Renny, Tomasevich, Tallmadge, Collum (bb0300) 2013; 52 Bro (bb0095) 1997; 38 Mattheyses, Hoppe, Axelrod (bb0145) 2004; 87 Zorrilla, Rivas, Acuna, Lillo (bb0360) 2004; 13 Warner, Christian, Davidson, Callis (bb0060) 1977; 49 Tucker (bb0115) 1966 Gadella (bb0040) 2011 Togashi, Ryder, O’Shaughnessy (bb0155) 2010; 20 Hitchcock (bb0265) 1927; 6 Murphy, Rasnik, Cheng, Lohman, Ha (bb0015) 2004; 86 Stryer (bb0025) 1978; 47 de Faria e Silva (10.1016/j.bbagen.2020.129770_bb0075) 2020; 1101 de Faria e Silva (10.1016/j.bbagen.2020.129770_bb0080) 2020; 117 Castellano (10.1016/j.bbagen.2020.129770_bb0365) 1998; 255 Kothawala (10.1016/j.bbagen.2020.129770_bb0230) 2013; 11 Groza (10.1016/j.bbagen.2020.129770_bb0085) 2015; 886 Zolmajd-Haghighi (10.1016/j.bbagen.2020.129770_bb0335) 2014; 106 Steiner-Browne (10.1016/j.bbagen.2020.129770_bb0070) 2019; 194 Harshman (10.1016/j.bbagen.2020.129770_bb0275) 1970 Hitchcock (10.1016/j.bbagen.2020.129770_bb0265) 1927; 6 Fuentealba (10.1016/j.bbagen.2020.129770_bb0355) 2013; 135 Akhlaghi (10.1016/j.bbagen.2020.129770_bb0130) 2012; 84 Kosower (10.1016/j.bbagen.2020.129770_bb0200) 1986; 37 Kumar (10.1016/j.bbagen.2020.129770_bb0235) 2015; 147 Ferrer (10.1016/j.bbagen.2020.129770_bb0160) 2001; 80 Cheng (10.1016/j.bbagen.2020.129770_bb0415) 2013; 3 Peters (10.1016/j.bbagen.2020.129770_bb0165) 1985; 37 Hoppe (10.1016/j.bbagen.2020.129770_bb0045) 2013; 8 Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0090) 2017; 5 Togashi (10.1016/j.bbagen.2020.129770_bb0155) 2010; 20 Valeur (10.1016/j.bbagen.2020.129770_bb0030) 2002 Sudlow (10.1016/j.bbagen.2020.129770_bb0185) 1975; 11 Job (10.1016/j.bbagen.2020.129770_bb0305) 1928; 10 Weber (10.1016/j.bbagen.2020.129770_bb0330) 1966; 5 Renny (10.1016/j.bbagen.2020.129770_bb0300) 2013; 52 Bro (10.1016/j.bbagen.2020.129770_bb0095) 1997; 38 Chen (10.1016/j.bbagen.2020.129770_bb0110) 2012; 137 Yuan (10.1016/j.bbagen.2020.129770_bb0020) 2013; 46 Kiers (10.1016/j.bbagen.2020.129770_bb0295) 1991; 56 Moens (10.1016/j.bbagen.2020.129770_bb0325) 2004; 23 E (10.1016/j.bbagen.2020.129770_bb0310) 1924; 24 Patra (10.1016/j.bbagen.2020.129770_bb0065) 2002; 21 Abdollahi (10.1016/j.bbagen.2020.129770_bb0285) 2011; 108 Suryawanshi (10.1016/j.bbagen.2020.129770_bb0420) 2016; 6 Kragh-Hansen (10.1016/j.bbagen.2020.129770_bb0340) 2002; 25 Kumar (10.1016/j.bbagen.2020.129770_bb0180) 2018; 3 Zorrilla (10.1016/j.bbagen.2020.129770_bb0360) 2004; 13 Steiner-Browne (10.1016/j.bbagen.2020.129770_bb0225) 2019; 185 Jameson (10.1016/j.bbagen.2020.129770_bb0315) 2010; 110 Sen (10.1016/j.bbagen.2020.129770_bb0350) 2011; 115 Murphy (10.1016/j.bbagen.2020.129770_bb0015) 2004; 86 Cheng (10.1016/j.bbagen.2020.129770_bb0250) 2013; 115 Weber (10.1016/j.bbagen.2020.129770_bb0320) 1952; 51 Gasymov (10.1016/j.bbagen.2020.129770_bb0170) 2007; 1774 Shi (10.1016/j.bbagen.2020.129770_bb0375) 2007; 46 Yengo (10.1016/j.bbagen.2020.129770_bb0140) 2010; 10 Lenhardt (10.1016/j.bbagen.2020.129770_bb0280) 2015; 175 Kuznetsova (10.1016/j.bbagen.2020.129770_bb0190) 2012; 7 Elcoroaristizabal (10.1016/j.bbagen.2020.129770_bb0260) 2014; 132 Gadella (10.1016/j.bbagen.2020.129770_bb0040) 2011 Khrapunov (10.1016/j.bbagen.2020.129770_bb0385) 2002; 41 Akhlaghi (10.1016/j.bbagen.2020.129770_bb0125) 2015; 221 Azzouz (10.1016/j.bbagen.2020.129770_bb0255) 2008; 74 Mattheyses (10.1016/j.bbagen.2020.129770_bb0145) 2004; 87 Vlasova (10.1016/j.bbagen.2020.129770_bb0390) 2014; 8 Togashi (10.1016/j.bbagen.2020.129770_bb0150) 2008; 18 Kosower (10.1016/j.bbagen.2020.129770_bb0205) 1982; 15 Bagatolli (10.1016/j.bbagen.2020.129770_bb0195) 1996; 6 Stedmon (10.1016/j.bbagen.2020.129770_bb0100) 2003; 82 Kroonenberg (10.1016/j.bbagen.2020.129770_bb0120) 2011; 106 Kompany-Zareh (10.1016/j.bbagen.2020.129770_bb0135) 2014; 139 Lakowicz (10.1016/j.bbagen.2020.129770_bb0035) 2006 Förster (10.1016/j.bbagen.2020.129770_bb0005) 1948; 437 Weber (10.1016/j.bbagen.2020.129770_bb0210) 1954; 56 Jaumot (10.1016/j.bbagen.2020.129770_bb0245) 2005; 76 Tucker (10.1016/j.bbagen.2020.129770_bb0115) 1966 Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0380) 2018; 1000 Bahram (10.1016/j.bbagen.2020.129770_bb0240) 2006; 20 Salem (10.1016/j.bbagen.2020.129770_bb0405) 2019; 20 Song (10.1016/j.bbagen.2020.129770_bb0395) 2011; 12 Warner (10.1016/j.bbagen.2020.129770_bb0060) 1977; 49 Casamayou-Boucau (10.1016/j.bbagen.2020.129770_bb0430) 2020; 1138 Gordon (10.1016/j.bbagen.2020.129770_bb0055) 1998; 74 Sulkowska (10.1016/j.bbagen.2020.129770_bb0215) 2002; 614 Kompany-Zareh (10.1016/j.bbagen.2020.129770_bb0345) 2012; 723 Joshi (10.1016/j.bbagen.2020.129770_bb0175) 2017; 75 de Juan (10.1016/j.bbagen.2020.129770_bb0290) 2001; 15 Sarkar (10.1016/j.bbagen.2020.129770_bb0370) 2009; 14 Ma̧ciazek-Jurczyk (10.1016/j.bbagen.2020.129770_bb0425) 2013; 123 Stryer (10.1016/j.bbagen.2020.129770_bb0025) 1978; 47 Carroll (10.1016/j.bbagen.2020.129770_bb0270) 1970; 35 Ghisaidoobe (10.1016/j.bbagen.2020.129770_bb0010) 2014; 15 Lehrer (10.1016/j.bbagen.2020.129770_bb0410) 1971; 10 Lacerda (10.1016/j.bbagen.2020.129770_bb0220) 2010; 4 Cvijetić (10.1016/j.bbagen.2020.129770_bb0400) 2014; 2 Mustafa (10.1016/j.bbagen.2020.129770_bb0050) 2013; 18 |
References_xml | – volume: 6 year: 1927 ident: bb0265 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. – volume: 2 start-page: 126 year: 2014 end-page: 142 ident: bb0400 article-title: Human serum albumin binding of 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-(4-tert-butylphenyl)butanoic acid and its mono-me Ester publication-title: ADMET & DMPK – volume: 110 start-page: 2685 year: 2010 end-page: 2708 ident: bb0315 article-title: Fluorescence polarization/anisotropy in diagnostics and imaging publication-title: Chem. Rev. – volume: 8 year: 2013 ident: bb0045 article-title: N-way FRET microscopy of multiple protein-protein interactions in live cells publication-title: PLoS One – volume: 12 start-page: 4964 year: 2011 end-page: 4974 ident: bb0395 article-title: Interaction of human serum album and C₆₀ aggregates in solution publication-title: Int. J. Mol. Sci. – volume: 25 start-page: 695 year: 2002 end-page: 704 ident: bb0340 article-title: Practical aspects of the ligand-binding and enzymatic properties of human serum albumin publication-title: Biol. Pharm. Bull. – volume: 14 start-page: 034047 year: 2009 ident: bb0370 article-title: Photophysical properties of cerulean and venus fluorescent proteins publication-title: J. Biomed. Opt. – volume: 10 start-page: 113 year: 1928 end-page: 203 ident: bb0305 article-title: Formation and stability of inorganic complexes in solution publication-title: Ann. Chim. – volume: 82 start-page: 239 year: 2003 end-page: 254 ident: bb0100 article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy publication-title: Mar. Chem. – volume: 5 year: 2017 ident: bb0090 article-title: Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods publication-title: Methods Appl. Fluoresc. – volume: 41 start-page: 9559 year: 2002 end-page: 9571 ident: bb0385 article-title: Solution structural studies of the saccharomyces cerevisiae TATA binding protein (TBP) † publication-title: Biochemistry – volume: 4 start-page: 365 year: 2010 end-page: 379 ident: bb0220 article-title: Interaction of gold nanoparticles with common human blood proteins publication-title: ACS Nano – volume: 1000 start-page: 132 year: 2018 end-page: 143 ident: bb0380 article-title: Accurate anisotropy recovery from fluorophore mixtures using multivariate curve resolution (MCR) publication-title: Anal. Chim. Acta – year: 2006 ident: bb0035 article-title: Principles of Fluorescence Spectroscopy – volume: 15 start-page: 259 year: 1982 end-page: 266 ident: bb0205 article-title: Intramolecular donor-acceptor systems. 9. Photophysics of (phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer publication-title: Acc. Chem. Res. – volume: 18 year: 2013 ident: bb0050 article-title: Quantitative forster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra publication-title: J. Biomed. Opt. – volume: 175 start-page: 284 year: 2015 end-page: 291 ident: bb0280 article-title: Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey publication-title: Food Chem. – volume: 7 start-page: 9 year: 2012 ident: bb0190 article-title: Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization publication-title: PLoS One – volume: 20 start-page: 441 year: 2010 end-page: 452 ident: bb0155 article-title: Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy publication-title: J. Fluoresc. – volume: 3 start-page: 10114 year: 2018 end-page: 10128 ident: bb0180 article-title: A chalcone-based potential therapeutic small molecule that binds to subdomain IIA in HSA precisely controls the rotamerization of Trp-214 publication-title: ACS Omega – volume: 11 start-page: 824 year: 1975 end-page: 832 ident: bb0185 article-title: The characterization of two specific drug binding sites on human serum albumin publication-title: Mol. Pharmacol. – volume: 6 start-page: 56 year: 2016 end-page: 63 ident: bb0420 article-title: Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin publication-title: J. Pharm. Anal. – volume: 37 start-page: 127 year: 1986 end-page: 156 ident: bb0200 article-title: Excited state Electron and proton transfers publication-title: Annu. Rev. Phys. Chem. – volume: 80 start-page: 2422 year: 2001 end-page: 2430 ident: bb0160 article-title: The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study publication-title: Biophys. J. – volume: 11 start-page: 616 year: 2013 end-page: 630 ident: bb0230 article-title: Inner filter correction of dissolved organic matter fluorescence publication-title: Limnol. Oceanogr. Methods – volume: 108 start-page: 100 year: 2011 end-page: 111 ident: bb0285 article-title: Uniqueness and rotation ambiguities in multivariate curve resolution methods publication-title: Chemom. Intell. Lab. Syst. – volume: 135 start-page: 203 year: 2013 end-page: 209 ident: bb0355 article-title: Explaining the highly enantiomeric photocyclodimerization of 2-Anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 24 year: 1924 end-page: 36 ident: bb0310 article-title: Einfluss der konzentration auf die polarisation der fluoreszenz von farbstofflosenungen publication-title: Physik – volume: 13 start-page: 2960 year: 2004 end-page: 2969 ident: bb0360 article-title: Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study publication-title: Protein Sci. – volume: 15 start-page: 22518 year: 2014 end-page: 22538 ident: bb0010 article-title: Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on forster resonance energy transfer techniques publication-title: Int. J. Mol. Sci. – volume: 106 start-page: 1457 year: 2014 end-page: 1466 ident: bb0335 article-title: When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins publication-title: Biophys. J. – volume: 106 start-page: 21 year: 2011 end-page: 26 ident: bb0120 article-title: The equivalence of Tucker3 and Parafac models with two components publication-title: Chemom. Intell. Lab. Syst. – volume: 76 start-page: 101 year: 2005 end-page: 110 ident: bb0245 article-title: A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB publication-title: Chemom. Intell. Lab. Syst. – volume: 886 start-page: 133 year: 2015 end-page: 142 ident: bb0085 article-title: Anisotropy resolved multidimensional emission spectroscopy (ARMES): a new tool for protein analysis publication-title: Anal. Chim. Acta – year: 2002 ident: bb0030 article-title: Molecular Fluorescence: Principles and Applications – volume: 56 start-page: R31 year: 1954 ident: bb0210 article-title: Fluorescent indicators of adsorption in aqueous solution and on the solid phase publication-title: Biochem. J. – volume: 86 start-page: 2530 year: 2004 end-page: 2537 ident: bb0015 article-title: Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy publication-title: Biophys. J. – volume: 185 start-page: 1 year: 2019 end-page: 11 ident: bb0225 article-title: Investigating native state fluorescence emission of immunoglobulin G using polarized excitation emission matrix (pEEM) spectroscopy and PARAFAC publication-title: Chemom. Intell. Lab. Syst. – volume: 74 start-page: 1201 year: 2008 end-page: 1210 ident: bb0255 article-title: Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples publication-title: Talanta – volume: 51 start-page: 145 year: 1952 end-page: 155 ident: bb0320 article-title: Polarizaion of the fluorescence of macromolecules 1. Theory and experimental method publication-title: Biochem. J. – volume: 46 start-page: 14403 year: 2007 end-page: 14417 ident: bb0375 article-title: Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers publication-title: Biochemistry – volume: 20 start-page: 99 year: 2006 end-page: 105 ident: bb0240 article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation publication-title: J. Chemom. – volume: 6 start-page: 33 year: 1996 end-page: 40 ident: bb0195 article-title: Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin publication-title: J. Fluoresc. – volume: 1774 start-page: 403 year: 2007 end-page: 411 ident: bb0170 article-title: ANS fluorescence: potential to augment the identification of the external binding sites of proteins publication-title: Bba-Proteins Proteom. – volume: 1138 start-page: 18 year: 2020 end-page: 29 ident: bb0430 article-title: Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy publication-title: Anal. Chim. Acta – volume: 437 start-page: 55 year: 1948 end-page: 75 ident: bb0005 article-title: Zwischenmolekulare energiewanderung und fluoreszenz publication-title: Ann. Phys. – volume: 221 start-page: 45 year: 2015 end-page: 54 ident: bb0125 article-title: Model-based approaches to investigate the interactions between unmodified gold nanoparticles and DNA strands publication-title: Sens. Actuator B-Chem. – volume: 47 start-page: 819 year: 1978 end-page: 846 ident: bb0025 article-title: Fluorescence energy transfer as a spectroscopic ruler publication-title: Annu. Rev. Biochem. – volume: 23 start-page: 79 year: 2004 end-page: 83 ident: bb0325 article-title: Detection of tryptophan to tryptophan energy transfer in proteins publication-title: Protein J. – volume: 10 start-page: 731 year: 2010 end-page: 737 ident: bb0140 article-title: Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment publication-title: Curr. Opin. Pharmacol. – volume: 74 start-page: 2702 year: 1998 end-page: 2713 ident: bb0055 article-title: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy publication-title: Biophys. J. – volume: 137 start-page: 153 year: 2012 end-page: 162 ident: bb0110 article-title: Application of PARAFAC to a two-component system exhibiting fluorescence resonance energy transfer: from theoretical prediction to experimental validation publication-title: Analyst – start-page: 279 year: 1966 end-page: 311 ident: bb0115 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika – volume: 37 start-page: 161 year: 1985 end-page: 245 ident: bb0165 article-title: Serum albumin publication-title: Adv. Protein Chem. – volume: 3 start-page: 257 year: 2013 end-page: 269 ident: bb0415 article-title: Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches publication-title: J. Pharm. Anal. – volume: 75 start-page: 332 year: 2017 end-page: 346 ident: bb0175 article-title: Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: a combined spectroscopic and docking simulation approach publication-title: Bioorg. Chem. – volume: 255 start-page: 165 year: 1998 end-page: 170 ident: bb0365 article-title: Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups publication-title: Anal. Biochem. – volume: 56 start-page: 449 year: 1991 end-page: 470 ident: bb0295 article-title: Hierarchical relations among 3-way methods publication-title: Psychometrika – volume: 21 start-page: 787 year: 2002 end-page: 798 ident: bb0065 article-title: Recent developments in multi-component synchronous fluorescence scan analysis publication-title: TrAC Trends Anal. Chem. – volume: 132 start-page: 63 year: 2014 end-page: 74 ident: bb0260 article-title: Comparison of second-order multivariate methods for screening and determination of PAHs by total fluorescence spectroscopy publication-title: Chemometr. Intell. Lab. – volume: 46 start-page: 1462 year: 2013 end-page: 1473 ident: bb0020 article-title: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications publication-title: Acc. Chem. Res. – volume: 123 start-page: 673 year: 2013 end-page: 680 ident: bb0425 article-title: Comparative analysis of KP-HSA complex by spectroscopic methods publication-title: Acta Phys. Pol. A – volume: 5 year: 1966 ident: bb0330 article-title: Cooperative effects in binding by bovine serum albumin 2. Binding of 1-anilino-8-naphthalene sulfonate. Polarization of ligand fluorescence and quenching of protein fluorescence publication-title: Biochemistry – volume: 194 year: 2019 ident: bb0070 article-title: Using polarized total synchronous fluorescence spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission publication-title: Chemom. Intell. Lab. Syst. – volume: 87 start-page: 2787 year: 2004 end-page: 2797 ident: bb0145 article-title: Polarized fluorescence resonance energy transfer microscopy publication-title: Biophys. J. – volume: 614 start-page: 227 year: 2002 end-page: 232 ident: bb0215 article-title: Interaction of drugs with bovine and human serum albumin publication-title: J. Mol. Struct. – volume: 15 start-page: 749 year: 2001 end-page: 772 ident: bb0290 article-title: Comparison of three-way resolution methods for non-trilinear chemical data sets publication-title: J. Chemom. – volume: 20 year: 2019 ident: bb0405 article-title: Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques publication-title: Biochem. Biophys. Rep. – volume: 52 start-page: 11998 year: 2013 end-page: 12013 ident: bb0300 article-title: Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry publication-title: Angew. Chem. Int. Ed. Eng. – volume: 139 start-page: 33 year: 2014 end-page: 41 ident: bb0135 article-title: Soft and hard multiway FRET-based investigation of interaction between drug and QD labeled DNA publication-title: Chemom. Intell. Lab. Syst. – volume: 1101 start-page: 99 year: 2020 end-page: 110 ident: bb0075 article-title: Multi-attribute quality screening of immunoglobulin G using polarized excitation emission matrix spectroscopy publication-title: Anal. Chim. Acta – volume: 723 start-page: 18 year: 2012 end-page: 26 ident: bb0345 article-title: Tucker core consistency for validation of restricted Tucker3 models publication-title: Anal. Chim. Acta – volume: 10 start-page: 3254 year: 1971 end-page: 3263 ident: bb0410 article-title: Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion publication-title: Biochemistry – volume: 147 start-page: 121 year: 2015 end-page: 130 ident: bb0235 article-title: Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: certain practical aspects publication-title: Chemom. Intell. Lab. Syst. – volume: 35 start-page: 283 year: 1970 end-page: 319 ident: bb0270 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of an ‘Eckart-Young’ decomposition publication-title: Psychometrika – volume: 38 start-page: 149 year: 1997 end-page: 171 ident: bb0095 article-title: PARAFAC. Tutorial and applications publication-title: Chemom. Intell. Lab. Syst. – volume: 8 start-page: 385 year: 2014 end-page: 390 ident: bb0390 article-title: Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein publication-title: Russ. J. Phys. Chem. B – volume: 117 start-page: 2969 year: 2020 end-page: 2984 ident: bb0080 article-title: Characterization of lysozyme PEGylation products using polarized excitation-emission matrix spectroscopy publication-title: Biotechnol. Bioeng. – start-page: 1 year: 1970 end-page: 84 ident: bb0275 article-title: Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis. , UCLA work. Pap publication-title: Phon. – volume: 84 start-page: 6603 year: 2012 end-page: 6610 ident: bb0130 article-title: Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles publication-title: Anal. Chem. – volume: 18 start-page: 519 year: 2008 end-page: 526 ident: bb0150 article-title: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer publication-title: J. Fluoresc. – volume: 115 start-page: 92 year: 2013 end-page: 105 ident: bb0250 article-title: Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods publication-title: Spectrochim. Acta A – year: 2011 ident: bb0040 article-title: FRET and FLIM techniques – volume: 49 start-page: 564 year: 1977 end-page: 573 ident: bb0060 article-title: Analysis of multicomponent fluorescence data publication-title: Anal. Chem. – volume: 115 start-page: 24037 year: 2011 end-page: 24044 ident: bb0350 article-title: Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer publication-title: J. Phys. Chem. C – volume: 56 start-page: R31 year: 1954 ident: 10.1016/j.bbagen.2020.129770_bb0210 article-title: Fluorescent indicators of adsorption in aqueous solution and on the solid phase publication-title: Biochem. J. – volume: 194 year: 2019 ident: 10.1016/j.bbagen.2020.129770_bb0070 article-title: Using polarized total synchronous fluorescence spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2019.103871 – volume: 13 start-page: 2960 year: 2004 ident: 10.1016/j.bbagen.2020.129770_bb0360 article-title: Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study publication-title: Protein Sci. doi: 10.1110/ps.04809404 – volume: 6 start-page: 33 year: 1996 ident: 10.1016/j.bbagen.2020.129770_bb0195 article-title: Two distinguishable fluorescent modes of 1-anilino-8-naphthalenesulfonate bound to human albumin publication-title: J. Fluoresc. doi: 10.1007/BF00726724 – volume: 84 start-page: 6603 year: 2012 ident: 10.1016/j.bbagen.2020.129770_bb0130 article-title: Multiway investigation of interaction between fluorescence labeled DNA strands and unmodified gold nanoparticles publication-title: Anal. Chem. doi: 10.1021/ac3008576 – volume: 25 start-page: 695 year: 2002 ident: 10.1016/j.bbagen.2020.129770_bb0340 article-title: Practical aspects of the ligand-binding and enzymatic properties of human serum albumin publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.25.695 – volume: 87 start-page: 2787 year: 2004 ident: 10.1016/j.bbagen.2020.129770_bb0145 article-title: Polarized fluorescence resonance energy transfer microscopy publication-title: Biophys. J. doi: 10.1529/biophysj.103.036194 – volume: 37 start-page: 127 year: 1986 ident: 10.1016/j.bbagen.2020.129770_bb0200 article-title: Excited state Electron and proton transfers publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.37.100186.001015 – volume: 10 start-page: 113 year: 1928 ident: 10.1016/j.bbagen.2020.129770_bb0305 article-title: Formation and stability of inorganic complexes in solution publication-title: Ann. Chim. – volume: 135 start-page: 203 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0355 article-title: Explaining the highly enantiomeric photocyclodimerization of 2-Anthracenecarboxylate bound to human serum albumin using time-resolved anisotropy studies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3081555 – volume: 110 start-page: 2685 year: 2010 ident: 10.1016/j.bbagen.2020.129770_bb0315 article-title: Fluorescence polarization/anisotropy in diagnostics and imaging publication-title: Chem. Rev. doi: 10.1021/cr900267p – volume: 117 start-page: 2969 year: 2020 ident: 10.1016/j.bbagen.2020.129770_bb0080 article-title: Characterization of lysozyme PEGylation products using polarized excitation-emission matrix spectroscopy publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.27483 – volume: 76 start-page: 101 year: 2005 ident: 10.1016/j.bbagen.2020.129770_bb0245 article-title: A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.12.007 – volume: 46 start-page: 14403 year: 2007 ident: 10.1016/j.bbagen.2020.129770_bb0375 article-title: Anomalous negative fluorescence anisotropy in yellow fluorescent protein (YFP 10C): quantitative analysis of FRET in YFP dimers publication-title: Biochemistry doi: 10.1021/bi701575n – volume: 7 start-page: 9 year: 2012 ident: 10.1016/j.bbagen.2020.129770_bb0190 article-title: Reevaluation of ANS binding to human and bovine serum albumins: key role of equilibrium microdialysis in ligand - receptor binding characterization publication-title: PLoS One doi: 10.1371/journal.pone.0040845 – volume: 37 start-page: 161 year: 1985 ident: 10.1016/j.bbagen.2020.129770_bb0165 article-title: Serum albumin publication-title: Adv. Protein Chem. doi: 10.1016/S0065-3233(08)60065-0 – volume: 24 start-page: 24 year: 1924 ident: 10.1016/j.bbagen.2020.129770_bb0310 article-title: Einfluss der konzentration auf die polarisation der fluoreszenz von farbstofflosenungen publication-title: Physik doi: 10.1007/BF01327227 – start-page: 1 year: 1970 ident: 10.1016/j.bbagen.2020.129770_bb0275 article-title: Foundations of the parafac procedure: model and conditions for an ‘explanatory’ multi-mode factor analysis. , UCLA work. Pap publication-title: Phon. – volume: 115 start-page: 92 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0250 article-title: Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods publication-title: Spectrochim. Acta A doi: 10.1016/j.saa.2013.06.007 – volume: 6 start-page: 56 year: 2016 ident: 10.1016/j.bbagen.2020.129770_bb0420 article-title: Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2015.07.001 – volume: 614 start-page: 227 year: 2002 ident: 10.1016/j.bbagen.2020.129770_bb0215 article-title: Interaction of drugs with bovine and human serum albumin publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(02)00256-9 – volume: 106 start-page: 21 year: 2011 ident: 10.1016/j.bbagen.2020.129770_bb0120 article-title: The equivalence of Tucker3 and Parafac models with two components publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.05.022 – volume: 15 start-page: 22518 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0010 article-title: Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on forster resonance energy transfer techniques publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms151222518 – volume: 86 start-page: 2530 year: 2004 ident: 10.1016/j.bbagen.2020.129770_bb0015 article-title: Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(04)74308-8 – volume: 185 start-page: 1 year: 2019 ident: 10.1016/j.bbagen.2020.129770_bb0225 article-title: Investigating native state fluorescence emission of immunoglobulin G using polarized excitation emission matrix (pEEM) spectroscopy and PARAFAC publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2018.12.007 – volume: 20 start-page: 99 year: 2006 ident: 10.1016/j.bbagen.2020.129770_bb0240 article-title: Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation publication-title: J. Chemom. doi: 10.1002/cem.978 – volume: 6 year: 1927 ident: 10.1016/j.bbagen.2020.129770_bb0265 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. doi: 10.1002/sapm192761164 – volume: 3 start-page: 257 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0415 article-title: Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches publication-title: J. Pharm. Anal. doi: 10.1016/j.jpha.2013.01.004 – volume: 80 start-page: 2422 year: 2001 ident: 10.1016/j.bbagen.2020.129770_bb0160 article-title: The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76211-X – volume: 38 start-page: 149 year: 1997 ident: 10.1016/j.bbagen.2020.129770_bb0095 article-title: PARAFAC. Tutorial and applications publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00032-4 – volume: 46 start-page: 1462 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0020 article-title: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications publication-title: Acc. Chem. Res. doi: 10.1021/ar300273v – volume: 8 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0045 article-title: N-way FRET microscopy of multiple protein-protein interactions in live cells publication-title: PLoS One doi: 10.1371/journal.pone.0064760 – volume: 20 year: 2019 ident: 10.1016/j.bbagen.2020.129770_bb0405 article-title: Characterization of human serum albumin's interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques publication-title: Biochem. Biophys. Rep. – volume: 132 start-page: 63 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0260 article-title: Comparison of second-order multivariate methods for screening and determination of PAHs by total fluorescence spectroscopy publication-title: Chemometr. Intell. Lab. doi: 10.1016/j.chemolab.2014.01.005 – volume: 5 year: 2017 ident: 10.1016/j.bbagen.2020.129770_bb0090 article-title: Extended wavelength anisotropy resolved multidimensional emission spectroscopy (ARMES) measurements: better filters, validation standards, and Rayleigh scatter removal methods publication-title: Methods Appl. Fluoresc. doi: 10.1088/2050-6120/aa7763 – year: 2002 ident: 10.1016/j.bbagen.2020.129770_bb0030 – volume: 14 start-page: 034047 year: 2009 ident: 10.1016/j.bbagen.2020.129770_bb0370 article-title: Photophysical properties of cerulean and venus fluorescent proteins publication-title: J. Biomed. Opt. doi: 10.1117/1.3156842 – volume: 437 start-page: 55 year: 1948 ident: 10.1016/j.bbagen.2020.129770_bb0005 article-title: Zwischenmolekulare energiewanderung und fluoreszenz publication-title: Ann. Phys. doi: 10.1002/andp.19484370105 – volume: 52 start-page: 11998 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0300 article-title: Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.201304157 – volume: 3 start-page: 10114 year: 2018 ident: 10.1016/j.bbagen.2020.129770_bb0180 article-title: A chalcone-based potential therapeutic small molecule that binds to subdomain IIA in HSA precisely controls the rotamerization of Trp-214 publication-title: ACS Omega doi: 10.1021/acsomega.8b01079 – year: 2006 ident: 10.1016/j.bbagen.2020.129770_bb0035 – volume: 106 start-page: 1457 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0335 article-title: When one plus one does not equal two: fluorescence anisotropy in aggregates and multiply labeled proteins publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.02.020 – volume: 35 start-page: 283 year: 1970 ident: 10.1016/j.bbagen.2020.129770_bb0270 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of an ‘Eckart-Young’ decomposition publication-title: Psychometrika doi: 10.1007/BF02310791 – volume: 41 start-page: 9559 year: 2002 ident: 10.1016/j.bbagen.2020.129770_bb0385 article-title: Solution structural studies of the saccharomyces cerevisiae TATA binding protein (TBP) † publication-title: Biochemistry doi: 10.1021/bi0255773 – volume: 10 start-page: 3254 year: 1971 ident: 10.1016/j.bbagen.2020.129770_bb0410 article-title: Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion publication-title: Biochemistry doi: 10.1021/bi00793a015 – volume: 886 start-page: 133 year: 2015 ident: 10.1016/j.bbagen.2020.129770_bb0085 article-title: Anisotropy resolved multidimensional emission spectroscopy (ARMES): a new tool for protein analysis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.06.011 – volume: 47 start-page: 819 year: 1978 ident: 10.1016/j.bbagen.2020.129770_bb0025 article-title: Fluorescence energy transfer as a spectroscopic ruler publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.47.070178.004131 – volume: 21 start-page: 787 year: 2002 ident: 10.1016/j.bbagen.2020.129770_bb0065 article-title: Recent developments in multi-component synchronous fluorescence scan analysis publication-title: TrAC Trends Anal. Chem. doi: 10.1016/S0165-9936(02)01201-3 – volume: 11 start-page: 824 year: 1975 ident: 10.1016/j.bbagen.2020.129770_bb0185 article-title: The characterization of two specific drug binding sites on human serum albumin publication-title: Mol. Pharmacol. – volume: 15 start-page: 749 year: 2001 ident: 10.1016/j.bbagen.2020.129770_bb0290 article-title: Comparison of three-way resolution methods for non-trilinear chemical data sets publication-title: J. Chemom. doi: 10.1002/cem.662 – start-page: 279 year: 1966 ident: 10.1016/j.bbagen.2020.129770_bb0115 article-title: Some mathematical notes on three-mode factor analysis publication-title: Psychometrika doi: 10.1007/BF02289464 – volume: 49 start-page: 564 year: 1977 ident: 10.1016/j.bbagen.2020.129770_bb0060 article-title: Analysis of multicomponent fluorescence data publication-title: Anal. Chem. doi: 10.1021/ac50012a016 – volume: 1000 start-page: 132 year: 2018 ident: 10.1016/j.bbagen.2020.129770_bb0380 article-title: Accurate anisotropy recovery from fluorophore mixtures using multivariate curve resolution (MCR) publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.11.031 – volume: 115 start-page: 24037 year: 2011 ident: 10.1016/j.bbagen.2020.129770_bb0350 article-title: Interaction of gold nanoparticle with human serum albumin (HSA) protein using surface energy transfer publication-title: J. Phys. Chem. C doi: 10.1021/jp207374g – volume: 255 start-page: 165 year: 1998 ident: 10.1016/j.bbagen.2020.129770_bb0365 article-title: Long-lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2468 – volume: 1138 start-page: 18 year: 2020 ident: 10.1016/j.bbagen.2020.129770_bb0430 article-title: Quantitative analysis of weakly bound insulin oligomers in solution using polarized multidimensional fluorescence spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.09.007 – volume: 56 start-page: 449 year: 1991 ident: 10.1016/j.bbagen.2020.129770_bb0295 article-title: Hierarchical relations among 3-way methods publication-title: Psychometrika doi: 10.1007/BF02294485 – volume: 123 start-page: 673 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0425 article-title: Comparative analysis of KP-HSA complex by spectroscopic methods publication-title: Acta Phys. Pol. A doi: 10.12693/APhysPolA.123.673 – volume: 23 start-page: 79 year: 2004 ident: 10.1016/j.bbagen.2020.129770_bb0325 article-title: Detection of tryptophan to tryptophan energy transfer in proteins publication-title: Protein J. doi: 10.1023/B:JOPC.0000016261.97474.2e – volume: 18 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0050 article-title: Quantitative forster resonance energy transfer efficiency measurements using simultaneous spectral unmixing of excitation and emission spectra publication-title: J. Biomed. Opt. doi: 10.1117/1.JBO.18.2.026024 – volume: 18 start-page: 519 year: 2008 ident: 10.1016/j.bbagen.2020.129770_bb0150 article-title: A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer publication-title: J. Fluoresc. doi: 10.1007/s10895-007-0294-x – volume: 20 start-page: 441 year: 2010 ident: 10.1016/j.bbagen.2020.129770_bb0155 article-title: Monitoring local unfolding of bovine serum albumin during denaturation using steady-state and time-resolved fluorescence spectroscopy publication-title: J. Fluoresc. doi: 10.1007/s10895-009-0566-8 – volume: 221 start-page: 45 year: 2015 ident: 10.1016/j.bbagen.2020.129770_bb0125 article-title: Model-based approaches to investigate the interactions between unmodified gold nanoparticles and DNA strands publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2015.06.102 – volume: 15 start-page: 259 year: 1982 ident: 10.1016/j.bbagen.2020.129770_bb0205 article-title: Intramolecular donor-acceptor systems. 9. Photophysics of (phenylamino)naphthalenesulfonates: a paradigm for excited-state intramolecular charge transfer publication-title: Acc. Chem. Res. doi: 10.1021/ar00080a005 – volume: 723 start-page: 18 year: 2012 ident: 10.1016/j.bbagen.2020.129770_bb0345 article-title: Tucker core consistency for validation of restricted Tucker3 models publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.02.028 – volume: 10 start-page: 731 year: 2010 ident: 10.1016/j.bbagen.2020.129770_bb0140 article-title: Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2010.09.013 – volume: 11 start-page: 616 year: 2013 ident: 10.1016/j.bbagen.2020.129770_bb0230 article-title: Inner filter correction of dissolved organic matter fluorescence publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2013.11.616 – volume: 51 start-page: 145 year: 1952 ident: 10.1016/j.bbagen.2020.129770_bb0320 article-title: Polarizaion of the fluorescence of macromolecules 1. Theory and experimental method publication-title: Biochem. J. doi: 10.1042/bj0510145 – volume: 137 start-page: 153 year: 2012 ident: 10.1016/j.bbagen.2020.129770_bb0110 article-title: Application of PARAFAC to a two-component system exhibiting fluorescence resonance energy transfer: from theoretical prediction to experimental validation publication-title: Analyst doi: 10.1039/C1AN15805H – volume: 75 start-page: 332 year: 2017 ident: 10.1016/j.bbagen.2020.129770_bb0175 article-title: Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: a combined spectroscopic and docking simulation approach publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2017.10.013 – volume: 147 start-page: 121 year: 2015 ident: 10.1016/j.bbagen.2020.129770_bb0235 article-title: Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: certain practical aspects publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.008 – volume: 74 start-page: 2702 year: 1998 ident: 10.1016/j.bbagen.2020.129770_bb0055 article-title: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)77976-7 – volume: 82 start-page: 239 year: 2003 ident: 10.1016/j.bbagen.2020.129770_bb0100 article-title: Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy publication-title: Mar. Chem. doi: 10.1016/S0304-4203(03)00072-0 – volume: 8 start-page: 385 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0390 article-title: Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793114030154 – volume: 1774 start-page: 403 year: 2007 ident: 10.1016/j.bbagen.2020.129770_bb0170 article-title: ANS fluorescence: potential to augment the identification of the external binding sites of proteins publication-title: Bba-Proteins Proteom. doi: 10.1016/j.bbapap.2007.01.002 – volume: 4 start-page: 365 year: 2010 ident: 10.1016/j.bbagen.2020.129770_bb0220 article-title: Interaction of gold nanoparticles with common human blood proteins publication-title: ACS Nano doi: 10.1021/nn9011187 – volume: 175 start-page: 284 year: 2015 ident: 10.1016/j.bbagen.2020.129770_bb0280 article-title: Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.11.162 – volume: 108 start-page: 100 year: 2011 ident: 10.1016/j.bbagen.2020.129770_bb0285 article-title: Uniqueness and rotation ambiguities in multivariate curve resolution methods publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.05.009 – volume: 74 start-page: 1201 year: 2008 ident: 10.1016/j.bbagen.2020.129770_bb0255 article-title: Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples publication-title: Talanta doi: 10.1016/j.talanta.2007.08.024 – volume: 5 year: 1966 ident: 10.1016/j.bbagen.2020.129770_bb0330 article-title: Cooperative effects in binding by bovine serum albumin 2. Binding of 1-anilino-8-naphthalene sulfonate. Polarization of ligand fluorescence and quenching of protein fluorescence publication-title: Biochemistry doi: 10.1021/bi00870a017 – volume: 2 start-page: 126 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0400 article-title: Human serum albumin binding of 2-[(Carboxymethyl)sulfanyl]-4-oxo-4-(4-tert-butylphenyl)butanoic acid and its mono-me Ester publication-title: ADMET & DMPK doi: 10.5599/admet.2.2.28 – volume: 1101 start-page: 99 year: 2020 ident: 10.1016/j.bbagen.2020.129770_bb0075 article-title: Multi-attribute quality screening of immunoglobulin G using polarized excitation emission matrix spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.12.020 – volume: 12 start-page: 4964 year: 2011 ident: 10.1016/j.bbagen.2020.129770_bb0395 article-title: Interaction of human serum album and C₆₀ aggregates in solution publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12084964 – year: 2011 ident: 10.1016/j.bbagen.2020.129770_bb0040 – volume: 139 start-page: 33 year: 2014 ident: 10.1016/j.bbagen.2020.129770_bb0135 article-title: Soft and hard multiway FRET-based investigation of interaction between drug and QD labeled DNA publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2014.08.009 |
SSID | ssj0000595 |
Score | 2.4370906 |
Snippet | Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129770 |
SubjectTerms | Algorithms Anilino Naphthalenesulfonates - chemistry Anisotropy Chemometrics energy transfer Fluorescence Fluorescence Resonance Energy Transfer - methods fluorescent dyes Fluorescent Dyes - chemistry Förster resonance energy transfer human serum albumin Humans Modelling Models, Molecular multivariate analysis Protein Serum Albumin, Human - chemistry spectroscopy sulfonates tryptophan tyrosine |
Title | Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES) |
URI | https://dx.doi.org/10.1016/j.bbagen.2020.129770 https://www.ncbi.nlm.nih.gov/pubmed/33214128 https://www.proquest.com/docview/2463101881 https://www.proquest.com/docview/2551907619 |
Volume | 1865 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CQmgvpUlf2yZBhR6Sg7trS7bs47Lssm1oDnlAbsJ6uGwI9rJxCjkkP6t_oH8sM5KdkkMa6M3YEhYzY-mT9c03AF-qLKlSjcEbO64jUVZZVEg7QiCXVsKMbF5Zz7Y4yuZn4vt5er4Gkz4XhmiV3dwf5nQ_W3d3hp01h8vFYnhCh3oIJ9IEL5I8JtltISRF-de7vzQPhA9pOEkQEbXu0-c8x0tr_GhJBTUhmQWEQqOnlqen4Kdfhmav4VWHH9k4DHEL1ly9DZuhouTNNryY9AXc3sAt1Tnzktts9uf3ihQRGG6uG5LYcMz5pD_WeuCKT_Znx9PTA0Y8-J-srBdXTbtqlje-x-UvZ5mnHkaWqgEEJQ9Gb6JL5tM1SRaTOuyPj39MTw7ewtlsejqZR121hcigGduIhO4k7iZ1qU2ZjbjUcWVy3ECkBTelNGlsq4wyVYtM2NzGWsZFLjQiEskRlnH-DtbrpnYfgFU8wUdWCuuM4GVaOETFpTBGZ2hqIQfAeyMr00mRU0WMS9Vzzi5UcI0i16jgmgFED72WQYrjmfay9596FFIKV4tnen7u3a3QknSEUtauub5Sicg4aZzl8T_aIAgt_O-hAbwPsfIwXk51oRASfPzvsX2ClwnRajxxfAfW29W120Vc1Oo9H_h7sDH-djg_ugdliwwc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB7RRRW9VC3927a0rtQDHKLdxE6cHFerXS0F9gCLxM2Kf4K2QslqCUgceK2-QF-sM04C4gBIvUWxR7Fm7PHneOYbgJ9FEhWxxskbOq4DkRdJkEk7RCAXF8IMbVpYH20xT2an4tdZfLYB4y4XhsIqW9_f-HTvrds3g1abg9VyOTihSz2EE3GED1EaJi9gk9ip4h5sjvYPZvN7hxz74ivUPyCBLoPOh3lpjeuWiFAjYlpANDR8bId6DIH6nWj6Bl63EJKNmlG-hQ1XbsPLpqjkzTZsjbsabu_glkqdedZtNv37Z02kCAzP1xWxbDjmfN4fqz12xZbd6fFksccoFP6c5eXysqrX1erGS1xcO8t89GFgqSBAQ-bB6Ev0yHzGJjFjksDu6PhocrL3Hk6nk8V4FrQFFwKDmqwD4rqTeKDUuTZ5MuRSh4VJ8QwRZ9zk0sShLRJKVs0SYVMbahlmqdAISiRHZMb5B-iVVek-ASt4hE1WCuuM4HmcOQTGuTBGJ6hqIfvAOyUr07KRU1GMC9WFnf1WjWkUmUY1pulDcCe1atg4nukvO_upB7NK4YbxjOSPztwKNUm3KHnpqqtLFYmEE81ZGj7RB3Fo5v8Q9eFjM1fuxsupNBSigs__PbbvsDVbHB2qw_35wRd4FVGUjY8j_wq9en3ldhAm1fpbuwz-AYz3Ds0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+F%C3%B6rster+resonance+energy+transfer+%28FRET%29+using+anisotropy+resolved+multi-dimensional+emission+spectroscopy+%28ARMES%29&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Gordon%2C+Fiona&rft.au=Elcoroaristizabal%2C+Saioa&rft.au=Ryder%2C+Alan+G&rft.date=2021-02-01&rft.eissn=1872-8006&rft.volume=1865&rft.issue=2&rft.spage=129770&rft_id=info:doi/10.1016%2Fj.bbagen.2020.129770&rft_id=info%3Apmid%2F33214128&rft.externalDocID=33214128 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |