Single-cell transcriptomics reveals CD8+ T cell structure and developmental trajectories in idiopathic pulmonary fibrosis

Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune...

Full description

Saved in:
Bibliographic Details
Published inMolecular immunology Vol. 172; pp. 85 - 95
Main Authors Wei, Xuemei, Jin, Chengji, Li, Dewei, Wang, Yujie, Zheng, Shaomao, Feng, Qiong, shi, Ning, Kong, Weina, Ma, Xiumin, Wang, Jing
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets. •The percentage of CD8+ T cells in the T cell subpopulation increased in IPF patients.•In CD8+ T cells, we found differences in the metabolic pathways of IPF and Ctrl.•Different populations of CD8+ T cells in IPF have unique metabolic characteristics.•Signaling pathways associated with fibrosis are enriched in CD8+ T cells in IPF patients.
AbstractList Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets. •The percentage of CD8+ T cells in the T cell subpopulation increased in IPF patients.•In CD8+ T cells, we found differences in the metabolic pathways of IPF and Ctrl.•Different populations of CD8+ T cells in IPF have unique metabolic characteristics.•Signaling pathways associated with fibrosis are enriched in CD8+ T cells in IPF patients.
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8 T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8 T cells, as well as the cytotoxicity and exhausted status of CD8 T cell subpopulations at different stages. Among CD8 T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8 T cells, we found that different populations of CD8 T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8 T cells, suggesting that CD8 T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8 T cells and other cells. Together, these studies highlight key features of CD8 T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8⁺ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8⁺ T cells, as well as the cytotoxicity and exhausted status of CD8⁺ T cell subpopulations at different stages. Among CD8⁺ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8⁺ T cells, we found that different populations of CD8⁺ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8⁺ T cells, suggesting that CD8⁺ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8⁺ T cells and other cells. Together, these studies highlight key features of CD8⁺ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the pathogenesis of pulmonary fibrosis remains unclear. We used single-cell RNA sequencing data to investigate the transcriptional profiles of immune cells in the lungs of 5 IPF patients and 3 subjects with non-fibrotic lungs. In an identifiable population of immune cells, we found increased percentage of CD8+ T cells in the T cell subpopulation in IPF. Monocle analyzed the dynamic immune status and cell transformation of CD8+ T cells, as well as the cytotoxicity and exhausted status of CD8+ T cell subpopulations at different stages. Among CD8+ T cells, we found differences in metabolic pathways in IPF and Ctrl, including lipid, amino acid and carbohydrate metabolic. By analyzing the metabolites of CD8+ T cells, we found that different populations of CD8+ T cells in IPF have unique metabolic characteristics, but they also have multiple identical up-regulated or down-regulated metabolites. In IPF, signaling pathways associated with fibrosis were enriched in CD8+ T cells, suggesting that CD8+ T cells may have an important contribution to fibrosis. Finally, we analyzed the interactions between CD8+ T cells and other cells. Together, these studies highlight key features of CD8+ T cells in the pathogenesis of IPF and help to develop effective therapeutic targets.
Author Wei, Xuemei
Kong, Weina
Feng, Qiong
Wang, Yujie
Zheng, Shaomao
Wang, Jing
Li, Dewei
Jin, Chengji
shi, Ning
Ma, Xiumin
Author_xml – sequence: 1
  givenname: Xuemei
  surname: Wei
  fullname: Wei, Xuemei
  organization: Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
– sequence: 2
  givenname: Chengji
  surname: Jin
  fullname: Jin, Chengji
  organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
– sequence: 3
  givenname: Dewei
  surname: Li
  fullname: Li, Dewei
  organization: Center of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, China
– sequence: 4
  givenname: Yujie
  surname: Wang
  fullname: Wang, Yujie
  organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
– sequence: 5
  givenname: Shaomao
  surname: Zheng
  fullname: Zheng, Shaomao
  organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
– sequence: 6
  givenname: Qiong
  surname: Feng
  fullname: Feng, Qiong
  organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
– sequence: 7
  givenname: Ning
  surname: shi
  fullname: shi, Ning
  organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
– sequence: 8
  givenname: Weina
  surname: Kong
  fullname: Kong, Weina
  organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
– sequence: 9
  givenname: Xiumin
  surname: Ma
  fullname: Ma, Xiumin
  email: maxiumin1210@sohu.com
  organization: State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830000, China
– sequence: 10
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  email: tlfwj@163.com
  organization: Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou 570100, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38936318$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URKeFf4CQl0gogx07jsMCCQ2fUiUWlLXlsV_gjRI72E6l_ns8nXbDgq7e5pwr3XcvyFmIAQh5ydmWM67eHrZznHCety1r5ZapLWP6Cdlw3bfNwGV7RjYV402nB3ZOLnI-MMYUU90zci70IJTgekNuf2D4NUHjYJpoSTZkl3ApcUaXaYIbsFOmu4_6Db2md0wuaXVlTUBt8NRXYorLDKHYO_8ArsSEkCkGih7jYstvdHRZpzkGm27piPsUM-bn5OlYw-HF_b0kPz9_ut59ba6-f_m2-3DVOCl5aXrvpR19L6yVTPfAtRfMOif9yKRTHSjhrR5A7pmT1u-9ll3fOq2clcoPXlyS16fcJcU_K-RiZszHKjZAXLMRvBOqG9qhfxxlvWgF51pX9NU9uu5n8GZJONd25uGzFXh3AlxtmxOMxmGxBWOoX8LJcGaOM5qDOc1ojjMapkydscryH_kh_xHt_UmD-s8bhGSyQwgOPKa6i_ER_x_wFwDlu98
CitedBy_id crossref_primary_10_3390_cells14030222
crossref_primary_10_3389_fmed_2024_1443926
crossref_primary_10_3389_fmed_2024_1356825
Cites_doi 10.1002/jcp.26112
10.1111/resp.13465
10.1016/j.biopha.2021.111471
10.1101/gr.271205.120
10.3389/fimmu.2022.1022228
10.1073/pnas.2007224117
10.1126/sciadv.aba1972
10.1038/s41467-021-21246-9
10.1126/scitranslmed.aad5222
10.2353/ajpath.2010.091122
10.1164/rccm.201712-2410OC
10.1136/annrheumdis-2016-210823
10.1038/s41419-022-05409-0
10.1002/path.1208
10.1016/j.immuni.2014.02.012
10.3389/fimmu.2016.00516
10.1093/bioinformatics/bts635
10.1158/2159-8290.CD-21-0316
10.1183/09031936.00149614
10.1016/j.phrs.2022.106636
10.1111/j.1399-0039.2006.00560.x
10.1038/s41590-022-01210-5
10.1126/science.1160062
10.3390/ijms241813832
10.1016/j.abb.2019.108167
10.1165/rcmb.2018-0180OC
10.1165/rcmb.2021-0418OC
10.1016/j.rmed.2018.12.015
10.1183/13993003.00957-2022
10.1038/s41385-018-0082-8
10.1172/JCI60323
10.1172/JCI143226
10.1016/j.heliyon.2019.e01502
10.1016/j.pharmthera.2023.108436
10.1073/pnas.2201707119
10.1038/s41423-020-0428-5
10.1016/j.jep.2021.114522
10.4049/jimmunol.171.5.2684
10.1186/s12931-018-0864-2
10.1038/nmeth.4402
10.3390/ijms22126211
10.1056/NEJMoa1402582
10.1084/jem.20110551
10.1186/s12967-021-03041-8
10.1056/NEJMoa1402584
10.1155/2018/6181432
10.3390/pharmaceutics12040389
10.1093/bioinformatics/btt656
10.3390/molecules27030858
10.1038/s41586-020-2922-4
10.1152/ajpcell.00586.2020
10.1016/j.jep.2023.116633
10.1038/s41596-020-0292-x
10.1038/s41420-023-01344-x
10.1167/iovs.64.13.36
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molimm.2024.06.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1872-9142
EndPage 95
ExternalDocumentID 38936318
10_1016_j_molimm_2024_06_008
S0161589024001184
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
3O-
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABBQC
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABMZM
ABOCM
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HVGLF
HZ~
H~9
IH2
IHE
J1W
K-O
KOM
L7B
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSU
SSZ
T5K
TEORI
UNMZH
WUQ
X7M
Y6R
ZGI
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c441t-7dd4afd73aa4087e18d30acc4df04c65e63da89e4b0c4adbd84572c86ca46d9d3
IEDL.DBID .~1
ISSN 0161-5890
1872-9142
IngestDate Tue Aug 05 11:33:27 EDT 2025
Fri Jul 11 11:15:12 EDT 2025
Mon Jul 21 06:06:47 EDT 2025
Thu Apr 24 23:00:16 EDT 2025
Tue Jul 01 01:57:31 EDT 2025
Sat Jul 20 16:35:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Single-cell RNA sequencing
CD8+ T cell
Idiopathic pulmonary fibrosis
Immune
CD8(+) T cell
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7dd4afd73aa4087e18d30acc4df04c65e63da89e4b0c4adbd84572c86ca46d9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0161589024001184
PMID 38936318
PQID 3073231188
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_3153659297
proquest_miscellaneous_3073231188
pubmed_primary_38936318
crossref_citationtrail_10_1016_j_molimm_2024_06_008
crossref_primary_10_1016_j_molimm_2024_06_008
elsevier_sciencedirect_doi_10_1016_j_molimm_2024_06_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-Aug
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Molecular immunology
PublicationTitleAlternate Mol Immunol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Serezani, Pascoalino, Bazzano, Vowell, Tanjore, Taylor, Calvi, McCall, Bacchetta, Shaver, Ware, Salisbury, Banovich, Kendall, Kropski, Blackwell (bib47) 2022; 67
Grebinoski, Zhang, Cillo, Manne, Xiao, Brunazzi, Tabib, Cardello, Lian, Murphy, Lafyatis, Wherry, Das, Workman, Vignali (bib13) 2022; 23
Wang, Gong, Li, Chen, Xu, Rong, Zhang, Zhu (bib53) 2021; 281
Singh, Perazzelli, Grupp, Barrett (bib49) 2016; 8
Bai, Bernard, Tang, Hu, Horowitz, Thannickal, Sanders (bib4) 2019; 60
Krug, Torres-González, Qin, Sorescu, Rojas, Stecenko, Speck, Mora (bib28) 2010; 177
Blokland, Waters, Schuliga, Read, Pouwels, Grainge, Jaffar, Westall, Mutsaers, Prêle, Burgess, Knight (bib6) 2020; 12
Podolanczuk, Thomson, Remy-Jardin, Richeldi, Martinez, Kolb, Raghu (bib40) 2023; 61
Mendoza, Casas-Recasens, Olvera, Hernandez-Gonzalez, Cruz, Albacar, Alsina-Restoy, Frino-Garcia, López-Saiz, Robres, Rojas, Agustí, Sellarés, Faner (bib34) 2023; 24
Wynn (bib56) 2011; 208
Jakubzick, Choi, Joshi, Keane, Kunkel, Puri, Hogaboam (bib21) 2003; 171
Alshawsh, Alsalahi, Alshehade, Saghir, Ahmeda, Al Zarzour, Mahmoud (bib3) 2022; 27
Habiel, Espindola, Kitson, Azzara, Coelho, Stripp, Hogaboam (bib16) 2019; 12
Alghamdi, Chang, Dang, Lu, Wan, Gampala, Huang, Wang, Ma, Zang, Fishel, Cao, Zhang (bib2) 2021; 31
Liu, Budinger, Dematte (bib32) 2022; 377
Celada, Kropski, Herazo-Maya, Luo, Creecy, Abad, Chioma, Lee, Hassell, Shaginurova, Wang, Johnson, Kerrigan, Mason, Baughman, Ayers, Bernard, Culver, Montgomery, Maher, Molyneaux, Noth, Mutsaers, Prele, Peebles, Newcomb, Kaminski, Blackwell, Van Kaer, Drake (bib7) 2018
Rai, Bose, Saha, Chakraborty (bib42) 2019; 5
Rajesh, Atallah, Bärnthaler (bib43) 2023; 246
Zhang, Su, Lin, Liu, Wu, Yuan, Zhang, Chen, Su, Xu, Sun, Zhang, Chen, Zhang (bib60) 2023; 314
Qiu, Mao, Tang, Wang, Chawla, Pliner, Trapnell (bib41) 2017; 14
Habermann, Gutierrez, Bui, Yahn, Winters, Calvi, Peter, Chung, Taylor, Jetter, Raju, Roberson, Ding, Wood, Sucre, Richmond, Serezani, McDonnell, Mallal, Bacchetta, Loyd, Shaver, Ware, Bremner, Walia, Blackwell, Banovich, Kropski (bib15) 2020; 6
Heukels, Moor, von der Thüsen, Wijsenbeek, Kool (bib17) 2019; 147
Huang, Maier, Zhang, Soare, Dees, Beyer, Harre, Chen, Distler, Schett, Wollin, Distler (bib19) 2017; 76
Martinez, Collard, Pardo, Raghu, Richeldi, Selman, Swigris, Taniguchi, Wells (bib33) 2017; 3
Richeldi, du Bois, Raghu, Azuma, Brown, Costabel, Cottin, Flaherty, Hansell, Inoue, Kim, Kolb, Nicholson, Noble, Selman, Taniguchi, Brun, Le Maulf, Girard, Stowasser, Schlenker-Herceg, Disse, Collard (bib45) 2014; 370
Deng, Huang, Zhang (bib9) 2023; 9
Miura, Hayakawa, Kikuchi, Tsumoto, Umezawa, Chiba, Soejima, Sawabe, Fukui, Akimoto, Endo (bib35) 2019; 678
Shenderov, Collins, Powell, Horton (bib48) 2021; 131
Jaffar, Glaspole, Symons, Westall (bib20) 2021; 138
Jeon, Kumar, Callan, DeMagistris, MacRae, Nehrke, Huxlin (bib22) 2023; 64
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib10) 2013; 29
Wang, Bai, Ma, Li (bib52) 2021; 27
Wing, Onishi, Prieto-Martin, Yamaguchi, Miyara, Fehervari, Nomura, Sakaguchi (bib54) 2008; 322
Odagiu, Boulet, Maurice De Sousa, Daudelin, Nicolas, Labrecque (bib38) 2020; 117
Li, Liang, Gao, Jiang, Zhang, Zhang, Ruan, Li, Luan, Deng, Zhou, Huang, Yang (bib30) 2022; 103
Chen, Hsu, Lee, Yen, Ko, Yang, Hung (bib8) 2014; 9
Yoshida, Kuwano, Hagimoto, Watanabe, Matsuba, Fujita, Inoshima, Hara (bib58) 2002; 198
Zhang, Wang, Wu, Xiong, Gu, Wang (bib59) 2018; 19
Zhou, Kandhare, Kandhare, Bodhankar (bib61) 2019; 18
Wu, Yang, Ma, Chen, Song, Rao, Cheng, Huang, Liu, Jiang, Liu, Huang, Wang, Qiu, Xu, Xi, Bai, Zhou, Fan, Zhang, Gao (bib55) 2022; 12
Jiang, Liu, Wang, Zheng, Ren, Zhang, Yao (bib23) 2022; 13
Grimminger, Günther, Vancheri (bib14) 2015; 45
Vasakova, Striz, Slavcev, Jandova, Kolesar, Sulc (bib51) 2006; 67
Noble, Barkauskas, Jiang (bib37) 2012; 122
Jin, Guerrero-Juarez, Zhang, Chang, Ramos, Kuan, Myung, Plikus, Nie (bib24) 2021; 12
Yin, Peng, Gu, Liu, Li, Wu, Xu, Zhuge, Zhang (bib57) 2022; 13
Zhu, Chai, Dong, Zhang, Liu, Ma, Wu, Lv, Hu (bib62) 2018; 2018
Montero, Milara, Roger, Cortijo (bib36) 2021; 22
Liao, Smyth, Shi (bib31) 2014; 30
Bao, Zhao, Lu, Hu, Hu, Hu, Wang, Hu, Sun, Wang, Chen, Lu, Li, Xu, Zhou, Zhu (bib5) 2021; 19
Hou, Ma, Cao, Chen, Wang, Chen, Xiang, Han (bib18) 2018; 233
King, Bradford, Castro-Bernardini, Fagan, Glaspole, Glassberg, Gorina, Hopkins, Kardatzke, Lancaster, Lederer, Nathan, Pereira, Sahn, Sussman, Swigris, Noble (bib27) 2014; 370
Li, Deng, Wang, Luo, Luo, Zhang, Chen, Cao, Yang, Zhao, Xu, Xu, Wang (bib29) 2023; 187
Reyfman, Walter, Joshi, Anekalla, McQuattie-Pimentel, Chiu, Fernandez, Akbarpour, Chen, Ren, Verma, Abdala-Valencia, Nam, Chi, Han, Gonzalez-Gonzalez, Soberanes, Watanabe, Williams, Flozak, Nicholson, Morgan, Winter, Hinchcliff, Hrusch, Guzy, Bonham, Sperling, Bag, Hamanaka, Mutlu, Yeldandi, Marshall, Shilatifard, Amaral, Perlman, Sznajder, Argento, Gillespie, Dematte, Jain, Singer, Ridge, Lam, Bharat, Bhorade, Gottardi, Budinger, Misharin (bib44) 2019; 199
Travaglini, Nabhan, Penland, Sinha, Gillich, Sit, Chang, Conley, Mori, Seita, Berry, Shrager, Metzger, Kuo, Neff, Weissman, Quake, Krasnow (bib50) 2020; 587
Joller, Lozano, Burkett, Patel, Xiao, Zhu, Xia, Tan, Sefik, Yajnik, Sharpe, Quintana, Mathis, Benoist, Hafler, Kuchroo (bib25) 2014; 40
Roque, Romero (bib46) 2021; 320
Parsanathan, Jain (bib39) 2021; 18
Kim, Panza, Kikhi, Nakamichi, Atzberger, Guenther, Ruppert, Guenther, Stainier (bib26) 2022; 119
Adegunsoye, Hrusch, Bonham, Jaffery, Blaine, Sullivan, Churpek, Strek, Noth, Sperling (bib1) 2016; 7
Efremova, Vento-Tormo, Teichmann, Vento-Tormo (bib11) 2020; 15
Gaugg, Engler, Bregy, Nussbaumer-Ochsner, Eiffert, Bruderer, Zenobi, Sinues, Kohler (bib12) 2019; 24
Habiel (10.1016/j.molimm.2024.06.008_bib16) 2019; 12
Deng (10.1016/j.molimm.2024.06.008_bib9) 2023; 9
Krug (10.1016/j.molimm.2024.06.008_bib28) 2010; 177
Wynn (10.1016/j.molimm.2024.06.008_bib56) 2011; 208
Jiang (10.1016/j.molimm.2024.06.008_bib23) 2022; 13
Zhou (10.1016/j.molimm.2024.06.008_bib61) 2019; 18
Dobin (10.1016/j.molimm.2024.06.008_bib10) 2013; 29
Jin (10.1016/j.molimm.2024.06.008_bib24) 2021; 12
Liu (10.1016/j.molimm.2024.06.008_bib32) 2022; 377
Rai (10.1016/j.molimm.2024.06.008_bib42) 2019; 5
Adegunsoye (10.1016/j.molimm.2024.06.008_bib1) 2016; 7
Singh (10.1016/j.molimm.2024.06.008_bib49) 2016; 8
Odagiu (10.1016/j.molimm.2024.06.008_bib38) 2020; 117
Zhang (10.1016/j.molimm.2024.06.008_bib59) 2018; 19
Heukels (10.1016/j.molimm.2024.06.008_bib17) 2019; 147
Grebinoski (10.1016/j.molimm.2024.06.008_bib13) 2022; 23
Travaglini (10.1016/j.molimm.2024.06.008_bib50) 2020; 587
Li (10.1016/j.molimm.2024.06.008_bib30) 2022; 103
Wu (10.1016/j.molimm.2024.06.008_bib55) 2022; 12
Montero (10.1016/j.molimm.2024.06.008_bib36) 2021; 22
Yoshida (10.1016/j.molimm.2024.06.008_bib58) 2002; 198
Vasakova (10.1016/j.molimm.2024.06.008_bib51) 2006; 67
King (10.1016/j.molimm.2024.06.008_bib27) 2014; 370
Noble (10.1016/j.molimm.2024.06.008_bib37) 2012; 122
Jaffar (10.1016/j.molimm.2024.06.008_bib20) 2021; 138
Wang (10.1016/j.molimm.2024.06.008_bib53) 2021; 281
Bai (10.1016/j.molimm.2024.06.008_bib4) 2019; 60
Jakubzick (10.1016/j.molimm.2024.06.008_bib21) 2003; 171
Mendoza (10.1016/j.molimm.2024.06.008_bib34) 2023; 24
Jeon (10.1016/j.molimm.2024.06.008_bib22) 2023; 64
Miura (10.1016/j.molimm.2024.06.008_bib35) 2019; 678
Shenderov (10.1016/j.molimm.2024.06.008_bib48) 2021; 131
Reyfman (10.1016/j.molimm.2024.06.008_bib44) 2019; 199
Podolanczuk (10.1016/j.molimm.2024.06.008_bib40) 2023; 61
Rajesh (10.1016/j.molimm.2024.06.008_bib43) 2023; 246
Liao (10.1016/j.molimm.2024.06.008_bib31) 2014; 30
Bao (10.1016/j.molimm.2024.06.008_bib5) 2021; 19
Zhu (10.1016/j.molimm.2024.06.008_bib62) 2018; 2018
Wing (10.1016/j.molimm.2024.06.008_bib54) 2008; 322
Zhang (10.1016/j.molimm.2024.06.008_bib60) 2023; 314
Roque (10.1016/j.molimm.2024.06.008_bib46) 2021; 320
Grimminger (10.1016/j.molimm.2024.06.008_bib14) 2015; 45
Qiu (10.1016/j.molimm.2024.06.008_bib41) 2017; 14
Parsanathan (10.1016/j.molimm.2024.06.008_bib39) 2021; 18
Alghamdi (10.1016/j.molimm.2024.06.008_bib2) 2021; 31
Huang (10.1016/j.molimm.2024.06.008_bib19) 2017; 76
Kim (10.1016/j.molimm.2024.06.008_bib26) 2022; 119
Alshawsh (10.1016/j.molimm.2024.06.008_bib3) 2022; 27
Hou (10.1016/j.molimm.2024.06.008_bib18) 2018; 233
Li (10.1016/j.molimm.2024.06.008_bib29) 2023; 187
Celada (10.1016/j.molimm.2024.06.008_bib7) 2018
Chen (10.1016/j.molimm.2024.06.008_bib8) 2014; 9
Efremova (10.1016/j.molimm.2024.06.008_bib11) 2020; 15
Gaugg (10.1016/j.molimm.2024.06.008_bib12) 2019; 24
Martinez (10.1016/j.molimm.2024.06.008_bib33) 2017; 3
Richeldi (10.1016/j.molimm.2024.06.008_bib45) 2014; 370
Wang (10.1016/j.molimm.2024.06.008_bib52) 2021; 27
Joller (10.1016/j.molimm.2024.06.008_bib25) 2014; 40
Blokland (10.1016/j.molimm.2024.06.008_bib6) 2020; 12
Habermann (10.1016/j.molimm.2024.06.008_bib15) 2020; 6
Serezani (10.1016/j.molimm.2024.06.008_bib47) 2022; 67
Yin (10.1016/j.molimm.2024.06.008_bib57) 2022; 13
References_xml – volume: 122
  start-page: 2756
  year: 2012
  end-page: 2762
  ident: bib37
  article-title: Pulmonary fibrosis: patterns and perpetrators
  publication-title: J. Clin. Invest
– volume: 19
  start-page: 170
  year: 2018
  ident: bib59
  article-title: Macrophages: friend or foe in idiopathic pulmonary fibrosis?
  publication-title: Respir. Res.
– volume: 233
  start-page: 2409
  year: 2018
  end-page: 2419
  ident: bib18
  article-title: TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis
  publication-title: J. Cell Physiol.
– volume: 246
  year: 2023
  ident: bib43
  article-title: Dysregulation of metabolic pathways in pulmonary fibrosis
  publication-title: Pharm. Ther.
– start-page: 10
  year: 2018
  ident: bib7
  article-title: PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production
  publication-title: Sci. Transl. Med
– volume: 7
  start-page: 516
  year: 2016
  ident: bib1
  article-title: Skewed Lung CCR4 to CCR6 CD4(+) T cell ratio in idiopathic pulmonary fibrosis is associated with pulmonary function.
  publication-title: Front Immunol.
– volume: 8
  year: 2016
  ident: bib49
  article-title: Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies
  publication-title: Sci. Transl. Med
– volume: 60
  start-page: 49
  year: 2019
  end-page: 57
  ident: bib4
  article-title: Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 22
  year: 2021
  ident: bib36
  article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms
  publication-title: Int J. Mol. Sci.
– volume: 12
  start-page: 212
  year: 2019
  end-page: 222
  ident: bib16
  article-title: Characterization of CD28(null) T cells in idiopathic pulmonary fibrosis
  publication-title: Mucosal Immunol.
– volume: 76
  start-page: 1941
  year: 2017
  end-page: 1948
  ident: bib19
  article-title: Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis
  publication-title: Ann. Rheum. Dis.
– volume: 24
  year: 2023
  ident: bib34
  article-title: Blood immunophenotypes of idiopathic pulmonary fibrosis: relationship with disease severity and progression
  publication-title: Int. J. Mol. Sci.
– volume: 67
  start-page: 229
  year: 2006
  end-page: 232
  ident: bib51
  article-title: Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis
  publication-title: Tissue Antigens
– volume: 45
  start-page: 1426
  year: 2015
  end-page: 1433
  ident: bib14
  article-title: The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis
  publication-title: Eur. Respir. J.
– volume: 2018
  year: 2018
  ident: bib62
  article-title: AICAR-induced AMPK activation inhibits the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats
  publication-title: Can. J. Gastroenterol. Hepatol.
– volume: 64
  start-page: 36
  year: 2023
  ident: bib22
  article-title: Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype: a new target for treating fibrosis
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 103
  year: 2022
  ident: bib30
  article-title: Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-κB signaling pathway
  publication-title: Int. Immunopharmacol.
– volume: 30
  start-page: 923
  year: 2014
  end-page: 930
  ident: bib31
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 3
  year: 2017
  ident: bib33
  article-title: Idiopathic pulmonary fibrosis
  publication-title: Nat. Rev. Dis. Prim.
– volume: 13
  year: 2022
  ident: bib23
  article-title: The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: friend or foe?
  publication-title: Front Immunol.
– volume: 678
  year: 2019
  ident: bib35
  article-title: Fumarate accumulation involved in renal diabetic fibrosis in Goto-Kakizaki rats
  publication-title: Arch. Biochem Biophys.
– volume: 27
  year: 2021
  ident: bib52
  article-title: Regulatory Effect of PD1/PD-Ligand 1 (PD-L1) on treg cells in patients with idiopathic pulmonary fibrosis
  publication-title: Med Sci. Monit.
– volume: 40
  start-page: 569
  year: 2014
  end-page: 581
  ident: bib25
  article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
  publication-title: Immunity
– volume: 138
  year: 2021
  ident: bib20
  article-title: Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis
  publication-title: Biomed. Pharm.
– volume: 314
  year: 2023
  ident: bib60
  article-title: Fu-Zheng-Tong-Luo formula promotes autophagy and alleviates idiopathic pulmonary fibrosis by controlling the Janus kinase 2/signal transducer and activator of transcription 3 pathway
  publication-title: J. Ethnopharmacol.
– volume: 19
  start-page: 388
  year: 2021
  ident: bib5
  article-title: Platelet transcriptome profiles provide potential therapeutic targets for elderly acute myelocytic leukemia patients
  publication-title: J. Transl. Med
– volume: 131
  year: 2021
  ident: bib48
  article-title: Immune dysregulation as a driver of idiopathic pulmonary fibrosis
  publication-title: J. Clin. Invest
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib10
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 24
  start-page: 437
  year: 2019
  end-page: 444
  ident: bib12
  article-title: Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis
  publication-title: Respirology
– volume: 61
  year: 2023
  ident: bib40
  article-title: Idiopathic pulmonary fibrosis: state of the art for 2023
  publication-title: Eur. Respir. J.
– volume: 177
  start-page: 608
  year: 2010
  end-page: 621
  ident: bib28
  article-title: Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis
  publication-title: Am. J. Pathol.
– volume: 13
  start-page: 955
  year: 2022
  ident: bib57
  article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 979
  year: 2017
  end-page: 982
  ident: bib41
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
– volume: 322
  start-page: 271
  year: 2008
  end-page: 275
  ident: bib54
  article-title: CTLA-4 control over Foxp3+ regulatory T cell function
  publication-title: Science
– volume: 187
  year: 2023
  ident: bib29
  article-title: PD-L1 upregulation promotes drug-induced pulmonary fibrosis by inhibiting vimentin degradation
  publication-title: Pharm. Res
– volume: 208
  start-page: 1339
  year: 2011
  end-page: 1350
  ident: bib56
  article-title: Integrating mechanisms of pulmonary fibrosis
  publication-title: J. Exp. Med
– volume: 12
  year: 2020
  ident: bib6
  article-title: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing
  publication-title: Pharmaceutics
– volume: 15
  start-page: 1484
  year: 2020
  end-page: 1506
  ident: bib11
  article-title: CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
  publication-title: Nat. Protoc.
– volume: 320
  year: 2021
  ident: bib46
  article-title: Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids
  publication-title: Am. J. Physiol. Cell Physiol.
– volume: 377
  year: 2022
  ident: bib32
  article-title: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis
  publication-title: Bmj
– volume: 67
  start-page: 50
  year: 2022
  end-page: 60
  ident: bib47
  article-title: Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 27
  year: 2022
  ident: bib3
  article-title: A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet
  publication-title: Molecules
– volume: 171
  start-page: 2684
  year: 2003
  end-page: 2693
  ident: bib21
  article-title: Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells
  publication-title: J. Immunol.
– volume: 370
  start-page: 2083
  year: 2014
  end-page: 2092
  ident: bib27
  article-title: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis
  publication-title: N. Engl. J. Med.
– volume: 5
  year: 2019
  ident: bib42
  article-title: Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis
  publication-title: Heliyon
– volume: 147
  start-page: 79
  year: 2019
  end-page: 91
  ident: bib17
  article-title: Inflammation and immunity in IPF pathogenesis and treatment
  publication-title: Respir. Med
– volume: 9
  start-page: 62
  year: 2023
  ident: bib9
  article-title: T cells in idiopathic pulmonary fibrosis: crucial but controversial
  publication-title: Cell Death Discov.
– volume: 117
  start-page: 24392
  year: 2020
  end-page: 24402
  ident: bib38
  article-title: Early programming of CD8(+) T cell response by the orphan nuclear receptor NR4A3
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  year: 2020
  ident: bib15
  article-title: Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis
  publication-title: Sci. Adv.
– volume: 31
  start-page: 1867
  year: 2021
  end-page: 1884
  ident: bib2
  article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
  publication-title: Genome Res
– volume: 18
  start-page: 770
  year: 2021
  end-page: 772
  ident: bib39
  article-title: G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype
  publication-title: Cell Mol. Immunol.
– volume: 281
  year: 2021
  ident: bib53
  article-title: Antifibrotic effect of Gancao Ganjiang decoction is mediated by PD-1 / TGF-β1 / IL-17A pathway in bleomycin-induced idiopathic pulmonary fibrosis
  publication-title: J. Ethnopharmacol.
– volume: 199
  start-page: 1517
  year: 2019
  end-page: 1536
  ident: bib44
  article-title: Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 370
  start-page: 2071
  year: 2014
  end-page: 2082
  ident: bib45
  article-title: Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis
  publication-title: N. Engl. J. Med
– volume: 587
  start-page: 619
  year: 2020
  end-page: 625
  ident: bib50
  article-title: A molecular cell atlas of the human lung from single-cell RNA sequencing
  publication-title: Nature
– volume: 12
  start-page: 134
  year: 2022
  end-page: 153
  ident: bib55
  article-title: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level
  publication-title: Cancer Discov.
– volume: 9
  year: 2014
  ident: bib8
  article-title: The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts
  publication-title: PLoS One
– volume: 23
  start-page: 868
  year: 2022
  end-page: 877
  ident: bib13
  article-title: Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3.
  publication-title: Nat. Immunol.
– volume: 198
  start-page: 388
  year: 2002
  end-page: 396
  ident: bib58
  article-title: MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis
  publication-title: J. Pathol.
– volume: 18
  start-page: 723
  year: 2019
  end-page: 745
  ident: bib61
  article-title: Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
  publication-title: Excli J.
– volume: 119
  year: 2022
  ident: bib26
  article-title: WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1088
  year: 2021
  ident: bib24
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat. Commun.
– volume: 233
  start-page: 2409
  year: 2018
  ident: 10.1016/j.molimm.2024.06.008_bib18
  article-title: TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis
  publication-title: J. Cell Physiol.
  doi: 10.1002/jcp.26112
– start-page: 10
  year: 2018
  ident: 10.1016/j.molimm.2024.06.008_bib7
  article-title: PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production
  publication-title: Sci. Transl. Med
– volume: 24
  start-page: 437
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib12
  article-title: Molecular breath analysis supports altered amino acid metabolism in idiopathic pulmonary fibrosis
  publication-title: Respirology
  doi: 10.1111/resp.13465
– volume: 138
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib20
  article-title: Inhibition of NF-κB by ACT001 reduces fibroblast activity in idiopathic pulmonary fibrosis
  publication-title: Biomed. Pharm.
  doi: 10.1016/j.biopha.2021.111471
– volume: 31
  start-page: 1867
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib2
  article-title: A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data
  publication-title: Genome Res
  doi: 10.1101/gr.271205.120
– volume: 13
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib23
  article-title: The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: friend or foe?
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2022.1022228
– volume: 117
  start-page: 24392
  year: 2020
  ident: 10.1016/j.molimm.2024.06.008_bib38
  article-title: Early programming of CD8(+) T cell response by the orphan nuclear receptor NR4A3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2007224117
– volume: 6
  year: 2020
  ident: 10.1016/j.molimm.2024.06.008_bib15
  article-title: Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba1972
– volume: 12
  start-page: 1088
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib24
  article-title: Inference and analysis of cell-cell communication using CellChat
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21246-9
– volume: 8
  year: 2016
  ident: 10.1016/j.molimm.2024.06.008_bib49
  article-title: Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies
  publication-title: Sci. Transl. Med
  doi: 10.1126/scitranslmed.aad5222
– volume: 177
  start-page: 608
  year: 2010
  ident: 10.1016/j.molimm.2024.06.008_bib28
  article-title: Inhibition of NF-kappaB signaling reduces virus load and gammaherpesvirus-induced pulmonary fibrosis
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.091122
– volume: 199
  start-page: 1517
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib44
  article-title: Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201712-2410OC
– volume: 76
  start-page: 1941
  year: 2017
  ident: 10.1016/j.molimm.2024.06.008_bib19
  article-title: Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2016-210823
– volume: 13
  start-page: 955
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib57
  article-title: Targeting glutamine metabolism in hepatic stellate cells alleviates liver fibrosis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-022-05409-0
– volume: 198
  start-page: 388
  year: 2002
  ident: 10.1016/j.molimm.2024.06.008_bib58
  article-title: MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis
  publication-title: J. Pathol.
  doi: 10.1002/path.1208
– volume: 40
  start-page: 569
  year: 2014
  ident: 10.1016/j.molimm.2024.06.008_bib25
  article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.02.012
– volume: 7
  start-page: 516
  year: 2016
  ident: 10.1016/j.molimm.2024.06.008_bib1
  article-title: Skewed Lung CCR4 to CCR6 CD4(+) T cell ratio in idiopathic pulmonary fibrosis is associated with pulmonary function.
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2016.00516
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.molimm.2024.06.008_bib10
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 12
  start-page: 134
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib55
  article-title: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-21-0316
– volume: 45
  start-page: 1426
  year: 2015
  ident: 10.1016/j.molimm.2024.06.008_bib14
  article-title: The role of tyrosine kinases in the pathogenesis of idiopathic pulmonary fibrosis
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.00149614
– volume: 187
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib29
  article-title: PD-L1 upregulation promotes drug-induced pulmonary fibrosis by inhibiting vimentin degradation
  publication-title: Pharm. Res
  doi: 10.1016/j.phrs.2022.106636
– volume: 67
  start-page: 229
  year: 2006
  ident: 10.1016/j.molimm.2024.06.008_bib51
  article-title: Th1/Th2 cytokine gene polymorphisms in patients with idiopathic pulmonary fibrosis
  publication-title: Tissue Antigens
  doi: 10.1111/j.1399-0039.2006.00560.x
– volume: 23
  start-page: 868
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib13
  article-title: Autoreactive CD8(+) T cells are restrained by an exhaustion-like program that is maintained by LAG3.
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01210-5
– volume: 322
  start-page: 271
  year: 2008
  ident: 10.1016/j.molimm.2024.06.008_bib54
  article-title: CTLA-4 control over Foxp3+ regulatory T cell function
  publication-title: Science
  doi: 10.1126/science.1160062
– volume: 24
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib34
  article-title: Blood immunophenotypes of idiopathic pulmonary fibrosis: relationship with disease severity and progression
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241813832
– volume: 678
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib35
  article-title: Fumarate accumulation involved in renal diabetic fibrosis in Goto-Kakizaki rats
  publication-title: Arch. Biochem Biophys.
  doi: 10.1016/j.abb.2019.108167
– volume: 60
  start-page: 49
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib4
  article-title: Glutaminolysis epigenetically regulates antiapoptotic gene expression in idiopathic pulmonary fibrosis fibroblasts
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2018-0180OC
– volume: 67
  start-page: 50
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib47
  article-title: Multiplatform Single-Cell Analysis Identifies Immune Cell Types Enhanced in Pulmonary Fibrosis
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2021-0418OC
– volume: 147
  start-page: 79
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib17
  article-title: Inflammation and immunity in IPF pathogenesis and treatment
  publication-title: Respir. Med
  doi: 10.1016/j.rmed.2018.12.015
– volume: 61
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib40
  article-title: Idiopathic pulmonary fibrosis: state of the art for 2023
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00957-2022
– volume: 12
  start-page: 212
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib16
  article-title: Characterization of CD28(null) T cells in idiopathic pulmonary fibrosis
  publication-title: Mucosal Immunol.
  doi: 10.1038/s41385-018-0082-8
– volume: 122
  start-page: 2756
  year: 2012
  ident: 10.1016/j.molimm.2024.06.008_bib37
  article-title: Pulmonary fibrosis: patterns and perpetrators
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI60323
– volume: 131
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib48
  article-title: Immune dysregulation as a driver of idiopathic pulmonary fibrosis
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI143226
– volume: 5
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib42
  article-title: Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e01502
– volume: 246
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib43
  article-title: Dysregulation of metabolic pathways in pulmonary fibrosis
  publication-title: Pharm. Ther.
  doi: 10.1016/j.pharmthera.2023.108436
– volume: 377
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib32
  article-title: Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis
  publication-title: Bmj
– volume: 27
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib52
  article-title: Regulatory Effect of PD1/PD-Ligand 1 (PD-L1) on treg cells in patients with idiopathic pulmonary fibrosis
  publication-title: Med Sci. Monit.
– volume: 119
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib26
  article-title: WNT/RYK signaling functions as an antiinflammatory modulator in the lung mesenchyme
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2201707119
– volume: 18
  start-page: 770
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib39
  article-title: G6PD deficiency shifts polarization of monocytes/macrophages towards a proinflammatory and profibrotic phenotype
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/s41423-020-0428-5
– volume: 281
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib53
  article-title: Antifibrotic effect of Gancao Ganjiang decoction is mediated by PD-1 / TGF-β1 / IL-17A pathway in bleomycin-induced idiopathic pulmonary fibrosis
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2021.114522
– volume: 171
  start-page: 2684
  year: 2003
  ident: 10.1016/j.molimm.2024.06.008_bib21
  article-title: Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.171.5.2684
– volume: 19
  start-page: 170
  year: 2018
  ident: 10.1016/j.molimm.2024.06.008_bib59
  article-title: Macrophages: friend or foe in idiopathic pulmonary fibrosis?
  publication-title: Respir. Res.
  doi: 10.1186/s12931-018-0864-2
– volume: 14
  start-page: 979
  year: 2017
  ident: 10.1016/j.molimm.2024.06.008_bib41
  article-title: Reversed graph embedding resolves complex single-cell trajectories
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4402
– volume: 22
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib36
  article-title: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms
  publication-title: Int J. Mol. Sci.
  doi: 10.3390/ijms22126211
– volume: 9
  year: 2014
  ident: 10.1016/j.molimm.2024.06.008_bib8
  article-title: The AMPK agonist AICAR inhibits TGF-β1 induced activation of kidney myofibroblasts
  publication-title: PLoS One
– volume: 370
  start-page: 2083
  year: 2014
  ident: 10.1016/j.molimm.2024.06.008_bib27
  article-title: A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1402582
– volume: 103
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib30
  article-title: Lenalidomide attenuates post-inflammation pulmonary fibrosis through blocking NF-κB signaling pathway
  publication-title: Int. Immunopharmacol.
– volume: 18
  start-page: 723
  year: 2019
  ident: 10.1016/j.molimm.2024.06.008_bib61
  article-title: Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways
  publication-title: Excli J.
– volume: 208
  start-page: 1339
  year: 2011
  ident: 10.1016/j.molimm.2024.06.008_bib56
  article-title: Integrating mechanisms of pulmonary fibrosis
  publication-title: J. Exp. Med
  doi: 10.1084/jem.20110551
– volume: 19
  start-page: 388
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib5
  article-title: Platelet transcriptome profiles provide potential therapeutic targets for elderly acute myelocytic leukemia patients
  publication-title: J. Transl. Med
  doi: 10.1186/s12967-021-03041-8
– volume: 370
  start-page: 2071
  year: 2014
  ident: 10.1016/j.molimm.2024.06.008_bib45
  article-title: Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMoa1402584
– volume: 2018
  year: 2018
  ident: 10.1016/j.molimm.2024.06.008_bib62
  article-title: AICAR-induced AMPK activation inhibits the noncanonical NF-κB pathway to attenuate liver injury and fibrosis in BDL rats
  publication-title: Can. J. Gastroenterol. Hepatol.
  doi: 10.1155/2018/6181432
– volume: 12
  year: 2020
  ident: 10.1016/j.molimm.2024.06.008_bib6
  article-title: Senescence of IPF lung fibroblasts disrupt alveolar epithelial cell proliferation and promote migration in wound healing
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12040389
– volume: 30
  start-page: 923
  year: 2014
  ident: 10.1016/j.molimm.2024.06.008_bib31
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 27
  year: 2022
  ident: 10.1016/j.molimm.2024.06.008_bib3
  article-title: A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet
  publication-title: Molecules
  doi: 10.3390/molecules27030858
– volume: 587
  start-page: 619
  year: 2020
  ident: 10.1016/j.molimm.2024.06.008_bib50
  article-title: A molecular cell atlas of the human lung from single-cell RNA sequencing
  publication-title: Nature
  doi: 10.1038/s41586-020-2922-4
– volume: 320
  year: 2021
  ident: 10.1016/j.molimm.2024.06.008_bib46
  article-title: Cellular metabolomics of pulmonary fibrosis, from amino acids to lipids
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00586.2020
– volume: 314
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib60
  article-title: Fu-Zheng-Tong-Luo formula promotes autophagy and alleviates idiopathic pulmonary fibrosis by controlling the Janus kinase 2/signal transducer and activator of transcription 3 pathway
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2023.116633
– volume: 15
  start-page: 1484
  year: 2020
  ident: 10.1016/j.molimm.2024.06.008_bib11
  article-title: CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0292-x
– volume: 9
  start-page: 62
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib9
  article-title: T cells in idiopathic pulmonary fibrosis: crucial but controversial
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-023-01344-x
– volume: 64
  start-page: 36
  year: 2023
  ident: 10.1016/j.molimm.2024.06.008_bib22
  article-title: Blocking mitochondrial pyruvate transport alters corneal myofibroblast phenotype: a new target for treating fibrosis
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.64.13.36
– volume: 3
  year: 2017
  ident: 10.1016/j.molimm.2024.06.008_bib33
  article-title: Idiopathic pulmonary fibrosis
  publication-title: Nat. Rev. Dis. Prim.
SSID ssj0006065
Score 2.4512281
Snippet Immune cells in the human lung are associated with idiopathic pulmonary fibrosis. However, the contribution of different immune cell subpopulations to the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Aged
amino acids
carbohydrates
CD8+ T cell
CD8-positive T-lymphocytes
CD8-Positive T-Lymphocytes - immunology
cell structures
cytotoxicity
Female
fibrosis
Gene Expression Profiling - methods
Humans
Idiopathic pulmonary fibrosis
Idiopathic Pulmonary Fibrosis - genetics
Idiopathic Pulmonary Fibrosis - immunology
Idiopathic Pulmonary Fibrosis - pathology
Immune
immunology
lipids
Lung - immunology
Lung - pathology
lungs
Male
metabolites
Middle Aged
pathogenesis
pulmonary fibrosis
RNA
Single-Cell Analysis - methods
Single-cell RNA sequencing
therapeutics
transcription (genetics)
Transcriptome
transcriptomics
Title Single-cell transcriptomics reveals CD8+ T cell structure and developmental trajectories in idiopathic pulmonary fibrosis
URI https://dx.doi.org/10.1016/j.molimm.2024.06.008
https://www.ncbi.nlm.nih.gov/pubmed/38936318
https://www.proquest.com/docview/3073231188
https://www.proquest.com/docview/3153659297
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RSxwxEB7EYtuXomdrr1VJoW-S3t5uLpt7lKtytuiLCr6F2SQLK-fu4d093Et_ezPJrlLQCj7uMoGQGWa-ZL6ZAfhuUKZWWMfLEgsuUlQc1djyIZqyUMpDioSqkc8v5PRa_LoZ3WzApKuFIVpl6_ujTw_euv0zaE9zMK-qwWUAK5QmE6GRGfUEFSInK__x55Hm4QF6pDHKISfprnwucLzumll1R_XoqQhdPGnI5NPh6Tn4GcLQ6TZ8aPEjO45b3IENV_dgK06UXPfg3aQb4NaDt-dt3nwX1pc-Qs0cp2d6tqTwFJwFVSQvGDVx8kbIJj_VEbtiQSa2lV3dO4a1ZfaRWYRh_W146_eXbFbVrLJVEwYbGzZfzbxZ4_2alf4a3iyqxUe4Pj25mkx5O3SBG4-Mljy3VmBp8wxRJCp3Q2WzBI0RtkyEkSMnM-u16USRGIG2sEqM8tQoaVBIO7bZJ9ism9p9BlbkSmIas8E-VqY4ksZltgwYMZOuD1l31tq0HclpMMZMd9SzWx01pElDOjDwVB_4w6p57MjxgnzeqVH_Y1naB40XVn7rtK696uj4sXbNaqHJMXpgPFT_k_GxhHLW47wPe9FkHvZLKFF6b_rl1Xv7Cu_pK1IR92HTW4U78PBoWRwG-z-EN8dnv6cXfwEWtxG4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NIdheEJRfhQFG4g2ZponruI-oYyqw7mWdtDfLsR0pU5dUa_vQF_723dnJJqTBpL0mtmT5zneffd_dAXyxRqZOOM_L0hRcpEZxo8aOD40tC6UQUiSUjTw7kdMz8et8dL4Dky4XhmiVre2PNj1Y6_bLoN3NwbKqBqcBrFCYTIRCZuIRPBZ4fKmNwbc_tzwPROiRxyiHnIZ3-XOB5HXZLKpLSkhPRSjjSV0m7_ZP_8KfwQ8dPYdnLYBk3-MaX8COr3vwJLaU3PZgb9J1cOvB01kbOH8J21N0UQvP6Z2erck_BWtBKckrRlWcUAvZ5FB9ZXMWxsS6spsrz0ztmLulFpkw_yI89uMtm1U1q1zVhM7Gli03C9Rrc7VlJd7Dm1W1egVnRz_mkylvuy5wi9BozXPnhCldnhkjEpX7oXJZYqwVrkyElSMvM4fi9KJIrDCucEqM8tQqaY2Qbuyy17BbN7V_C6zIlTRpDAejs0zNSFqfuTKAxEz6PmTdXmvbliSnzhgL3XHPLnSUkCYJ6UDBU33gN7OWsSTHPePzToz6L9XS6DXumfm5k7pG0dH2m9o3m5Umy4jIeKj-NwadCQWtx3kf3kSVuVkvwUSJ5vTdg9f2Cfam89mxPv558vs97NOfyEs8gF3UEP8BsdK6-BjOwjUxjxNG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+transcriptomics+reveals+CD8%2B+T+cell+structure+and+developmental+trajectories+in+idiopathic+pulmonary+fibrosis&rft.jtitle=Molecular+immunology&rft.au=Wei%2C+Xuemei&rft.au=Jin%2C+Chengji&rft.au=Li%2C+Dewei&rft.au=Wang%2C+Yujie&rft.date=2024-08-01&rft.issn=0161-5890&rft.volume=172+p.85-95&rft.spage=85&rft.epage=95&rft_id=info:doi/10.1016%2Fj.molimm.2024.06.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5890&client=summon