Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis

Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possib...

Full description

Saved in:
Bibliographic Details
Published inInflammation research Vol. 71; no. 7-8; pp. 741 - 758
Main Authors Facchin, Bruno Matheus, dos Reis, Gustavo Oliveira, Vieira, Guilherme Nicácio, Mohr, Eduarda Talita Bramorski, da Rosa, Júlia Salvan, Kretzer, Iara Fabricia, Demarchi, Izabel Galhardo, Dalmarco, Eduardo Monguilhott
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA). Methodology We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ). Results LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems. Conclusion Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.
AbstractList Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).INTRODUCTIONSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ).METHODOLOGYWe conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ).LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.RESULTSLPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.CONCLUSIONMeasurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.
Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA). Methodology We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ). Results LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems. Conclusion Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.
IntroductionSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).MethodologyWe conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework (https://doi.org/10.17605/OSF.IO/8C3HT).ResultsLPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.ConclusionMeasurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.
Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA). We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ). LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems. Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.
Author dos Reis, Gustavo Oliveira
Facchin, Bruno Matheus
Demarchi, Izabel Galhardo
Vieira, Guilherme Nicácio
Dalmarco, Eduardo Monguilhott
Mohr, Eduarda Talita Bramorski
da Rosa, Júlia Salvan
Kretzer, Iara Fabricia
Author_xml – sequence: 1
  givenname: Bruno Matheus
  surname: Facchin
  fullname: Facchin, Bruno Matheus
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina
– sequence: 2
  givenname: Gustavo Oliveira
  surname: dos Reis
  fullname: dos Reis, Gustavo Oliveira
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina
– sequence: 3
  givenname: Guilherme Nicácio
  surname: Vieira
  fullname: Vieira, Guilherme Nicácio
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina
– sequence: 4
  givenname: Eduarda Talita Bramorski
  surname: Mohr
  fullname: Mohr, Eduarda Talita Bramorski
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina
– sequence: 5
  givenname: Júlia Salvan
  surname: da Rosa
  fullname: da Rosa, Júlia Salvan
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina
– sequence: 6
  givenname: Iara Fabricia
  surname: Kretzer
  fullname: Kretzer, Iara Fabricia
  organization: Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina
– sequence: 7
  givenname: Izabel Galhardo
  surname: Demarchi
  fullname: Demarchi, Izabel Galhardo
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Estadual de Maringá
– sequence: 8
  givenname: Eduardo Monguilhott
  orcidid: 0000-0002-5220-5396
  surname: Dalmarco
  fullname: Dalmarco, Eduardo Monguilhott
  email: edalmarco@gmail.com, eduardo.dalmarco@ufsc.br
  organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35612604$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rVDEUhoO02A_9Ay4k4MZN2pOvO7nuSmlrYUDxA92FTHJGUu9NanKvZf59M06L0EVXyeJ5Xl7Oe0T2Uk5IyBsOJxxgcVoBgHMGQjDg2igGL8ghVwJYD-bnXvuDkEwaCQfkqNabhhthxEtyIHXHRQfqkOB1Wg9uHN2Uy4auYh5d-Y2l0pyoS3T5-SuLKcweA_1y9oOKTp0sqMdhoGMOOHygjtZNnbAFRE8L_o1418RAR5wcc8kNmxrrK7K_dkPF1w_vMfl-efHt_CNbfrq6Pj9bMq8Un5iRxoSOh6CD5twF7wwPEAJfSaNRSrNQzuhe-R6c01oIr0TgfuE09wJwLY_J-13ubcl_ZqyTHWPdtnUJ81yt6Lpeg1C9bui7J-hNnkvru6V6YbQ0fdeotw_UvBox2NsS24E29vGADTA7wJdca8G19XFqt8hpKi4OloPdbmV3W9m2lf23lYWmiifqY_qzktxJtcHpF5b_tZ-x7gGacaOE
CitedBy_id crossref_primary_10_3390_toxics10110642
crossref_primary_10_3390_foods13162558
crossref_primary_10_3390_life15030418
crossref_primary_10_1007_s00441_024_03921_7
crossref_primary_10_3390_toxins15040298
crossref_primary_10_1007_s11596_024_2873_3
crossref_primary_10_1016_j_intimp_2023_111270
crossref_primary_10_1248_bpb_b24_00397
crossref_primary_10_1016_j_jep_2023_117131
crossref_primary_10_1039_D4NP00066H
crossref_primary_10_3390_ph16070999
crossref_primary_10_3390_chemosensors11020152
crossref_primary_10_1016_j_jep_2023_116918
crossref_primary_10_3390_fermentation10070345
crossref_primary_10_3746_jkfn_2025_54_2_157
crossref_primary_10_3390_molecules28052075
crossref_primary_10_1016_j_algal_2023_103171
crossref_primary_10_1016_j_jep_2024_118730
crossref_primary_10_1016_j_jep_2024_118892
crossref_primary_10_3390_ph17070928
crossref_primary_10_1002_anie_202314563
crossref_primary_10_1007_s12257_024_00094_6
crossref_primary_10_3839_jabc_2023_004
crossref_primary_10_1002_ange_202422091
crossref_primary_10_1016_j_actbio_2025_02_014
crossref_primary_10_1016_j_ebiom_2024_105390
crossref_primary_10_1007_s10753_024_02180_6
crossref_primary_10_1016_j_bioorg_2023_106887
crossref_primary_10_1080_14786419_2024_2394103
crossref_primary_10_1016_j_ijbiomac_2024_138935
crossref_primary_10_2147_IJN_S459788
crossref_primary_10_3390_molecules28196875
crossref_primary_10_1021_acs_jnatprod_3c00465
crossref_primary_10_3390_cimb47020085
crossref_primary_10_1007_s00018_024_05207_1
crossref_primary_10_3390_ijms241511982
crossref_primary_10_1007_s11130_024_01204_8
crossref_primary_10_1016_j_talanta_2023_125350
crossref_primary_10_1016_j_bioorg_2025_108350
crossref_primary_10_1016_j_fbio_2024_105459
crossref_primary_10_3390_molecules30020416
crossref_primary_10_3389_fvets_2025_1539448
crossref_primary_10_3390_foods14050714
crossref_primary_10_3390_antiox13050577
crossref_primary_10_1002_cbf_3840
crossref_primary_10_1016_j_trsl_2022_11_006
crossref_primary_10_3390_futurepharmacol5010006
crossref_primary_10_1002_ange_202314563
crossref_primary_10_1016_j_intimp_2024_113432
crossref_primary_10_1038_s41401_024_01251_6
crossref_primary_10_3390_foods13223532
crossref_primary_10_1021_jacs_4c03344
crossref_primary_10_1016_j_cjac_2023_100331
crossref_primary_10_2174_0113862073275657231210055250
crossref_primary_10_1039_D4MA01202J
crossref_primary_10_3390_ijms251910642
crossref_primary_10_1039_D4FO03646H
crossref_primary_10_1002_anie_202422091
crossref_primary_10_3390_life14060763
crossref_primary_10_3390_ph17030283
crossref_primary_10_1016_j_jconrel_2025_01_085
crossref_primary_10_4103_apjtb_apjtb_865_23
crossref_primary_10_3390_antibiotics13020145
crossref_primary_10_1021_acsami_3c17862
crossref_primary_10_3390_biom14060636
crossref_primary_10_3390_cells12212570
crossref_primary_10_3892_mmr_2024_13390
crossref_primary_10_1248_cpb_c24_00263
crossref_primary_10_1016_j_jddst_2023_105299
crossref_primary_10_1021_acs_analchem_3c00409
crossref_primary_10_1016_j_matchemphys_2023_128113
crossref_primary_10_1021_acsami_4c17885
crossref_primary_10_1111_jcmm_17805
crossref_primary_10_3390_ijms26010431
crossref_primary_10_1007_s11030_024_11058_6
crossref_primary_10_15283_ijsc24089
crossref_primary_10_1016_j_focha_2024_100700
crossref_primary_10_12991_jrespharm_1643793
crossref_primary_10_3839_jabc_2025_005
crossref_primary_10_3390_microorganisms12081730
crossref_primary_10_3390_molecules27238134
crossref_primary_10_1016_j_tet_2024_134240
crossref_primary_10_3390_app13179684
crossref_primary_10_32725_jab_2024_023
crossref_primary_10_1021_acs_jnatprod_4c00237
crossref_primary_10_1080_07391102_2023_2239901
crossref_primary_10_2147_IJN_S487647
crossref_primary_10_3390_ph16101386
crossref_primary_10_3390_ijms252312638
crossref_primary_10_3390_antiox13121544
crossref_primary_10_1016_j_jep_2023_116747
crossref_primary_10_1007_s00011_022_01623_w
Cites_doi 10.1136/bmj.n71
10.1016/j.jep.2009.06.027
10.1038/s41573-020-0082-8
10.1038/sigtrans.2017.23
10.1016/j.atherosclerosis.2019.02.017
10.1080/10715760400017327
10.1186/s12906-017-1635-1
10.14814/phy2.13914
10.1038/nrmicro2539
10.1155/2019/6474168
10.3390/ijms20184367
10.4014/jmb.1901.01027
10.1016/j.intimp.2017.05.021
10.1016/j.cell.2010.02.029
10.3892/mmr.2017.6166
10.1186/1471-2288-5-13
10.1371/journal.pone.0121327
10.3389/fimmu.2016.00160/abstract
10.3389/fimmu.2020.01210/full
10.1016/j.amjms.2020.06.007
10.1016/j.jdermsci.2015.06.012
10.1016/j.foodchem.2016.01.114
10.1002/jat.3648
10.1006/bcmd.1998.0201
10.1039/C9FO01500K
10.22159/ajpcr.2018.v11i11.26873
10.1016/j.foodchem.2017.12.015
10.1101/cshperspect.a001651
10.1371/journal.pone.0198943
10.1016/j.fct.2013.05.061
10.1016/j.chroma.2019.460362
10.1038/nrd.2016.39
10.1016/j.foodres.2017.07.032
10.1038/s41591-019-0675-0
10.18311/jnr/2016/5367
10.3892/mmr.2019.10746
10.1002/9781119536604
10.1186/s13643-016-0384-4
10.1159/000495922
10.1146/annurev-pathol-012414-040418
10.1139/cjpp-2014-0362
10.1016/j.biopha.2017.06.036
10.31925/farmacia.2019.6.17
10.4142/jvs.2020.21.e91
10.1021/acs.jnatprod.8b00036
10.1016/j.cell.2010.03.006
10.21010/ajtcam.v13i4.10
10.1007/s00018-020-03656-y
10.1016/j.jep.2014.11.032
10.1016/0003-2697(82)90118-X
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T5
7T7
7TM
7TO
7U9
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s00011-022-01584-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
Technology Research Database
ProQuest One Academic Middle East (New)
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Oncogenes and Growth Factors Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1420-908X
EndPage 758
ExternalDocumentID 35612604
10_1007_s00011_022_01584_0
Genre Meta-Analysis
Systematic Review
Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M1P
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PKN
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
X7M
Y6R
YLTOR
Z45
Z7U
Z7W
Z82
Z87
Z8O
Z8Q
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7QL
7T5
7T7
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c441t-8388d61dd5d511adca81d0dd1b385e33874a8594c90aa5522c42d1c7a51c20ef3
IEDL.DBID U2A
ISSN 1023-3830
1420-908X
IngestDate Tue Aug 05 11:16:32 EDT 2025
Sat Jul 26 02:24:42 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Tue Jul 01 01:43:53 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Fri Feb 21 02:44:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Tumor necrosis factor-alpha
In vitro techniques
Nitricde
Lipopolysaccharide
Interleukin- 6
Macrophages
Interleukin-1 beta
RAW 264.7 cells
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-8388d61dd5d511adca81d0dd1b385e33874a8594c90aa5522c42d1c7a51c20ef3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
ORCID 0000-0002-5220-5396
PMID 35612604
PQID 2692853896
PQPubID 24296
PageCount 18
ParticipantIDs proquest_miscellaneous_2669502495
proquest_journals_2692853896
pubmed_primary_35612604
crossref_citationtrail_10_1007_s00011_022_01584_0
crossref_primary_10_1007_s00011_022_01584_0
springer_journals_10_1007_s00011_022_01584_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: New York
PublicationSubtitle Official Journal of: The International Association of Inflammation Societies + The European Histamine Research Society
PublicationTitle Inflammation research
PublicationTitleAbbrev Inflamm. Res
PublicationTitleAlternate Inflamm Res
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Moore K, Howard L, Brownmiller C, Gu I, Lee S-O, Mauromoustakos A. Inhibitory effects of cranberry polyphenol and volatile extracts on nitric oxide production in LPS activated RAW 264.7 macrophages. Food Funct [Internet]. 2019 [cited 2020 Apr 1];10(11):7091–102. Available from: http://xlink.rsc.org/?DOI=C9FO01500K
Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappa B and MAPK pathways. Food Chem. 2016;202:9–14.
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol [Internet]. 2005;5(1):13. Available from: http://bmcmedresmethodol.biomedcentral.com/articles/https://doi.org/10.1186/1471-2288-5-13
Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther [Internet]. 2017;2(1):17023. Available from: http://www.nature.com/articles/sigtrans201723
Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Roberts DD, editor. PLoS One [Internet]. 2018;13(6):e0198943. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0198943
Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol [Internet]. 2013;59:199–206. Available from: https://linkinghub.elsevier.com/retrieve/pii/S027869151300375X
Meram C, Wu J. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Res Int [Internet]. 2017;100:449–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996917303563
Lim D, Kim MK, Jang Y-P, Kim J. Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci [Internet]. 2015;79(3):288–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923181115300165
KabirIAnsariIa Review on in vivo and in vitro experimental models to investigate the anti-inflammatory activity of herbal extractsAsian J Pharm Clin Res20181111291:CAS:528:DC%2BC1MXhtFWrt7zL10.22159/ajpcr.2018.v11i11.26873
Hobbs S, Reynoso M, Geddis A V, Mitrophanov AY, Matheny RW. LPS-stimulated NF-kappa B p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep. 2018;6(21).
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: What controls its onset? Front Immunol [Internet]. 2016;7(APR). Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fimmu.2016.00160/abstract
Duarte LJ, Chaves VC, Nascimento MVP dos S, Calvete E, Li M, Ciraolo E, et al. Molecular mechanism of action of Pelargonidin-3- O -glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem [Internet]. 2018;247:56–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814617319544
Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis [Internet]. 2019;284:50–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915019301030
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci [Internet]. 2019;20(18):4367. Available from: https://www.mdpi.com/1422-0067/20/18/4367
Mohr ETB, dos Santos Nascimento MVP, da Rosa JS, Vieira GN, Kretzer IF, Sandjo LP, et al. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm [Internet]. 2019;2019:1–12. Available from: https://www.hindawi.com/journals/mi/2019/6474168
CicchittiLMartelliMCerritelliFChronic inflammatory disease and osteopathy: A systematic reviewPLoS One201510311810.1371/journal.pone.0121327
Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga L V, et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int [Internet]. 2020;129. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076113286&doi=10.1016%2Fj.foodres.2019.108756&partnerID=40&md5=532c50458a5140f6e7c1726ebc103f8f
He C, Lin H, Wang C, Zhang M, Lin Y, Huang F, et al. Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF‑κB/MAPK pathway. Mol Med Rep [Internet]. 2019;20:4943–52. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2019.10746
Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, et al. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement Altern Med [Internet]. 2017;17(1):120. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/https://doi.org/10.1186/s12906-017-1635-1
Lim D, Lee E, Jeong E, Jang Y-P, Kim J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. J Ethnopharmacol [Internet]. 2015;160:41–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874114008162
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med [Internet]. 2019;25(12):1822–32. Available from: http://www.nature.com/articles/s41591-019-0675-0
CiesielskaAMatyjekMKwiatkowskaKTLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signalingCell Mol Life Sci.20217841233611:CAS:528:DC%2BB3cXitVyhs7%2FJ10.1007/s00018-020-03656-y33057840
Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, et al. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother [Internet]. 2017;93:370–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332217313562
SahaBKBurnsSLThe story of nitric oxide, sepsis and methylene blue: a comprehensive pathophysiologic reviewAm J Med Sci.202036043293710.1016/j.amjms.2020.06.00732631574
Laksmitawati DR, Prasanti AP, Larasinta N, Syauta GA, Hilda R, Ramadaniati HU, et al. Anti-Inflammatory Potential of Gandarusa (Gendarussa vulgaris Nees) and Soursop (Annona muricata L) Extracts in LPS Stimulated-Macrophage Cell (RAW264.7). J Nat Remedies [Internet]. 2016;16(2):73. Available from: http://www.informaticsjournals.com/index.php/jnr/article/view/5367
Altan A, Yuce H, Karataş O, Taşkan M, Gevrek F, Çolak S, et al. Free and liposome form of gallic acid improves calvarial bone wound healing in Wistar rats. Asian Pac J Trop Biomed [Internet]. 2020;10(4):156–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082821467&doi=10.4103%2F2221-1691.280297&partnerID=40&md5=276ab92945ffa8b6630ea0ccc384717d
LawrenceTThe nuclear factor NF-kappaB pathway in inflammationCold Spring Harb Perspect Biol20091611010.1101/cshperspect.a001651
Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Adaptation of the Griess Reaction for Detection of Nitrite in Human Plasma. Free Radic Res [Internet]. 2004;38(11):1235–40. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327
Lee S-B, Lee WS, Shin J-S, Jang DS, Lee KT. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol [Internet]. 2017;49:21–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576917301947
PoltorakASmirnovaIHeXLiuM-YVanHCBirdwellDGenetic and physical mapping of the Lps Locus: identification of the toll-4 receptor as a candidate gene in the critical regionBlood Cells, Mol Dis199824017034035510.1006/bcmd.1998.0201
Kim M-J, Jeong S-M, Kang B-K, Kim K-B-W-R, Ahn D-H. Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J Microbiol Biotechnol [Internet]. 2019;29(5):820–6. Available from: http://www.jmb.or.kr/journal/view.html?doi=https://doi.org/10.4014/jmb.1901.01027
Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, et al. In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. J Nat Prod [Internet]. 2018;81(9):1956–61. Available from: https://pubs.acs.org/doi/https://doi.org/10.1021/acs.jnatprod.8b00036
Karatoprak GS, Pasayeva L, Safak EK, Göger F, Tugay O, Kosar M. Chemical composition and anti-inflammatory activity of Kitaibelia balansae BOISS. Farmacia [Internet]. 2019;67(6):1054–9. Available from: http://farmaciajournal.com/issue-articles/chemical-composition-and-anti-inflammatory-activity-of-kitaibelia-balansae-boiss
PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA statement: an updated guideline for reporting systematic reviewsBMJ.202010.1136/bmj.n7132933948
Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 2013.
Zhang Y, Yan R, Hu Y. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Can J Physiol Pharmacol [Internet]. 2015;93(4):253–60. Available from: http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/cjpp-2014-0362
Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell [Internet]. 2010;140(6):771–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20303867
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Syst
1584_CR22
1584_CR23
1584_CR20
1584_CR21
1584_CR26
1584_CR27
1584_CR24
1584_CR25
1584_CR28
1584_CR29
MJ Page (1584_CR16) 2020
1584_CR52
1584_CR11
1584_CR55
1584_CR12
1584_CR56
1584_CR53
1584_CR10
1584_CR54
A Ciesielska (1584_CR50) 2021; 78
1584_CR57
1584_CR14
1584_CR19
1584_CR17
1584_CR18
1584_CR40
I Kabir (1584_CR8) 2018; 11
1584_CR41
1584_CR44
1584_CR45
1584_CR42
1584_CR43
A Poltorak (1584_CR51) 1998; 240
C Nathan (1584_CR3) 2010; 140
T Lawrence (1584_CR13) 2009; 1
BK Saha (1584_CR15) 2020; 360
1584_CR7
1584_CR9
1584_CR2
1584_CR48
1584_CR49
1584_CR4
1584_CR46
1584_CR5
1584_CR47
1584_CR1
1584_CR30
1584_CR33
1584_CR34
1584_CR31
1584_CR32
L Cicchitti (1584_CR6) 2015; 10
1584_CR37
1584_CR38
1584_CR35
1584_CR36
1584_CR39
References_xml – reference: Lee S-B, Lee WS, Shin J-S, Jang DS, Lee KT. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol [Internet]. 2017;49:21–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576917301947
– reference: Karatoprak GS, Pasayeva L, Safak EK, Göger F, Tugay O, Kosar M. Chemical composition and anti-inflammatory activity of Kitaibelia balansae BOISS. Farmacia [Internet]. 2019;67(6):1054–9. Available from: http://farmaciajournal.com/issue-articles/chemical-composition-and-anti-inflammatory-activity-of-kitaibelia-balansae-boiss/
– reference: Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol [Internet]. 2020;11. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2020.01210/full
– reference: Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell [Internet]. 2010;140(6):771–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20303867
– reference: Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang K-J, et al. Engineered In Vitro Disease Models. Annu Rev Pathol Mech Dis [Internet]. 2015;10(1):195–262. Available from: http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev-pathol-012414-040418
– reference: PoltorakASmirnovaIHeXLiuM-YVanHCBirdwellDGenetic and physical mapping of the Lps Locus: identification of the toll-4 receptor as a candidate gene in the critical regionBlood Cells, Mol Dis199824017034035510.1006/bcmd.1998.0201
– reference: LawrenceTThe nuclear factor NF-kappaB pathway in inflammationCold Spring Harb Perspect Biol20091611010.1101/cshperspect.a001651
– reference: Duarte LJ, Chaves VC, Nascimento MVP dos S, Calvete E, Li M, Ciraolo E, et al. Molecular mechanism of action of Pelargonidin-3- O -glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem [Internet]. 2018;247:56–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814617319544
– reference: Zhang Y, Yan R, Hu Y. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Can J Physiol Pharmacol [Internet]. 2015;93(4):253–60. Available from: http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/cjpp-2014-0362
– reference: Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol [Internet]. 2005;5(1):13. Available from: http://bmcmedresmethodol.biomedcentral.com/articles/https://doi.org/10.1186/1471-2288-5-13
– reference: Lee HA, Koh EK, Sung JE, Kim JE, Song SH, Kim DS, et al. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. Mol Med Rep [Internet]. 2017;15(4):1613–23. Available from: https://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2017.6166
– reference: Dai B, Wei D, Zheng N, Chi Z, Xin N, Ma T, et al. Coccomyxa Gloeobotrydiformis Polysaccharide Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages. Cell Physiol Biochem [Internet]. 2018 [cited 2020 Apr 1];51(6):2523–35. Available from: https://www.karger.com/Article/FullText/495922
– reference: American type culture collection (ATCC). ATCC Raw 264.7 (ATCC® TIB71™) product sheet. American Type Collection Culture. EUA, 2018.
– reference: Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappa B and MAPK pathways. Food Chem. 2016;202:9–14.
– reference: Elisia I, Pae HB, Lam V, Cederberg R, Hofs E, Krystal G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J Immunol Methods [Internet]. 2018;452:26–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031664464&doi=10.1016%2Fj.jim.2017.10.004&partnerID=40&md5=00ac5160d32a7297d3898e2807a5bb86
– reference: Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Adaptation of the Griess Reaction for Detection of Nitrite in Human Plasma. Free Radic Res [Internet]. 2004;38(11):1235–40. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327
– reference: Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis [Internet]. 2019;284:50–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915019301030
– reference: Lim D, Lee E, Jeong E, Jang Y-P, Kim J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. J Ethnopharmacol [Internet]. 2015;160:41–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874114008162
– reference: Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem [Internet]. 2016;202:9–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814616301121
– reference: Moore K, Howard L, Brownmiller C, Gu I, Lee S-O, Mauromoustakos A. Inhibitory effects of cranberry polyphenol and volatile extracts on nitric oxide production in LPS activated RAW 264.7 macrophages. Food Funct [Internet]. 2019 [cited 2020 Apr 1];10(11):7091–102. Available from: http://xlink.rsc.org/?DOI=C9FO01500K
– reference: Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci [Internet]. 2019;20(18):4367. Available from: https://www.mdpi.com/1422-0067/20/18/4367
– reference: Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Roberts DD, editor. PLoS One [Internet]. 2018;13(6):e0198943. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0198943
– reference: Rahman MM, McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol [Internet]. 2011;9(4):291–306. Available from: http://www.nature.com/articles/nrmicro2539
– reference: Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, et al. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement Altern Med [Internet]. 2017;17(1):120. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/https://doi.org/10.1186/s12906-017-1635-1
– reference: Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: What controls its onset? Front Immunol [Internet]. 2016;7(APR). Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fimmu.2016.00160/abstract
– reference: CiesielskaAMatyjekMKwiatkowskaKTLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signalingCell Mol Life Sci.20217841233611:CAS:528:DC%2BB3cXitVyhs7%2FJ10.1007/s00018-020-03656-y33057840
– reference: KabirIAnsariIa Review on in vivo and in vitro experimental models to investigate the anti-inflammatory activity of herbal extractsAsian J Pharm Clin Res20181111291:CAS:528:DC%2BC1MXhtFWrt7zL10.22159/ajpcr.2018.v11i11.26873
– reference: Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, et al. In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. J Nat Prod [Internet]. 2018;81(9):1956–61. Available from: https://pubs.acs.org/doi/https://doi.org/10.1021/acs.jnatprod.8b00036
– reference: NathanCDingANonresolving InflammationCell201014068718821:CAS:528:DC%2BC3cXlsVSgu7s%3D10.1016/j.cell.2010.02.029
– reference: Green LC, Wagner D a, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126:131–8.
– reference: Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov [Internet]. 2021;20(1):39–63. Available from: http://www.nature.com/articles/s41573-020-0082-8
– reference: Mohr ETB, dos Santos Nascimento MVP, da Rosa JS, Vieira GN, Kretzer IF, Sandjo LP, et al. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm [Internet]. 2019;2019:1–12. Available from: https://www.hindawi.com/journals/mi/2019/6474168/
– reference: Yoon S-B, Lee Y-J, Park SK, Kim H-C, Bae H, Kim HM, et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J Ethnopharmacol [Internet]. 2009;125(2):286–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874109004024
– reference: CicchittiLMartelliMCerritelliFChronic inflammatory disease and osteopathy: A systematic reviewPLoS One201510311810.1371/journal.pone.0121327
– reference: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Intervention. 2nd edition. Chichester (UK); 2019. 694
– reference: Laksmitawati DR, Prasanti AP, Larasinta N, Syauta GA, Hilda R, Ramadaniati HU, et al. Anti-Inflammatory Potential of Gandarusa (Gendarussa vulgaris Nees) and Soursop (Annona muricata L) Extracts in LPS Stimulated-Macrophage Cell (RAW264.7). J Nat Remedies [Internet]. 2016;16(2):73. Available from: http://www.informaticsjournals.com/index.php/jnr/article/view/5367
– reference: Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of Nitric Oxide Measurement Methods in Biological Media. Anal Chem [Internet]. 2013;85(3):1957–63. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327
– reference: Kim M-J, Jeong S-M, Kang B-K, Kim K-B-W-R, Ahn D-H. Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J Microbiol Biotechnol [Internet]. 2019;29(5):820–6. Available from: http://www.jmb.or.kr/journal/view.html?doi=https://doi.org/10.4014/jmb.1901.01027
– reference: Beronius A, Molander L, Zilliacus J, Rudén C, Hanberg A. Testing and refining the Science in Risk Assessment and Policy (SciRAP) web-based platform for evaluating the reliability and relevance of in vivo toxicity studies. J Appl Toxicol [Internet]. 2018;38(12):1460–70. Available from: http://doi.wiley.com/https://doi.org/10.1002/jat.3648
– reference: Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga L V, et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int [Internet]. 2020;129. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076113286&doi=10.1016%2Fj.foodres.2019.108756&partnerID=40&md5=532c50458a5140f6e7c1726ebc103f8f
– reference: Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol [Internet]. 2013;59:199–206. Available from: https://linkinghub.elsevier.com/retrieve/pii/S027869151300375X
– reference: Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov [Internet]. 2016;15(8):551–67. Available from: http://www.nature.com/articles/nrd.2016.39
– reference: Lim D, Kim MK, Jang Y-P, Kim J. Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci [Internet]. 2015;79(3):288–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923181115300165
– reference: Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther [Internet]. 2017;2(1):17023. Available from: http://www.nature.com/articles/sigtrans201723
– reference: PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA statement: an updated guideline for reporting systematic reviewsBMJ.202010.1136/bmj.n7132933948
– reference: Meram C, Wu J. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Res Int [Internet]. 2017;100:449–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996917303563
– reference: Guo Z, Xu H-Y, Xu L, Wang S-S, Zhang X-M. In vivo and in vitro immunomodulatory and anti-inflammatory effects of total flavonoids of Astragalus. Africa J Tradit Complement Altern Med [Internet]. 2016;13(4):60–73. Available from: http://journals.sfu.ca/africanem/index.php/ajtcam/article/view/3461/pdf
– reference: Da Silva LAL, Sandjo LP, Fratoni E, Kinoshita Moon YJ, Dalmarco EM, Biavatti MW. A single-step isolation by centrifugal partition chromatography of the potential anti-inflammatory glaucolide B from Lepidaploa chamissonis. J Chromatogr A [Internet]. 2019;1605:460362. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021967319307460
– reference: Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev [Internet]. 2016;5(1):210. Available from: http://systematicreviewsjournal.biomedcentral.com/articles/https://doi.org/10.1186/s13643-016-0384-4
– reference: Hobbs S, Reynoso M, Geddis A V, Mitrophanov AY, Matheny RW. LPS-stimulated NF-kappa B p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep. 2018;6(21).
– reference: SahaBKBurnsSLThe story of nitric oxide, sepsis and methylene blue: a comprehensive pathophysiologic reviewAm J Med Sci.202036043293710.1016/j.amjms.2020.06.00732631574
– reference: Ranaweera SS, Dissanayake CY, Natraj P, Lee YJ, Han C-H. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci [Internet]. 2020;21(6). Available from: http://xlink.rsc.org/?DOI=C9FO01500K
– reference: Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 2013.
– reference: Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, et al. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother [Internet]. 2017;93:370–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332217313562
– reference: Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med [Internet]. 2019;25(12):1822–32. Available from: http://www.nature.com/articles/s41591-019-0675-0
– reference: Altan A, Yuce H, Karataş O, Taşkan M, Gevrek F, Çolak S, et al. Free and liposome form of gallic acid improves calvarial bone wound healing in Wistar rats. Asian Pac J Trop Biomed [Internet]. 2020;10(4):156–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082821467&doi=10.4103%2F2221-1691.280297&partnerID=40&md5=276ab92945ffa8b6630ea0ccc384717d
– reference: He C, Lin H, Wang C, Zhang M, Lin Y, Huang F, et al. Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF‑κB/MAPK pathway. Mol Med Rep [Internet]. 2019;20:4943–52. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2019.10746
– year: 2020
  ident: 1584_CR16
  publication-title: BMJ.
  doi: 10.1136/bmj.n71
– ident: 1584_CR24
  doi: 10.1016/j.jep.2009.06.027
– ident: 1584_CR4
  doi: 10.1038/s41573-020-0082-8
– ident: 1584_CR55
  doi: 10.1038/sigtrans.2017.23
– ident: 1584_CR30
  doi: 10.1016/j.atherosclerosis.2019.02.017
– ident: 1584_CR46
  doi: 10.1080/10715760400017327
– ident: 1584_CR33
  doi: 10.1186/s12906-017-1635-1
– ident: 1584_CR53
  doi: 10.14814/phy2.13914
– ident: 1584_CR54
  doi: 10.1038/nrmicro2539
– ident: 1584_CR21
  doi: 10.1155/2019/6474168
– ident: 1584_CR9
  doi: 10.3390/ijms20184367
– ident: 1584_CR18
– ident: 1584_CR35
  doi: 10.4014/jmb.1901.01027
– ident: 1584_CR38
  doi: 10.1016/j.intimp.2017.05.021
– volume: 140
  start-page: 871
  issue: 6
  year: 2010
  ident: 1584_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2010.02.029
– ident: 1584_CR37
  doi: 10.3892/mmr.2017.6166
– ident: 1584_CR26
  doi: 10.1186/1471-2288-5-13
– volume: 10
  start-page: 1
  issue: 3
  year: 2015
  ident: 1584_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0121327
– ident: 1584_CR5
  doi: 10.3389/fimmu.2016.00160/abstract
– ident: 1584_CR49
  doi: 10.3389/fimmu.2020.01210/full
– volume: 360
  start-page: 329
  issue: 4
  year: 2020
  ident: 1584_CR15
  publication-title: Am J Med Sci.
  doi: 10.1016/j.amjms.2020.06.007
– ident: 1584_CR39
  doi: 10.1016/j.jdermsci.2015.06.012
– ident: 1584_CR45
  doi: 10.1016/j.foodchem.2016.01.114
– ident: 1584_CR27
  doi: 10.1002/jat.3648
– volume: 240
  start-page: 340
  issue: 170
  year: 1998
  ident: 1584_CR51
  publication-title: Blood Cells, Mol Dis
  doi: 10.1006/bcmd.1998.0201
– ident: 1584_CR56
  doi: 10.1039/C9FO01500K
– volume: 11
  start-page: 29
  issue: 11
  year: 2018
  ident: 1584_CR8
  publication-title: Asian J Pharm Clin Res
  doi: 10.22159/ajpcr.2018.v11i11.26873
– ident: 1584_CR20
  doi: 10.1016/j.foodchem.2017.12.015
– ident: 1584_CR25
– volume: 1
  start-page: 1
  issue: 6
  year: 2009
  ident: 1584_CR13
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a001651
– ident: 1584_CR11
  doi: 10.1371/journal.pone.0198943
– ident: 1584_CR23
  doi: 10.1016/j.fct.2013.05.061
– ident: 1584_CR12
– ident: 1584_CR43
  doi: 10.1016/j.chroma.2019.460362
– ident: 1584_CR1
  doi: 10.1038/nrd.2016.39
– ident: 1584_CR36
  doi: 10.1016/j.foodchem.2016.01.114
– ident: 1584_CR29
  doi: 10.1016/j.foodres.2017.07.032
– ident: 1584_CR7
  doi: 10.1038/s41591-019-0675-0
– ident: 1584_CR42
  doi: 10.18311/jnr/2016/5367
– ident: 1584_CR32
  doi: 10.3892/mmr.2019.10746
– ident: 1584_CR17
  doi: 10.1002/9781119536604
– ident: 1584_CR28
  doi: 10.1186/s13643-016-0384-4
– ident: 1584_CR52
  doi: 10.1159/000495922
– ident: 1584_CR10
  doi: 10.1146/annurev-pathol-012414-040418
– ident: 1584_CR22
– ident: 1584_CR34
  doi: 10.1139/cjpp-2014-0362
– ident: 1584_CR14
  doi: 10.1016/j.biopha.2017.06.036
– ident: 1584_CR47
  doi: 10.1080/10715760400017327
– ident: 1584_CR44
  doi: 10.31925/farmacia.2019.6.17
– ident: 1584_CR57
  doi: 10.4142/jvs.2020.21.e91
– ident: 1584_CR41
  doi: 10.1021/acs.jnatprod.8b00036
– ident: 1584_CR2
  doi: 10.1016/j.cell.2010.03.006
– ident: 1584_CR31
  doi: 10.21010/ajtcam.v13i4.10
– volume: 78
  start-page: 1233
  issue: 4
  year: 2021
  ident: 1584_CR50
  publication-title: Cell Mol Life Sci.
  doi: 10.1007/s00018-020-03656-y
– ident: 1584_CR19
– ident: 1584_CR40
  doi: 10.1016/j.jep.2014.11.032
– ident: 1584_CR48
  doi: 10.1016/0003-2697(82)90118-X
SSID ssj0008282
Score 2.6222582
SecondaryResourceType review_article
Snippet Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells...
Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been...
IntroductionSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 741
SubjectTerms Allergology
Animals
Anti-inflammatory agents
Anti-Inflammatory Agents - pharmacology
Biomarkers
Biomedical and Life Sciences
Biomedicine
Cell density
Dermatology
Drug development
IL-1β
Immunology
Inflammation
Inflammation Mediators
Interleukin 6
Interleukin-1beta - pharmacology
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Macrophages
Meta-analysis
Mice
Neurology
NF-kappa B
Nitric Oxide
Pharmacology/Toxicology
RAW 264.7 Cells
Review
Reviews
Rheumatology
Systematic review
Tumor Necrosis Factor-alpha - pharmacology
Tumor necrosis factor-TNF
Tumor necrosis factor-α
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BuXBBfBNa0CChXlhDPmzHywVViKogQCtoxd4ix3ZObbbtbg_998w43kSooufYiZVne97YM28A3tIC83VbOaE1H920thJGWiXI0prWlUbljh3FHz_10Yn8tlTLdOC2TmGV2z0xbtR-5fiM_EOp59STzKv-dH4huGoU366mEhp34R5Ll_Gsrpejw8XqbMNtZ1kJ8sTylDQTU-ciGRIcy04G0UiR_2uYbrDNGzel0QAdPoQHiTniwQD1I7gT-sewvxikp69neDxlUq1nuI-LSZT6-gmEr31H4J_FS3XkpHuOy7lc46pH2-P3xW9B3jnh7PHXwR8kAvO-Rj7Vx1gr5yNanESfcUh4oY4ez8LGCpukTZ7CyeGX489HIpVYEI540EaYyhivC--VJ-ZlvbPEX3Pvi7YyKpD7Wktr1Fy6eW6tIq7mZOkLV1tVuDIPXfUMdvpVH14A6q7snPOuUF0r687Mg_ZGSrJ3inw-ZzMotv-3cUl_nMtgnDajcnLEpCFMmohJk2fwbuxzPqhv3Np6bwtbk1biupnmTQZvxse0hvgX2j6srriNpkFyFe4Mng9wj5-ruHyozmUGsy3-08v_P5aXt49lF-6Xce5xJOEe7Gwur8IrYjeb9nWcwn8BINXx0w
  priority: 102
  providerName: ProQuest
Title Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis
URI https://link.springer.com/article/10.1007/s00011-022-01584-0
https://www.ncbi.nlm.nih.gov/pubmed/35612604
https://www.proquest.com/docview/2692853896
https://www.proquest.com/docview/2669502495
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5Be-GCKM-lJRok1Asx2oftdXpLUEJ5RVFpRDitvLb3RDeoSQ_99x17HxFqi8TJh7W9lj_b8409D4B3tMFsXmaGSemvbkqdMcW1YCRpVWlSJWLjFcXvc3m65F9WYtU6hW06a_fuSTKc1L2zW6AvzFufkwhTnJGivi9Id_eGXMt03J-_pEM0b5xpxkj_iltXmbv7-Fsc3eKYt95Hg9iZPYHHLV_EcQPwATxw9VM4XjQBp6-HeL7zn9oM8RgXu1DU18_Afa4rgvwiPKWjd7X31jiXG1zXqGv8tvjBSCcndC2ejX8i0ZYPOfq7fAwZck5Q4y7UMzZuLtTQ4oXbaqbbgCbPYTmbnn88ZW1iBWaI_WyZypSyMrFWWOJb2hpNrDW2NikzJRwprTnXSoy4GcVaC2Johqc2MbkWiUljV2UvYK9e1-4VoKzSyhhrElGVPK_UyEmrOCcpJ0jTMzqCpJvfwrRRx33yi99FHy85YFIQJkXApIgjeN-3-dPE3Phn7aMOtqLdf5silSNaZ0TGZARv-8-0c_wU6tqtr3wdSYP0ubcjeNnA3f8u80lDZcwjGHb47zq_fyyv_6_6ITxKw1r09oRHsLe9vHJviONsywE8zFf5APbHs8lk7stPv75OqZxM54uzQVjwN-Ng9AE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLxZtAASNBL6whcWzHi4RQBVS7dFutYKvuLTi2I1Wi2dLdCu2f4jcydl5CFb31HNuxPDP-ZjwvgFcoYDYrUkOl9E83hU6p4lpQRFpVGKZEbLyheHAoR0f861zMN-BPmwvjwyrbOzFc1HZh_Bv5OyaHOBPhVX48-0V91yjvXW1baNRsse_Wv9FkW34Yf0b6vmZs78vs04g2XQWoQehfUZUqZWVirbCobGhrNKpssbVJkSrh0GLLuFZiyM0w1lqgemI4s4nJtEgMi12Z4ro34CYCb-yNvWzeGXi-GlztXWUpRcsvbpJ0QqpeUL6oj51HAFacxv8C4SXt9pJnNgDe3h3YajRVsluz1l3YcNU92JnWpa7XAzLrM7eWA7JDpn0R7PV9cOOqRGY7DU584pP8fRzQ-ZIsKqIrMpl-pyeVRb6y5NvuMUGF6W1GvBeBhN4874kmfZFpUifY4ERLTt1KU92UUnkAR9dy-A9hs1pU7jEQWbLSGGsSURY8K9XQSas4R3wVaGMaHUHSnm9umnrnvu3Gz7yr1BxokiNN8kCTPI7gTTfnrK72ceXo7ZZseSP5y7zn0whedp9RZv0R6sotLvwYiZv0Xb8jeFSTu_td6tuVyphHMGjp3y_-_708uXovL-DWaHYwySfjw_2ncJsFPvRRjNuwuTq_cM9Qs1oVzwM7E_hx3fLzF0dFLlc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gkRhfjN-sotZEefEqu9222zMxBoULJ3jZIETelm7bTUxkD7kj5v41_jqm-xlD5I3nbbtNZ6bzm84XwFsUMJvksaFS-qebXMdUcS0oalqVG6ZEaLyh-H0qd4_4t2NxvAKXbS6MD6ts78TqorYz49_IN5kc4UxUr3KzaMIi0u3x57M_1HeQ8p7Wtp1GzSJ7bvkXzbf5p8k20vodY-Odw6-7tOkwQA3CgAVVsVJWRtYKi8BDW6MRvoXWRnmshEPrLeFaiRE3o1BrgVDFcGYjk2gRGRa6IsZ178Bq4q2iAax-2ZmmB50eQFum9rWymKIdGDYpO1XiXgXFqI-kR3WsOA3_VYvXsO41P22l_sYP4H6DW8lWzWgPYcWVj2AjrQtfL4fksM_jmg_JBkn7ktjLx-AmZYGsd1q59IlP-fdRQedzMiuJLsl--oP-Ki1ymSUHWz8JwqcPCfE-BVJ16vlINOlLTpM63QYnWnLqFprqprDKEzi6leN_CoNyVro1ILJghTHWRKLIeVKokZNWcY7aVqDFaXQAUXu-mWmqn_smHL-zrm5zRZMMaZJVNMnCAN53c87q2h83jl5vyZY198A867k2gDfdZ5Rgf4S6dLMLP0biJn0P8ACe1eTufhf75qUy5AEMW_r3i_9_L89v3struIuyk-1Ppnsv4B6r2NCHNK7DYHF-4V4izFrkrxp-JnBy2yJ0BeD9M_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inflammatory+biomarkers+on+an+LPS-induced+RAW+264.7+cell+model%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Inflammation+research&rft.au=Facchin%2C+Bruno+Matheus&rft.au=Dos+Reis%2C+Gustavo+Oliveira&rft.au=Vieira%2C+Guilherme+Nic%C3%A1cio&rft.au=Mohr%2C+Eduarda+Talita+Bramorski&rft.date=2022-08-01&rft.issn=1420-908X&rft.eissn=1420-908X&rft.volume=71&rft.issue=7-8&rft.spage=741&rft_id=info:doi/10.1007%2Fs00011-022-01584-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon