Single-cell transcriptomics reveals CD8+ T cell structure and developmental trajectories in idiopathic pulmonary fibrosis
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune...
Saved in:
Published in | Molecular immunology Vol. 172; pp. 85 - 95 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
•The percentage of CD8+ T cells in the T cell subpopulation increased in IPF patients.•In CD8+ T cells, we found differences in the metabolic pathways of IPF and Ctrl.•Different populations of CD8+ T cells in IPF have unique metabolic characteristics.•Signaling pathways associated with fibrosis are enriched in CD8+ T cells in IPF patients. |
---|---|
AbstractList | Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
•The percentage of CD8+ T cells in the T cell subpopulation increased in IPF patients.•In CD8+ T cells, we found differences in the metabolic pathways of IPF and Ctrl.•Different populations of CD8+ T cells in IPF have unique metabolic characteristics.•Signaling pathways associated with fibrosis are enriched in CD8+ T cells in IPF patients. Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8 T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8 T cells, as well as the cytotoxicity and exhausted status of CD8 T cell subpopulations at different stages. Among CD8 T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8 T cells, we found that different populations of CD8 T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8 T cells, suggesting that CD8 T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8 T cells and other cells. Together, these studies highlight key features of CD8 T cells in the pathogenesis of IPF and help to develop effective therapeutic targets. Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8⁺ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8⁺ T cells, as well as the cytotoxicity and exhausted status of CD8⁺ T cell subpopulations at different stages. Among CD8⁺ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8⁺ T cells, we found that different populations of CD8⁺ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8⁺ T cells, suggesting that CD8⁺ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8⁺ T cells and other cells. Together, these studies highlight key features of CD8⁺ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets. Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets. |
Author | Wei, Xuemei Kong, Weina Feng, Qiong Wang, Yujie Zheng, Shaomao Wang, Jing Li, Dewei Jin, Chengji shi, Ning Ma, Xiumin |
Author_xml | – sequence: 1 givenname: Xuemei surname: Wei fullname: Wei, Xuemei organization: Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China – sequence: 2 givenname: Chengji surname: Jin fullname: Jin, Chengji organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China – sequence: 3 givenname: Dewei surname: Li fullname: Li, Dewei organization: Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China – sequence: 4 givenname: Yujie surname: Wang fullname: Wang, Yujie organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China – sequence: 5 givenname: Shaomao surname: Zheng fullname: Zheng, Shaomao organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China – sequence: 6 givenname: Qiong surname: Feng fullname: Feng, Qiong organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China – sequence: 7 givenname: Ning surname: shi fullname: shi, Ning organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China – sequence: 8 givenname: Weina surname: Kong fullname: Kong, Weina organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China – sequence: 9 givenname: Xiumin surname: Ma fullname: Ma, Xiumin email: maxiumin1210@sohu.com organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China – sequence: 10 givenname: Jing surname: Wang fullname: Wang, Jing email: tlfwj@163.com organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38936318$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URKeFf4CQl0gogx07jsMCCQ2fUiUWlLXlsV_gjRI72E6l_ns8nXbDgq7e5pwr3XcvyFmIAQh5ydmWM67eHrZznHCety1r5ZapLWP6Cdlw3bfNwGV7RjYV402nB3ZOLnI-MMYUU90zci70IJTgekNuf2D4NUHjYJpoSTZkl3ApcUaXaYIbsFOmu4_6Db2md0wuaXVlTUBt8NRXYorLDKHYO_8ArsSEkCkGih7jYstvdHRZpzkGm27piPsUM-bn5OlYw-HF_b0kPz9_ut59ba6-f_m2-3DVOCl5aXrvpR19L6yVTPfAtRfMOif9yKRTHSjhrR5A7pmT1u-9ll3fOq2clcoPXlyS16fcJcU_K-RiZszHKjZAXLMRvBOqG9qhfxxlvWgF51pX9NU9uu5n8GZJONd25uGzFXh3AlxtmxOMxmGxBWOoX8LJcGaOM5qDOc1ojjMapkydscryH_kh_xHt_UmD-s8bhGSyQwgOPKa6i_ER_x_wFwDlu98 |
CitedBy_id | crossref_primary_10_3390_cells14030222 crossref_primary_10_3389_fmed_2024_1443926 crossref_primary_10_3389_fmed_2024_1356825 |
Cites_doi | 10.1002/jcp.26112 10.1111/resp.13465 10.1016/j.biopha.2021.111471 10.1101/gr.271205.120 10.3389/fimmu.2022.1022228 10.1073/pnas.2007224117 10.1126/sciadv.aba1972 10.1038/s41467-021-21246-9 10.1126/scitranslmed.aad5222 10.2353/ajpath.2010.091122 10.1164/rccm.201712-2410OC 10.1136/annrheumdis-2016-210823 10.1038/s41419-022-05409-0 10.1002/path.1208 10.1016/j.immuni.2014.02.012 10.3389/fimmu.2016.00516 10.1093/bioinformatics/bts635 10.1158/2159-8290.CD-21-0316 10.1183/09031936.00149614 10.1016/j.phrs.2022.106636 10.1111/j.1399-0039.2006.00560.x 10.1038/s41590-022-01210-5 10.1126/science.1160062 10.3390/ijms241813832 10.1016/j.abb.2019.108167 10.1165/rcmb.2018-0180OC 10.1165/rcmb.2021-0418OC 10.1016/j.rmed.2018.12.015 10.1183/13993003.00957-2022 10.1038/s41385-018-0082-8 10.1172/JCI60323 10.1172/JCI143226 10.1016/j.heliyon.2019.e01502 10.1016/j.pharmthera.2023.108436 10.1073/pnas.2201707119 10.1038/s41423-020-0428-5 10.1016/j.jep.2021.114522 10.4049/jimmunol.171.5.2684 10.1186/s12931-018-0864-2 10.1038/nmeth.4402 10.3390/ijms22126211 10.1056/NEJMoa1402582 10.1084/jem.20110551 10.1186/s12967-021-03041-8 10.1056/NEJMoa1402584 10.1155/2018/6181432 10.3390/pharmaceutics12040389 10.1093/bioinformatics/btt656 10.3390/molecules27030858 10.1038/s41586-020-2922-4 10.1152/ajpcell.00586.2020 10.1016/j.jep.2023.116633 10.1038/s41596-020-0292-x 10.1038/s41420-023-01344-x 10.1167/iovs.64.13.36 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molimm.2024.06.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1872-9142 |
EndPage | 95 |
ExternalDocumentID | 38936318 10_1016_j_molimm_2024_06_008 S0161589024001184 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 3O- 4.4 457 4G. 53G 5RE 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AAXUO ABBQC ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABMZM ABOCM ABUDA ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ H~9 IH2 IHE J1W K-O KOM L7B LUGTX M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSU SSZ T5K TEORI UNMZH WUQ X7M Y6R ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-7dd4afd73aa4087e18d30acc4df04c65e63da89e4b0c4adbd84572c86ca46d9d3 |
IEDL.DBID | .~1 |
ISSN | 0161-5890 1872-9142 |
IngestDate | Tue Aug 05 11:33:27 EDT 2025 Fri Jul 11 11:15:12 EDT 2025 Mon Jul 21 06:06:47 EDT 2025 Thu Apr 24 23:00:16 EDT 2025 Tue Jul 01 01:57:31 EDT 2025 Sat Jul 20 16:35:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single-cell RNA sequencing CD8+ T cell Idiopathic pulmonary fibrosis Immune CD8(+) T cell |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7dd4afd73aa4087e18d30acc4df04c65e63da89e4b0c4adbd84572c86ca46d9d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0161589024001184 |
PMID | 38936318 |
PQID | 3073231188 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3153659297 proquest_miscellaneous_3073231188 pubmed_primary_38936318 crossref_citationtrail_10_1016_j_molimm_2024_06_008 crossref_primary_10_1016_j_molimm_2024_06_008 elsevier_sciencedirect_doi_10_1016_j_molimm_2024_06_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-Aug 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Molecular immunology |
PublicationTitleAlternate | Mol Immunol |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Serezani, Pascoalino, Bazzano, Vowell, Tanjore, Taylor, Calvi, McCall, Bacchetta, Shaver, Ware, Salisbury, Banovich, Kendall, Kropski, Blackwell (bib47) 2022; 67 Grebinoski, Zhang, Cillo, Manne, Xiao, Brunazzi, Tabib, Cardello, Lian, Murphy, Lafyatis, Wherry, Das, Workman, Vignali (bib13) 2022; 23 Wang, Gong, Li, Chen, Xu, Rong, Zhang, Zhu (bib53) 2021; 281 Singh, Perazzelli, Grupp, Barrett (bib49) 2016; 8 Bai, Bernard, Tang, Hu, Horowitz, Thannickal, Sanders (bib4) 2019; 60 Krug, Torres-González, Qin, Sorescu, Rojas, Stecenko, Speck, Mora (bib28) 2010; 177 Blokland, Waters, Schuliga, Read, Pouwels, Grainge, Jaffar, Westall, Mutsaers, Prêle, Burgess, Knight (bib6) 2020; 12 Podolanczuk, Thomson, Remy-Jardin, Richeldi, Martinez, Kolb, Raghu (bib40) 2023; 61 Mendoza, Casas-Recasens, Olvera, Hernandez-Gonzalez, Cruz, Albacar, Alsina-Restoy, Frino-Garcia, López-Saiz, Robres, Rojas, Agustí, Sellarés, Faner (bib34) 2023; 24 Wynn (bib56) 2011; 208 Jakubzick, Choi, Joshi, Keane, Kunkel, Puri, Hogaboam (bib21) 2003; 171 Alshawsh, Alsalahi, Alshehade, Saghir, Ahmeda, Al Zarzour, Mahmoud (bib3) 2022; 27 Habiel, Espindola, Kitson, Azzara, Coelho, Stripp, Hogaboam (bib16) 2019; 12 Alghamdi, Chang, Dang, Lu, Wan, Gampala, Huang, Wang, Ma, Zang, Fishel, Cao, Zhang (bib2) 2021; 31 Liu, Budinger, Dematte (bib32) 2022; 377 Celada, Kropski, Herazo-Maya, Luo, Creecy, Abad, Chioma, Lee, Hassell, Shaginurova, Wang, Johnson, Kerrigan, Mason, Baughman, Ayers, Bernard, Culver, Montgomery, Maher, Molyneaux, Noth, Mutsaers, Prele, Peebles, Newcomb, Kaminski, Blackwell, Van Kaer, Drake (bib7) 2018 Rai, Bose, Saha, Chakraborty (bib42) 2019; 5 Rajesh, Atallah, Bärnthaler (bib43) 2023; 246 Zhang, Su, Lin, Liu, Wu, Yuan, Zhang, Chen, Su, Xu, Sun, Zhang, Chen, Zhang (bib60) 2023; 314 Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib41) 2017; 14 Habermann, Gutierrez, Bui, Yahn, Winters, Calvi, Peter, Chung, Taylor, Jetter, Raju, Roberson, Ding, Wood, Sucre, Richmond, Serezani, McDonnell, Mallal, Bacchetta, Loyd, Shaver, Ware, Bremner, Walia, Blackwell, Banovich, Kropski (bib15) 2020; 6 Heukels, Moor, von der Thüsen, Wijsenbeek, Kool (bib17) 2019; 147 Huang, Maier, Zhang, Soare, Dees, Beyer, Harre, Chen, Distler, Schett, Wollin, Distler (bib19) 2017; 76 Martinez, Collard, Pardo, Raghu, Richeldi, Selman, Swigris, Taniguchi, Wells (bib33) 2017; 3 Richeldi, du Bois, Raghu, Azuma, Brown, Costabel, Cottin, Flaherty, Hansell, Inoue, Kim, Kolb, Nicholson, Noble, Selman, Taniguchi, Brun, Le Maulf, Girard, Stowasser, Schlenker-Herceg, Disse, Collard (bib45) 2014; 370 Deng, Huang, Zhang (bib9) 2023; 9 Miura, Hayakawa, Kikuchi, Tsumoto, Umezawa, Chiba, Soejima, Sawabe, Fukui, Akimoto, Endo (bib35) 2019; 678 Shenderov, Collins, Powell, Horton (bib48) 2021; 131 Jaffar, Glaspole, Symons, Westall (bib20) 2021; 138 Jeon, Kumar, Callan, DeMagistris, MacRae, Nehrke, Huxlin (bib22) 2023; 64 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib10) 2013; 29 Wang, Bai, Ma, Li (bib52) 2021; 27 Wing, Onishi, Prieto-Martin, Yamaguchi, Miyara, Fehervari, Nomura, Sakaguchi (bib54) 2008; 322 Odagiu, Boulet, Maurice De Sousa, Daudelin, Nicolas, Labrecque (bib38) 2020; 117 Li, Liang, Gao, Jiang, Zhang, Zhang, Ruan, Li, Luan, Deng, Zhou, Huang, Yang (bib30) 2022; 103 Chen, Hsu, Lee, Yen, Ko, Yang, Hung (bib8) 2014; 9 Yoshida, Kuwano, Hagimoto, Watanabe, Matsuba, Fujita, Inoshima, Hara (bib58) 2002; 198 Zhang, Wang, Wu, Xiong, Gu, Wang (bib59) 2018; 19 Zhou, Kandhare, Kandhare, Bodhankar (bib61) 2019; 18 Wu, Yang, Ma, Chen, Song, Rao, Cheng, Huang, Liu, Jiang, Liu, Huang, Wang, Qiu, Xu, Xi, Bai, Zhou, Fan, Zhang, Gao (bib55) 2022; 12 Jiang, Liu, Wang, Zheng, Ren, Zhang, Yao (bib23) 2022; 13 Grimminger, Günther, Vancheri (bib14) 2015; 45 Vasakova, Striz, Slavcev, Jandova, Kolesar, Sulc (bib51) 2006; 67 Noble, Barkauskas, Jiang (bib37) 2012; 122 Jin, Guerrero-Juarez, Zhang, Chang, Ramos, Kuan, Myung, Plikus, Nie (bib24) 2021; 12 Yin, Peng, Gu, Liu, Li, Wu, Xu, Zhuge, Zhang (bib57) 2022; 13 Zhu, Chai, Dong, Zhang, Liu, Ma, Wu, Lv, Hu (bib62) 2018; 2018 Montero, Milara, Roger, Cortijo (bib36) 2021; 22 Liao, Smyth, Shi (bib31) 2014; 30 Bao, Zhao, Lu, Hu, Hu, Hu, Wang, Hu, Sun, Wang, Chen, Lu, Li, Xu, Zhou, Zhu (bib5) 2021; 19 Hou, Ma, Cao, Chen, Wang, Chen, Xiang, Han (bib18) 2018; 233 King, Bradford, Castro-Bernardini, Fagan, Glaspole, Glassberg, Gorina, Hopkins, Kardatzke, Lancaster, Lederer, Nathan, Pereira, Sahn, Sussman, Swigris, Noble (bib27) 2014; 370 Li, Deng, Wang, Luo, Luo, Zhang, Chen, Cao, Yang, Zhao, Xu, Xu, Wang (bib29) 2023; 187 Reyfman, Walter, Joshi, Anekalla, McQuattie-Pimentel, Chiu, Fernandez, Akbarpour, Chen, Ren, Verma, Abdala-Valencia, Nam, Chi, Han, Gonzalez-Gonzalez, Soberanes, Watanabe, Williams, Flozak, Nicholson, Morgan, Winter, Hinchcliff, Hrusch, Guzy, Bonham, Sperling, Bag, Hamanaka, Mutlu, Yeldandi, Marshall, Shilatifard, Amaral, Perlman, Sznajder, Argento, Gillespie, Dematte, Jain, Singer, Ridge, Lam, Bharat, Bhorade, Gottardi, Budinger, Misharin (bib44) 2019; 199 Travaglini, Nabhan, Penland, Sinha, Gillich, Sit, Chang, Conley, Mori, Seita, Berry, Shrager, Metzger, Kuo, Neff, Weissman, Quake, Krasnow (bib50) 2020; 587 Joller, Lozano, Burkett, Patel, Xiao, Zhu, Xia, Tan, Sefik, Yajnik, Sharpe, Quintana, Mathis, Benoist, Hafler, Kuchroo (bib25) 2014; 40 Roque, Romero (bib46) 2021; 320 Parsanathan, Jain (bib39) 2021; 18 Kim, Panza, Kikhi, Nakamichi, Atzberger, Guenther, Ruppert, Guenther, Stainier (bib26) 2022; 119 Adegunsoye, Hrusch, Bonham, Jaffery, Blaine, Sullivan, Churpek, Strek, Noth, Sperling (bib1) 2016; 7 Efremova, Vento-Tormo, Teichmann, Vento-Tormo (bib11) 2020; 15 Gaugg, Engler, Bregy, Nussbaumer-Ochsner, Eiffert, Bruderer, Zenobi, Sinues, Kohler (bib12) 2019; 24 Habiel (10.1016/j.molimm.2024.06.008_bib16) 2019; 12 Deng (10.1016/j.molimm.2024.06.008_bib9) 2023; 9 Krug (10.1016/j.molimm.2024.06.008_bib28) 2010; 177 Wynn (10.1016/j.molimm.2024.06.008_bib56) 2011; 208 Jiang (10.1016/j.molimm.2024.06.008_bib23) 2022; 13 Zhou (10.1016/j.molimm.2024.06.008_bib61) 2019; 18 Dobin (10.1016/j.molimm.2024.06.008_bib10) 2013; 29 Jin (10.1016/j.molimm.2024.06.008_bib24) 2021; 12 Liu (10.1016/j.molimm.2024.06.008_bib32) 2022; 377 Rai (10.1016/j.molimm.2024.06.008_bib42) 2019; 5 Adegunsoye (10.1016/j.molimm.2024.06.008_bib1) 2016; 7 Singh (10.1016/j.molimm.2024.06.008_bib49) 2016; 8 Odagiu (10.1016/j.molimm.2024.06.008_bib38) 2020; 117 Zhang (10.1016/j.molimm.2024.06.008_bib59) 2018; 19 Heukels (10.1016/j.molimm.2024.06.008_bib17) 2019; 147 Grebinoski (10.1016/j.molimm.2024.06.008_bib13) 2022; 23 Travaglini (10.1016/j.molimm.2024.06.008_bib50) 2020; 587 Li (10.1016/j.molimm.2024.06.008_bib30) 2022; 103 Wu (10.1016/j.molimm.2024.06.008_bib55) 2022; 12 Montero (10.1016/j.molimm.2024.06.008_bib36) 2021; 22 Yoshida (10.1016/j.molimm.2024.06.008_bib58) 2002; 198 Vasakova (10.1016/j.molimm.2024.06.008_bib51) 2006; 67 King (10.1016/j.molimm.2024.06.008_bib27) 2014; 370 Noble (10.1016/j.molimm.2024.06.008_bib37) 2012; 122 Jaffar (10.1016/j.molimm.2024.06.008_bib20) 2021; 138 Wang (10.1016/j.molimm.2024.06.008_bib53) 2021; 281 Bai (10.1016/j.molimm.2024.06.008_bib4) 2019; 60 Jakubzick (10.1016/j.molimm.2024.06.008_bib21) 2003; 171 Mendoza (10.1016/j.molimm.2024.06.008_bib34) 2023; 24 Jeon (10.1016/j.molimm.2024.06.008_bib22) 2023; 64 Miura (10.1016/j.molimm.2024.06.008_bib35) 2019; 678 Shenderov (10.1016/j.molimm.2024.06.008_bib48) 2021; 131 Reyfman (10.1016/j.molimm.2024.06.008_bib44) 2019; 199 Podolanczuk (10.1016/j.molimm.2024.06.008_bib40) 2023; 61 Rajesh (10.1016/j.molimm.2024.06.008_bib43) 2023; 246 Liao (10.1016/j.molimm.2024.06.008_bib31) 2014; 30 Bao (10.1016/j.molimm.2024.06.008_bib5) 2021; 19 Zhu (10.1016/j.molimm.2024.06.008_bib62) 2018; 2018 Wing (10.1016/j.molimm.2024.06.008_bib54) 2008; 322 Zhang (10.1016/j.molimm.2024.06.008_bib60) 2023; 314 Roque (10.1016/j.molimm.2024.06.008_bib46) 2021; 320 Grimminger (10.1016/j.molimm.2024.06.008_bib14) 2015; 45 Qiu (10.1016/j.molimm.2024.06.008_bib41) 2017; 14 Parsanathan (10.1016/j.molimm.2024.06.008_bib39) 2021; 18 Alghamdi (10.1016/j.molimm.2024.06.008_bib2) 2021; 31 Huang (10.1016/j.molimm.2024.06.008_bib19) 2017; 76 Kim (10.1016/j.molimm.2024.06.008_bib26) 2022; 119 Alshawsh (10.1016/j.molimm.2024.06.008_bib3) 2022; 27 Hou (10.1016/j.molimm.2024.06.008_bib18) 2018; 233 Li (10.1016/j.molimm.2024.06.008_bib29) 2023; 187 Celada (10.1016/j.molimm.2024.06.008_bib7) 2018 Chen (10.1016/j.molimm.2024.06.008_bib8) 2014; 9 Efremova (10.1016/j.molimm.2024.06.008_bib11) 2020; 15 Gaugg (10.1016/j.molimm.2024.06.008_bib12) 2019; 24 Martinez (10.1016/j.molimm.2024.06.008_bib33) 2017; 3 Richeldi (10.1016/j.molimm.2024.06.008_bib45) 2014; 370 Wang (10.1016/j.molimm.2024.06.008_bib52) 2021; 27 Joller (10.1016/j.molimm.2024.06.008_bib25) 2014; 40 Blokland (10.1016/j.molimm.2024.06.008_bib6) 2020; 12 Habermann (10.1016/j.molimm.2024.06.008_bib15) 2020; 6 Serezani (10.1016/j.molimm.2024.06.008_bib47) 2022; 67 Yin (10.1016/j.molimm.2024.06.008_bib57) 2022; 13 |
References_xml | – volume: 122 start-page: 2756 year: 2012 end-page: 2762 ident: bib37 article-title: Pulmonary fibrosis: patterns and perpetrators publication-title: J. Clin. Invest – volume: 19 start-page: 170 year: 2018 ident: bib59 article-title: Macrophages: friend or foe in idiopathic pulmonary fibrosis? publication-title: Respir. Res. – volume: 233 start-page: 2409 year: 2018 end-page: 2419 ident: bib18 article-title: TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis publication-title: J. Cell Physiol. – volume: 246 year: 2023 ident: bib43 article-title: Dysregulation of metabolic pathways in pulmonary fibrosis publication-title: Pharm. Ther. – start-page: 10 year: 2018 ident: bib7 article-title: PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production publication-title: Sci. Transl. Med – volume: 7 start-page: 516 year: 2016 ident: bib1 article-title: Skewed Lung CCR4 to CCR6 CD4(+) T cell ratio in idiopathic pulmonary fibrosis is associated with pulmonary function. publication-title: Front Immunol. – volume: 8 year: 2016 ident: bib49 article-title: Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies publication-title: Sci. Transl. Med – volume: 60 start-page: 49 year: 2019 end-page: 57 ident: bib4 article-title: Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 22 year: 2021 ident: bib36 article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms publication-title: Int J. Mol. Sci. – volume: 12 start-page: 212 year: 2019 end-page: 222 ident: bib16 article-title: Characterization of CD28(null) T cells in idiopathic pulmonary fibrosis publication-title: Mucosal Immunol. – volume: 76 start-page: 1941 year: 2017 end-page: 1948 ident: bib19 article-title: Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis publication-title: Ann. Rheum. Dis. – volume: 24 year: 2023 ident: bib34 article-title: Blood immunophenotypes of idiopathic pulmonary fibrosis: relationship with disease severity and progression publication-title: Int. J. Mol. Sci. – volume: 67 start-page: 229 year: 2006 end-page: 232 ident: bib51 article-title: Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis publication-title: Tissue Antigens – volume: 45 start-page: 1426 year: 2015 end-page: 1433 ident: bib14 article-title: The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis publication-title: Eur. Respir. J. – volume: 2018 year: 2018 ident: bib62 article-title: AICAR-induced AMPK activation inhibits the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats publication-title: Can. J. Gastroenterol. Hepatol. – volume: 64 start-page: 36 year: 2023 ident: bib22 article-title: Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype: a new target for treating fibrosis publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 103 year: 2022 ident: bib30 article-title: Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-κB signaling pathway publication-title: Int. Immunopharmacol. – volume: 30 start-page: 923 year: 2014 end-page: 930 ident: bib31 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 3 year: 2017 ident: bib33 article-title: Idiopathic pulmonary fibrosis publication-title: Nat. Rev. Dis. Prim. – volume: 13 year: 2022 ident: bib23 article-title: The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: friend or foe? publication-title: Front Immunol. – volume: 678 year: 2019 ident: bib35 article-title: Fumarate accumulation involved in renal diabetic fibrosis in Goto-Kakizaki rats publication-title: Arch. Biochem Biophys. – volume: 27 year: 2021 ident: bib52 article-title: Regulatory Effect of PD1/PD-Ligand 1 (PD-L1) on treg cells in patients with idiopathic pulmonary fibrosis publication-title: Med Sci. Monit. – volume: 40 start-page: 569 year: 2014 end-page: 581 ident: bib25 article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses publication-title: Immunity – volume: 138 year: 2021 ident: bib20 article-title: Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis publication-title: Biomed. Pharm. – volume: 314 year: 2023 ident: bib60 article-title: Fu-Zheng-Tong-Luo formula promotes autophagy and alleviates idiopathic pulmonary fibrosis by controlling the Janus kinase 2/signal transducer and activator of transcription 3 pathway publication-title: J. Ethnopharmacol. – volume: 19 start-page: 388 year: 2021 ident: bib5 article-title: Platelet transcriptome profiles provide potential therapeutic targets for elderly acute myelocytic leukemia patients publication-title: J. Transl. Med – volume: 131 year: 2021 ident: bib48 article-title: Immune dysregulation as a driver of idiopathic pulmonary fibrosis publication-title: J. Clin. Invest – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib10 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 24 start-page: 437 year: 2019 end-page: 444 ident: bib12 article-title: Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis publication-title: Respirology – volume: 61 year: 2023 ident: bib40 article-title: Idiopathic pulmonary fibrosis: state of the art for 2023 publication-title: Eur. Respir. J. – volume: 177 start-page: 608 year: 2010 end-page: 621 ident: bib28 article-title: Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis publication-title: Am. J. Pathol. – volume: 13 start-page: 955 year: 2022 ident: bib57 article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis publication-title: Cell Death Dis. – volume: 14 start-page: 979 year: 2017 end-page: 982 ident: bib41 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods – volume: 322 start-page: 271 year: 2008 end-page: 275 ident: bib54 article-title: CTLA-4 control over Foxp3+ regulatory T cell function publication-title: Science – volume: 187 year: 2023 ident: bib29 article-title: PD-L1 upregulation promotes drug-induced pulmonary fibrosis by inhibiting vimentin degradation publication-title: Pharm. Res – volume: 208 start-page: 1339 year: 2011 end-page: 1350 ident: bib56 article-title: Integrating mechanisms of pulmonary fibrosis publication-title: J. Exp. Med – volume: 12 year: 2020 ident: bib6 article-title: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing publication-title: Pharmaceutics – volume: 15 start-page: 1484 year: 2020 end-page: 1506 ident: bib11 article-title: CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes publication-title: Nat. Protoc. – volume: 320 year: 2021 ident: bib46 article-title: Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids publication-title: Am. J. Physiol. Cell Physiol. – volume: 377 year: 2022 ident: bib32 article-title: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis publication-title: Bmj – volume: 67 start-page: 50 year: 2022 end-page: 60 ident: bib47 article-title: Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 27 year: 2022 ident: bib3 article-title: A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet publication-title: Molecules – volume: 171 start-page: 2684 year: 2003 end-page: 2693 ident: bib21 article-title: Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells publication-title: J. Immunol. – volume: 370 start-page: 2083 year: 2014 end-page: 2092 ident: bib27 article-title: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis publication-title: N. Engl. J. Med. – volume: 5 year: 2019 ident: bib42 article-title: Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis publication-title: Heliyon – volume: 147 start-page: 79 year: 2019 end-page: 91 ident: bib17 article-title: Inflammation and immunity in IPF pathogenesis and treatment publication-title: Respir. Med – volume: 9 start-page: 62 year: 2023 ident: bib9 article-title: T cells in idiopathic pulmonary fibrosis: crucial but controversial publication-title: Cell Death Discov. – volume: 117 start-page: 24392 year: 2020 end-page: 24402 ident: bib38 article-title: Early programming of CD8(+) T cell response by the orphan nuclear receptor NR4A3 publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 year: 2020 ident: bib15 article-title: Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis publication-title: Sci. Adv. – volume: 31 start-page: 1867 year: 2021 end-page: 1884 ident: bib2 article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data publication-title: Genome Res – volume: 18 start-page: 770 year: 2021 end-page: 772 ident: bib39 article-title: G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype publication-title: Cell Mol. Immunol. – volume: 281 year: 2021 ident: bib53 article-title: Antifibrotic effect of Gancao Ganjiang decoction is mediated by PD-1 / TGF-β1 / IL-17A pathway in bleomycin-induced idiopathic pulmonary fibrosis publication-title: J. Ethnopharmacol. – volume: 199 start-page: 1517 year: 2019 end-page: 1536 ident: bib44 article-title: Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis publication-title: Am. J. Respir. Crit. Care Med. – volume: 370 start-page: 2071 year: 2014 end-page: 2082 ident: bib45 article-title: Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis publication-title: N. Engl. J. Med – volume: 587 start-page: 619 year: 2020 end-page: 625 ident: bib50 article-title: A molecular cell atlas of the human lung from single-cell RNA sequencing publication-title: Nature – volume: 12 start-page: 134 year: 2022 end-page: 153 ident: bib55 article-title: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level publication-title: Cancer Discov. – volume: 9 year: 2014 ident: bib8 article-title: The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts publication-title: PLoS One – volume: 23 start-page: 868 year: 2022 end-page: 877 ident: bib13 article-title: Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3. publication-title: Nat. Immunol. – volume: 198 start-page: 388 year: 2002 end-page: 396 ident: bib58 article-title: MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis publication-title: J. Pathol. – volume: 18 start-page: 723 year: 2019 end-page: 745 ident: bib61 article-title: Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways publication-title: Excli J. – volume: 119 year: 2022 ident: bib26 article-title: WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1088 year: 2021 ident: bib24 article-title: Inference and analysis of cell-cell communication using CellChat publication-title: Nat. Commun. – volume: 233 start-page: 2409 year: 2018 ident: 10.1016/j.molimm.2024.06.008_bib18 article-title: TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis publication-title: J. Cell Physiol. doi: 10.1002/jcp.26112 – start-page: 10 year: 2018 ident: 10.1016/j.molimm.2024.06.008_bib7 article-title: PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production publication-title: Sci. Transl. Med – volume: 24 start-page: 437 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib12 article-title: Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis publication-title: Respirology doi: 10.1111/resp.13465 – volume: 138 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib20 article-title: Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis publication-title: Biomed. Pharm. doi: 10.1016/j.biopha.2021.111471 – volume: 31 start-page: 1867 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib2 article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data publication-title: Genome Res doi: 10.1101/gr.271205.120 – volume: 13 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib23 article-title: The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: friend or foe? publication-title: Front Immunol. doi: 10.3389/fimmu.2022.1022228 – volume: 117 start-page: 24392 year: 2020 ident: 10.1016/j.molimm.2024.06.008_bib38 article-title: Early programming of CD8(+) T cell response by the orphan nuclear receptor NR4A3 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2007224117 – volume: 6 year: 2020 ident: 10.1016/j.molimm.2024.06.008_bib15 article-title: Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis publication-title: Sci. Adv. doi: 10.1126/sciadv.aba1972 – volume: 12 start-page: 1088 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib24 article-title: Inference and analysis of cell-cell communication using CellChat publication-title: Nat. Commun. doi: 10.1038/s41467-021-21246-9 – volume: 8 year: 2016 ident: 10.1016/j.molimm.2024.06.008_bib49 article-title: Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies publication-title: Sci. Transl. Med doi: 10.1126/scitranslmed.aad5222 – volume: 177 start-page: 608 year: 2010 ident: 10.1016/j.molimm.2024.06.008_bib28 article-title: Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.091122 – volume: 199 start-page: 1517 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib44 article-title: Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201712-2410OC – volume: 76 start-page: 1941 year: 2017 ident: 10.1016/j.molimm.2024.06.008_bib19 article-title: Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2016-210823 – volume: 13 start-page: 955 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib57 article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis publication-title: Cell Death Dis. doi: 10.1038/s41419-022-05409-0 – volume: 198 start-page: 388 year: 2002 ident: 10.1016/j.molimm.2024.06.008_bib58 article-title: MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis publication-title: J. Pathol. doi: 10.1002/path.1208 – volume: 40 start-page: 569 year: 2014 ident: 10.1016/j.molimm.2024.06.008_bib25 article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses publication-title: Immunity doi: 10.1016/j.immuni.2014.02.012 – volume: 7 start-page: 516 year: 2016 ident: 10.1016/j.molimm.2024.06.008_bib1 article-title: Skewed Lung CCR4 to CCR6 CD4(+) T cell ratio in idiopathic pulmonary fibrosis is associated with pulmonary function. publication-title: Front Immunol. doi: 10.3389/fimmu.2016.00516 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.molimm.2024.06.008_bib10 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 12 start-page: 134 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib55 article-title: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-0316 – volume: 45 start-page: 1426 year: 2015 ident: 10.1016/j.molimm.2024.06.008_bib14 article-title: The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis publication-title: Eur. Respir. J. doi: 10.1183/09031936.00149614 – volume: 187 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib29 article-title: PD-L1 upregulation promotes drug-induced pulmonary fibrosis by inhibiting vimentin degradation publication-title: Pharm. Res doi: 10.1016/j.phrs.2022.106636 – volume: 67 start-page: 229 year: 2006 ident: 10.1016/j.molimm.2024.06.008_bib51 article-title: Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis publication-title: Tissue Antigens doi: 10.1111/j.1399-0039.2006.00560.x – volume: 23 start-page: 868 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib13 article-title: Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3. publication-title: Nat. Immunol. doi: 10.1038/s41590-022-01210-5 – volume: 322 start-page: 271 year: 2008 ident: 10.1016/j.molimm.2024.06.008_bib54 article-title: CTLA-4 control over Foxp3+ regulatory T cell function publication-title: Science doi: 10.1126/science.1160062 – volume: 24 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib34 article-title: Blood immunophenotypes of idiopathic pulmonary fibrosis: relationship with disease severity and progression publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms241813832 – volume: 678 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib35 article-title: Fumarate accumulation involved in renal diabetic fibrosis in Goto-Kakizaki rats publication-title: Arch. Biochem Biophys. doi: 10.1016/j.abb.2019.108167 – volume: 60 start-page: 49 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib4 article-title: Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2018-0180OC – volume: 67 start-page: 50 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib47 article-title: Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2021-0418OC – volume: 147 start-page: 79 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib17 article-title: Inflammation and immunity in IPF pathogenesis and treatment publication-title: Respir. Med doi: 10.1016/j.rmed.2018.12.015 – volume: 61 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib40 article-title: Idiopathic pulmonary fibrosis: state of the art for 2023 publication-title: Eur. Respir. J. doi: 10.1183/13993003.00957-2022 – volume: 12 start-page: 212 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib16 article-title: Characterization of CD28(null) T cells in idiopathic pulmonary fibrosis publication-title: Mucosal Immunol. doi: 10.1038/s41385-018-0082-8 – volume: 122 start-page: 2756 year: 2012 ident: 10.1016/j.molimm.2024.06.008_bib37 article-title: Pulmonary fibrosis: patterns and perpetrators publication-title: J. Clin. Invest doi: 10.1172/JCI60323 – volume: 131 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib48 article-title: Immune dysregulation as a driver of idiopathic pulmonary fibrosis publication-title: J. Clin. Invest doi: 10.1172/JCI143226 – volume: 5 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib42 article-title: Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e01502 – volume: 246 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib43 article-title: Dysregulation of metabolic pathways in pulmonary fibrosis publication-title: Pharm. Ther. doi: 10.1016/j.pharmthera.2023.108436 – volume: 377 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib32 article-title: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis publication-title: Bmj – volume: 27 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib52 article-title: Regulatory Effect of PD1/PD-Ligand 1 (PD-L1) on treg cells in patients with idiopathic pulmonary fibrosis publication-title: Med Sci. Monit. – volume: 119 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib26 article-title: WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2201707119 – volume: 18 start-page: 770 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib39 article-title: G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-020-0428-5 – volume: 281 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib53 article-title: Antifibrotic effect of Gancao Ganjiang decoction is mediated by PD-1 / TGF-β1 / IL-17A pathway in bleomycin-induced idiopathic pulmonary fibrosis publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2021.114522 – volume: 171 start-page: 2684 year: 2003 ident: 10.1016/j.molimm.2024.06.008_bib21 article-title: Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells publication-title: J. Immunol. doi: 10.4049/jimmunol.171.5.2684 – volume: 19 start-page: 170 year: 2018 ident: 10.1016/j.molimm.2024.06.008_bib59 article-title: Macrophages: friend or foe in idiopathic pulmonary fibrosis? publication-title: Respir. Res. doi: 10.1186/s12931-018-0864-2 – volume: 14 start-page: 979 year: 2017 ident: 10.1016/j.molimm.2024.06.008_bib41 article-title: Reversed graph embedding resolves complex single-cell trajectories publication-title: Nat. Methods doi: 10.1038/nmeth.4402 – volume: 22 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib36 article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms publication-title: Int J. Mol. Sci. doi: 10.3390/ijms22126211 – volume: 9 year: 2014 ident: 10.1016/j.molimm.2024.06.008_bib8 article-title: The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts publication-title: PLoS One – volume: 370 start-page: 2083 year: 2014 ident: 10.1016/j.molimm.2024.06.008_bib27 article-title: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1402582 – volume: 103 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib30 article-title: Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-κB signaling pathway publication-title: Int. Immunopharmacol. – volume: 18 start-page: 723 year: 2019 ident: 10.1016/j.molimm.2024.06.008_bib61 article-title: Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways publication-title: Excli J. – volume: 208 start-page: 1339 year: 2011 ident: 10.1016/j.molimm.2024.06.008_bib56 article-title: Integrating mechanisms of pulmonary fibrosis publication-title: J. Exp. Med doi: 10.1084/jem.20110551 – volume: 19 start-page: 388 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib5 article-title: Platelet transcriptome profiles provide potential therapeutic targets for elderly acute myelocytic leukemia patients publication-title: J. Transl. Med doi: 10.1186/s12967-021-03041-8 – volume: 370 start-page: 2071 year: 2014 ident: 10.1016/j.molimm.2024.06.008_bib45 article-title: Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis publication-title: N. Engl. J. Med doi: 10.1056/NEJMoa1402584 – volume: 2018 year: 2018 ident: 10.1016/j.molimm.2024.06.008_bib62 article-title: AICAR-induced AMPK activation inhibits the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats publication-title: Can. J. Gastroenterol. Hepatol. doi: 10.1155/2018/6181432 – volume: 12 year: 2020 ident: 10.1016/j.molimm.2024.06.008_bib6 article-title: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12040389 – volume: 30 start-page: 923 year: 2014 ident: 10.1016/j.molimm.2024.06.008_bib31 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 27 year: 2022 ident: 10.1016/j.molimm.2024.06.008_bib3 article-title: A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet publication-title: Molecules doi: 10.3390/molecules27030858 – volume: 587 start-page: 619 year: 2020 ident: 10.1016/j.molimm.2024.06.008_bib50 article-title: A molecular cell atlas of the human lung from single-cell RNA sequencing publication-title: Nature doi: 10.1038/s41586-020-2922-4 – volume: 320 year: 2021 ident: 10.1016/j.molimm.2024.06.008_bib46 article-title: Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00586.2020 – volume: 314 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib60 article-title: Fu-Zheng-Tong-Luo formula promotes autophagy and alleviates idiopathic pulmonary fibrosis by controlling the Janus kinase 2/signal transducer and activator of transcription 3 pathway publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2023.116633 – volume: 15 start-page: 1484 year: 2020 ident: 10.1016/j.molimm.2024.06.008_bib11 article-title: CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0292-x – volume: 9 start-page: 62 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib9 article-title: T cells in idiopathic pulmonary fibrosis: crucial but controversial publication-title: Cell Death Discov. doi: 10.1038/s41420-023-01344-x – volume: 64 start-page: 36 year: 2023 ident: 10.1016/j.molimm.2024.06.008_bib22 article-title: Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype: a new target for treating fibrosis publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.64.13.36 – volume: 3 year: 2017 ident: 10.1016/j.molimm.2024.06.008_bib33 article-title: Idiopathic pulmonary fibrosis publication-title: Nat. Rev. Dis. Prim. |
SSID | ssj0006065 |
Score | 2.4512281 |
Snippet | Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 85 |
SubjectTerms | Aged amino acids carbohydrates CD8+ T cell CD8-positive T-lymphocytes CD8-Positive T-Lymphocytes - immunology cell structures cytotoxicity Female fibrosis Gene Expression Profiling - methods Humans Idiopathic pulmonary fibrosis Idiopathic Pulmonary Fibrosis - genetics Idiopathic Pulmonary Fibrosis - immunology Idiopathic Pulmonary Fibrosis - pathology Immune immunology lipids Lung - immunology Lung - pathology lungs Male metabolites Middle Aged pathogenesis pulmonary fibrosis RNA Single-Cell Analysis - methods Single-cell RNA sequencing therapeutics transcription (genetics) Transcriptome transcriptomics |
Title | Single-cell transcriptomics reveals CD8+ T cell structure and developmental trajectories in idiopathic pulmonary fibrosis |
URI | https://dx.doi.org/10.1016/j.molimm.2024.06.008 https://www.ncbi.nlm.nih.gov/pubmed/38936318 https://www.proquest.com/docview/3073231188 https://www.proquest.com/docview/3153659297 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RSxwxEB7EYtuXomdrr1VJoW-S3t5uLpt7lKtytuiLCr6F2SQLK-fu4d093Et_ezPJrlLQCj7uMoGQGWa-ZL6ZAfhuUKZWWMfLEgsuUlQc1djyIZqyUMpDioSqkc8v5PRa_LoZ3WzApKuFIVpl6_ujTw_euv0zaE9zMK-qwWUAK5QmE6GRGfUEFSInK__x55Hm4QF6pDHKISfprnwucLzumll1R_XoqQhdPGnI5NPh6Tn4GcLQ6TZ8aPEjO45b3IENV_dgK06UXPfg3aQb4NaDt-dt3nwX1pc-Qs0cp2d6tqTwFJwFVSQvGDVx8kbIJj_VEbtiQSa2lV3dO4a1ZfaRWYRh_W146_eXbFbVrLJVEwYbGzZfzbxZ4_2alf4a3iyqxUe4Pj25mkx5O3SBG4-Mljy3VmBp8wxRJCp3Q2WzBI0RtkyEkSMnM-u16USRGIG2sEqM8tQoaVBIO7bZJ9ism9p9BlbkSmIas8E-VqY4ksZltgwYMZOuD1l31tq0HclpMMZMd9SzWx01pElDOjDwVB_4w6p57MjxgnzeqVH_Y1naB40XVn7rtK696uj4sXbNaqHJMXpgPFT_k_GxhHLW47wPe9FkHvZLKFF6b_rl1Xv7Cu_pK1IR92HTW4U78PBoWRwG-z-EN8dnv6cXfwEWtxG4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIdheEJRfhQFG4g2ZponruI-oYyqw7mWdtDfLsR0pU5dUa_vQF_723dnJJqTBpL0mtmT5zneffd_dAXyxRqZOOM_L0hRcpEZxo8aOD40tC6UQUiSUjTw7kdMz8et8dL4Dky4XhmiVre2PNj1Y6_bLoN3NwbKqBqcBrFCYTIRCZuIRPBZ4fKmNwbc_tzwPROiRxyiHnIZ3-XOB5HXZLKpLSkhPRSjjSV0m7_ZP_8KfwQ8dPYdnLYBk3-MaX8COr3vwJLaU3PZgb9J1cOvB01kbOH8J21N0UQvP6Z2erck_BWtBKckrRlWcUAvZ5FB9ZXMWxsS6spsrz0ztmLulFpkw_yI89uMtm1U1q1zVhM7Gli03C9Rrc7VlJd7Dm1W1egVnRz_mkylvuy5wi9BozXPnhCldnhkjEpX7oXJZYqwVrkyElSMvM4fi9KJIrDCucEqM8tQqaY2Qbuyy17BbN7V_C6zIlTRpDAejs0zNSFqfuTKAxEz6PmTdXmvbliSnzhgL3XHPLnSUkCYJ6UDBU33gN7OWsSTHPePzToz6L9XS6DXumfm5k7pG0dH2m9o3m5Umy4jIeKj-NwadCQWtx3kf3kSVuVkvwUSJ5vTdg9f2Cfam89mxPv558vs97NOfyEs8gF3UEP8BsdK6-BjOwjUxjxNG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+transcriptomics+reveals+CD8%2B+T+cell+structure+and+developmental+trajectories+in+idiopathic+pulmonary+fibrosis&rft.jtitle=Molecular+immunology&rft.au=Wei%2C+Xuemei&rft.au=Jin%2C+Chengji&rft.au=Li%2C+Dewei&rft.au=Wang%2C+Yujie&rft.date=2024-08-01&rft.issn=0161-5890&rft.volume=172+p.85-95&rft.spage=85&rft.epage=95&rft_id=info:doi/10.1016%2Fj.molimm.2024.06.008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5890&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5890&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5890&client=summon |