Emotion Recognition Based on Skin Potential Signals with a Portable Wireless Device

Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be corr...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 3; p. 1018
Main Authors Chen, Shuhao, Jiang, Ke, Hu, Haoji, Kuang, Haoze, Yang, Jianyi, Luo, Jikui, Chen, Xinhua, Li, Yubo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 02.02.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal’s integration into existing physiological signals for emotion recognition.
AbstractList Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal's integration into existing physiological signals for emotion recognition.Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal's integration into existing physiological signals for emotion recognition.
Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion recognition, with certain successes, they rely heavily on complicated and expensive equipment. Skin potential (SP) has been recognized to be correlated with human emotions for a long time, but has been largely ignored due to the lack of systematic research. In this paper, we propose a single SP-signal-based method for emotion recognition. Firstly, we developed a portable wireless device to measure the SP signal between the middle finger and left wrist. Then, a video induction experiment was designed to stimulate four kinds of typical emotion (happiness, sadness, anger, fear) in 26 subjects. Based on the device and video induction, we obtained a dataset consisting of 397 emotion samples. We extracted 29 features from each of the emotion samples and used eight well-established algorithms to classify the four emotions based on these features. Experimental results show that the gradient-boosting decision tree (GBDT), logistic regression (LR) and random forest (RF) algorithms achieved the highest accuracy of 75%. The obtained accuracy is similar to, or even better than, that of other methods using multiple physiological signals. Our research demonstrates the feasibility of the SP signal’s integration into existing physiological signals for emotion recognition.
Author Chen, Xinhua
Li, Yubo
Yang, Jianyi
Kuang, Haoze
Chen, Shuhao
Jiang, Ke
Hu, Haoji
Luo, Jikui
AuthorAffiliation 2 Zhejiang Key Laboratory for Pulsed Power Tanslational Medicine, Hangzhou Ruidi Biotech Ltd., Hangzhou 310000, China; xinhua_chen@zju.edu.cn
1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 21931039@zju.edu.cn (S.C.); 21960347@zju.edu.cn (K.J.); haoji_hu@zju.edu.cn (H.H.); 11831027@zju.edu.cn (H.K.); yangjy@zju.edu.cn (J.Y.); jack_luo@zju.edu.cn (J.L.)
AuthorAffiliation_xml – name: 1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China; 21931039@zju.edu.cn (S.C.); 21960347@zju.edu.cn (K.J.); haoji_hu@zju.edu.cn (H.H.); 11831027@zju.edu.cn (H.K.); yangjy@zju.edu.cn (J.Y.); jack_luo@zju.edu.cn (J.L.)
– name: 2 Zhejiang Key Laboratory for Pulsed Power Tanslational Medicine, Hangzhou Ruidi Biotech Ltd., Hangzhou 310000, China; xinhua_chen@zju.edu.cn
Author_xml – sequence: 1
  givenname: Shuhao
  surname: Chen
  fullname: Chen, Shuhao
– sequence: 2
  givenname: Ke
  surname: Jiang
  fullname: Jiang, Ke
– sequence: 3
  givenname: Haoji
  surname: Hu
  fullname: Hu, Haoji
– sequence: 4
  givenname: Haoze
  surname: Kuang
  fullname: Kuang, Haoze
– sequence: 5
  givenname: Jianyi
  surname: Yang
  fullname: Yang, Jianyi
– sequence: 6
  givenname: Jikui
  surname: Luo
  fullname: Luo, Jikui
– sequence: 7
  givenname: Xinhua
  surname: Chen
  fullname: Chen, Xinhua
– sequence: 8
  givenname: Yubo
  orcidid: 0000-0002-9135-8360
  surname: Li
  fullname: Li, Yubo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33540831$$D View this record in MEDLINE/PubMed
BookMark eNplkUtvFDEQhC0URB5w4A-gOcJhiV_jxwUJQoBIkUAsiKNle9obB68d7Nkg_j1ONokSOLnkrv5KrdpHO7lkQOg5wa8Z0_iwUYIZwUQ9QnuEU75QlOKde3oX7bd2jjFljKknaJexkWPFyB5aHq_LHEsevoIvqxyv9TvbYBq6WP6MefhSZshztGlYxlW2qQ2_43w22D6os3UJhh-xQoLWhvdwGT08RY9Dt8Gzm_cAff9w_O3o0-L088eTo7enC885mRfSTVI7bYXgggHIkfMJa-BKqECAchUYBUWlF5yEIPnEnBh10M5SEqQV7ACdbLlTsefmosa1rX9MsdFcf5S6MrbO0ScwxAo1uskJ6Xr2NGpFw6iE9lNnSx86682WdbFxa5h8v7ja9AD6cJLjmVmVSyOVkGyUHfDyBlDLrw202axj85CSzVA2zfR7JBkJYbpbX9zPugu5baUbDrcGX0trFYLxcbZX1fTomAzB5qp3c9d733j1z8Yt9H_vX0snrCY
CitedBy_id crossref_primary_10_3390_s23010498
crossref_primary_10_1038_s41398_024_02828_9
crossref_primary_10_1109_ACCESS_2024_3406932
crossref_primary_10_3390_mti8110098
crossref_primary_10_1371_journal_pone_0269176
crossref_primary_10_3390_s21144853
crossref_primary_10_3390_healthcare11030322
crossref_primary_10_3390_s23115322
crossref_primary_10_1016_j_bspc_2025_107749
crossref_primary_10_1155_2022_3517995
crossref_primary_10_2139_ssrn_3995241
crossref_primary_10_1038_s41598_025_92368_z
crossref_primary_10_1007_s12144_025_07375_0
Cites_doi 10.1109/CISP-BMEI.2016.7852861
10.1109/INDIN.2010.5549464
10.3390/s19245524
10.1109/TAFFC.2014.2327617
10.1088/1742-6596/224/1/012091
10.1016/j.neucom.2013.02.041
10.1111/j.1469-8986.1969.tb02850.x
10.1111/psyp.12092
10.3390/s130607714
10.1037/h0048949
10.3390/s20030718
10.1016/j.ijpsycho.2005.10.024
10.1016/j.bspc.2019.101646
10.1109/TPAMI.2008.26
10.3390/s20185122
10.1111/j.1600-0846.2010.00459.x
10.3390/electronics8091039
10.3390/s20185362
10.1109/TAFFC.2018.2878029
10.3390/s20020530
10.1214/aos/1013203451
10.1109/ACCESS.2019.2922995
10.1142/S0218001412500085
10.1109/CSPA.2011.5759912
10.1016/j.ijhcs.2007.10.011
10.1111/j.1469-8986.1968.tb02821.x
10.1016/j.imavis.2008.08.005
10.1111/j.1469-8986.1970.tb01755.x
10.3390/s19184014
10.1109/TAFFC.2017.2768030
10.1109/DIGITEL.2012.60
10.1159/000475744
10.1007/BF02344719
10.1109/TBCAS.2019.2953998
10.1109/ACCESS.2020.3026044
10.1109/TAFFC.2017.2781732
10.1109/T-AFFC.2011.22
10.3390/s110807799
10.3390/s20164551
10.1109/BMEiCon.2013.6687699
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21031018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1a685bdb67b441d5982f5869cd41f7cf
PMC7867357
33540831
10_3390_s21031018
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: (No. 2018YFB0406503, No. 2018YFC0810201
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c441t-7bd79b9a66463ee7544d09e4868f1e248f32e827c641ff74d3b659f9ba21f7a63
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Aug 21 14:07:36 EDT 2025
Fri Jul 11 02:03:22 EDT 2025
Wed Feb 19 02:27:45 EST 2025
Thu Apr 24 23:00:26 EDT 2025
Tue Jul 01 03:56:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords gradient-boosting decision tree
skin potential
emotion recognition
portable device
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7bd79b9a66463ee7544d09e4868f1e248f32e827c641ff74d3b659f9ba21f7a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9135-8360
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21031018
PMID 33540831
PQID 2487151139
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1a685bdb67b441d5982f5869cd41f7cf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7867357
proquest_miscellaneous_2487151139
pubmed_primary_33540831
crossref_citationtrail_10_3390_s21031018
crossref_primary_10_3390_s21031018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210202
PublicationDateYYYYMMDD 2021-02-02
PublicationDate_xml – month: 2
  year: 2021
  text: 20210202
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Shan (ref_4) 2009; 27
Wen (ref_47) 2014; 5
Becker (ref_34) 2020; 11
Friedman (ref_35) 2001; 29
ref_36
Xiong (ref_43) 2020; 20
Kim (ref_3) 2008; 30
Wilcott (ref_21) 1957; 50
ref_32
ref_31
Tronstad (ref_17) 2013; 50
Kim (ref_7) 2004; 42
Yilmaz (ref_41) 2020; 20
Dar (ref_13) 2020; 20
Fong (ref_2) 2012; 3
Hossain (ref_33) 2020; 11
Wang (ref_39) 2019; 7
Ghimire (ref_6) 2013; 13
Grimnes (ref_16) 2011; 17
Rainville (ref_44) 2006; 61
Maskeliunas (ref_29) 2019; 8
Antognoli (ref_42) 2020; 20
Gaviria (ref_15) 1969; 5
Chueh (ref_12) 2012; 26
Kucera (ref_18) 2004; 105
ref_24
Yang (ref_37) 2020; 8
ref_46
ref_45
ref_22
ref_20
(ref_25) 2019; 19
Neumann (ref_14) 1970; 6
Bailenson (ref_10) 2008; 66
ref_1
Athavipach (ref_26) 2019; 19
Shu (ref_27) 2020; 20
Passi (ref_30) 2017; 112
Lykken (ref_19) 1968; 5
Delahoz (ref_28) 2020; 55
Aranha (ref_8) 2019; 3045
ref_9
Chang (ref_11) 2013; 122
Hsu (ref_23) 2020; 11
ref_5
Zakaria (ref_40) 2011; 11
Song (ref_38) 2019; 13
References_xml – ident: ref_36
  doi: 10.1109/CISP-BMEI.2016.7852861
– ident: ref_45
  doi: 10.1109/INDIN.2010.5549464
– ident: ref_5
– ident: ref_32
– volume: 19
  start-page: 5524
  year: 2019
  ident: ref_25
  article-title: Gil-Pita, M. Rosa-Zurera, Seoane, F. Activity recognition using wearable physiological measurements: Selection of features from a comprehensive literature study
  publication-title: Sensors
  doi: 10.3390/s19245524
– volume: 5
  start-page: 126
  year: 2014
  ident: ref_47
  article-title: Emotion recognition based on multi-variant correlation of physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2327617
– ident: ref_20
  doi: 10.1088/1742-6596/224/1/012091
– volume: 122
  start-page: 79
  year: 2013
  ident: ref_11
  article-title: Physiological emotion analysis using support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.02.041
– volume: 5
  start-page: 465
  year: 1969
  ident: ref_15
  article-title: Correlation of Skin Potential and Skin Resistance Measures
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1969.tb02850.x
– volume: 50
  start-page: 1070
  year: 2013
  ident: ref_17
  article-title: Waveform difference between skin conductance and skin potential responses in relation to electrical and evaporative properties of skin
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12092
– volume: 13
  start-page: 7714
  year: 2013
  ident: ref_6
  article-title: Geometric feature-based facial expression recognition in image sequences using multi-class AdaBoost and support vector machines
  publication-title: Sensors
  doi: 10.3390/s130607714
– volume: 50
  start-page: 217
  year: 1957
  ident: ref_21
  article-title: Uniphasic and diphasic wave forms of the skin potential response
  publication-title: J. Comp. Physiol. Psychol.
  doi: 10.1037/h0048949
– volume: 20
  start-page: 718
  year: 2020
  ident: ref_27
  article-title: Wearable emotion recognition using heart rate data from a smart bracelet
  publication-title: Sensors
  doi: 10.3390/s20030718
– volume: 61
  start-page: 5
  year: 2006
  ident: ref_44
  article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.10.024
– volume: 55
  start-page: 101646
  year: 2020
  ident: ref_28
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.101646
– volume: 105
  start-page: 108
  year: 2004
  ident: ref_18
  article-title: Sympathetic skin response: Review of the method and its clinical use
  publication-title: Bratisl. Lek. Listy
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref_3
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 20
  start-page: 5122
  year: 2020
  ident: ref_43
  article-title: Pattern Recognition of Cognitive Load Using EEG and ECG Signals
  publication-title: Sensors
  doi: 10.3390/s20185122
– volume: 17
  start-page: 26
  year: 2011
  ident: ref_16
  article-title: Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site
  publication-title: Ski. Res. Technol.
  doi: 10.1111/j.1600-0846.2010.00459.x
– volume: 8
  start-page: 1039
  year: 2019
  ident: ref_29
  article-title: Anxiety level recognition for virtual reality therapy system using physiological signals
  publication-title: Electronics
  doi: 10.3390/electronics8091039
– volume: 20
  start-page: 5362
  year: 2020
  ident: ref_42
  article-title: Heartbeat detection by laser doppler vibrometry and machine learning
  publication-title: Sensors
  doi: 10.3390/s20185362
– volume: 11
  start-page: 178
  year: 2020
  ident: ref_33
  article-title: Using Temporal Features of Observers’ Physiological Measures to Distinguish between Genuine and Fake Smiles
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2878029
– volume: 20
  start-page: 530
  year: 2020
  ident: ref_41
  article-title: Multiclass classification of hepatic anomalies with dielectric properties: From phantom materials to rat hepatic tissues
  publication-title: Sensors
  doi: 10.3390/s20020530
– ident: ref_31
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_35
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 7
  start-page: 80519
  year: 2019
  ident: ref_39
  article-title: Multiple Fingerprints-Based Indoor Localization via GBDT: Subspace and RSSI
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922995
– volume: 26
  start-page: 1250008
  year: 2012
  ident: ref_12
  article-title: Statistical prediction of emotional states by physiological signals with manova and machine learning
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001412500085
– ident: ref_1
  doi: 10.1109/CSPA.2011.5759912
– volume: 3045
  start-page: 1
  year: 2019
  ident: ref_8
  article-title: Adapting software with Affective Computing: A systematic review
  publication-title: IEEE Trans. Affect. Comput.
– volume: 66
  start-page: 303
  year: 2008
  ident: ref_10
  article-title: Real-time classification of evoked emotions using facial feature tracking and physiological responses
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2007.10.011
– ident: ref_46
– volume: 5
  start-page: 253
  year: 1968
  ident: ref_19
  article-title: Some Properties of Skin Conductance and Potential
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1968.tb02821.x
– volume: 27
  start-page: 803
  year: 2009
  ident: ref_4
  article-title: Facial expression recognition based on Local Binary Patterns: A comprehensive study
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2008.08.005
– volume: 6
  start-page: 453
  year: 1970
  ident: ref_14
  article-title: The Early History of Electrodermal Research
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1970.tb01755.x
– volume: 19
  start-page: 4014
  year: 2019
  ident: ref_26
  article-title: A wearable in-ear EEG device for emotion monitoring
  publication-title: Sensors
  doi: 10.3390/s19184014
– volume: 11
  start-page: 244
  year: 2020
  ident: ref_34
  article-title: Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2768030
– ident: ref_9
  doi: 10.1109/DIGITEL.2012.60
– volume: 112
  start-page: 187
  year: 2017
  ident: ref_30
  article-title: Electrical grounding improves vagal tone in preterm infants
  publication-title: Neonatology
  doi: 10.1159/000475744
– volume: 42
  start-page: 419
  year: 2004
  ident: ref_7
  article-title: Emotion recognition system using short-term monitoring of physiological signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02344719
– volume: 13
  start-page: 1563
  year: 2019
  ident: ref_38
  article-title: Design of a Flexible Wearable Smart sEMG Recorder Integrated Gradient Boosting Decision Tree Based Hand Gesture Recognition
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2953998
– ident: ref_22
– volume: 8
  start-page: 175467
  year: 2020
  ident: ref_37
  article-title: A GBDT-Paralleled Quadratic Ensemble Learning for Intrusion Detection System
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026044
– volume: 11
  start-page: 85
  year: 2020
  ident: ref_23
  article-title: Automatic ECG-Based Emotion Recognition in Music Listening
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2781732
– volume: 3
  start-page: 152
  year: 2012
  ident: ref_2
  article-title: Generation of personalized ontology based on consumer emotion and behavior analysis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.22
– volume: 11
  start-page: 7799
  year: 2011
  ident: ref_40
  article-title: A biomimetic sensor for the classification of honeys of different floral origin and the detection of adulteration
  publication-title: Sensors
  doi: 10.3390/s110807799
– volume: 20
  start-page: 4551
  year: 2020
  ident: ref_13
  article-title: Cnn and lstm-based emotion charting using physiological signals
  publication-title: Sensors
  doi: 10.3390/s20164551
– ident: ref_24
  doi: 10.1109/BMEiCon.2013.6687699
SSID ssj0023338
Score 2.4466438
Snippet Emotion recognition is of great importance for artificial intelligence, robots, and medicine etc. Although many techniques have been developed for emotion...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1018
SubjectTerms Algorithms
Artificial Intelligence
emotion recognition
Emotions
gradient-boosting decision tree
Humans
Logistic Models
portable device
Skin
skin potential
Wireless Technology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7Et_HFKh68hDbZzT6OVisiKOIDvIV9qlBSse3_dyZJSyuCF28hWTabbyc7M5sv3xByBl5PGmtZqoPQKS-sThVnLvVgPFxlzGQKfxS-uxc3L_z2tXidK_WFnLBGHrgBrpMZoQrrrZAWPLdHvblYKKGd51mULuLqCz5vmky1qRaDzKvREWKQ1HdGOVYz6GJljznvU4v0_xZZ_iRIznmc63Wy1oaK9KIZ4gZZCtUmWZ0TENwiT_2mCg99nPKA4LgHjslTOMDCWvRhOEZCEHT09PGGYskUt16poTWH1A4CRQLsABY8ehVw2dgmL9f958ubtC2TkDpAZJxK66W22gjBBQsBFe18VweuhIpZAMQjy4PKpROAWJTcMysKHbU1OSBoBNshy9WwCnuEQjLkXJd5HnyAXrhlEP7ZouuMK6KPPCHnU_hK12qIYymLQQm5BCJdzpBOyOms6WcjnPFbox7OwawBal3XJ8ACytYCyr8sICEn0xks4d3ADx6mCsPJqIRnlxDRQJCbkN1mRme3YrjhpViWELkw1wtjWbxSfbzX-ttSCckKuf8fgz8gKzmyZJAHnh-S5fHXJBxBmDO2x7VFfwPQIfu4
  priority: 102
  providerName: Directory of Open Access Journals
Title Emotion Recognition Based on Skin Potential Signals with a Portable Wireless Device
URI https://www.ncbi.nlm.nih.gov/pubmed/33540831
https://www.proquest.com/docview/2487151139
https://pubmed.ncbi.nlm.nih.gov/PMC7867357
https://doaj.org/article/1a685bdb67b441d5982f5869cd41f7cf
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4t0UWBnEgUsgiR3bOSDEwi4VUquqZaW9RfGrVFplYXcrlX_PTJKNGrQHLlGUOA_P2J4Ze_x9AG_R6qnKGB4XXhaxyE0Ra8Ft7LDxCJ3yKtW0Ufj0TJ7MxPd5Pt-DLcdmJ8D1ztCO-KRmq8X7299_PmGH_0gRJ4bsH9YZcRUkqd6HQzRIiogMTkW_mJBx3hBa056uGO1h0gIMDR8dmKUGvX-Xy_lv5uQdUzR9CA86H5J9bpX-CPZ8_Rju30EWfAKXk5aeh11sE4TwfIwWyzE8IcYtdr7cUKYQvujy-oqkwWhOllWsSS41C88oM3aBIyH76mk8eQqz6eTHl5O440-ILTo5m1gZpwpTVFIKyb0nqDuXFF5oqUPqURWBZ15nykqRhqCE40bmRShMlaVBVZI_g4N6WfsjYBglWZtwJ7zz-BZhOPqFJk9sZfPggojg3VZ8pe3AxYnjYlFikEGSLntJR_CmL_qrRdTYVWhMOugLEAh2c2G5uiq7PlWmldS5cUYqg_V1BEUYci0L67A-yoYIXm81WGKnoZWQqvbLm3WJdVfo6qD3G8HzVqP9pzjNhGmeRqAGuh78y_BOff2zAeZWWiqeq-P_-O4LuJdRdgzlf2cv4WCzuvGv0L3ZmBHsq7nCo55-G8HheHJ2fjFqpgpGTbP-C66A_JA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+Based+on+Skin+Potential+Signals+with+a+Portable+Wireless+Device&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Shuhao&rft.au=Jiang%2C+Ke&rft.au=Hu%2C+Haoji&rft.au=Kuang%2C+Haoze&rft.date=2021-02-02&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=21&rft.issue=3&rft_id=info:doi/10.3390%2Fs21031018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon