Emotion Recognition Based on Skin Potential Signals with a Portable Wireless Device
Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be corr...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 3; p. 1018 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
02.02.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal’s integration into existing physiological signals for emotion recognition. |
---|---|
AbstractList | Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal's integration into existing physiological signals for emotion recognition.Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal's integration into existing physiological signals for emotion recognition. Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal’s integration into existing physiological signals for emotion recognition. |
Author | Chen, Xinhua Li, Yubo Yang, Jianyi Kuang, Haoze Chen, Shuhao Jiang, Ke Hu, Haoji Luo, Jikui |
AuthorAffiliation | 2 Zhejiang Key Laboratory for Pulsed Power Tanslational Medicine, Hangzhou Ruidi Biotech Ltd., Hangzhou 310000, China; xinhua_chen@zju.edu.cn 1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 21931039@zju.edu.cn (S.C.); 21960347@zju.edu.cn (K.J.); haoji_hu@zju.edu.cn (H.H.); 11831027@zju.edu.cn (H.K.); yangjy@zju.edu.cn (J.Y.); jack_luo@zju.edu.cn (J.L.) |
AuthorAffiliation_xml | – name: 1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 21931039@zju.edu.cn (S.C.); 21960347@zju.edu.cn (K.J.); haoji_hu@zju.edu.cn (H.H.); 11831027@zju.edu.cn (H.K.); yangjy@zju.edu.cn (J.Y.); jack_luo@zju.edu.cn (J.L.) – name: 2 Zhejiang Key Laboratory for Pulsed Power Tanslational Medicine, Hangzhou Ruidi Biotech Ltd., Hangzhou 310000, China; xinhua_chen@zju.edu.cn |
Author_xml | – sequence: 1 givenname: Shuhao surname: Chen fullname: Chen, Shuhao – sequence: 2 givenname: Ke surname: Jiang fullname: Jiang, Ke – sequence: 3 givenname: Haoji surname: Hu fullname: Hu, Haoji – sequence: 4 givenname: Haoze surname: Kuang fullname: Kuang, Haoze – sequence: 5 givenname: Jianyi surname: Yang fullname: Yang, Jianyi – sequence: 6 givenname: Jikui surname: Luo fullname: Luo, Jikui – sequence: 7 givenname: Xinhua surname: Chen fullname: Chen, Xinhua – sequence: 8 givenname: Yubo orcidid: 0000-0002-9135-8360 surname: Li fullname: Li, Yubo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33540831$$D View this record in MEDLINE/PubMed |
BookMark | eNplkUtvFDEQhC0URB5w4A-gOcJhiV_jxwUJQoBIkUAsiKNle9obB68d7Nkg_j1ONokSOLnkrv5KrdpHO7lkQOg5wa8Z0_iwUYIZwUQ9QnuEU75QlOKde3oX7bd2jjFljKknaJexkWPFyB5aHq_LHEsevoIvqxyv9TvbYBq6WP6MefhSZshztGlYxlW2qQ2_43w22D6os3UJhh-xQoLWhvdwGT08RY9Dt8Gzm_cAff9w_O3o0-L088eTo7enC885mRfSTVI7bYXgggHIkfMJa-BKqECAchUYBUWlF5yEIPnEnBh10M5SEqQV7ACdbLlTsefmosa1rX9MsdFcf5S6MrbO0ScwxAo1uskJ6Xr2NGpFw6iE9lNnSx86682WdbFxa5h8v7ja9AD6cJLjmVmVSyOVkGyUHfDyBlDLrw202axj85CSzVA2zfR7JBkJYbpbX9zPugu5baUbDrcGX0trFYLxcbZX1fTomAzB5qp3c9d733j1z8Yt9H_vX0snrCY |
CitedBy_id | crossref_primary_10_3390_s23010498 crossref_primary_10_1038_s41398_024_02828_9 crossref_primary_10_1109_ACCESS_2024_3406932 crossref_primary_10_3390_mti8110098 crossref_primary_10_1371_journal_pone_0269176 crossref_primary_10_3390_s21144853 crossref_primary_10_3390_healthcare11030322 crossref_primary_10_3390_s23115322 crossref_primary_10_1016_j_bspc_2025_107749 crossref_primary_10_1155_2022_3517995 crossref_primary_10_2139_ssrn_3995241 crossref_primary_10_1038_s41598_025_92368_z crossref_primary_10_1007_s12144_025_07375_0 |
Cites_doi | 10.1109/CISP-BMEI.2016.7852861 10.1109/INDIN.2010.5549464 10.3390/s19245524 10.1109/TAFFC.2014.2327617 10.1088/1742-6596/224/1/012091 10.1016/j.neucom.2013.02.041 10.1111/j.1469-8986.1969.tb02850.x 10.1111/psyp.12092 10.3390/s130607714 10.1037/h0048949 10.3390/s20030718 10.1016/j.ijpsycho.2005.10.024 10.1016/j.bspc.2019.101646 10.1109/TPAMI.2008.26 10.3390/s20185122 10.1111/j.1600-0846.2010.00459.x 10.3390/electronics8091039 10.3390/s20185362 10.1109/TAFFC.2018.2878029 10.3390/s20020530 10.1214/aos/1013203451 10.1109/ACCESS.2019.2922995 10.1142/S0218001412500085 10.1109/CSPA.2011.5759912 10.1016/j.ijhcs.2007.10.011 10.1111/j.1469-8986.1968.tb02821.x 10.1016/j.imavis.2008.08.005 10.1111/j.1469-8986.1970.tb01755.x 10.3390/s19184014 10.1109/TAFFC.2017.2768030 10.1109/DIGITEL.2012.60 10.1159/000475744 10.1007/BF02344719 10.1109/TBCAS.2019.2953998 10.1109/ACCESS.2020.3026044 10.1109/TAFFC.2017.2781732 10.1109/T-AFFC.2011.22 10.3390/s110807799 10.3390/s20164551 10.1109/BMEiCon.2013.6687699 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s21031018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_1a685bdb67b441d5982f5869cd41f7cf PMC7867357 33540831 10_3390_s21031018 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: (No. 2018YFB0406503, No. 2018YFC0810201 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS CGR CUY CVF ECM EIF HCIFZ KB. M7S NPM PDBOC 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c441t-7bd79b9a66463ee7544d09e4868f1e248f32e827c641ff74d3b659f9ba21f7a63 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:12 EDT 2025 Thu Aug 21 14:07:36 EDT 2025 Fri Jul 11 02:03:22 EDT 2025 Wed Feb 19 02:27:45 EST 2025 Thu Apr 24 23:00:26 EDT 2025 Tue Jul 01 03:56:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | gradient-boosting decision tree skin potential emotion recognition portable device |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7bd79b9a66463ee7544d09e4868f1e248f32e827c641ff74d3b659f9ba21f7a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9135-8360 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21031018 |
PMID | 33540831 |
PQID | 2487151139 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a685bdb67b441d5982f5869cd41f7cf pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867357 proquest_miscellaneous_2487151139 pubmed_primary_33540831 crossref_citationtrail_10_3390_s21031018 crossref_primary_10_3390_s21031018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210202 |
PublicationDateYYYYMMDD | 2021-02-02 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210202 day: 2 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Shan (ref_4) 2009; 27 Wen (ref_47) 2014; 5 Becker (ref_34) 2020; 11 Friedman (ref_35) 2001; 29 ref_36 Xiong (ref_43) 2020; 20 Kim (ref_3) 2008; 30 Wilcott (ref_21) 1957; 50 ref_32 ref_31 Tronstad (ref_17) 2013; 50 Kim (ref_7) 2004; 42 Yilmaz (ref_41) 2020; 20 Dar (ref_13) 2020; 20 Fong (ref_2) 2012; 3 Hossain (ref_33) 2020; 11 Wang (ref_39) 2019; 7 Ghimire (ref_6) 2013; 13 Grimnes (ref_16) 2011; 17 Rainville (ref_44) 2006; 61 Maskeliunas (ref_29) 2019; 8 Antognoli (ref_42) 2020; 20 Gaviria (ref_15) 1969; 5 Chueh (ref_12) 2012; 26 Kucera (ref_18) 2004; 105 ref_24 Yang (ref_37) 2020; 8 ref_46 ref_45 ref_22 ref_20 (ref_25) 2019; 19 Neumann (ref_14) 1970; 6 Bailenson (ref_10) 2008; 66 ref_1 Athavipach (ref_26) 2019; 19 Shu (ref_27) 2020; 20 Passi (ref_30) 2017; 112 Lykken (ref_19) 1968; 5 Delahoz (ref_28) 2020; 55 Aranha (ref_8) 2019; 3045 ref_9 Chang (ref_11) 2013; 122 Hsu (ref_23) 2020; 11 ref_5 Zakaria (ref_40) 2011; 11 Song (ref_38) 2019; 13 |
References_xml | – ident: ref_36 doi: 10.1109/CISP-BMEI.2016.7852861 – ident: ref_45 doi: 10.1109/INDIN.2010.5549464 – ident: ref_5 – ident: ref_32 – volume: 19 start-page: 5524 year: 2019 ident: ref_25 article-title: Gil-Pita, M. Rosa-Zurera, Seoane, F. Activity recognition using wearable physiological measurements: Selection of features from a comprehensive literature study publication-title: Sensors doi: 10.3390/s19245524 – volume: 5 start-page: 126 year: 2014 ident: ref_47 article-title: Emotion recognition based on multi-variant correlation of physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2327617 – ident: ref_20 doi: 10.1088/1742-6596/224/1/012091 – volume: 122 start-page: 79 year: 2013 ident: ref_11 article-title: Physiological emotion analysis using support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.02.041 – volume: 5 start-page: 465 year: 1969 ident: ref_15 article-title: Correlation of Skin Potential and Skin Resistance Measures publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1969.tb02850.x – volume: 50 start-page: 1070 year: 2013 ident: ref_17 article-title: Waveform difference between skin conductance and skin potential responses in relation to electrical and evaporative properties of skin publication-title: Psychophysiology doi: 10.1111/psyp.12092 – volume: 13 start-page: 7714 year: 2013 ident: ref_6 article-title: Geometric feature-based facial expression recognition in image sequences using multi-class AdaBoost and support vector machines publication-title: Sensors doi: 10.3390/s130607714 – volume: 50 start-page: 217 year: 1957 ident: ref_21 article-title: Uniphasic and diphasic wave forms of the skin potential response publication-title: J. Comp. Physiol. Psychol. doi: 10.1037/h0048949 – volume: 20 start-page: 718 year: 2020 ident: ref_27 article-title: Wearable emotion recognition using heart rate data from a smart bracelet publication-title: Sensors doi: 10.3390/s20030718 – volume: 61 start-page: 5 year: 2006 ident: ref_44 article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.10.024 – volume: 55 start-page: 101646 year: 2020 ident: ref_28 article-title: A machine learning model for emotion recognition from physiological signals publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2019.101646 – volume: 105 start-page: 108 year: 2004 ident: ref_18 article-title: Sympathetic skin response: Review of the method and its clinical use publication-title: Bratisl. Lek. Listy – volume: 30 start-page: 2067 year: 2008 ident: ref_3 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – volume: 20 start-page: 5122 year: 2020 ident: ref_43 article-title: Pattern Recognition of Cognitive Load Using EEG and ECG Signals publication-title: Sensors doi: 10.3390/s20185122 – volume: 17 start-page: 26 year: 2011 ident: ref_16 article-title: Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site publication-title: Ski. Res. Technol. doi: 10.1111/j.1600-0846.2010.00459.x – volume: 8 start-page: 1039 year: 2019 ident: ref_29 article-title: Anxiety level recognition for virtual reality therapy system using physiological signals publication-title: Electronics doi: 10.3390/electronics8091039 – volume: 20 start-page: 5362 year: 2020 ident: ref_42 article-title: Heartbeat detection by laser doppler vibrometry and machine learning publication-title: Sensors doi: 10.3390/s20185362 – volume: 11 start-page: 178 year: 2020 ident: ref_33 article-title: Using Temporal Features of Observers’ Physiological Measures to Distinguish between Genuine and Fake Smiles publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2878029 – volume: 20 start-page: 530 year: 2020 ident: ref_41 article-title: Multiclass classification of hepatic anomalies with dielectric properties: From phantom materials to rat hepatic tissues publication-title: Sensors doi: 10.3390/s20020530 – ident: ref_31 – volume: 29 start-page: 1189 year: 2001 ident: ref_35 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 7 start-page: 80519 year: 2019 ident: ref_39 article-title: Multiple Fingerprints-Based Indoor Localization via GBDT: Subspace and RSSI publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2922995 – volume: 26 start-page: 1250008 year: 2012 ident: ref_12 article-title: Statistical prediction of emotional states by physiological signals with manova and machine learning publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001412500085 – ident: ref_1 doi: 10.1109/CSPA.2011.5759912 – volume: 3045 start-page: 1 year: 2019 ident: ref_8 article-title: Adapting software with Affective Computing: A systematic review publication-title: IEEE Trans. Affect. Comput. – volume: 66 start-page: 303 year: 2008 ident: ref_10 article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2007.10.011 – ident: ref_46 – volume: 5 start-page: 253 year: 1968 ident: ref_19 article-title: Some Properties of Skin Conductance and Potential publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1968.tb02821.x – volume: 27 start-page: 803 year: 2009 ident: ref_4 article-title: Facial expression recognition based on Local Binary Patterns: A comprehensive study publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.005 – volume: 6 start-page: 453 year: 1970 ident: ref_14 article-title: The Early History of Electrodermal Research publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1970.tb01755.x – volume: 19 start-page: 4014 year: 2019 ident: ref_26 article-title: A wearable in-ear EEG device for emotion monitoring publication-title: Sensors doi: 10.3390/s19184014 – volume: 11 start-page: 244 year: 2020 ident: ref_34 article-title: Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2768030 – ident: ref_9 doi: 10.1109/DIGITEL.2012.60 – volume: 112 start-page: 187 year: 2017 ident: ref_30 article-title: Electrical grounding improves vagal tone in preterm infants publication-title: Neonatology doi: 10.1159/000475744 – volume: 42 start-page: 419 year: 2004 ident: ref_7 article-title: Emotion recognition system using short-term monitoring of physiological signals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02344719 – volume: 13 start-page: 1563 year: 2019 ident: ref_38 article-title: Design of a Flexible Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree Based Hand Gesture Recognition publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2019.2953998 – ident: ref_22 – volume: 8 start-page: 175467 year: 2020 ident: ref_37 article-title: A GBDT-Paralleled Quadratic Ensemble Learning for Intrusion Detection System publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026044 – volume: 11 start-page: 85 year: 2020 ident: ref_23 article-title: Automatic ECG-Based Emotion Recognition in Music Listening publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2781732 – volume: 3 start-page: 152 year: 2012 ident: ref_2 article-title: Generation of personalized ontology based on consumer emotion and behavior analysis publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.22 – volume: 11 start-page: 7799 year: 2011 ident: ref_40 article-title: A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration publication-title: Sensors doi: 10.3390/s110807799 – volume: 20 start-page: 4551 year: 2020 ident: ref_13 article-title: Cnn and lstm-based emotion charting using physiological signals publication-title: Sensors doi: 10.3390/s20164551 – ident: ref_24 doi: 10.1109/BMEiCon.2013.6687699 |
SSID | ssj0023338 |
Score | 2.4466438 |
Snippet | Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1018 |
SubjectTerms | Algorithms Artificial Intelligence emotion recognition Emotions gradient-boosting decision tree Humans Logistic Models portable device Skin skin potential Wireless Technology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7Et_HFKh68hDbZzT6OVisiKOIDvIV9qlBSse3_dyZJSyuCF28hWTabbyc7M5sv3xByBl5PGmtZqoPQKS-sThVnLvVgPFxlzGQKfxS-uxc3L_z2tXidK_WFnLBGHrgBrpMZoQrrrZAWPLdHvblYKKGd51mULuLqCz5vmky1qRaDzKvREWKQ1HdGOVYz6GJljznvU4v0_xZZ_iRIznmc63Wy1oaK9KIZ4gZZCtUmWZ0TENwiT_2mCg99nPKA4LgHjslTOMDCWvRhOEZCEHT09PGGYskUt16poTWH1A4CRQLsABY8ehVw2dgmL9f958ubtC2TkDpAZJxK66W22gjBBQsBFe18VweuhIpZAMQjy4PKpROAWJTcMysKHbU1OSBoBNshy9WwCnuEQjLkXJd5HnyAXrhlEP7ZouuMK6KPPCHnU_hK12qIYymLQQm5BCJdzpBOyOms6WcjnPFbox7OwawBal3XJ8ACytYCyr8sICEn0xks4d3ADx6mCsPJqIRnlxDRQJCbkN1mRme3YrjhpViWELkw1wtjWbxSfbzX-ttSCckKuf8fgz8gKzmyZJAHnh-S5fHXJBxBmDO2x7VFfwPQIfu4 priority: 102 providerName: Directory of Open Access Journals |
Title | Emotion Recognition Based on Skin Potential Signals with a Portable Wireless Device |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33540831 https://www.proquest.com/docview/2487151139 https://pubmed.ncbi.nlm.nih.gov/PMC7867357 https://doaj.org/article/1a685bdb67b441d5982f5869cd41f7cf |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t0UWBnEgUsgiR3bOSDEwi4VUquqZaW9RfGrVFplYXcrlX_PTJKNGrQHLlGUOA_P2J4Ze_x9AG_R6qnKGB4XXhaxyE0Ra8Ft7LDxCJ3yKtW0Ufj0TJ7MxPd5Pt-DLcdmJ8D1ztCO-KRmq8X7299_PmGH_0gRJ4bsH9YZcRUkqd6HQzRIiogMTkW_mJBx3hBa056uGO1h0gIMDR8dmKUGvX-Xy_lv5uQdUzR9CA86H5J9bpX-CPZ8_Rju30EWfAKXk5aeh11sE4TwfIwWyzE8IcYtdr7cUKYQvujy-oqkwWhOllWsSS41C88oM3aBIyH76mk8eQqz6eTHl5O440-ILTo5m1gZpwpTVFIKyb0nqDuXFF5oqUPqURWBZ15nykqRhqCE40bmRShMlaVBVZI_g4N6WfsjYBglWZtwJ7zz-BZhOPqFJk9sZfPggojg3VZ8pe3AxYnjYlFikEGSLntJR_CmL_qrRdTYVWhMOugLEAh2c2G5uiq7PlWmldS5cUYqg_V1BEUYci0L67A-yoYIXm81WGKnoZWQqvbLm3WJdVfo6qD3G8HzVqP9pzjNhGmeRqAGuh78y_BOff2zAeZWWiqeq-P_-O4LuJdRdgzlf2cv4WCzuvGv0L3ZmBHsq7nCo55-G8HheHJ2fjFqpgpGTbP-C66A_JA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+Based+on+Skin+Potential+Signals+with+a+Portable+Wireless+Device&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Shuhao&rft.au=Jiang%2C+Ke&rft.au=Hu%2C+Haoji&rft.au=Kuang%2C+Haoze&rft.date=2021-02-02&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=3&rft_id=info:doi/10.3390%2Fs21031018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |