Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis
Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possib...
Saved in:
Published in | Inflammation research Vol. 71; no. 7-8; pp. 741 - 758 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Introduction
Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).
Methodology
We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework (
https://doi.org/10.17605/OSF.IO/8C3HT
).
Results
LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.
Conclusion
Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells. |
---|---|
AbstractList | Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).INTRODUCTIONSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ).METHODOLOGYWe conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ).LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.RESULTSLPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells.CONCLUSIONMeasurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells. Introduction Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA). Methodology We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ). Results LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems. Conclusion Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells. IntroductionSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA).MethodologyWe conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework (https://doi.org/10.17605/OSF.IO/8C3HT).ResultsLPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems.ConclusionMeasurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells. Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been widely used. However, there is still no consensus on which inflammatory mediators should initially be measured to screen for possible anti-inflammatory effects. To determine the rationality of measuring inflammatory mediators together with NO, such as the levels of tumor necrosis factor (TNF)-α, and interleukins (IL) 1β and 6, we carried out this systematic review (SR) and meta-analysis (MA). We conducted this SR and MA in accordance with the Preferred Reporting of Systematic Reviews and Meta-Analysis and the Cochrane Handbook for Systematic Reviews of Intervention. This review was registered in the Open Science Framework ( https://doi.org/10.17605/OSF.IO/8C3HT ). LPS-induced cells produced high NO levels compared to non-LPS induced, and this production was not related to cell density. TNF-α, IL-1β, and IL-6, also showed high levels after cells had been stimulated with LPS. Though with some restrictions, all studies were reliable, as the risk of bias was detected in the test compounds and systems. Measurement of NO levels may be sufficient to screen for possible anti-inflammatory action in the context of LPS-induced RAW 264.7 cells. |
Author | dos Reis, Gustavo Oliveira Facchin, Bruno Matheus Demarchi, Izabel Galhardo Vieira, Guilherme Nicácio Dalmarco, Eduardo Monguilhott Mohr, Eduarda Talita Bramorski da Rosa, Júlia Salvan Kretzer, Iara Fabricia |
Author_xml | – sequence: 1 givenname: Bruno Matheus surname: Facchin fullname: Facchin, Bruno Matheus organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina – sequence: 2 givenname: Gustavo Oliveira surname: dos Reis fullname: dos Reis, Gustavo Oliveira organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina – sequence: 3 givenname: Guilherme Nicácio surname: Vieira fullname: Vieira, Guilherme Nicácio organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina – sequence: 4 givenname: Eduarda Talita Bramorski surname: Mohr fullname: Mohr, Eduarda Talita Bramorski organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina – sequence: 5 givenname: Júlia Salvan surname: da Rosa fullname: da Rosa, Júlia Salvan organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina – sequence: 6 givenname: Iara Fabricia surname: Kretzer fullname: Kretzer, Iara Fabricia organization: Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina – sequence: 7 givenname: Izabel Galhardo surname: Demarchi fullname: Demarchi, Izabel Galhardo organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Estadual de Maringá – sequence: 8 givenname: Eduardo Monguilhott orcidid: 0000-0002-5220-5396 surname: Dalmarco fullname: Dalmarco, Eduardo Monguilhott email: edalmarco@gmail.com, eduardo.dalmarco@ufsc.br organization: Programa de Pós-Graduação Em Farmácia (PPGFar), Universidade Federal de Santa Catarina, Departamento de Análises Clínicas–CCS, Universidade Federal de Santa Catarina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35612604$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rVDEUhoO02A_9Ay4k4MZN2pOvO7nuSmlrYUDxA92FTHJGUu9NanKvZf59M06L0EVXyeJ5Xl7Oe0T2Uk5IyBsOJxxgcVoBgHMGQjDg2igGL8ghVwJYD-bnXvuDkEwaCQfkqNabhhthxEtyIHXHRQfqkOB1Wg9uHN2Uy4auYh5d-Y2l0pyoS3T5-SuLKcweA_1y9oOKTp0sqMdhoGMOOHygjtZNnbAFRE8L_o1418RAR5wcc8kNmxrrK7K_dkPF1w_vMfl-efHt_CNbfrq6Pj9bMq8Un5iRxoSOh6CD5twF7wwPEAJfSaNRSrNQzuhe-R6c01oIr0TgfuE09wJwLY_J-13ubcl_ZqyTHWPdtnUJ81yt6Lpeg1C9bui7J-hNnkvru6V6YbQ0fdeotw_UvBox2NsS24E29vGADTA7wJdca8G19XFqt8hpKi4OloPdbmV3W9m2lf23lYWmiifqY_qzktxJtcHpF5b_tZ-x7gGacaOE |
CitedBy_id | crossref_primary_10_3390_toxics10110642 crossref_primary_10_3390_foods13162558 crossref_primary_10_3390_life15030418 crossref_primary_10_1007_s00441_024_03921_7 crossref_primary_10_3390_toxins15040298 crossref_primary_10_1007_s11596_024_2873_3 crossref_primary_10_1016_j_intimp_2023_111270 crossref_primary_10_1248_bpb_b24_00397 crossref_primary_10_1016_j_jep_2023_117131 crossref_primary_10_1039_D4NP00066H crossref_primary_10_3390_ph16070999 crossref_primary_10_3390_chemosensors11020152 crossref_primary_10_1016_j_jep_2023_116918 crossref_primary_10_3390_fermentation10070345 crossref_primary_10_3746_jkfn_2025_54_2_157 crossref_primary_10_3390_molecules28052075 crossref_primary_10_1016_j_algal_2023_103171 crossref_primary_10_1016_j_jep_2024_118730 crossref_primary_10_1016_j_jep_2024_118892 crossref_primary_10_3390_ph17070928 crossref_primary_10_1002_anie_202314563 crossref_primary_10_1007_s12257_024_00094_6 crossref_primary_10_3839_jabc_2023_004 crossref_primary_10_1002_ange_202422091 crossref_primary_10_1016_j_actbio_2025_02_014 crossref_primary_10_1016_j_ebiom_2024_105390 crossref_primary_10_1007_s10753_024_02180_6 crossref_primary_10_1016_j_bioorg_2023_106887 crossref_primary_10_1080_14786419_2024_2394103 crossref_primary_10_1016_j_ijbiomac_2024_138935 crossref_primary_10_2147_IJN_S459788 crossref_primary_10_3390_molecules28196875 crossref_primary_10_1021_acs_jnatprod_3c00465 crossref_primary_10_3390_cimb47020085 crossref_primary_10_1007_s00018_024_05207_1 crossref_primary_10_3390_ijms241511982 crossref_primary_10_1007_s11130_024_01204_8 crossref_primary_10_1016_j_talanta_2023_125350 crossref_primary_10_1016_j_bioorg_2025_108350 crossref_primary_10_1016_j_fbio_2024_105459 crossref_primary_10_3390_molecules30020416 crossref_primary_10_3389_fvets_2025_1539448 crossref_primary_10_3390_foods14050714 crossref_primary_10_3390_antiox13050577 crossref_primary_10_1002_cbf_3840 crossref_primary_10_1016_j_trsl_2022_11_006 crossref_primary_10_3390_futurepharmacol5010006 crossref_primary_10_1002_ange_202314563 crossref_primary_10_1016_j_intimp_2024_113432 crossref_primary_10_1038_s41401_024_01251_6 crossref_primary_10_3390_foods13223532 crossref_primary_10_1021_jacs_4c03344 crossref_primary_10_1016_j_cjac_2023_100331 crossref_primary_10_2174_0113862073275657231210055250 crossref_primary_10_1039_D4MA01202J crossref_primary_10_3390_ijms251910642 crossref_primary_10_1039_D4FO03646H crossref_primary_10_1002_anie_202422091 crossref_primary_10_3390_life14060763 crossref_primary_10_3390_ph17030283 crossref_primary_10_1016_j_jconrel_2025_01_085 crossref_primary_10_4103_apjtb_apjtb_865_23 crossref_primary_10_3390_antibiotics13020145 crossref_primary_10_1021_acsami_3c17862 crossref_primary_10_3390_biom14060636 crossref_primary_10_3390_cells12212570 crossref_primary_10_3892_mmr_2024_13390 crossref_primary_10_1248_cpb_c24_00263 crossref_primary_10_1016_j_jddst_2023_105299 crossref_primary_10_1021_acs_analchem_3c00409 crossref_primary_10_1016_j_matchemphys_2023_128113 crossref_primary_10_1021_acsami_4c17885 crossref_primary_10_1111_jcmm_17805 crossref_primary_10_3390_ijms26010431 crossref_primary_10_1007_s11030_024_11058_6 crossref_primary_10_15283_ijsc24089 crossref_primary_10_1016_j_focha_2024_100700 crossref_primary_10_12991_jrespharm_1643793 crossref_primary_10_3839_jabc_2025_005 crossref_primary_10_3390_microorganisms12081730 crossref_primary_10_3390_molecules27238134 crossref_primary_10_1016_j_tet_2024_134240 crossref_primary_10_3390_app13179684 crossref_primary_10_32725_jab_2024_023 crossref_primary_10_1021_acs_jnatprod_4c00237 crossref_primary_10_1080_07391102_2023_2239901 crossref_primary_10_2147_IJN_S487647 crossref_primary_10_3390_ph16101386 crossref_primary_10_3390_ijms252312638 crossref_primary_10_3390_antiox13121544 crossref_primary_10_1016_j_jep_2023_116747 crossref_primary_10_1007_s00011_022_01623_w |
Cites_doi | 10.1136/bmj.n71 10.1016/j.jep.2009.06.027 10.1038/s41573-020-0082-8 10.1038/sigtrans.2017.23 10.1016/j.atherosclerosis.2019.02.017 10.1080/10715760400017327 10.1186/s12906-017-1635-1 10.14814/phy2.13914 10.1038/nrmicro2539 10.1155/2019/6474168 10.3390/ijms20184367 10.4014/jmb.1901.01027 10.1016/j.intimp.2017.05.021 10.1016/j.cell.2010.02.029 10.3892/mmr.2017.6166 10.1186/1471-2288-5-13 10.1371/journal.pone.0121327 10.3389/fimmu.2016.00160/abstract 10.3389/fimmu.2020.01210/full 10.1016/j.amjms.2020.06.007 10.1016/j.jdermsci.2015.06.012 10.1016/j.foodchem.2016.01.114 10.1002/jat.3648 10.1006/bcmd.1998.0201 10.1039/C9FO01500K 10.22159/ajpcr.2018.v11i11.26873 10.1016/j.foodchem.2017.12.015 10.1101/cshperspect.a001651 10.1371/journal.pone.0198943 10.1016/j.fct.2013.05.061 10.1016/j.chroma.2019.460362 10.1038/nrd.2016.39 10.1016/j.foodres.2017.07.032 10.1038/s41591-019-0675-0 10.18311/jnr/2016/5367 10.3892/mmr.2019.10746 10.1002/9781119536604 10.1186/s13643-016-0384-4 10.1159/000495922 10.1146/annurev-pathol-012414-040418 10.1139/cjpp-2014-0362 10.1016/j.biopha.2017.06.036 10.31925/farmacia.2019.6.17 10.4142/jvs.2020.21.e91 10.1021/acs.jnatprod.8b00036 10.1016/j.cell.2010.03.006 10.21010/ajtcam.v13i4.10 10.1007/s00018-020-03656-y 10.1016/j.jep.2014.11.032 10.1016/0003-2697(82)90118-X |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7T7 7TM 7TO 7U9 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00011-022-01584-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts Technology Research Database ProQuest One Academic Middle East (New) Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Oncogenes and Growth Factors Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1420-908X |
EndPage | 758 |
ExternalDocumentID | 35612604 10_1007_s00011_022_01584_0 |
Genre | Meta-Analysis Systematic Review Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 2.D 203 28- 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M1P M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PKN PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 X7M Y6R YLTOR Z45 Z7U Z7W Z82 Z87 Z8O Z8Q Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7QL 7T5 7T7 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c441t-8388d61dd5d511adca81d0dd1b385e33874a8594c90aa5522c42d1c7a51c20ef3 |
IEDL.DBID | U2A |
ISSN | 1023-3830 1420-908X |
IngestDate | Tue Aug 05 11:16:32 EDT 2025 Sat Jul 26 02:24:42 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Tue Jul 01 01:43:53 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Fri Feb 21 02:44:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Keywords | Tumor necrosis factor-alpha In vitro techniques Nitricde Lipopolysaccharide Interleukin- 6 Macrophages Interleukin-1 beta RAW 264.7 cells |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-8388d61dd5d511adca81d0dd1b385e33874a8594c90aa5522c42d1c7a51c20ef3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
ORCID | 0000-0002-5220-5396 |
PMID | 35612604 |
PQID | 2692853896 |
PQPubID | 24296 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2669502495 proquest_journals_2692853896 pubmed_primary_35612604 crossref_citationtrail_10_1007_s00011_022_01584_0 crossref_primary_10_1007_s00011_022_01584_0 springer_journals_10_1007_s00011_022_01584_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Switzerland – name: New York |
PublicationSubtitle | Official Journal of: The International Association of Inflammation Societies + The European Histamine Research Society |
PublicationTitle | Inflammation research |
PublicationTitleAbbrev | Inflamm. Res |
PublicationTitleAlternate | Inflamm Res |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Moore K, Howard L, Brownmiller C, Gu I, Lee S-O, Mauromoustakos A. Inhibitory effects of cranberry polyphenol and volatile extracts on nitric oxide production in LPS activated RAW 264.7 macrophages. Food Funct [Internet]. 2019 [cited 2020 Apr 1];10(11):7091–102. Available from: http://xlink.rsc.org/?DOI=C9FO01500K Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappa B and MAPK pathways. Food Chem. 2016;202:9–14. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol [Internet]. 2005;5(1):13. Available from: http://bmcmedresmethodol.biomedcentral.com/articles/https://doi.org/10.1186/1471-2288-5-13 Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther [Internet]. 2017;2(1):17023. Available from: http://www.nature.com/articles/sigtrans201723 Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Roberts DD, editor. PLoS One [Internet]. 2018;13(6):e0198943. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0198943 Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol [Internet]. 2013;59:199–206. Available from: https://linkinghub.elsevier.com/retrieve/pii/S027869151300375X Meram C, Wu J. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Res Int [Internet]. 2017;100:449–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996917303563 Lim D, Kim MK, Jang Y-P, Kim J. Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci [Internet]. 2015;79(3):288–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923181115300165 KabirIAnsariIa Review on in vivo and in vitro experimental models to investigate the anti-inflammatory activity of herbal extractsAsian J Pharm Clin Res20181111291:CAS:528:DC%2BC1MXhtFWrt7zL10.22159/ajpcr.2018.v11i11.26873 Hobbs S, Reynoso M, Geddis A V, Mitrophanov AY, Matheny RW. LPS-stimulated NF-kappa B p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep. 2018;6(21). Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: What controls its onset? Front Immunol [Internet]. 2016;7(APR). Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fimmu.2016.00160/abstract Duarte LJ, Chaves VC, Nascimento MVP dos S, Calvete E, Li M, Ciraolo E, et al. Molecular mechanism of action of Pelargonidin-3- O -glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem [Internet]. 2018;247:56–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814617319544 Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis [Internet]. 2019;284:50–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915019301030 Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci [Internet]. 2019;20(18):4367. Available from: https://www.mdpi.com/1422-0067/20/18/4367 Mohr ETB, dos Santos Nascimento MVP, da Rosa JS, Vieira GN, Kretzer IF, Sandjo LP, et al. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm [Internet]. 2019;2019:1–12. Available from: https://www.hindawi.com/journals/mi/2019/6474168 CicchittiLMartelliMCerritelliFChronic inflammatory disease and osteopathy: A systematic reviewPLoS One201510311810.1371/journal.pone.0121327 Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga L V, et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int [Internet]. 2020;129. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076113286&doi=10.1016%2Fj.foodres.2019.108756&partnerID=40&md5=532c50458a5140f6e7c1726ebc103f8f He C, Lin H, Wang C, Zhang M, Lin Y, Huang F, et al. Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF‑κB/MAPK pathway. Mol Med Rep [Internet]. 2019;20:4943–52. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2019.10746 Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, et al. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement Altern Med [Internet]. 2017;17(1):120. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/https://doi.org/10.1186/s12906-017-1635-1 Lim D, Lee E, Jeong E, Jang Y-P, Kim J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. J Ethnopharmacol [Internet]. 2015;160:41–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874114008162 Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med [Internet]. 2019;25(12):1822–32. Available from: http://www.nature.com/articles/s41591-019-0675-0 CiesielskaAMatyjekMKwiatkowskaKTLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signalingCell Mol Life Sci.20217841233611:CAS:528:DC%2BB3cXitVyhs7%2FJ10.1007/s00018-020-03656-y33057840 Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, et al. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother [Internet]. 2017;93:370–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332217313562 SahaBKBurnsSLThe story of nitric oxide, sepsis and methylene blue: a comprehensive pathophysiologic reviewAm J Med Sci.202036043293710.1016/j.amjms.2020.06.00732631574 Laksmitawati DR, Prasanti AP, Larasinta N, Syauta GA, Hilda R, Ramadaniati HU, et al. Anti-Inflammatory Potential of Gandarusa (Gendarussa vulgaris Nees) and Soursop (Annona muricata L) Extracts in LPS Stimulated-Macrophage Cell (RAW264.7). J Nat Remedies [Internet]. 2016;16(2):73. Available from: http://www.informaticsjournals.com/index.php/jnr/article/view/5367 Altan A, Yuce H, Karataş O, Taşkan M, Gevrek F, Çolak S, et al. Free and liposome form of gallic acid improves calvarial bone wound healing in Wistar rats. Asian Pac J Trop Biomed [Internet]. 2020;10(4):156–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082821467&doi=10.4103%2F2221-1691.280297&partnerID=40&md5=276ab92945ffa8b6630ea0ccc384717d LawrenceTThe nuclear factor NF-kappaB pathway in inflammationCold Spring Harb Perspect Biol20091611010.1101/cshperspect.a001651 Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Adaptation of the Griess Reaction for Detection of Nitrite in Human Plasma. Free Radic Res [Internet]. 2004;38(11):1235–40. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327 Lee S-B, Lee WS, Shin J-S, Jang DS, Lee KT. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol [Internet]. 2017;49:21–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576917301947 PoltorakASmirnovaIHeXLiuM-YVanHCBirdwellDGenetic and physical mapping of the Lps Locus: identification of the toll-4 receptor as a candidate gene in the critical regionBlood Cells, Mol Dis199824017034035510.1006/bcmd.1998.0201 Kim M-J, Jeong S-M, Kang B-K, Kim K-B-W-R, Ahn D-H. Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J Microbiol Biotechnol [Internet]. 2019;29(5):820–6. Available from: http://www.jmb.or.kr/journal/view.html?doi=https://doi.org/10.4014/jmb.1901.01027 Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, et al. In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. J Nat Prod [Internet]. 2018;81(9):1956–61. Available from: https://pubs.acs.org/doi/https://doi.org/10.1021/acs.jnatprod.8b00036 Karatoprak GS, Pasayeva L, Safak EK, Göger F, Tugay O, Kosar M. Chemical composition and anti-inflammatory activity of Kitaibelia balansae BOISS. Farmacia [Internet]. 2019;67(6):1054–9. Available from: http://farmaciajournal.com/issue-articles/chemical-composition-and-anti-inflammatory-activity-of-kitaibelia-balansae-boiss PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA statement: an updated guideline for reporting systematic reviewsBMJ.202010.1136/bmj.n7132933948 Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 2013. Zhang Y, Yan R, Hu Y. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Can J Physiol Pharmacol [Internet]. 2015;93(4):253–60. Available from: http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/cjpp-2014-0362 Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell [Internet]. 2010;140(6):771–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20303867 Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Syst 1584_CR22 1584_CR23 1584_CR20 1584_CR21 1584_CR26 1584_CR27 1584_CR24 1584_CR25 1584_CR28 1584_CR29 MJ Page (1584_CR16) 2020 1584_CR52 1584_CR11 1584_CR55 1584_CR12 1584_CR56 1584_CR53 1584_CR10 1584_CR54 A Ciesielska (1584_CR50) 2021; 78 1584_CR57 1584_CR14 1584_CR19 1584_CR17 1584_CR18 1584_CR40 I Kabir (1584_CR8) 2018; 11 1584_CR41 1584_CR44 1584_CR45 1584_CR42 1584_CR43 A Poltorak (1584_CR51) 1998; 240 C Nathan (1584_CR3) 2010; 140 T Lawrence (1584_CR13) 2009; 1 BK Saha (1584_CR15) 2020; 360 1584_CR7 1584_CR9 1584_CR2 1584_CR48 1584_CR49 1584_CR4 1584_CR46 1584_CR5 1584_CR47 1584_CR1 1584_CR30 1584_CR33 1584_CR34 1584_CR31 1584_CR32 L Cicchitti (1584_CR6) 2015; 10 1584_CR37 1584_CR38 1584_CR35 1584_CR36 1584_CR39 |
References_xml | – reference: Lee S-B, Lee WS, Shin J-S, Jang DS, Lee KT. Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. Int Immunopharmacol [Internet]. 2017;49:21–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567576917301947 – reference: Karatoprak GS, Pasayeva L, Safak EK, Göger F, Tugay O, Kosar M. Chemical composition and anti-inflammatory activity of Kitaibelia balansae BOISS. Farmacia [Internet]. 2019;67(6):1054–9. Available from: http://farmaciajournal.com/issue-articles/chemical-composition-and-anti-inflammatory-activity-of-kitaibelia-balansae-boiss/ – reference: Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol [Internet]. 2020;11. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fimmu.2020.01210/full – reference: Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell [Internet]. 2010;140(6):771–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20303867 – reference: Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang K-J, et al. Engineered In Vitro Disease Models. Annu Rev Pathol Mech Dis [Internet]. 2015;10(1):195–262. Available from: http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev-pathol-012414-040418 – reference: PoltorakASmirnovaIHeXLiuM-YVanHCBirdwellDGenetic and physical mapping of the Lps Locus: identification of the toll-4 receptor as a candidate gene in the critical regionBlood Cells, Mol Dis199824017034035510.1006/bcmd.1998.0201 – reference: LawrenceTThe nuclear factor NF-kappaB pathway in inflammationCold Spring Harb Perspect Biol20091611010.1101/cshperspect.a001651 – reference: Duarte LJ, Chaves VC, Nascimento MVP dos S, Calvete E, Li M, Ciraolo E, et al. Molecular mechanism of action of Pelargonidin-3- O -glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem [Internet]. 2018;247:56–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814617319544 – reference: Zhang Y, Yan R, Hu Y. Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Can J Physiol Pharmacol [Internet]. 2015;93(4):253–60. Available from: http://www.nrcresearchpress.com/doi/https://doi.org/10.1139/cjpp-2014-0362 – reference: Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol [Internet]. 2005;5(1):13. Available from: http://bmcmedresmethodol.biomedcentral.com/articles/https://doi.org/10.1186/1471-2288-5-13 – reference: Lee HA, Koh EK, Sung JE, Kim JE, Song SH, Kim DS, et al. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. Mol Med Rep [Internet]. 2017;15(4):1613–23. Available from: https://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2017.6166 – reference: Dai B, Wei D, Zheng N, Chi Z, Xin N, Ma T, et al. Coccomyxa Gloeobotrydiformis Polysaccharide Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages. Cell Physiol Biochem [Internet]. 2018 [cited 2020 Apr 1];51(6):2523–35. Available from: https://www.karger.com/Article/FullText/495922 – reference: American type culture collection (ATCC). ATCC Raw 264.7 (ATCC® TIB71™) product sheet. American Type Collection Culture. EUA, 2018. – reference: Kim YS, Ahn CB, Je JY. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappa B and MAPK pathways. Food Chem. 2016;202:9–14. – reference: Elisia I, Pae HB, Lam V, Cederberg R, Hofs E, Krystal G. Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. J Immunol Methods [Internet]. 2018;452:26–31. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031664464&doi=10.1016%2Fj.jim.2017.10.004&partnerID=40&md5=00ac5160d32a7297d3898e2807a5bb86 – reference: Giustarini D, Dalle-Donne I, Colombo R, Milzani A, Rossi R. Adaptation of the Griess Reaction for Detection of Nitrite in Human Plasma. Free Radic Res [Internet]. 2004;38(11):1235–40. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327 – reference: Pang Y, Gan L, Wang X, Su Q, Liang C, He P. Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE mice and lipopolysaccharide-stimulated RAW264.7 macrophages. Atherosclerosis [Internet]. 2019;284:50–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021915019301030 – reference: Lim D, Lee E, Jeong E, Jang Y-P, Kim J. Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. J Ethnopharmacol [Internet]. 2015;160:41–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874114008162 – reference: Kim Y-S, Ahn C-B, Je J-Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem [Internet]. 2016;202:9–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814616301121 – reference: Moore K, Howard L, Brownmiller C, Gu I, Lee S-O, Mauromoustakos A. Inhibitory effects of cranberry polyphenol and volatile extracts on nitric oxide production in LPS activated RAW 264.7 macrophages. Food Funct [Internet]. 2019 [cited 2020 Apr 1];10(11):7091–102. Available from: http://xlink.rsc.org/?DOI=C9FO01500K – reference: Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, et al. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci [Internet]. 2019;20(18):4367. Available from: https://www.mdpi.com/1422-0067/20/18/4367 – reference: Taciak B, Białasek M, Braniewska A, Sas Z, Sawicka P, Kiraga Ł, et al. Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages. Roberts DD, editor. PLoS One [Internet]. 2018;13(6):e0198943. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0198943 – reference: Rahman MM, McFadden G. Modulation of NF-κB signalling by microbial pathogens. Nat Rev Microbiol [Internet]. 2011;9(4):291–306. Available from: http://www.nature.com/articles/nrmicro2539 – reference: Sun H, Cai W, Wang X, Liu Y, Hou B, Zhu X, et al. Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complement Altern Med [Internet]. 2017;17(1):120. Available from: http://bmccomplementalternmed.biomedcentral.com/articles/https://doi.org/10.1186/s12906-017-1635-1 – reference: Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: What controls its onset? Front Immunol [Internet]. 2016;7(APR). Available from: http://journal.frontiersin.org/Article/https://doi.org/10.3389/fimmu.2016.00160/abstract – reference: CiesielskaAMatyjekMKwiatkowskaKTLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signalingCell Mol Life Sci.20217841233611:CAS:528:DC%2BB3cXitVyhs7%2FJ10.1007/s00018-020-03656-y33057840 – reference: KabirIAnsariIa Review on in vivo and in vitro experimental models to investigate the anti-inflammatory activity of herbal extractsAsian J Pharm Clin Res20181111291:CAS:528:DC%2BC1MXhtFWrt7zL10.22159/ajpcr.2018.v11i11.26873 – reference: Ghate NB, Chaudhuri D, Panja S, Singh SS, Gupta G, Lee CY, et al. In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. J Nat Prod [Internet]. 2018;81(9):1956–61. Available from: https://pubs.acs.org/doi/https://doi.org/10.1021/acs.jnatprod.8b00036 – reference: NathanCDingANonresolving InflammationCell201014068718821:CAS:528:DC%2BC3cXlsVSgu7s%3D10.1016/j.cell.2010.02.029 – reference: Green LC, Wagner D a, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126:131–8. – reference: Zarrin AA, Bao K, Lupardus P, Vucic D. Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov [Internet]. 2021;20(1):39–63. Available from: http://www.nature.com/articles/s41573-020-0082-8 – reference: Mohr ETB, dos Santos Nascimento MVP, da Rosa JS, Vieira GN, Kretzer IF, Sandjo LP, et al. Evidence that the anti-inflammatory effect of rubiadin-1-methyl ether has an immunomodulatory context. Mediators Inflamm [Internet]. 2019;2019:1–12. Available from: https://www.hindawi.com/journals/mi/2019/6474168/ – reference: Yoon S-B, Lee Y-J, Park SK, Kim H-C, Bae H, Kim HM, et al. Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. J Ethnopharmacol [Internet]. 2009;125(2):286–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874109004024 – reference: CicchittiLMartelliMCerritelliFChronic inflammatory disease and osteopathy: A systematic reviewPLoS One201510311810.1371/journal.pone.0121327 – reference: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Intervention. 2nd edition. Chichester (UK); 2019. 694 – reference: Laksmitawati DR, Prasanti AP, Larasinta N, Syauta GA, Hilda R, Ramadaniati HU, et al. Anti-Inflammatory Potential of Gandarusa (Gendarussa vulgaris Nees) and Soursop (Annona muricata L) Extracts in LPS Stimulated-Macrophage Cell (RAW264.7). J Nat Remedies [Internet]. 2016;16(2):73. Available from: http://www.informaticsjournals.com/index.php/jnr/article/view/5367 – reference: Hunter RA, Storm WL, Coneski PN, Schoenfisch MH. Inaccuracies of Nitric Oxide Measurement Methods in Biological Media. Anal Chem [Internet]. 2013;85(3):1957–63. Available from: http://www.tandfonline.com/doi/full/https://doi.org/10.1080/10715760400017327 – reference: Kim M-J, Jeong S-M, Kang B-K, Kim K-B-W-R, Ahn D-H. Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. J Microbiol Biotechnol [Internet]. 2019;29(5):820–6. Available from: http://www.jmb.or.kr/journal/view.html?doi=https://doi.org/10.4014/jmb.1901.01027 – reference: Beronius A, Molander L, Zilliacus J, Rudén C, Hanberg A. Testing and refining the Science in Risk Assessment and Policy (SciRAP) web-based platform for evaluating the reliability and relevance of in vivo toxicity studies. J Appl Toxicol [Internet]. 2018;38(12):1460–70. Available from: http://doi.wiley.com/https://doi.org/10.1002/jat.3648 – reference: Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga L V, et al. Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int [Internet]. 2020;129. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076113286&doi=10.1016%2Fj.foodres.2019.108756&partnerID=40&md5=532c50458a5140f6e7c1726ebc103f8f – reference: Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol [Internet]. 2013;59:199–206. Available from: https://linkinghub.elsevier.com/retrieve/pii/S027869151300375X – reference: Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov [Internet]. 2016;15(8):551–67. Available from: http://www.nature.com/articles/nrd.2016.39 – reference: Lim D, Kim MK, Jang Y-P, Kim J. Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. J Dermatol Sci [Internet]. 2015;79(3):288–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923181115300165 – reference: Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther [Internet]. 2017;2(1):17023. Available from: http://www.nature.com/articles/sigtrans201723 – reference: PageMJMcKenzieJEBossuytPMBoutronIHoffmannTCMulrowCDThe PRISMA statement: an updated guideline for reporting systematic reviewsBMJ.202010.1136/bmj.n7132933948 – reference: Meram C, Wu J. Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Res Int [Internet]. 2017;100:449–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0963996917303563 – reference: Guo Z, Xu H-Y, Xu L, Wang S-S, Zhang X-M. In vivo and in vitro immunomodulatory and anti-inflammatory effects of total flavonoids of Astragalus. Africa J Tradit Complement Altern Med [Internet]. 2016;13(4):60–73. Available from: http://journals.sfu.ca/africanem/index.php/ajtcam/article/view/3461/pdf – reference: Da Silva LAL, Sandjo LP, Fratoni E, Kinoshita Moon YJ, Dalmarco EM, Biavatti MW. A single-step isolation by centrifugal partition chromatography of the potential anti-inflammatory glaucolide B from Lepidaploa chamissonis. J Chromatogr A [Internet]. 2019;1605:460362. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021967319307460 – reference: Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev [Internet]. 2016;5(1):210. Available from: http://systematicreviewsjournal.biomedcentral.com/articles/https://doi.org/10.1186/s13643-016-0384-4 – reference: Hobbs S, Reynoso M, Geddis A V, Mitrophanov AY, Matheny RW. LPS-stimulated NF-kappa B p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep. 2018;6(21). – reference: SahaBKBurnsSLThe story of nitric oxide, sepsis and methylene blue: a comprehensive pathophysiologic reviewAm J Med Sci.202036043293710.1016/j.amjms.2020.06.00732631574 – reference: Ranaweera SS, Dissanayake CY, Natraj P, Lee YJ, Han C-H. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci [Internet]. 2020;21(6). Available from: http://xlink.rsc.org/?DOI=C9FO01500K – reference: Urbaniak GC, Plous S. Research Randomizer (Version 4.0). 2013. – reference: Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, et al. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother [Internet]. 2017;93:370–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332217313562 – reference: Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med [Internet]. 2019;25(12):1822–32. Available from: http://www.nature.com/articles/s41591-019-0675-0 – reference: Altan A, Yuce H, Karataş O, Taşkan M, Gevrek F, Çolak S, et al. Free and liposome form of gallic acid improves calvarial bone wound healing in Wistar rats. Asian Pac J Trop Biomed [Internet]. 2020;10(4):156–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082821467&doi=10.4103%2F2221-1691.280297&partnerID=40&md5=276ab92945ffa8b6630ea0ccc384717d – reference: He C, Lin H, Wang C, Zhang M, Lin Y, Huang F, et al. Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF‑κB/MAPK pathway. Mol Med Rep [Internet]. 2019;20:4943–52. Available from: http://www.spandidos-publications.com/https://doi.org/10.3892/mmr.2019.10746 – year: 2020 ident: 1584_CR16 publication-title: BMJ. doi: 10.1136/bmj.n71 – ident: 1584_CR24 doi: 10.1016/j.jep.2009.06.027 – ident: 1584_CR4 doi: 10.1038/s41573-020-0082-8 – ident: 1584_CR55 doi: 10.1038/sigtrans.2017.23 – ident: 1584_CR30 doi: 10.1016/j.atherosclerosis.2019.02.017 – ident: 1584_CR46 doi: 10.1080/10715760400017327 – ident: 1584_CR33 doi: 10.1186/s12906-017-1635-1 – ident: 1584_CR53 doi: 10.14814/phy2.13914 – ident: 1584_CR54 doi: 10.1038/nrmicro2539 – ident: 1584_CR21 doi: 10.1155/2019/6474168 – ident: 1584_CR9 doi: 10.3390/ijms20184367 – ident: 1584_CR18 – ident: 1584_CR35 doi: 10.4014/jmb.1901.01027 – ident: 1584_CR38 doi: 10.1016/j.intimp.2017.05.021 – volume: 140 start-page: 871 issue: 6 year: 2010 ident: 1584_CR3 publication-title: Cell doi: 10.1016/j.cell.2010.02.029 – ident: 1584_CR37 doi: 10.3892/mmr.2017.6166 – ident: 1584_CR26 doi: 10.1186/1471-2288-5-13 – volume: 10 start-page: 1 issue: 3 year: 2015 ident: 1584_CR6 publication-title: PLoS One doi: 10.1371/journal.pone.0121327 – ident: 1584_CR5 doi: 10.3389/fimmu.2016.00160/abstract – ident: 1584_CR49 doi: 10.3389/fimmu.2020.01210/full – volume: 360 start-page: 329 issue: 4 year: 2020 ident: 1584_CR15 publication-title: Am J Med Sci. doi: 10.1016/j.amjms.2020.06.007 – ident: 1584_CR39 doi: 10.1016/j.jdermsci.2015.06.012 – ident: 1584_CR45 doi: 10.1016/j.foodchem.2016.01.114 – ident: 1584_CR27 doi: 10.1002/jat.3648 – volume: 240 start-page: 340 issue: 170 year: 1998 ident: 1584_CR51 publication-title: Blood Cells, Mol Dis doi: 10.1006/bcmd.1998.0201 – ident: 1584_CR56 doi: 10.1039/C9FO01500K – volume: 11 start-page: 29 issue: 11 year: 2018 ident: 1584_CR8 publication-title: Asian J Pharm Clin Res doi: 10.22159/ajpcr.2018.v11i11.26873 – ident: 1584_CR20 doi: 10.1016/j.foodchem.2017.12.015 – ident: 1584_CR25 – volume: 1 start-page: 1 issue: 6 year: 2009 ident: 1584_CR13 publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a001651 – ident: 1584_CR11 doi: 10.1371/journal.pone.0198943 – ident: 1584_CR23 doi: 10.1016/j.fct.2013.05.061 – ident: 1584_CR12 – ident: 1584_CR43 doi: 10.1016/j.chroma.2019.460362 – ident: 1584_CR1 doi: 10.1038/nrd.2016.39 – ident: 1584_CR36 doi: 10.1016/j.foodchem.2016.01.114 – ident: 1584_CR29 doi: 10.1016/j.foodres.2017.07.032 – ident: 1584_CR7 doi: 10.1038/s41591-019-0675-0 – ident: 1584_CR42 doi: 10.18311/jnr/2016/5367 – ident: 1584_CR32 doi: 10.3892/mmr.2019.10746 – ident: 1584_CR17 doi: 10.1002/9781119536604 – ident: 1584_CR28 doi: 10.1186/s13643-016-0384-4 – ident: 1584_CR52 doi: 10.1159/000495922 – ident: 1584_CR10 doi: 10.1146/annurev-pathol-012414-040418 – ident: 1584_CR22 – ident: 1584_CR34 doi: 10.1139/cjpp-2014-0362 – ident: 1584_CR14 doi: 10.1016/j.biopha.2017.06.036 – ident: 1584_CR47 doi: 10.1080/10715760400017327 – ident: 1584_CR44 doi: 10.31925/farmacia.2019.6.17 – ident: 1584_CR57 doi: 10.4142/jvs.2020.21.e91 – ident: 1584_CR41 doi: 10.1021/acs.jnatprod.8b00036 – ident: 1584_CR2 doi: 10.1016/j.cell.2010.03.006 – ident: 1584_CR31 doi: 10.21010/ajtcam.v13i4.10 – volume: 78 start-page: 1233 issue: 4 year: 2021 ident: 1584_CR50 publication-title: Cell Mol Life Sci. doi: 10.1007/s00018-020-03656-y – ident: 1584_CR19 – ident: 1584_CR40 doi: 10.1016/j.jep.2014.11.032 – ident: 1584_CR48 doi: 10.1016/0003-2697(82)90118-X |
SSID | ssj0008282 |
Score | 2.6222582 |
SecondaryResourceType | review_article |
Snippet | Introduction
Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells... Several experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells has been... IntroductionSeveral experimental models have been designed to promote the development of new anti-inflammatory drugs. The in vitro model using RAW 264.7 cells... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 741 |
SubjectTerms | Allergology Animals Anti-inflammatory agents Anti-Inflammatory Agents - pharmacology Biomarkers Biomedical and Life Sciences Biomedicine Cell density Dermatology Drug development IL-1β Immunology Inflammation Inflammation Mediators Interleukin 6 Interleukin-1beta - pharmacology Lipopolysaccharides Lipopolysaccharides - pharmacology Macrophages Meta-analysis Mice Neurology NF-kappa B Nitric Oxide Pharmacology/Toxicology RAW 264.7 Cells Review Reviews Rheumatology Systematic review Tumor Necrosis Factor-alpha - pharmacology Tumor necrosis factor-TNF Tumor necrosis factor-α |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BuXBBfBNa0CChXlhDPmzHywVViKogQCtoxd4ix3ZObbbtbg_998w43kSooufYiZVne97YM28A3tIC83VbOaE1H920thJGWiXI0prWlUbljh3FHz_10Yn8tlTLdOC2TmGV2z0xbtR-5fiM_EOp59STzKv-dH4huGoU366mEhp34R5Ll_Gsrpejw8XqbMNtZ1kJ8sTylDQTU-ciGRIcy04G0UiR_2uYbrDNGzel0QAdPoQHiTniwQD1I7gT-sewvxikp69neDxlUq1nuI-LSZT6-gmEr31H4J_FS3XkpHuOy7lc46pH2-P3xW9B3jnh7PHXwR8kAvO-Rj7Vx1gr5yNanESfcUh4oY4ez8LGCpukTZ7CyeGX489HIpVYEI540EaYyhivC--VJ-ZlvbPEX3Pvi7YyKpD7Wktr1Fy6eW6tIq7mZOkLV1tVuDIPXfUMdvpVH14A6q7snPOuUF0r687Mg_ZGSrJ3inw-ZzMotv-3cUl_nMtgnDajcnLEpCFMmohJk2fwbuxzPqhv3Np6bwtbk1biupnmTQZvxse0hvgX2j6srriNpkFyFe4Mng9wj5-ruHyozmUGsy3-08v_P5aXt49lF-6Xce5xJOEe7Gwur8IrYjeb9nWcwn8BINXx0w priority: 102 providerName: ProQuest |
Title | Inflammatory biomarkers on an LPS-induced RAW 264.7 cell model: a systematic review and meta-analysis |
URI | https://link.springer.com/article/10.1007/s00011-022-01584-0 https://www.ncbi.nlm.nih.gov/pubmed/35612604 https://www.proquest.com/docview/2692853896 https://www.proquest.com/docview/2669502495 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5Be-GCKM-lJRok1Asx2oftdXpLUEJ5RVFpRDitvLb3RDeoSQ_99x17HxFqi8TJh7W9lj_b8409D4B3tMFsXmaGSemvbkqdMcW1YCRpVWlSJWLjFcXvc3m65F9WYtU6hW06a_fuSTKc1L2zW6AvzFufkwhTnJGivi9Id_eGXMt03J-_pEM0b5xpxkj_iltXmbv7-Fsc3eKYt95Hg9iZPYHHLV_EcQPwATxw9VM4XjQBp6-HeL7zn9oM8RgXu1DU18_Afa4rgvwiPKWjd7X31jiXG1zXqGv8tvjBSCcndC2ejX8i0ZYPOfq7fAwZck5Q4y7UMzZuLtTQ4oXbaqbbgCbPYTmbnn88ZW1iBWaI_WyZypSyMrFWWOJb2hpNrDW2NikzJRwprTnXSoy4GcVaC2Johqc2MbkWiUljV2UvYK9e1-4VoKzSyhhrElGVPK_UyEmrOCcpJ0jTMzqCpJvfwrRRx33yi99FHy85YFIQJkXApIgjeN-3-dPE3Phn7aMOtqLdf5silSNaZ0TGZARv-8-0c_wU6tqtr3wdSYP0ubcjeNnA3f8u80lDZcwjGHb47zq_fyyv_6_6ITxKw1r09oRHsLe9vHJviONsywE8zFf5APbHs8lk7stPv75OqZxM54uzQVjwN-Ng9AE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoBLxZtAASNBL6whcWzHi4RQBVS7dFutYKvuLTi2I1Wi2dLdCu2f4jcydl5CFb31HNuxPDP-ZjwvgFcoYDYrUkOl9E83hU6p4lpQRFpVGKZEbLyheHAoR0f861zMN-BPmwvjwyrbOzFc1HZh_Bv5OyaHOBPhVX48-0V91yjvXW1baNRsse_Wv9FkW34Yf0b6vmZs78vs04g2XQWoQehfUZUqZWVirbCobGhrNKpssbVJkSrh0GLLuFZiyM0w1lqgemI4s4nJtEgMi12Z4ro34CYCb-yNvWzeGXi-GlztXWUpRcsvbpJ0QqpeUL6oj51HAFacxv8C4SXt9pJnNgDe3h3YajRVsluz1l3YcNU92JnWpa7XAzLrM7eWA7JDpn0R7PV9cOOqRGY7DU584pP8fRzQ-ZIsKqIrMpl-pyeVRb6y5NvuMUGF6W1GvBeBhN4874kmfZFpUifY4ERLTt1KU92UUnkAR9dy-A9hs1pU7jEQWbLSGGsSURY8K9XQSas4R3wVaGMaHUHSnm9umnrnvu3Gz7yr1BxokiNN8kCTPI7gTTfnrK72ceXo7ZZseSP5y7zn0whedp9RZv0R6sotLvwYiZv0Xb8jeFSTu_td6tuVyphHMGjp3y_-_708uXovL-DWaHYwySfjw_2ncJsFPvRRjNuwuTq_cM9Qs1oVzwM7E_hx3fLzF0dFLlc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_gkRhfjN-sotZEefEqu9222zMxBoULJ3jZIETelm7bTUxkD7kj5v41_jqm-xlD5I3nbbtNZ6bzm84XwFsUMJvksaFS-qebXMdUcS0oalqVG6ZEaLyh-H0qd4_4t2NxvAKXbS6MD6ts78TqorYz49_IN5kc4UxUr3KzaMIi0u3x57M_1HeQ8p7Wtp1GzSJ7bvkXzbf5p8k20vodY-Odw6-7tOkwQA3CgAVVsVJWRtYKi8BDW6MRvoXWRnmshEPrLeFaiRE3o1BrgVDFcGYjk2gRGRa6IsZ178Bq4q2iAax-2ZmmB50eQFum9rWymKIdGDYpO1XiXgXFqI-kR3WsOA3_VYvXsO41P22l_sYP4H6DW8lWzWgPYcWVj2AjrQtfL4fksM_jmg_JBkn7ktjLx-AmZYGsd1q59IlP-fdRQedzMiuJLsl--oP-Ki1ymSUHWz8JwqcPCfE-BVJ16vlINOlLTpM63QYnWnLqFprqprDKEzi6leN_CoNyVro1ILJghTHWRKLIeVKokZNWcY7aVqDFaXQAUXu-mWmqn_smHL-zrm5zRZMMaZJVNMnCAN53c87q2h83jl5vyZY198A867k2gDfdZ5Rgf4S6dLMLP0biJn0P8ACe1eTufhf75qUy5AEMW_r3i_9_L89v3struIuyk-1Ppnsv4B6r2NCHNK7DYHF-4V4izFrkrxp-JnBy2yJ0BeD9M_I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inflammatory+biomarkers+on+an+LPS-induced+RAW+264.7+cell+model%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Inflammation+research&rft.au=Facchin%2C+Bruno+Matheus&rft.au=Dos+Reis%2C+Gustavo+Oliveira&rft.au=Vieira%2C+Guilherme+Nic%C3%A1cio&rft.au=Mohr%2C+Eduarda+Talita+Bramorski&rft.date=2022-08-01&rft.issn=1420-908X&rft.eissn=1420-908X&rft.volume=71&rft.issue=7-8&rft.spage=741&rft_id=info:doi/10.1007%2Fs00011-022-01584-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1023-3830&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1023-3830&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1023-3830&client=summon |