Imaging and Image Processing Techniques for High-Resolution Visualization of Connective Tissue with MRI: Application to Fascia, Aponeurosis, and Tendon

Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generat...

Full description

Saved in:
Bibliographic Details
Published inJournal of imaging Vol. 11; no. 2; p. 43
Main Authors Perera, Meeghage Randika, Bydder, Graeme M., Holdsworth, Samantha J., Handsfield, Geoffrey G.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.02.2025
MDPI
Subjects
Online AccessGet full text
ISSN2313-433X
2313-433X
DOI10.3390/jimaging11020043

Cover

Loading…
Abstract Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3–5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
AbstractList Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T * decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3-5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T[sub.2] * decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3–5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3-5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3-5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T2* decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3–5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging, particularly MRI. Given the rapid T 2 * decay of collagenous tissues, advanced ultra-short echo time (UTE) MRI sequences have proven useful in generating high-signal images of these tissues. To further these advances, we discuss the integration of UTE with Diffusion Tensor Imaging (DTI) and explore image processing techniques to enhance the localization, labeling, and modeling of connective tissues. These techniques are especially valuable for extracting features from thin tissues that may be difficult to distinguish. We present data from lower leg scans of 30 healthy subjects using a non-Cartesian MRI sequence to acquire axial 2D images to segment skeletal muscle and connective tissue. DTI helped differentiate aponeurosis from deep fascia by analyzing muscle fiber orientations. The dual echo imaging methods yielded high-resolution images of deep fascia, where in-plane spatial resolutions were between 0.3 × 0.3 mm to 0.5 × 0.5 mm with a slice thickness of 3–5 mm. Techniques such as K-Means clustering, FFT edge detection, and region-specific scaling were most effective in enhancing images of deep fascia, aponeurosis, and tendon to enable high-fidelity modeling of these tissues.
Audience Academic
Author Holdsworth, Samantha J.
Perera, Meeghage Randika
Bydder, Graeme M.
Handsfield, Geoffrey G.
AuthorAffiliation 2 Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; gbydder@health.ucsd.edu (G.M.B.); s.holdsworth@matai.org.nz (S.J.H.)
7 Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
3 Department of Radiology, University of California, San Diego, CA 92093, USA
6 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
4 Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
1 Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; mper162@aucklanduni.ac.nz
5 Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
AuthorAffiliation_xml – name: 1 Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; mper162@aucklanduni.ac.nz
– name: 3 Department of Radiology, University of California, San Diego, CA 92093, USA
– name: 6 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
– name: 4 Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences & Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
– name: 5 Department of Orthopaedics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
– name: 2 Mātai Medical Research Institute, Tairāwhiti-Gisborne 4010, New Zealand; gbydder@health.ucsd.edu (G.M.B.); s.holdsworth@matai.org.nz (S.J.H.)
– name: 7 Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
Author_xml – sequence: 1
  givenname: Meeghage Randika
  surname: Perera
  fullname: Perera, Meeghage Randika
– sequence: 2
  givenname: Graeme M.
  surname: Bydder
  fullname: Bydder, Graeme M.
– sequence: 3
  givenname: Samantha J.
  orcidid: 0000-0002-2929-1169
  surname: Holdsworth
  fullname: Holdsworth, Samantha J.
– sequence: 4
  givenname: Geoffrey G.
  orcidid: 0000-0001-5661-0631
  surname: Handsfield
  fullname: Handsfield, Geoffrey G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39997545$$D View this record in MEDLINE/PubMed
BookMark eNptkk1vEzEQhleoiJbSOydkiQuHpvhrP8wFRRGlkYpAVUDcLK89u3G0sYO9W9T-Ef4u3qRUSYUsy-Px49cz43mZHTnvIMteE3zBmMDvV3atWutaQjDFmLNn2QllhE04Yz-P9uzj7CzGFcaYCJqmeJEdMyFEmfP8JPsz34kg5QwabUDfgtcQ4-hcgF46-2uAiBof0JVtl5MbiL4beusd-mHjoDp7r7Y736CZdw50b28BLWyMA6Dftl-iLzfzD2i62XRW79Deo0sVtVXnyZ2yGoKPNp5vg1iAM969yp43qotw9rCeZt8vPy1mV5Prr5_ns-n1RHNO-kkJghfa0JqDKimpWE2JaohQvCmNKCFnDRY1zkEoJqBWWlBIR4RWuTYAJTvN5jtd49VKbkKqabiTXlm5dfjQShV6qzuQptQ5ScWuc2w4bYpaGA4M0woEMZqKpPVxp7UZ6jUYDa4PqjsQPTxxdilbfysJqfKiEGM07x4Ugh-r3su1jRq6TjnwQ5SMlFiwivMioW-foCs_BJdqNVIEF0WO96hWpQysa3x6WI-iclpRUZZc0JG6-A-VhoG11el_Gpv8Bxfe7Gf6mOK_vkoA3gE6_WwM0DwiBMuxe-XT7mV_AXC25CE
Cites_doi 10.1016/j.jbiomech.2015.01.012
10.1007/s11999-008-0594-8
10.1152/japplphysiol.00976.2016
10.1002/jmri.22596
10.1007/s00330-010-2040-z
10.1002/jmri.23608
10.1002/nbm.3709
10.1371/journal.pone.0205944
10.1111/sms.13407
10.1016/j.jbiomech.2016.11.062
10.1002/mrm.21620
10.21037/qims-23-687
10.1109/ICITIIT49094.2020.9071556
10.1002/nbm.1463
10.1016/j.neuroimage.2011.09.015
10.3109/03008207809152283
10.1049/iet-ipr.2013.0693
10.1002/jmri.22371
10.1046/j.1469-7580.1999.19410079.x
10.1002/acr.21868
10.1016/j.neuroimage.2006.01.015
10.1016/j.mri.2012.02.003
10.1016/S0006-3495(01)76262-5
10.1016/j.media.2004.06.002
10.1016/S0006-3495(01)76081-X
10.1016/j.crad.2003.11.021
10.1002/mrm.22715
10.18240/ijo.2023.08.22
10.2214/AJR.13.11081
10.1016/S0730-725X(02)00515-5
10.1002/mrm.21819
10.1002/jmri.20593
10.1002/jor.25654
10.1186/s13244-019-0735-5
10.1088/1361-6560/acf10c
10.1016/j.pnmrs.2019.07.001
10.1007/s00330-010-2044-8
10.1002/jmri.22873
10.1007/s00330-007-0713-z
10.2217/iim.11.60
10.1371/journal.pone.0080713
10.1007/s00421-004-1186-2
10.1186/1471-2474-10-151
10.3390/diagnostics11020177
10.1111/j.1469-7580.2012.01538.x
10.3389/fspor.2020.00070
10.1063/5.0086459
10.1002/jmri.23884
10.1007/s00276-011-0876-9
10.1186/s12891-024-08254-8
10.1097/SCS.0000000000006135
10.1002/mrm.10198
10.3390/bioengineering11050441
10.2463/mrms.9.111
10.1016/j.compmedimag.2017.02.001
10.1097/RCT.0b013e3182ab60ea
10.1002/jcu.10168
10.1111/joa.12902
10.1016/j.neuroimage.2019.116137
10.2214/AJR.09.3368
10.1111/joa.12370
10.3390/s22218202
10.1002/acr.20628
10.1016/j.neuroimage.2008.10.055
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jimaging11020043
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-433X
ExternalDocumentID oai_doaj_org_article_d7c51110b50d42f6b9d4e3028e91dc29
PMC11856697
A829774926
39997545
10_3390_jimaging11020043
Genre Journal Article
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: RSNZ Marsden Fast-Start Grant.
  grantid: (Marsden Grant No. 3716083)
– fundername: RSNZ Marsden Fast-Start
  grantid: 3716083
– fundername: Wu Tsai Human Performance Alliance, Mātai Blue Sky Grant and Kānoa RDU New Zealand
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHR
ITC
KQ8
MODMG
M~E
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-7e946cd2b4ea72183b21af19a4f7d97e53f09b05e9a39ebac92e4f71285cdee73
IEDL.DBID BENPR
ISSN 2313-433X
IngestDate Wed Aug 27 01:27:21 EDT 2025
Thu Aug 21 18:27:40 EDT 2025
Fri Jul 11 01:52:43 EDT 2025
Fri Jul 25 21:57:46 EDT 2025
Tue Jun 17 21:59:27 EDT 2025
Tue Jun 10 20:57:34 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Tue Jul 01 04:20:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fascia
ultra-short-T2
MRI
medical image processing
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7e946cd2b4ea72183b21af19a4f7d97e53f09b05e9a39ebac92e4f71285cdee73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2929-1169
0000-0001-5661-0631
OpenAccessLink https://www.proquest.com/docview/3171066506?pq-origsite=%requestingapplication%
PMID 39997545
PQID 3171066506
PQPubID 2059558
ParticipantIDs doaj_primary_oai_doaj_org_article_d7c51110b50d42f6b9d4e3028e91dc29
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11856697
proquest_miscellaneous_3170938446
proquest_journals_3171066506
gale_infotracmisc_A829774926
gale_infotracacademiconefile_A829774926
pubmed_primary_39997545
crossref_primary_10_3390_jimaging11020043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250204
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 2
  year: 2025
  text: 20250204
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of imaging
PublicationTitleAlternate J Imaging
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Goh (ref_24) 2012; 35
Kermarrec (ref_7) 2010; 195
Damon (ref_9) 2012; 30
Liu (ref_64) 2011; 33
Damon (ref_12) 2002; 48
Miao (ref_2) 2020; 31
Valentinitsch (ref_38) 2013; 37
Cerda (ref_53) 2015; 227
ref_54
Ward (ref_57) 2009; 467
Jenkinson (ref_47) 2012; 62
Chen (ref_23) 2023; 16
Yushkevich (ref_44) 2006; 31
Bolsterlee (ref_56) 2015; 48
ref_17
Elzibak (ref_22) 2014; 38
Damon (ref_19) 2011; 3
Beattie (ref_43) 2012; 64
Ponrartana (ref_16) 2014; 202
Kastelic (ref_3) 1978; 6
Sinha (ref_11) 2006; 24
Sinha (ref_28) 2011; 34
Froeling (ref_18) 2012; 36
Fu (ref_41) 2004; 8
Heemskerk (ref_48) 2009; 61
Zijta (ref_25) 2011; 21
Bird (ref_61) 2019; 29
Handsfield (ref_4) 2017; 51
Boussouar (ref_46) 2017; 56
ref_62
Bolsterlee (ref_65) 2017; 122
Okamoto (ref_27) 2010; 9
ref_29
Budzik (ref_15) 2007; 17
Hodgson (ref_58) 2011; 65
Rousset (ref_26) 2012; 221
ref_36
ref_34
ref_33
Stecco (ref_52) 2011; 33
Bonny (ref_14) 2002; 20
Wilke (ref_51) 2019; 234
Kretzers (ref_10) 1999; 194
Tournier (ref_31) 2019; 202
Kirchgesner (ref_63) 2019; 10
Napadow (ref_20) 2001; 80
ref_39
Maderwald (ref_13) 2004; 93
Woolrich (ref_32) 2009; 45
Cone (ref_60) 2023; 41
Weiger (ref_1) 2019; 114–115
Heemskerk (ref_8) 2010; 23
Maly (ref_42) 2013; 65
ref_45
Goh (ref_55) 2003; 31
Hodgson (ref_50) 2011; 21
ref_40
Wedeen (ref_21) 2001; 80
Hwang (ref_30) 2023; 13
Yoo (ref_37) 2014; 8
ref_49
Robson (ref_59) 2004; 59
Qian (ref_35) 2008; 60
ref_5
Ma (ref_6) 2022; 9
References_xml – volume: 48
  start-page: 1133
  year: 2015
  ident: ref_56
  article-title: Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.012
– volume: 467
  start-page: 1074
  year: 2009
  ident: ref_57
  article-title: Are current measurements of lower extremity muscle architecture accurate?
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1007/s11999-008-0594-8
– volume: 122
  start-page: 727
  year: 2017
  ident: ref_65
  article-title: How does passive lengthening change the architecture of the human medial gastrocnemius muscle?
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00976.2016
– volume: 34
  start-page: 107
  year: 2011
  ident: ref_28
  article-title: Reproducibility analysis of diffusion tensor indices and fiber architecture of human calf muscles in vivo at 1.5 Tesla in neutral and plantarflexed ankle positions at rest
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22596
– volume: 21
  start-page: 1144
  year: 2011
  ident: ref_50
  article-title: Imaging of the Achilles tendon in spondyloarthritis: A comparison of ultrasound and conventional, short and ultrashort echo time MRI with and without intravenous contrast
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-010-2040-z
– volume: 36
  start-page: 237
  year: 2012
  ident: ref_18
  article-title: Diffusion-tensor MRI reveals the complex muscle architecture of the human forearm
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23608
– ident: ref_34
  doi: 10.1002/nbm.3709
– ident: ref_39
– ident: ref_29
  doi: 10.1371/journal.pone.0205944
– volume: 29
  start-page: 808
  year: 2019
  ident: ref_61
  article-title: Validity and reliability of measurements of aponeurosis dimensions from magnetic resonance images
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.13407
– volume: 51
  start-page: 17
  year: 2017
  ident: ref_4
  article-title: A 3D model of the Achilles tendon to determine the mechanisms underlying nonuniform tendon displacements
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.11.062
– volume: 60
  start-page: 135
  year: 2008
  ident: ref_35
  article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21620
– volume: 13
  start-page: 8447
  year: 2023
  ident: ref_30
  article-title: Ultrashort echo time pulse sequences for visualization of deep peripheral fasciae and epimysium in porcine models with histologic correlations
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-23-687
– ident: ref_36
  doi: 10.1109/ICITIIT49094.2020.9071556
– volume: 23
  start-page: 294
  year: 2010
  ident: ref_8
  article-title: Repeatability of DTI-based skeletal muscle fiber tracking
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1463
– volume: 62
  start-page: 782
  year: 2012
  ident: ref_47
  article-title: Bayesian analysis of neuromaging data in FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 6
  start-page: 11
  year: 1978
  ident: ref_3
  article-title: The multicomposite structure of tendon
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207809152283
– volume: 8
  start-page: 815
  year: 2014
  ident: ref_37
  article-title: Image restoration by blind-Wiener filter
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2013.0693
– volume: 33
  start-page: 173
  year: 2011
  ident: ref_64
  article-title: Diagnostic value of delineating deep fascia in distinguishing between benign and malignant soft-tissue tumors in lower limbs using 3.0 T magnetic resonance imaging
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22371
– volume: 194
  start-page: 79
  year: 1999
  ident: ref_10
  article-title: Diffusion tensor imaging in biomechanical studies of skeletal muscle function
  publication-title: J. Anat.
  doi: 10.1046/j.1469-7580.1999.19410079.x
– volume: 65
  start-page: 44
  year: 2013
  ident: ref_42
  article-title: Relationship of intermuscular fat volume in the thigh with knee extensor strength and physical performance in women at risk of or with knee osteoarthritis
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.21868
– volume: 31
  start-page: 1116
  year: 2006
  ident: ref_44
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 30
  start-page: 589
  year: 2012
  ident: ref_9
  article-title: Polynomial fitting of DT-MRI fiber tracts allows accurate estimation of muscle architectural parameters
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.02.003
– volume: 80
  start-page: 2968
  year: 2001
  ident: ref_20
  article-title: Quantitative analysis of three-dimensional-resolved fiber architecture in heterogeneous skeletal muscle tissue using NMR and optical imaging methods
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76262-5
– volume: 8
  start-page: 177
  year: 2004
  ident: ref_41
  article-title: Integrating watersheds and critical point analysis for object detection in discrete 2D images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.06.002
– volume: 80
  start-page: 1024
  year: 2001
  ident: ref_21
  article-title: Demonstration of primary and secondary muscle fiber architecture of the bovine tongue by diffusion tensor magnetic resonance imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(01)76081-X
– volume: 59
  start-page: 727
  year: 2004
  ident: ref_59
  article-title: Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2003.11.021
– volume: 65
  start-page: 1372
  year: 2011
  ident: ref_58
  article-title: Quantitative magnetization transfer ultrashort echo time imaging of the Achilles tendon
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22715
– volume: 16
  start-page: 1350
  year: 2023
  ident: ref_23
  article-title: Diffusion tensor imaging of horizontal extraocular muscles in patients with concomitant and paralytic esotropia
  publication-title: Int. J. Ophthalmol.
  doi: 10.18240/ijo.2023.08.22
– volume: 202
  start-page: 567
  year: 2014
  ident: ref_16
  article-title: Repeatability of chemical-shift-encoded water-fat MRI and diffusion-tensor imaging in lower extremity muscles in children
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.13.11081
– volume: 20
  start-page: 395
  year: 2002
  ident: ref_14
  article-title: Water diffusion features as indicators of muscle structure ex vivo
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(02)00515-5
– volume: 61
  start-page: 467
  year: 2009
  ident: ref_48
  article-title: Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21819
– volume: 24
  start-page: 182
  year: 2006
  ident: ref_11
  article-title: In vivo diffusion tensor imaging of the human calf muscle
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.20593
– volume: 41
  start-page: 2315
  year: 2023
  ident: ref_60
  article-title: 3D characterization of the triple-bundle Achilles tendon from in vivo high-field MRI
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.25654
– volume: 10
  start-page: 47
  year: 2019
  ident: ref_63
  article-title: Fasciae of the musculoskeletal system: MRI findings in trauma, infection and neoplastic diseases
  publication-title: Insights Imaging
  doi: 10.1186/s13244-019-0735-5
– ident: ref_17
  doi: 10.1088/1361-6560/acf10c
– volume: 114–115
  start-page: 237
  year: 2019
  ident: ref_1
  article-title: Short-T2 MRI: Principles and recent advances
  publication-title: Prog. Nuclear Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2019.07.001
– volume: 21
  start-page: 1243
  year: 2011
  ident: ref_25
  article-title: Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-010-2044-8
– volume: 35
  start-page: 820
  year: 2012
  ident: ref_24
  article-title: Diffusion tensor imaging of the anal canal at 3 tesla: Feasibility and reproducibility of anisotropy measures
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22873
– volume: 17
  start-page: 3079
  year: 2007
  ident: ref_15
  article-title: In vivo MR tractography of thigh muscles using diffusion imaging: Initial results
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-007-0713-z
– volume: 3
  start-page: 675
  year: 2011
  ident: ref_19
  article-title: Diffusion-tensor MRI-based skeletal muscle fiber tracking
  publication-title: Imaging Med.
  doi: 10.2217/iim.11.60
– ident: ref_33
  doi: 10.1371/journal.pone.0080713
– volume: 93
  start-page: 253
  year: 2004
  ident: ref_13
  article-title: Diffusive sensitivity to muscle architecture: A magnetic resonance diffusion tensor imaging study of the human calf
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-004-1186-2
– ident: ref_49
  doi: 10.1186/1471-2474-10-151
– ident: ref_54
  doi: 10.3390/diagnostics11020177
– volume: 221
  start-page: 221
  year: 2012
  ident: ref_26
  article-title: In vivo visualization of the levator ani muscle subdivisions using MR fiber tractography with diffusion tensor imaging
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2012.01538.x
– ident: ref_5
  doi: 10.3389/fspor.2020.00070
– volume: 9
  start-page: 041303
  year: 2022
  ident: ref_6
  article-title: Making the invisible visible—Ultrashort echo time magnetic resonance imaging: Technical developments and applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0086459
– volume: 37
  start-page: 917
  year: 2013
  ident: ref_38
  article-title: Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23884
– volume: 33
  start-page: 891
  year: 2011
  ident: ref_52
  article-title: Hyaluronan within fascia in the etiology of myofascial pain
  publication-title: Surg. Radiol. Anat.
  doi: 10.1007/s00276-011-0876-9
– ident: ref_45
  doi: 10.1186/s12891-024-08254-8
– volume: 31
  start-page: 182
  year: 2020
  ident: ref_2
  article-title: The Type and Content of Collagen Fibers of the Levator Aponeurosis in Patients with Simple Congenital Blepharoptosis
  publication-title: J. Craniofac. Surg.
  doi: 10.1097/SCS.0000000000006135
– volume: 48
  start-page: 97
  year: 2002
  ident: ref_12
  article-title: Validation of diffusion tensor MRI-based muscle fiber tracking
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10198
– ident: ref_62
  doi: 10.3390/bioengineering11050441
– volume: 9
  start-page: 111
  year: 2010
  ident: ref_27
  article-title: Gender differences in MR muscle tractography
  publication-title: Magn. Reson. Med. Sci.
  doi: 10.2463/mrms.9.111
– volume: 56
  start-page: 60
  year: 2017
  ident: ref_46
  article-title: Plantar fascia segmentationand thickness estimation in ultrasound images
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2017.02.001
– volume: 38
  start-page: 329
  year: 2014
  ident: ref_22
  article-title: Diffusion tensor imaging of the normal foot at 3 T
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/RCT.0b013e3182ab60ea
– volume: 31
  start-page: 239
  year: 2003
  ident: ref_55
  article-title: Iliotibial band thickness: Sonographic measurements in asymptomatic volunteers
  publication-title: J. Clin. Ultrasound
  doi: 10.1002/jcu.10168
– volume: 234
  start-page: 43
  year: 2019
  ident: ref_51
  article-title: Fascia thickness, aging and flexibility: Is there an association?
  publication-title: J. Anat.
  doi: 10.1111/joa.12902
– volume: 202
  start-page: 116137
  year: 2019
  ident: ref_31
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 195
  start-page: 352
  year: 2010
  ident: ref_7
  article-title: In vivo diffusion tensor imaging and tractography of human thigh muscles in healthy subjects
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.09.3368
– volume: 227
  start-page: 665
  year: 2015
  ident: ref_53
  article-title: In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: Anatomical and functional implications
  publication-title: J. Anat.
  doi: 10.1111/joa.12370
– ident: ref_40
  doi: 10.3390/s22218202
– volume: 64
  start-page: 22
  year: 2012
  ident: ref_43
  article-title: Longitudinal Changes in Intermuscular Fat Volume and Quadriceps Muscle Volume in the Thighs of Female Osteoarthritis Initiative Participants
  publication-title: Arthritis Care Res.
  doi: 10.1002/acr.20628
– volume: 45
  start-page: S173
  year: 2009
  ident: ref_32
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.055
SSID ssj0001920199
Score 2.2819355
Snippet Recent interest in musculoskeletal connective tissues like tendons, aponeurosis, and deep fascia has led to a greater focus on in vivo medical imaging,...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 43
SubjectTerms Cluster analysis
Clustering
Connective tissue
Connective tissues
Edge detection
Evaluation
fascia
Fiber orientation
High resolution
Image acquisition
Image processing
Image resolution
Magnetic resonance imaging
medical image processing
Medical imaging
Methods
Modelling
MRI
Muscles
Musculoskeletal system
Physiological aspects
Signal to noise ratio
Statistical analysis
Tendons
Tensors
ultra-short-T2
Vector quantization
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hPcEBsTwDCzISEkLaaJPYiWtuBVHtIi0H1EV7s_wUXWlTRLu_Zf8uM3ZaEjhw4VCp8riNk_ns-SaeGQO8EREXxihj2XlpSmHRZzWtrUtvLFqr6GrXUO7w-Zfu9EJ8vmwvR0d9UUxYLg-cH9yJlw45QV3ZtvKiiZ1VXgSOVjGo2rsmpe6hzRs5U1eZt-BH5X1Jjn79ydXqOh37g39FwOATO5TK9f-9KI-s0jRicmSCFg_g_sAd2TyP-RDuhP4h3BtVFHwEt2f5-sz0ntH3wIZUAGpc7gq2bhhyVUYxHiW9v8_oY99WG0qxzImZbB1ZioJJCyJbJgUxem3Lzr-evWfz3zvfbLtmC4O21Bxj8zqXyFxtjtMgloHOC3kMF4tPy4-n5XD2QumQIG1LGZTonG-sCEYSjbJNbWKtjIjSKxlaHitlqzYow1WwxqkmoAitXet8CJI_gYMeL_gMWOWQGpsOWfyMizY443AVcNy2FqHAbVfAu50m9I9cYkOja0Ja039qrYAPpKp9PyqOnRoQMnqAjP4XZAp4S4rWNIVRmzignImAw6ViWHpO6caSKikWcDTpiVPPTcU7qOhh6m80Qrym_awKxa_3YvolhbP1YX2T-lSKz9AVL-BpRtb-lpAxKom8toDZBHOTe55K-tX3VBgcnUVk50o-_x9P6QXcbeisY4pQF0dwsP15E14iAdvaV2mu_QIvITGc
  priority: 102
  providerName: Directory of Open Access Journals
Title Imaging and Image Processing Techniques for High-Resolution Visualization of Connective Tissue with MRI: Application to Fascia, Aponeurosis, and Tendon
URI https://www.ncbi.nlm.nih.gov/pubmed/39997545
https://www.proquest.com/docview/3171066506
https://www.proquest.com/docview/3170938446
https://pubmed.ncbi.nlm.nih.gov/PMC11856697
https://doaj.org/article/d7c51110b50d42f6b9d4e3028e91dc29
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB5s-6IP4t1oPawgiNDQJLvJZn2RU-mxFVqknErfwt6iRzCpzelv8e86s8m5RMG3sLshG2Z25pvZuQC8ETUKxlrWceGkjoVBm1XnJo2dNqitapvajHKHz86Lk0vx-Sq_Ghxu3RBWuZKJQVC71pKP_BDfTOmaICk-XP-KqWsU3a4OLTR2YA9FcInG197R8fmXi42XRaGCU6q_n-Ro3x_-WPwM7X9Q7RGD8JE-CmX7_xXOW9ppHDm5pYpmD-D-gCHZtCf6Q7jjm0dwb6uy4GP4fdp_n-nGMXr2bEgJoMH5qnBrxxCzMor1iMmP33Mh-7roKNWyT9Bkbc1CNEwQjGweCMXIfcvOLk7fs-nmBpwtWzbTqFP1AQ63fanMRXcQNjH31DfkCVzOjucfT-KhB0NsESgtY-mVKKzLjPBaEpwyWarrVGlRS6ekz3mdKJPkXmmuvNFWZR6nkBi5dd5L_hR2G_zgc2CJRYisC0TzJRe5t9qiNLDc5AZZgpsigncrSlTXfamNCk0Uolr1N9UiOCJSrddRkeww0N58q4YzVzlpEU6mickTJ7K6MMoJzxFQeZU6m6kI3hKhKzrKSE3cUJ-RgNuloljVlNKOJVVUjGB_tBKPoB1Pr1ilGkRAV20YNoLX62l6k8LaGt_ehjWJ4iWa5BE86zlr_UuIHJVEfBtBOeK50T-PZ5rF91AgHI1GROlKvvj_vl7C3Yy6GVMMutiH3eXNrX-FEGtpJrBTzj5NhtM0CY6KSfCE_QGCoC24
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNA9KmUA3BA7BgKDBIIIdWq7Rl7MkgIhSUkdDmgtOrNzGYIEnFpUiG-hL_gG3lvHCcxSNx6i-aN47HePm8DeCIqFIyVrOLCSR0Lgz6rzk0aO21QW1U2tRnVDu8fFMND8eE4P96A320tDKVVtjIxCGpXW7oj38EnUwoTJMWrk-8xTY2i6Go7QqMhi13_8we6bLOXo7eI36dZNng3fjOMF1MFYouqfx5Lr0RhXWaE15IMBJOlukqVFpV0SvqcV4kySe6V5sobbVXmEYRyPLfOe8nxfy_ARcG5Io7qDd6v7nQUqlOlmmgowpOdr5NvYdgQKlkiR97RfmFIwL-qYE0XdvM01xTf4BpcXVisrN-Q2HXY8NMbcGWtj-FN-DVq3s_01DH67dmiAIEWx22b2BlDC5lRZklMUYOG5tnRZEaFnU05KKsrFnJvghhm40AWjC6L2f7H0QvWX8Xb2bxmA40aXG_jct005pzMtsMhxp6mlNyCw3PBzW3YnOIL7wJLLBrkukDfocdF7q22KHssN7lBAuSmiOB5i4nypGnsUaJDRFgr_8ZaBK8JVct91JI7LNSnn8sFh5dOWjRe08TkiRNZVRjlhOdovnmVOpupCJ4RoksSHIhNPFBT_4DHpRZcZZ-KnCX1b4xgq7MTGd52wS2plAuBMytX7BHB4yWYnqQkuqmvz8KeRPGeELjnTkNZy09CO1VJtKYj6HVorvPNXch08iW0I0cXFX0CJe_9_1yP4NJwvL9X7o0Odu_D5YzmKFP2u9iCzfnpmX-Axt3cPAwcxeDTebPwH2bbZ1E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UFEQfxLurVUdQROiSvczuZASR1DY01oZSUunbOrfVCGZrN0X8Jf4Xf53n7CXJKvjWtzAzm53l3L4zcy4Az3mOijEXuZ9aoXyu0WdViQ59qzRaq9yEJqLc4cNJun_C358mpxvwu82FobDKVidWitoWhs7I-_hkSNcEQdrPm7CIo93R27PvPnWQopvWtp1GzSIH7ucPdN_KN-NdpPWLKBrtTd_t-02HAd8gDFj4wkmeGhtp7pQgsKCjUOWhVDwXVgqXxHkgdZA4qWLptDIycjiFOj0x1jkR4_9egU2BXlHQg82dvcnR8eqER6JxlbK-G41jGfS_zr5VrYfQ5BJzxh1bWLUM-NcwrFnGbtTmmhkc3YQbDX5lw5rhbsGGm9-G62tVDe_Ar3H9fqbmltFvx5p0BBqctkVjS4Z4mVGciU93CLUEsI-zktI86-RQVuSsisSplDKbVkzC6OiYHR6PX7Ph6vadLQo2UmjP1TYOF3WZzlm5XW1i6qhnyV04uRTq3IPeHF_4AFhgEJ6rFD2JQcwTZ5RBTWRinWhkx1inHrxqKZGd1WU-MnSPiGrZ31TzYIdItVxHBbqrgeL8c9bIe2aFQSgbBjoJLI_yVEvLXYxgzsnQmkh68JIInZEaQWrihupsCNwuFeTKhpTyLKiaowdbnZUo_qY73bJK1qifMlsJiwfPltP0JIXUzV1xUa0JZDzgHNfcrzlr-UmIWqVAbO3BoMNznW_uzsxnX6ri5OiwoocgxcP_7-spXEXxzT6MJweP4FpETZUpFJ5vQW9xfuEeI9Jb6CeNSDH4dNlS_AfUTGzj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+and+Image+Processing+Techniques+for+High-Resolution+Visualization+of+Connective+Tissue+with+MRI%3A+Application+to+Fascia%2C+Aponeurosis%2C+and+Tendon&rft.jtitle=Journal+of+imaging&rft.au=Perera%2C+Meeghage+Randika&rft.au=Bydder%2C+Graeme+M&rft.au=Holdsworth%2C+Samantha+J&rft.au=Handsfield%2C+Geoffrey+G&rft.date=2025-02-04&rft.eissn=2313-433X&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fjimaging11020043&rft_id=info%3Apmid%2F39997545&rft.externalDocID=39997545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-433X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-433X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-433X&client=summon