An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans
One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automati...
Saved in:
Published in | Annals of biomedical engineering Vol. 48; no. 1; pp. 312 - 328 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker. |
---|---|
AbstractList | One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker. One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker.One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker. |
Author | Liu, Xiaowei Meng, Yu Hou, Muzhou Wang, Zheng Chen, Yinghao Lu, Fanggen Weng, Futian Zhang, Jie |
Author_xml | – sequence: 1 givenname: Zheng surname: Wang fullname: Wang, Zheng organization: School of Mathematics and Statistics, Central South University, School of Information Science and Engineering, Hunan First Normal University – sequence: 2 givenname: Yu surname: Meng fullname: Meng, Yu organization: The Gastroenterology Department of General Hospital, Shenzhen University – sequence: 3 givenname: Futian surname: Weng fullname: Weng, Futian organization: School of Mathematics and Statistics, Central South University – sequence: 4 givenname: Yinghao surname: Chen fullname: Chen, Yinghao organization: School of Mathematics and Statistics, Central South University – sequence: 5 givenname: Fanggen surname: Lu fullname: Lu, Fanggen organization: The Gastroenterology Department of Second Xiangya Hospital, Central South University – sequence: 6 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: The Gastroenterology Department of First Xiangya Hospital, Central South University – sequence: 7 givenname: Muzhou orcidid: 0000-0001-6658-2187 surname: Hou fullname: Hou, Muzhou email: houmuzhou@sina.com organization: School of Mathematics and Statistics, Central South University – sequence: 8 givenname: Jie surname: Zhang fullname: Zhang, Jie email: jiezhang@csu.edu.cn organization: The Gastroenterology Department of Second Xiangya Hospital, Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31451989$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFu1DAQhi1URLeFF-CALHHhEvDETmIfV6sWkNpy2IWr5TiTxSWxF9up1LcnS1pV6qGHkQ_zfaNf_s_IiQ8eCXkP7DMw1nxJwARXBYN5Si5UwV-RFVQNL1Qt6xOyYkyxola1OCVnKd0yBiB59YacchAVKKlW5M_a04u-R5vdHdLNzQ29xvw7dLQPkV5Ow3BP11MOo8nY0S3uR_TZ-T3dTq2dsvEYpkSN7-gvlyxGM9B15w4hId25lCakwdPNjm6t8ekted2bIeG7h_ec_Ly82G2-FVc_vn7frK8KKwTkommFVK0RRrasqlVrgZvSosKqNG1ZQtXXUmEPtakqhmjbet4oKWTFuOgk8nPyabl7iOHvhCnr8RhuGJa4uiwlAGsaATP68Rl6G6bo53RHipWggMuZ-vBATe2InT5EN5p4rx-_cQbkAtgYUorYa-uyyS74HI0bNDB9bEwvjem5Mf2_Mc1ntXymPl5_UeKLlGbY7zE-xX7B-gdQWqaX |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107167 crossref_primary_10_1007_s11042_023_15425_7 crossref_primary_10_1177_20552076241271639 crossref_primary_10_6009_jjrt_2020_JSRT_76_11_1133 crossref_primary_10_1002_mp_15965 crossref_primary_10_1016_j_compbiomed_2024_108628 crossref_primary_10_1038_s41598_024_51666_8 crossref_primary_10_1007_s13042_021_01277_w crossref_primary_10_1016_j_eswa_2023_119979 crossref_primary_10_3389_fmed_2022_841202 crossref_primary_10_1007_s11042_023_17082_2 crossref_primary_10_1007_s11042_024_18910_9 crossref_primary_10_1007_s11548_022_02767_0 crossref_primary_10_1007_s11548_021_02533_8 crossref_primary_10_3233_JIFS_219395 crossref_primary_10_1038_s41598_020_74633_5 crossref_primary_10_1186_s13244_023_01581_9 crossref_primary_10_1007_s10278_021_00432_7 crossref_primary_10_1016_j_dsp_2021_103003 crossref_primary_10_1088_1361_6560_abca05 crossref_primary_10_1016_j_acra_2021_04_004 crossref_primary_10_1002_mp_14617 crossref_primary_10_1007_s11042_022_13135_0 crossref_primary_10_1016_j_bspc_2024_106979 crossref_primary_10_1016_j_anucene_2023_110004 crossref_primary_10_1016_j_heliyon_2024_e29670 crossref_primary_10_3390_sym12060876 crossref_primary_10_1080_00365521_2021_1939411 crossref_primary_10_1109_ACCESS_2024_3411155 |
Cites_doi | 10.7326/0003-4819-110-11-867 10.1053/gast.2001.22430 10.1186/s12967-015-0757-9 10.1016/j.cmpb.2017.03.017 10.1002/(SICI)1520-6300(1999)11:2<259::AID-AJHB13>3.0.CO;2-W 10.1109/Multi-Temp.2011.6005095 10.1016/j.mri.2019.04.007 10.1093/bioinformatics/16.10.906 10.1109/TMI.2015.2487997 10.1136/gut.2009.188946 10.1016/0021-9150(94)90025-6 10.1109/TKDE.2009.191 10.1016/j.acra.2007.07.013 10.1109/TBME.2015.2477688 10.1002/mrm.27550 10.1177/0284185115620947 10.1109/JBHI.2016.2637004 10.1016/j.acra.2013.08.007 10.1038/s41598-017-08925-8 10.1109/NEUREL.2014.7011511 10.1016/j.media.2007.03.004 10.1002/dmr.5610050202 10.1109/INDICON.2016.7838902 10.1118/1.2842076 10.1016/j.sigpro.2015.11.011 10.1117/12.2254139 10.1161/ATVBAHA.107.159228 10.1109/TPAMI.2017.2699184 10.1023/A:1018628609742 10.1109/TMI.2018.2804799 10.1002/jmri.25276 10.1136/bmj.288.6428.1401 10.1001/jama.2014.732 10.1109/CVPR.2014.222 10.1007/978-3-030-01234-2_49 10.1109/IVS.2017.7995810 10.1148/radiology.211.1.r99ap15283 10.1109/ICIEV.2016.7760190 10.1210/jcem-54-2-254 10.3892/ol.2016.4648 10.1002/sim.4780121403 10.1016/0026-0495(87)90063-1 10.1117/12.2044281 10.1016/j.ygyno.2014.01.031 10.1109/TPAMI.2016.2572683 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2019 Annals of Biomedical Engineering is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Biomedical Engineering Society 2019 – notice: Annals of Biomedical Engineering is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1007/s10439-019-02349-3 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 328 |
ExternalDocumentID | 31451989 10_1007_s10439_019_02349_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61375063 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61375063 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK ABRTQ AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI 7X8 |
ID | FETCH-LOGICAL-c441t-7b489ba4a8b0569bc13a2ce9e52ab2215f689ef16a550eecb6e5298485034d8e3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Fri Jul 11 10:08:38 EDT 2025 Fri Jul 25 19:06:12 EDT 2025 Wed Feb 19 02:32:15 EST 2025 Tue Jul 01 00:38:16 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Fri Feb 21 02:37:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Subcutaneous adipose tissue (SAT) Visceral adipose tissue (VAT) Support vector machine (SVM) Convolutional neural network (CNN) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7b489ba4a8b0569bc13a2ce9e52ab2215f689ef16a550eecb6e5298485034d8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6658-2187 |
PMID | 31451989 |
PQID | 2280219138 |
PQPubID | 54090 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2281107741 proquest_journals_2280219138 pubmed_primary_31451989 crossref_citationtrail_10_1007_s10439_019_02349_3 crossref_primary_10_1007_s10439_019_02349_3 springer_journals_10_1007_s10439_019_02349_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PanSinno JialinYangQiangA Survey on Transfer LearningIEEE Transactions on Knowledge and Data Engineering2010221013451359 Yi, L. and Y. F. Zheng. One-against-all multi-class SVM classification using reliability measures. In: IEEE International Joint Conference on Neural Networks, vol. 2, 2013, pp. 849-854. HuiSCNZhangTShiLWangDChuWCWAutomated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRIMag. Reson. Imaging20174597104 Spasojević, A., O. Stojanov, T. L. Turukalo, and O. Sveljo, Estimation of subcutaneous and visceral fat tissue volume on abdominal MR images, 2015, pp. 217–220. WangYThaiTMooreKDingKMcmeekinSLiuHZhengBQuantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patientsOncol. Lett.20161216806861:CAS:528:DC%2BC1cXnvFKrt7o%3D273472004907303 PeirisANSothmannMSHoffmannRGHennesMIWilsonCRGustafsonABKissebahAHAdiposity, fat distribution, and cardiovascular riskAnn. Int. Med.1989110118678721:STN:280:DyaL1M3ksFGksw%3D%3D2655520 Balasubramanian, T., S. Krishnan, M. Mohanakrishnan, K. R. Rao, C. V. Kumar, and K. Nirmala. Hog feature based SVM classification of glaucomatous fundus image with extraction of blood vessels. In: India Conference, 2017, pp. 1–4. S. Hai, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and Y. Lin. Region segmentation in histopathological breast cancer images using deep convolutional neural network. In: IEEE International Symposium on Biomedical Imaging, 2015, pp. 55–58. Hinton, G. and T. Tieleman. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA 4:26–30, 2012. Agarwal, C., A. H. Dallal, M. R. Arbabshirani, A. Patel, and G. Moore, Unsupervised quantification of abdominal fat from CT images using greedy snakes. In: Society of Photo-optical Instrumentation Engineers, 2017, p. 101332T. SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process. Lett.199993293300 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split/. Brebisson, A. D. and G. Montana. Deep neural networks for anatomical brain segmentation. In: Computer Vision & Pattern Recognition Workshops, vol. 2015-October, 2015, pp. 20–28. LarssonBSvärdsuddKWelinLWilhelmsenLBjörntorpPTibblinGAbdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913Br. Med. J.19842886428140114041:STN:280:DyaL2c3gsVGhtw%3D%3D ChenLiang-ChiehZhuYukunPapandreouGeorgeSchroffFlorianAdamHartwigEncoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationComputer Vision – ECCV 20182018ChamSpringer International Publishing833851 Ronneberger, O., P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing & Computer-assisted Intervention, vol. 9351, 2015, pp. 234–241. KimSHLeeJHKoBNamJYX-ray image classification using random forests with local binary patternsInternational Conference on Machine Learning & Cybernetics20106July31903194 KissebahAHPeirisANBiology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitusDiabetes Metab. Rev.20105283109 Estrada, S., R. Lu, S. Conjeti, X. Orozco-Ruiz, J. Panos-Willuhn, M. M. B. Breteler, and M. Reuter. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. CoRR. arXiv:abs/1904.02082, 2019. Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-January, 2017, pp. 6230–6239. Pomponiu, V., H. Hariharan, B. Zheng, and D. Gur. Improving breast mass detection using histogram of oriented gradients. In: Medical Imaging: Computer-Aided Diagnosis, vol. 9035, 2014, p. 90351R. OgdenCLCarrollMDKitBKFlegalKMPrevalence of childhood and adult obesity in the united states, 2011–2012JAMA201431188061:CAS:528:DC%2BC2cXjvVOhs74%3D245702444770258 PedregosaFVaroquauxGGramfortAMichelVLouppeGScikit-learn: machine learning in pythonJ. Mach. Learn. Res.2013121028252830 ShenNLiXZhengSZhangLFuYLiuXLiMLiJGuoSZhangHAutomated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learningMagn. Reson. Imaging.201910.1016/j.mri.2019.04.00731484043 TokunagaKMatsuzawaYIshikawaKTaruiSA novel technique for the determination of body fat by computed tomographyInt. J. Obes.1983754374451:STN:280:DyaL2c%2FmtVGmtw%3D%3D6642855 Chen, L. C., G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017. Drozdzal, M., E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connections in biomedical image segmentation. arXiv:1608.04117, 2016. CaprioSRelationship between abdominal visceral fat and metabolic risk factors in obese adolescentsAm. J. Hum. Biol.199911225926611533949 Neumann, D., T. Langner, F. Ulbrich, D. Spitta, and D. Goehring. Online vehicle detection using haar-like, LBP and HOG feature based image classifiers with stereo vision preselection. In: Proceedings of the on Intelligent Vehicles Symposium, 2017. Oquab, M., L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision & Pattern Recognition, 2014, pp. 1717–1724. KvistHSjoestroemLChowdhuryBAlpstenMArvidssonBLarssonLCederbladADetermination of total adipose tissue and body fat in women by computed tomography, 40k, and tritiumAm. J. Physiol.19862506 Pt 1E7363717334 MartinezuserosJGarciafoncillasJObesity and colorectal cancer: molecular features of adipose tissueJ. Transl. Med.2016141112 Romero, D., J. C. Ramirez, and A. Marmol. Quantification of subcutaneous and visceral adipose tissue using CT. In: IEEE International Workshop on Medical Measurement & Applications, 2006, pp. 128–133. FujiokaSMatsuzawaYTokunagaKTaruiSContribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesityMetab. Clin. Exp.198736154591:CAS:528:DyaL2sXjtV2nsg%3D%3D3796297 Wu, X. An iterative convolutional neural network algorithm improves electron microscopy image segmentation. Comput. Sci., pp. 1–9, 2015. CommandeurFGoellerMBetancurJCadetSDorisMXiCBermanDSSlomkaPJTamarappooBKDeyDDeep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CTIEEE Trans. Med. Imaging201837818351846299943626076348 RajendranPMadheswaranMHybrid medical image classification using association rule mining with decision tree algorithmComput. Sci.201031011731178 YuLChenHDouQQinJHengPAIntegrating online and offline 3D deep learning for automated polyp detection in colonoscopy videosIEEE J. Biomed. Health Inform.20172116575 Palacharla, P. K. Machine learning driven model inversion methodology to detect reniform nematodes in cotton. Dissertations & Theses - Gradworks, 2011. YoshizumiTNakamuraTYamaneMIslamAHMenjuMYamasakiKAraiTKotaniKFunahashiTYamashitaSAbdominal fat: standardized technique for measurement at CTRadiology199921112832861:STN:280:DyaK1M3gsFCrsQ%3D%3D10189485 KumarKVVKishorePVVIndian classical dance mudra classification using hog features and svm classifierInt. J. Electr. Comput. Eng.2018752537 Li, Z. and Y. Yu. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks. In: Conference: International Joint Conference on Artificial Intelligence (IJCAI), New York, 2016. WangYQiuYThaiTMooreKHongLZhengBA two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT imagesComput. Methods Program. Biomed.201714497104 TajbakhshNGuruduSRLiangJAutomated polyp detection in colonoscopy videos using shape and context informationIEEE Trans. Med. Imaging201635263064426462083 WangPHuXLiYLiuQZhuXAutomatic cell nuclei segmentation and classification of breast cancer histopathology imagesSignal Process.2016122113 KleinStefanvan der HeideUulke A.LipsIrene M.van VulpenMarcoStaringMariusPluimJosien P. W.Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual informationMedical Physics20083541407141718491536 QiuYTanMMcmeekinSThaiTDingKMooreKLiuHZhengBEarly prediction of clinical benefit of treating ovarian cancer using quantitative ct image feature analysisActa Radiol.2016579114926663390 EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patientsIEEE Trans. Biomed. Eng.20166351034104326390440 ChenLCPapandreouGKokkinosIMurphyKYuilleALDeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Trans. Pattern Anal. Mach. Intell.201840483484828463186 HeYKeuperMSchieleBFritzMLearning dilation factors for semantic segmentation of street scenesLNCS2017104964151 ShelhamerELongJDarrellTFully convolutional networks for semantic segmentationIEEE Trans. Pattern Anal. Mach. Intell.2014394640651 MunECBlackburnGLMatthewsJBCurrent status of medical and surgical therapy for obesityGastroenterology200112036696811:STN:280:DC%2BD3M7lvV2mtg%3D%3D11179243 YoonDYMoonJHKimHKChoiCSChangSKYunEJSeoYLComparison of low-dose ct and mr for measurement of intra-abdominal adipose tissue 1: a phantom and human studyAcad. Radiol.2008151627018078908 DesprésJPLemieuxIBergeronJPibarotPMathieuPLaroseERodésCabauJBertrandOFPoirierPAbdominal obesity and the metabolic syndrome: contribution to global cardiometabolic riskArterioscler. Thromb. Vasc. Biol.2008286103918356555 AghaeiFTanMHollingsworthABZhengBApplying a new quantitative global breast mri feature analysis scheme to assess tumor response to chemotherapyJ. Magn. Resonance Imaging201644510991106 KissebahAHVydelingumNMurrayREvansDJ N Tajbakhsh (2349_CR67) 2016; 35 2349_CR5 2349_CR6 LC Chen (2349_CR10) 2018; 40 2349_CR7 L Yu (2349_CR79) 2017; 21 2349_CR1 2349_CR26 N Shen (2349_CR62) 2019 2349_CR28 R Ochs (2349_CR49) 2007; 11 P Rajendran (2349_CR57) 2010; 3 2349_CR29 T Langer (2349_CR38) 2019; 81 K Tokunaga (2349_CR68) 1983; 7 2349_CR23 J Kullberg (2349_CR35) 2017; 7 2349_CR24 2349_CR25 T Yoshizumi (2349_CR78) 1999; 211 KVV Kumar (2349_CR36) 2018; 7 2349_CR21 2349_CR65 AN Peiris (2349_CR54) 1989; 110 2349_CR60 E Shelhamer (2349_CR61) 2014; 39 AH Kissebah (2349_CR32) 2010; 5 DWS Van (2349_CR69) 2014; 2 SCN Hui (2349_CR27) 2017; 45 S Makrogiannis (2349_CR42) 2013; 20 K Athanassiadi (2349_CR3) 2014; 42 B Larsson (2349_CR39) 1984; 288 KN Slaughter (2349_CR64) 2014; 133 F Pedregosa (2349_CR53) 2013; 12 J Liu (2349_CR41) 2018; 99 DY Yoon (2349_CR77) 2008; 15 T Nakamura (2349_CR47) 1994; 107 JP Després (2349_CR15) 2008; 28 F Commandeur (2349_CR13) 2018; 37 Sinno Jialin Pan (2349_CR63) 2010; 22 2349_CR30 2349_CR74 2349_CR75 2349_CR76 2349_CR70 Liang-Chieh Chen (2349_CR12) 2018 LE Moses (2349_CR45) 1993; 12 EC Mun (2349_CR46) 2001; 120 Y Wang (2349_CR72) 2017; 144 S Fujioka (2349_CR19) 1987; 36 Y He (2349_CR22) 2017; 10496 N Emaminejad (2349_CR17) 2016; 63 2349_CR48 2349_CR44 AH Kissebah (2349_CR33) 1982; 54 2349_CR40 MA Chandra (2349_CR9) 2018; 2 V Badrinarayanan (2349_CR4) 2015; 39 2349_CR80 2349_CR81 S Caprio (2349_CR8) 1999; 11 T. S. Furey (2349_CR20) 2000; 16 CL Ogden (2349_CR50) 2014; 311 Y Qiu (2349_CR56) 2016; 57 JAK Suykens (2349_CR66) 1999; 9 P Wang (2349_CR71) 2016; 122 SH Kim (2349_CR31) 2010; 6 J Martinezuseros (2349_CR43) 2016; 14 2349_CR59 2349_CR16 2349_CR18 2349_CR11 H Kvist (2349_CR37) 1986; 250 2349_CR55 Y Wang (2349_CR73) 2016; 12 2349_CR14 2349_CR58 Stefan Klein (2349_CR34) 2008; 35 2349_CR51 2349_CR52 F Aghaei (2349_CR2) 2016; 44 |
References_xml | – reference: Boris, G., P. Jean Michel, B. Franck, L. Sylvain, G. Sverine, C. Jean-Pierre, K. Denis, H. Patrick, B. Christophe, and C. Bruno. Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59(3):341–347, 2010. – reference: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split/. – reference: TajbakhshNGuruduSRLiangJAutomated polyp detection in colonoscopy videos using shape and context informationIEEE Trans. Med. Imaging201635263064426462083 – reference: Yu, F. and V. Koltun. Multi-scale context aggregation by dilated convolutions. In: Conference Paper at ICLR, pp. 1–9, 2016. – reference: Walid, Z., T. Brown, A. Murtada, and S. Ali. The application of deep learning to quantify SAT/VAT in human abdominal area. In: Advances in Science and Engineering Technology International Conferences (ASET), 2019, pp. 1–5. – reference: Yi, L. and Y. F. Zheng. One-against-all multi-class SVM classification using reliability measures. In: IEEE International Joint Conference on Neural Networks, vol. 2, 2013, pp. 849-854. – reference: YuLChenHDouQQinJHengPAIntegrating online and offline 3D deep learning for automated polyp detection in colonoscopy videosIEEE J. Biomed. Health Inform.20172116575 – reference: EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patientsIEEE Trans. Biomed. Eng.20166351034104326390440 – reference: AghaeiFTanMHollingsworthABZhengBApplying a new quantitative global breast mri feature analysis scheme to assess tumor response to chemotherapyJ. Magn. Resonance Imaging201644510991106 – reference: FujiokaSMatsuzawaYTokunagaKTaruiSContribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesityMetab. Clin. Exp.198736154591:CAS:528:DyaL2sXjtV2nsg%3D%3D3796297 – reference: Chen, L. C., G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017. – reference: PedregosaFVaroquauxGGramfortAMichelVLouppeGScikit-learn: machine learning in pythonJ. Mach. Learn. Res.2013121028252830 – reference: YoonDYMoonJHKimHKChoiCSChangSKYunEJSeoYLComparison of low-dose ct and mr for measurement of intra-abdominal adipose tissue 1: a phantom and human studyAcad. Radiol.2008151627018078908 – reference: DesprésJPLemieuxIBergeronJPibarotPMathieuPLaroseERodésCabauJBertrandOFPoirierPAbdominal obesity and the metabolic syndrome: contribution to global cardiometabolic riskArterioscler. Thromb. Vasc. Biol.2008286103918356555 – reference: PanSinno JialinYangQiangA Survey on Transfer LearningIEEE Transactions on Knowledge and Data Engineering2010221013451359 – reference: Pomponiu, V., H. Hariharan, B. Zheng, and D. Gur. Improving breast mass detection using histogram of oriented gradients. In: Medical Imaging: Computer-Aided Diagnosis, vol. 9035, 2014, p. 90351R. – reference: WangPHuXLiYLiuQZhuXAutomatic cell nuclei segmentation and classification of breast cancer histopathology imagesSignal Process.2016122113 – reference: HeYKeuperMSchieleBFritzMLearning dilation factors for semantic segmentation of street scenesLNCS2017104964151 – reference: Agarwal, C., A. H. Dallal, M. R. Arbabshirani, A. Patel, and G. Moore, Unsupervised quantification of abdominal fat from CT images using greedy snakes. In: Society of Photo-optical Instrumentation Engineers, 2017, p. 101332T. – reference: KullbergJHedströmABrandbergJStrandRJohanssonLBergströmGAhlströmHAutomated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studiesSci Rep20177110425288747435585405 – reference: ChandraMABediSSSurvey on svm and their application in image classificationInt. J. Inform. Technol.20182111 – reference: ChenLCPapandreouGKokkinosIMurphyKYuilleALDeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Trans. Pattern Anal. Mach. Intell.201840483484828463186 – reference: KumarKVVKishorePVVIndian classical dance mudra classification using hog features and svm classifierInt. J. Electr. Comput. Eng.2018752537 – reference: OchsRGoldinJAbtinFKimHBrownKBatraPRobackDMcnitt-GrayMBrownMAutomated classification of lung bronchovascular anatomy in CT using adaboostMed. Image Anal.2007113315324174825002041873 – reference: SlaughterKNThaiTPenarozaSBenbrookDMThavathiruEDingKNelsonTMcmeekinDSMooreKNMeasurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancerGynecol. Oncol.2014133111151:CAS:528:DC%2BC2cXkvV2mtbY%3D24680585 – reference: LarssonBSvärdsuddKWelinLWilhelmsenLBjörntorpPTibblinGAbdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913Br. Med. J.19842886428140114041:STN:280:DyaL2c3gsVGhtw%3D%3D – reference: LiuJChenFPanCZhuMZhangXZhangLLiaoHA cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomasIEEE Trans. Bio-Med. Eng.20189911:CAS:528:DC%2BC2sXhvFejt7jN – reference: Wu, X. An iterative convolutional neural network algorithm improves electron microscopy image segmentation. Comput. Sci., pp. 1–9, 2015. – reference: Hill, J. E., M. Fernandez-Del-Valle, R. Hayden, and S. Mitra. An automated segmentation for direct assessment of adipose tissue distribution from thoracic and abdominal dixon-technique mr images. In: Society of Photo-optical Instrumentation Engineers, vol. 10133, 2017, p. 1013315. – reference: KvistHSjoestroemLChowdhuryBAlpstenMArvidssonBLarssonLCederbladADetermination of total adipose tissue and body fat in women by computed tomography, 40k, and tritiumAm. J. Physiol.19862506 Pt 1E7363717334 – reference: KissebahAHPeirisANBiology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitusDiabetes Metab. Rev.20105283109 – reference: RajendranPMadheswaranMHybrid medical image classification using association rule mining with decision tree algorithmComput. Sci.201031011731178 – reference: MartinezuserosJGarciafoncillasJObesity and colorectal cancer: molecular features of adipose tissueJ. Transl. Med.2016141112 – reference: CaprioSRelationship between abdominal visceral fat and metabolic risk factors in obese adolescentsAm. J. Hum. Biol.199911225926611533949 – reference: Huang, G., Z. Liu, V. D. M. Laurens, and K. Q. Weinberger. Densely connected convolutional networks. In: European Conference on Computer Vision, vol. 2017-January, pp. 2261–2269, 2016. – reference: YoshizumiTNakamuraTYamaneMIslamAHMenjuMYamasakiKAraiTKotaniKFunahashiTYamashitaSAbdominal fat: standardized technique for measurement at CTRadiology199921112832861:STN:280:DyaK1M3gsFCrsQ%3D%3D10189485 – reference: Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-January, 2017, pp. 6230–6239. – reference: OgdenCLCarrollMDKitBKFlegalKMPrevalence of childhood and adult obesity in the united states, 2011–2012JAMA201431188061:CAS:528:DC%2BC2cXjvVOhs74%3D245702444770258 – reference: LangerTHedstromAMorwaldKWeghuberDForslundABergstenPAhlstromHKullbergJFully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRIMagn. Reson. Med.201981427362745 – reference: NakamuraTTokunagaKShimomuraINishidaMYoshidaSKotaniKIslamAHMWKenoYKobatakeTNagaiYContribution of visceral fat accumulation to the development of coronary artery disease in non-obese menAtherosclerosis199410722392461:STN:280:DyaK2M%2FntFGksw%3D%3D7980698 – reference: TokunagaKMatsuzawaYIshikawaKTaruiSA novel technique for the determination of body fat by computed tomographyInt. J. Obes.1983754374451:STN:280:DyaL2c%2FmtVGmtw%3D%3D6642855 – reference: HuiSCNZhangTShiLWangDChuWCWAutomated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRIMag. Reson. Imaging20174597104 – reference: Neumann, D., T. Langner, F. Ulbrich, D. Spitta, and D. Goehring. Online vehicle detection using haar-like, LBP and HOG feature based image classifiers with stereo vision preselection. In: Proceedings of the on Intelligent Vehicles Symposium, 2017. – reference: Estrada, S., R. Lu, S. Conjeti, X. Orozco-Ruiz, J. Panos-Willuhn, M. M. B. Breteler, and M. Reuter. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. CoRR. arXiv:abs/1904.02082, 2019. – reference: FureyT. S.CristianiniN.DuffyN.BednarskiD. W.SchummerM.HausslerD.Support vector machine classification and validation of cancer tissue samples using microarray expression dataBioinformatics200016109069141:CAS:528:DC%2BD3MXjvVWltA%3D%3D11120680 – reference: CommandeurFGoellerMBetancurJCadetSDorisMXiCBermanDSSlomkaPJTamarappooBKDeyDDeep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CTIEEE Trans. Med. Imaging201837818351846299943626076348 – reference: Li, Z. and Y. Yu. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks. In: Conference: International Joint Conference on Artificial Intelligence (IJCAI), New York, 2016. – reference: Ke, Y., X. Wang, L. Le, R. M. Summers, Y. Ke, X. Wang, L. Le, R. M. Summers, Y. Ke, and X. Wang. Deeplesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations. arXiv:1710.01766, 2017. – reference: Saha, S., A. Mahmud, A. A. Ali, and M. A. Amin. Classifying digital X-ray images into different human body parts. In: International Conference on Informatics, 2016, pp. 67–71. – reference: MosesLEShapiroDLittenbergBCombining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerationsStat. Med.19931214129313161:STN:280:DyaK2c%2FitlGkug%3D%3D8210827 – reference: Mensink, S. D., J. W. Spliethoff, R. Belder, J. M. Klaase, R. Bezooijen, and C. H. Slump. Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans. In: Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963, no. 0, p. 79632Q, 2011. – reference: S. Hai, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and Y. Lin. Region segmentation in histopathological breast cancer images using deep convolutional neural network. In: IEEE International Symposium on Biomedical Imaging, 2015, pp. 55–58. – reference: Jegou, S., M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio. The one hundred layers tiramisu: fully convolutional dense nets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1175–1183, 2016. – reference: Xie, J., L. Yang, S. C. Zhu, and N. W. Ying. A theory of generative convnet. In: International Conference on International Conference on Machine Learning, 2016. – reference: QiuYTanMMcmeekinSThaiTDingKMooreKLiuHZhengBEarly prediction of clinical benefit of treating ovarian cancer using quantitative ct image feature analysisActa Radiol.2016579114926663390 – reference: Palacharla, P. K. Machine learning driven model inversion methodology to detect reniform nematodes in cotton. Dissertations & Theses - Gradworks, 2011. – reference: PeirisANSothmannMSHoffmannRGHennesMIWilsonCRGustafsonABKissebahAHAdiposity, fat distribution, and cardiovascular riskAnn. Int. Med.1989110118678721:STN:280:DyaL1M3ksFGksw%3D%3D2655520 – reference: BadrinarayananVKendallACipollaRSegNet: a deep convolutional encoder-decoder architecture for scene segmentationIEEE Trans. Pattern Anal. Mach. Intell.2015399924812495 – reference: SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process. Lett.199993293300 – reference: WangYQiuYThaiTMooreKHongLZhengBA two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT imagesComput. Methods Program. Biomed.201714497104 – reference: ChenLiang-ChiehZhuYukunPapandreouGeorgeSchroffFlorianAdamHartwigEncoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationComputer Vision – ECCV 20182018ChamSpringer International Publishing833851 – reference: Ioffe, S. and C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015. – reference: MunECBlackburnGLMatthewsJBCurrent status of medical and surgical therapy for obesityGastroenterology200112036696811:STN:280:DC%2BD3M7lvV2mtg%3D%3D11179243 – reference: Ronneberger, O., P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing & Computer-assisted Intervention, vol. 9351, 2015, pp. 234–241. – reference: Romero, D., J. C. Ramirez, and A. Marmol. Quantification of subcutaneous and visceral adipose tissue using CT. In: IEEE International Workshop on Medical Measurement & Applications, 2006, pp. 128–133. – reference: ShelhamerELongJDarrellTFully convolutional networks for semantic segmentationIEEE Trans. Pattern Anal. Mach. Intell.2014394640651 – reference: Spasojević, A., O. Stojanov, T. L. Turukalo, and O. Sveljo, Estimation of subcutaneous and visceral fat tissue volume on abdominal MR images, 2015, pp. 217–220. – reference: Oquab, M., L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision & Pattern Recognition, 2014, pp. 1717–1724. – reference: KleinStefanvan der HeideUulke A.LipsIrene M.van VulpenMarcoStaringMariusPluimJosien P. W.Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual informationMedical Physics20083541407141718491536 – reference: ShenNLiXZhengSZhangLFuYLiuXLiMLiJGuoSZhangHAutomated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learningMagn. Reson. Imaging.201910.1016/j.mri.2019.04.00731484043 – reference: Hinton, G. and T. Tieleman. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA 4:26–30, 2012. – reference: Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, vol. 2, 2005. – reference: AthanassiadiKMakrygianniABalisEAlevizopoulosNVaslamatzisMVourlakouCFalse-positive and false-negative rate after positron emission tomography/computer tomography scan for mediastinal staging in non-small-cell lung cancerEur. Respir. J.201442193100 – reference: KissebahAHVydelingumNMurrayREvansDJHartzAJKalkhoffRKAdamsPWRelation of body fat distribution to metabolic complications of obesityJ. Clin. Endocrinol. Metab.19825422542541:STN:280:DyaL38%2FpvVGhsg%3D%3D7033275 – reference: Brebisson, A. D. and G. Montana. Deep neural networks for anatomical brain segmentation. In: Computer Vision & Pattern Recognition Workshops, vol. 2015-October, 2015, pp. 20–28. – reference: MakrogiannisSCaturegliGDavatzikosCFerrucciLComputer-aided assessment of regional abdominal fat with food residue removal in CTAcad. Radiol.2013201114131421241193543954576 – reference: KimSHLeeJHKoBNamJYX-ray image classification using random forests with local binary patternsInternational Conference on Machine Learning & Cybernetics20106July31903194 – reference: Balasubramanian, T., S. Krishnan, M. Mohanakrishnan, K. R. Rao, C. V. Kumar, and K. Nirmala. Hog feature based SVM classification of glaucomatous fundus image with extraction of blood vessels. In: India Conference, 2017, pp. 1–4. – reference: Drozdzal, M., E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connections in biomedical image segmentation. arXiv:1608.04117, 2016. – reference: VanDWSSchönbergerJLNuneziglesiasJBoulogneFWarnerJDYagerNGouillartEYuTContributorsTSScikit-image: image processing in pythonPeerJ201422e453 – reference: WangYThaiTMooreKDingKMcmeekinSLiuHZhengBQuantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patientsOncol. Lett.20161216806861:CAS:528:DC%2BC1cXnvFKrt7o%3D273472004907303 – volume: 7 start-page: 2537 issue: 5 year: 2018 ident: 2349_CR36 publication-title: Int. J. Electr. Comput. Eng. – volume: 99 start-page: 1 year: 2018 ident: 2349_CR41 publication-title: IEEE Trans. Bio-Med. Eng. – volume: 110 start-page: 867 issue: 11 year: 1989 ident: 2349_CR54 publication-title: Ann. Int. Med. doi: 10.7326/0003-4819-110-11-867 – volume: 120 start-page: 669 issue: 3 year: 2001 ident: 2349_CR46 publication-title: Gastroenterology doi: 10.1053/gast.2001.22430 – ident: 2349_CR21 – ident: 2349_CR25 – volume: 2 start-page: 1 year: 2018 ident: 2349_CR9 publication-title: Int. J. Inform. Technol. – ident: 2349_CR29 – volume: 14 start-page: 1 issue: 1 year: 2016 ident: 2349_CR43 publication-title: J. Transl. Med. doi: 10.1186/s12967-015-0757-9 – ident: 2349_CR44 – ident: 2349_CR16 – volume: 45 start-page: 97 year: 2017 ident: 2349_CR27 publication-title: Mag. Reson. Imaging – ident: 2349_CR40 – volume: 144 start-page: 97 year: 2017 ident: 2349_CR72 publication-title: Comput. Methods Program. Biomed. doi: 10.1016/j.cmpb.2017.03.017 – volume: 11 start-page: 259 issue: 2 year: 1999 ident: 2349_CR8 publication-title: Am. J. Hum. Biol. doi: 10.1002/(SICI)1520-6300(1999)11:2<259::AID-AJHB13>3.0.CO;2-W – volume: 10496 start-page: 41 year: 2017 ident: 2349_CR22 publication-title: LNCS – ident: 2349_CR52 doi: 10.1109/Multi-Temp.2011.6005095 – volume: 2 start-page: e453 issue: 2 year: 2014 ident: 2349_CR69 publication-title: PeerJ – ident: 2349_CR58 – volume: 6 start-page: 3190 issue: July year: 2010 ident: 2349_CR31 publication-title: International Conference on Machine Learning & Cybernetics – year: 2019 ident: 2349_CR62 publication-title: Magn. Reson. Imaging. doi: 10.1016/j.mri.2019.04.007 – volume: 16 start-page: 906 issue: 10 year: 2000 ident: 2349_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 35 start-page: 630 issue: 2 year: 2016 ident: 2349_CR67 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2015.2487997 – volume: 39 start-page: 2481 issue: 99 year: 2015 ident: 2349_CR4 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 2349_CR6 doi: 10.1136/gut.2009.188946 – volume: 42 start-page: 93 issue: 1 year: 2014 ident: 2349_CR3 publication-title: Eur. Respir. J. – ident: 2349_CR28 – volume: 107 start-page: 239 issue: 2 year: 1994 ident: 2349_CR47 publication-title: Atherosclerosis doi: 10.1016/0021-9150(94)90025-6 – ident: 2349_CR30 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 2349_CR63 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2009.191 – ident: 2349_CR76 – volume: 15 start-page: 62 issue: 1 year: 2008 ident: 2349_CR77 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2007.07.013 – volume: 63 start-page: 1034 issue: 5 year: 2016 ident: 2349_CR17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2477688 – volume: 81 start-page: 2736 issue: 4 year: 2019 ident: 2349_CR38 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27550 – volume: 57 start-page: 1149 issue: 9 year: 2016 ident: 2349_CR56 publication-title: Acta Radiol. doi: 10.1177/0284185115620947 – ident: 2349_CR24 – volume: 21 start-page: 65 issue: 1 year: 2017 ident: 2349_CR79 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2637004 – volume: 20 start-page: 1413 issue: 11 year: 2013 ident: 2349_CR42 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.08.007 – volume: 7 start-page: 10425 issue: 1 year: 2017 ident: 2349_CR35 publication-title: Sci Rep doi: 10.1038/s41598-017-08925-8 – ident: 2349_CR65 doi: 10.1109/NEUREL.2014.7011511 – ident: 2349_CR59 – volume: 11 start-page: 315 issue: 3 year: 2007 ident: 2349_CR49 publication-title: Med. Image Anal. doi: 10.1016/j.media.2007.03.004 – volume: 5 start-page: 83 issue: 2 year: 2010 ident: 2349_CR32 publication-title: Diabetes Metab. Rev. doi: 10.1002/dmr.5610050202 – ident: 2349_CR5 doi: 10.1109/INDICON.2016.7838902 – volume: 35 start-page: 1407 issue: 4 year: 2008 ident: 2349_CR34 publication-title: Medical Physics doi: 10.1118/1.2842076 – ident: 2349_CR75 – volume: 122 start-page: 1 year: 2016 ident: 2349_CR71 publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.11.011 – ident: 2349_CR1 doi: 10.1117/12.2254139 – volume: 28 start-page: 1039 issue: 6 year: 2008 ident: 2349_CR15 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.107.159228 – ident: 2349_CR23 – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 2349_CR10 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: 2349_CR81 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 2349_CR66 publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – volume: 37 start-page: 1835 issue: 8 year: 2018 ident: 2349_CR13 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2804799 – volume: 44 start-page: 1099 issue: 5 year: 2016 ident: 2349_CR2 publication-title: J. Magn. Resonance Imaging doi: 10.1002/jmri.25276 – volume: 7 start-page: 437 issue: 5 year: 1983 ident: 2349_CR68 publication-title: Int. J. Obes. – volume: 12 start-page: 2825 issue: 10 year: 2013 ident: 2349_CR53 publication-title: J. Mach. Learn. Res. – volume: 288 start-page: 1401 issue: 6428 year: 1984 ident: 2349_CR39 publication-title: Br. Med. J. doi: 10.1136/bmj.288.6428.1401 – ident: 2349_CR7 – ident: 2349_CR14 – volume: 311 start-page: 806 issue: 8 year: 2014 ident: 2349_CR50 publication-title: JAMA doi: 10.1001/jama.2014.732 – ident: 2349_CR51 doi: 10.1109/CVPR.2014.222 – ident: 2349_CR18 – volume: 3 start-page: 1173 issue: 10 year: 2010 ident: 2349_CR57 publication-title: Comput. Sci. – start-page: 833 volume-title: Computer Vision – ECCV 2018 year: 2018 ident: 2349_CR12 doi: 10.1007/978-3-030-01234-2_49 – ident: 2349_CR48 doi: 10.1109/IVS.2017.7995810 – volume: 211 start-page: 283 issue: 1 year: 1999 ident: 2349_CR78 publication-title: Radiology doi: 10.1148/radiology.211.1.r99ap15283 – ident: 2349_CR60 doi: 10.1109/ICIEV.2016.7760190 – ident: 2349_CR80 – ident: 2349_CR26 – volume: 250 start-page: E736 issue: 6 Pt 1 year: 1986 ident: 2349_CR37 publication-title: Am. J. Physiol. – volume: 54 start-page: 254 issue: 2 year: 1982 ident: 2349_CR33 publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jcem-54-2-254 – volume: 12 start-page: 680 issue: 1 year: 2016 ident: 2349_CR73 publication-title: Oncol. Lett. doi: 10.3892/ol.2016.4648 – volume: 12 start-page: 1293 issue: 14 year: 1993 ident: 2349_CR45 publication-title: Stat. Med. doi: 10.1002/sim.4780121403 – volume: 36 start-page: 54 issue: 1 year: 1987 ident: 2349_CR19 publication-title: Metab. Clin. Exp. doi: 10.1016/0026-0495(87)90063-1 – ident: 2349_CR55 doi: 10.1117/12.2044281 – volume: 133 start-page: 11 issue: 1 year: 2014 ident: 2349_CR64 publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2014.01.031 – volume: 39 start-page: 640 issue: 4 year: 2014 ident: 2349_CR61 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2572683 – ident: 2349_CR11 – ident: 2349_CR74 – ident: 2349_CR70 |
SSID | ssj0011835 |
Score | 2.4216504 |
Snippet | One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 312 |
SubjectTerms | Abdomen Adipose tissue Artificial neural networks Automation Biochemistry Biological and Medical Physics Biomarkers Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Classifiers Computed tomography Feasibility studies Health risks Image processing Image segmentation Learning Medical imaging Neural networks Standard deviation Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEJRXoKBB4gaRNrbj2MdoRVUh7V66i3qLbMepKrZJRXYP_fcdO8m2qIDEISc_EvlzZr7xeGYAPhea9JpjIWKZ-1RkXqS6mJk0Y03jZ7WsZQyPXizlyVp8P8vPxqCwfrrtPrkko6S-E-xGypNMX3oYFzrlD-FRTrZ7uMi1ZuXed0CbdKhboMkw0lKMoTJ_nuN3dXSPY97zj0a1c_wcno18EcsB4BfwwLeH8PROFsFDeLwY_eMv4WfZ4pCPmIQYzpdLXMQK0UjUFIO1eY3lbtsRS_U1nvrzeFeoPUcSH25HNNF3ux5NW-OPi96F0yos64urrve4igBh1-J8haeER_8K1sffVvOTdCynkDriPNu0sEJpa4RRlliPti7jhjmvfc6MZaT6G6m0bzJpyGrx3llJLVoJlc-4qJXnr-Gg7Vr_FtAWStSmsdLNYsI1K5omZ9bIwkjdOJtANq1q5cZc46Hkxaa6zZIckKgIiSoiUfEEvuzHXA2ZNv7Z-2gCqxr_ur4KqX1IAmdcJfBp33wZVmyzGdYw9AkmLxGpBN4MIO9fx0PZYq10Al8n1G8n__u3vPu_7u_hCQtGezzHOYKD7a-d_0DMZms_xo18A_Bb66Y priority: 102 providerName: Springer Nature |
Title | An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans |
URI | https://link.springer.com/article/10.1007/s10439-019-02349-3 https://www.ncbi.nlm.nih.gov/pubmed/31451989 https://www.proquest.com/docview/2280219138 https://www.proquest.com/docview/2281107741 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BJiF4QDBgBMZkJN4gIj9cx35CadVuAjVCrEXlKbIdZ5ooSbe0D_z3nB23BU3sIcmDncTyZ5-_O_vuAN5lAtc1nViP5dSENDY0FFkkwzipaxNVrGLOPXpasPM5_bwYLLzBrfPHKrcy0QnqqtXWRv7Rhm3B2RWn_NPqOrRZo-zuqk-hcR8ObegyO6qzxU7hQu7cJ9iMBKpIglHvNONd53ApRkUarySlIkz_XZhusc1bO6VuAZo8gceeOZK8h_op3DPNETz6K57gETyY-p3yZ_Azb0gfmRjFGRkVBZm6XNEESSqxeudvkm_WLfJVU5ELc-lODTWXBAWJ3iBhNO2mI7KpyPerTlu7Fcmrq1XbGTJzUJG2IaMZuUBkuucwn4xno_PQJ1YINbKfdZgpyoWSVHKF_EcoHacy0UaYQSJVgiSgZlyYOmYS9RdjtGJYIjjlgyilFTfpCzho2sa8BKIyTitZK6YjF3pN0boeJEqyTDJRaxVAvO3VUvuo4zb5xbLcx0u2SJSIROmQKNMA3u_eWfUxN-6sfbIFq_Tzryv3oyWAt7viX7bHlsu-D20dq_wipQrguAd597vUJjAWXATwYYv6_uP_b8uru9vyGh4mVl13FpwTOFjfbMwb5DRrdeoGLt755OwUDvPJcFjY59mPL2N8DsfF129YOk_yP80q9SY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GkMiY8DgvEVGGAkOEFEY7uOfUCoKpSOrb2sQ7tltuNMEyUppBXan-I38uwkLWhitx1ysuNE7_vD7z2AV6lCvWapr1hmLuaJ47FKezpOaFG4Xi5yEcqjJ1MxPuJfjvvHW_C7q4Xx1yo7mRgEdV5ZHyN_59u2IHclTH5Y_Ij91CifXe1GaDRkse_Of6HLVr_f-4j4fU3p6NNsOI7bqQKxRdW_jFPDpTKaa2lQ-StjE6apdcr1qTYUNWAhpHJFIjQa785ZI3BFSS77PcZz6Rieew2uc4aa3Femjz6vsxbIHs3EBIUumRK8LdJpS_VQ9aPjjg9lXMXsX0V4wbq9kJkNCm90F-60lioZNKR1D7ZcuQO3_-pfuAM3Jm1m_j58G5Sk6YSM4pMMp1MyCbOpCRrFxPu552SwWlZoH7ucHLrTcEupPCUouOwKDVRXrWqiy5x8Pautj5ORQX62qGpHZoE0SFWS4YwcIiXUD-DoSkD-ELbLqnSPgZhU8lwXRtheaPVmeFH0qdEi1UIV1kSQdFDNbNvl3A_bmGeb_sweExliIguYyFgEb9bvLJoeH5fu3u2QlbX8Xmcb6ozg5Xr5u4fYfN7A0O_xzjaacBE8apC8_hzzA5OVVBG87bC-Ofz___Lk8n95ATfHs8lBdrA33X8Kt6gPFYTo0S5sL3-u3DO0p5bmeSBiAidXzTV_ANmiK3I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIqHtYWLsKxvbPGl72iIax3XiB4S6QgVjjdAoE2_BdhyE1iXd0grxr_HXcXaSdhMabzzkyY4T-b5-d_bdAXyIBNo1TW3Gcmh8Fhjmi6gr_YDmuelmPOMuPXqU8P0T9vW0d7oC120ujL1W2epEp6izUtsY-ZYt24LSFYTxVt5cizjaHe5Mf_u2g5Q9aW3badQscmiuLtF9q7YPdpHWHykd7o0H-37TYcDXCANmfqRYLJRkMlYIBITSQSipNsL0qFQUrWHOY2HygEsE8sZoxXFExCzudUOWxSbEdR_AamS9og6sftlLjr4vzjBQWOr-CQIdNMFZk7LTJO4hEEA3Hh8aMuGH_5rFW1j31jmtM3_DdXjc4FbSrxntCayYYgMe_VXNcAPWRs05_VP42S9IXRcZlSkZJAkZuU7VBCEysV7vFenPZyWiZZORY3Pu7iwV5wTVmJ4jXDXlvCKyyMiPi0rbqBnpZxfTsjJk7BiFlAUZjMkx8kX1DE7uZdOfQ6coC_MSiIpilslccd11hd8Uy_MeVZJHkotcKw-CdldT3dQ8t603JumyWrOlRIqUSB0l0tCDT4t3pnXFjztnb7bEShvpr9Ilr3rwfjH8y-7YZFLvoZ1jXW8EdB68qIm8-Fxo2yeLWHjwuaX6cvH__8uru__lHayhxKTfDpLD1_CQ2riBCyVtQmf2Z27eILiaqbcNFxM4u2_BuQEa3TEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+CNN+Method+for+Fully+Automated+Segmenting+Subcutaneous+and+Visceral+Adipose+Tissue+on+CT+Scans&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Wang%2C+Zheng&rft.au=Yu%2C+Meng&rft.au=Weng%2C+Futian&rft.au=Chen%2C+Yinghao&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=48&rft.issue=1&rft.spage=312&rft.epage=328&rft_id=info:doi/10.1007%2Fs10439-019-02349-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |