An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans

One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automati...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 48; no. 1; pp. 312 - 328
Main Authors Wang, Zheng, Meng, Yu, Weng, Futian, Chen, Yinghao, Lu, Fanggen, Liu, Xiaowei, Hou, Muzhou, Zhang, Jie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker.
AbstractList One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker.
One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker.One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level convolutional neural network (CNN) approach to automate the selection of abdominal computed tomography (CT) images on large-scale CT scans and automatically quantify the visceral and subcutaneous adipose tissue. First, the proposed framework employs support vector machine (SVM) classifier with a configured parameter to cluster abdominal CT images from screening patients. Second, a pyramid dilation network (DilaLab) is designed based on CNN, to address the complex distribution and non-abdominal internal adipose tissue problems of biomedical image segmentation in visceral adipose tissue. Finally, since the trained DilaLab implicitly encodes the fat-related learning, the transferred DilaLab learning and a simple decoder constitute a new network (DilaLabPlus) for quantifying subcutaneous adipose tissue. The networks are trained not only all available CT images but also with a limited number of CT scans, such as 70 samples including a 10% validation subset. All networks are yielding more precise results. The mean accuracy of the configured SVM classifier yields promising performance of 99.83%, while DilaLabPlus achieves a remarkable performance improvement an with average of 98.08 ± 0.84% standard deviation and 0.7 ± 0.8% standard deviation false-positive rate. The performance of DilaLab yields average 97.82 ± 1.34% standard deviation and 1.23 ± 1.33% standard deviation false-positive rate. This study demonstrates considerable improvement in feasibility and reliability for the fully automated recognition of abdominal CT slices and segmentation of selected abdominal CT in subcutaneous and visceral adipose tissue, and it has a high agreement with a manually annotated biomarker.
Author Liu, Xiaowei
Meng, Yu
Hou, Muzhou
Wang, Zheng
Chen, Yinghao
Lu, Fanggen
Weng, Futian
Zhang, Jie
Author_xml – sequence: 1
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: School of Mathematics and Statistics, Central South University, School of Information Science and Engineering, Hunan First Normal University
– sequence: 2
  givenname: Yu
  surname: Meng
  fullname: Meng, Yu
  organization: The Gastroenterology Department of General Hospital, Shenzhen University
– sequence: 3
  givenname: Futian
  surname: Weng
  fullname: Weng, Futian
  organization: School of Mathematics and Statistics, Central South University
– sequence: 4
  givenname: Yinghao
  surname: Chen
  fullname: Chen, Yinghao
  organization: School of Mathematics and Statistics, Central South University
– sequence: 5
  givenname: Fanggen
  surname: Lu
  fullname: Lu, Fanggen
  organization: The Gastroenterology Department of Second Xiangya Hospital, Central South University
– sequence: 6
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: The Gastroenterology Department of First Xiangya Hospital, Central South University
– sequence: 7
  givenname: Muzhou
  orcidid: 0000-0001-6658-2187
  surname: Hou
  fullname: Hou, Muzhou
  email: houmuzhou@sina.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 8
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  email: jiezhang@csu.edu.cn
  organization: The Gastroenterology Department of Second Xiangya Hospital, Central South University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31451989$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFu1DAQhi1URLeFF-CALHHhEvDETmIfV6sWkNpy2IWr5TiTxSWxF9up1LcnS1pV6qGHkQ_zfaNf_s_IiQ8eCXkP7DMw1nxJwARXBYN5Si5UwV-RFVQNL1Qt6xOyYkyxola1OCVnKd0yBiB59YacchAVKKlW5M_a04u-R5vdHdLNzQ29xvw7dLQPkV5Ow3BP11MOo8nY0S3uR_TZ-T3dTq2dsvEYpkSN7-gvlyxGM9B15w4hId25lCakwdPNjm6t8ekted2bIeG7h_ec_Ly82G2-FVc_vn7frK8KKwTkommFVK0RRrasqlVrgZvSosKqNG1ZQtXXUmEPtakqhmjbet4oKWTFuOgk8nPyabl7iOHvhCnr8RhuGJa4uiwlAGsaATP68Rl6G6bo53RHipWggMuZ-vBATe2InT5EN5p4rx-_cQbkAtgYUorYa-uyyS74HI0bNDB9bEwvjem5Mf2_Mc1ntXymPl5_UeKLlGbY7zE-xX7B-gdQWqaX
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107167
crossref_primary_10_1007_s11042_023_15425_7
crossref_primary_10_1177_20552076241271639
crossref_primary_10_6009_jjrt_2020_JSRT_76_11_1133
crossref_primary_10_1002_mp_15965
crossref_primary_10_1016_j_compbiomed_2024_108628
crossref_primary_10_1038_s41598_024_51666_8
crossref_primary_10_1007_s13042_021_01277_w
crossref_primary_10_1016_j_eswa_2023_119979
crossref_primary_10_3389_fmed_2022_841202
crossref_primary_10_1007_s11042_023_17082_2
crossref_primary_10_1007_s11042_024_18910_9
crossref_primary_10_1007_s11548_022_02767_0
crossref_primary_10_1007_s11548_021_02533_8
crossref_primary_10_3233_JIFS_219395
crossref_primary_10_1038_s41598_020_74633_5
crossref_primary_10_1186_s13244_023_01581_9
crossref_primary_10_1007_s10278_021_00432_7
crossref_primary_10_1016_j_dsp_2021_103003
crossref_primary_10_1088_1361_6560_abca05
crossref_primary_10_1016_j_acra_2021_04_004
crossref_primary_10_1002_mp_14617
crossref_primary_10_1007_s11042_022_13135_0
crossref_primary_10_1016_j_bspc_2024_106979
crossref_primary_10_1016_j_anucene_2023_110004
crossref_primary_10_1016_j_heliyon_2024_e29670
crossref_primary_10_3390_sym12060876
crossref_primary_10_1080_00365521_2021_1939411
crossref_primary_10_1109_ACCESS_2024_3411155
Cites_doi 10.7326/0003-4819-110-11-867
10.1053/gast.2001.22430
10.1186/s12967-015-0757-9
10.1016/j.cmpb.2017.03.017
10.1002/(SICI)1520-6300(1999)11:2<259::AID-AJHB13>3.0.CO;2-W
10.1109/Multi-Temp.2011.6005095
10.1016/j.mri.2019.04.007
10.1093/bioinformatics/16.10.906
10.1109/TMI.2015.2487997
10.1136/gut.2009.188946
10.1016/0021-9150(94)90025-6
10.1109/TKDE.2009.191
10.1016/j.acra.2007.07.013
10.1109/TBME.2015.2477688
10.1002/mrm.27550
10.1177/0284185115620947
10.1109/JBHI.2016.2637004
10.1016/j.acra.2013.08.007
10.1038/s41598-017-08925-8
10.1109/NEUREL.2014.7011511
10.1016/j.media.2007.03.004
10.1002/dmr.5610050202
10.1109/INDICON.2016.7838902
10.1118/1.2842076
10.1016/j.sigpro.2015.11.011
10.1117/12.2254139
10.1161/ATVBAHA.107.159228
10.1109/TPAMI.2017.2699184
10.1023/A:1018628609742
10.1109/TMI.2018.2804799
10.1002/jmri.25276
10.1136/bmj.288.6428.1401
10.1001/jama.2014.732
10.1109/CVPR.2014.222
10.1007/978-3-030-01234-2_49
10.1109/IVS.2017.7995810
10.1148/radiology.211.1.r99ap15283
10.1109/ICIEV.2016.7760190
10.1210/jcem-54-2-254
10.3892/ol.2016.4648
10.1002/sim.4780121403
10.1016/0026-0495(87)90063-1
10.1117/12.2044281
10.1016/j.ygyno.2014.01.031
10.1109/TPAMI.2016.2572683
ContentType Journal Article
Copyright Biomedical Engineering Society 2019
Annals of Biomedical Engineering is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Biomedical Engineering Society 2019
– notice: Annals of Biomedical Engineering is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
DOI 10.1007/s10439-019-02349-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 328
ExternalDocumentID 31451989
10_1007_s10439_019_02349_3
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61375063
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61375063
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
ABRTQ
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
ID FETCH-LOGICAL-c441t-7b489ba4a8b0569bc13a2ce9e52ab2215f689ef16a550eecb6e5298485034d8e3
IEDL.DBID 7X7
ISSN 0090-6964
1573-9686
IngestDate Fri Jul 11 10:08:38 EDT 2025
Fri Jul 25 19:06:12 EDT 2025
Wed Feb 19 02:32:15 EST 2025
Tue Jul 01 00:38:16 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Fri Feb 21 02:37:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Subcutaneous adipose tissue (SAT)
Visceral adipose tissue (VAT)
Support vector machine (SVM)
Convolutional neural network (CNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7b489ba4a8b0569bc13a2ce9e52ab2215f689ef16a550eecb6e5298485034d8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6658-2187
PMID 31451989
PQID 2280219138
PQPubID 54090
PageCount 17
ParticipantIDs proquest_miscellaneous_2281107741
proquest_journals_2280219138
pubmed_primary_31451989
crossref_citationtrail_10_1007_s10439_019_02349_3
crossref_primary_10_1007_s10439_019_02349_3
springer_journals_10_1007_s10439_019_02349_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PanSinno JialinYangQiangA Survey on Transfer LearningIEEE Transactions on Knowledge and Data Engineering2010221013451359
Yi, L. and Y. F. Zheng. One-against-all multi-class SVM classification using reliability measures. In: IEEE International Joint Conference on Neural Networks, vol. 2, 2013, pp. 849-854.
HuiSCNZhangTShiLWangDChuWCWAutomated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRIMag. Reson. Imaging20174597104
Spasojević, A., O. Stojanov, T. L. Turukalo, and O. Sveljo, Estimation of subcutaneous and visceral fat tissue volume on abdominal MR images, 2015, pp. 217–220.
WangYThaiTMooreKDingKMcmeekinSLiuHZhengBQuantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patientsOncol. Lett.20161216806861:CAS:528:DC%2BC1cXnvFKrt7o%3D273472004907303
PeirisANSothmannMSHoffmannRGHennesMIWilsonCRGustafsonABKissebahAHAdiposity, fat distribution, and cardiovascular riskAnn. Int. Med.1989110118678721:STN:280:DyaL1M3ksFGksw%3D%3D2655520
Balasubramanian, T., S. Krishnan, M. Mohanakrishnan, K. R. Rao, C. V. Kumar, and K. Nirmala. Hog feature based SVM classification of glaucomatous fundus image with extraction of blood vessels. In: India Conference, 2017, pp. 1–4.
S. Hai, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and Y. Lin. Region segmentation in histopathological breast cancer images using deep convolutional neural network. In: IEEE International Symposium on Biomedical Imaging, 2015, pp. 55–58.
Hinton, G. and T. Tieleman. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA 4:26–30, 2012.
Agarwal, C., A. H. Dallal, M. R. Arbabshirani, A. Patel, and G. Moore, Unsupervised quantification of abdominal fat from CT images using greedy snakes. In: Society of Photo-optical Instrumentation Engineers, 2017, p. 101332T.
SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process. Lett.199993293300
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split/.
Brebisson, A. D. and G. Montana. Deep neural networks for anatomical brain segmentation. In: Computer Vision & Pattern Recognition Workshops, vol. 2015-October, 2015, pp. 20–28.
LarssonBSvärdsuddKWelinLWilhelmsenLBjörntorpPTibblinGAbdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913Br. Med. J.19842886428140114041:STN:280:DyaL2c3gsVGhtw%3D%3D
ChenLiang-ChiehZhuYukunPapandreouGeorgeSchroffFlorianAdamHartwigEncoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationComputer Vision – ECCV 20182018ChamSpringer International Publishing833851
Ronneberger, O., P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing & Computer-assisted Intervention, vol. 9351, 2015, pp. 234–241.
KimSHLeeJHKoBNamJYX-ray image classification using random forests with local binary patternsInternational Conference on Machine Learning & Cybernetics20106July31903194
KissebahAHPeirisANBiology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitusDiabetes Metab. Rev.20105283109
Estrada, S., R. Lu, S. Conjeti, X. Orozco-Ruiz, J. Panos-Willuhn, M. M. B. Breteler, and M. Reuter. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. CoRR. arXiv:abs/1904.02082, 2019.
Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-January, 2017, pp. 6230–6239.
Pomponiu, V., H. Hariharan, B. Zheng, and D. Gur. Improving breast mass detection using histogram of oriented gradients. In: Medical Imaging: Computer-Aided Diagnosis, vol. 9035, 2014, p. 90351R.
OgdenCLCarrollMDKitBKFlegalKMPrevalence of childhood and adult obesity in the united states, 2011–2012JAMA201431188061:CAS:528:DC%2BC2cXjvVOhs74%3D245702444770258
PedregosaFVaroquauxGGramfortAMichelVLouppeGScikit-learn: machine learning in pythonJ. Mach. Learn. Res.2013121028252830
ShenNLiXZhengSZhangLFuYLiuXLiMLiJGuoSZhangHAutomated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learningMagn. Reson. Imaging.201910.1016/j.mri.2019.04.00731484043
TokunagaKMatsuzawaYIshikawaKTaruiSA novel technique for the determination of body fat by computed tomographyInt. J. Obes.1983754374451:STN:280:DyaL2c%2FmtVGmtw%3D%3D6642855
Chen, L. C., G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017.
Drozdzal, M., E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connections in biomedical image segmentation. arXiv:1608.04117, 2016.
CaprioSRelationship between abdominal visceral fat and metabolic risk factors in obese adolescentsAm. J. Hum. Biol.199911225926611533949
Neumann, D., T. Langner, F. Ulbrich, D. Spitta, and D. Goehring. Online vehicle detection using haar-like, LBP and HOG feature based image classifiers with stereo vision preselection. In: Proceedings of the on Intelligent Vehicles Symposium, 2017.
Oquab, M., L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision & Pattern Recognition, 2014, pp. 1717–1724.
KvistHSjoestroemLChowdhuryBAlpstenMArvidssonBLarssonLCederbladADetermination of total adipose tissue and body fat in women by computed tomography, 40k, and tritiumAm. J. Physiol.19862506 Pt 1E7363717334
MartinezuserosJGarciafoncillasJObesity and colorectal cancer: molecular features of adipose tissueJ. Transl. Med.2016141112
Romero, D., J. C. Ramirez, and A. Marmol. Quantification of subcutaneous and visceral adipose tissue using CT. In: IEEE International Workshop on Medical Measurement & Applications, 2006, pp. 128–133.
FujiokaSMatsuzawaYTokunagaKTaruiSContribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesityMetab. Clin. Exp.198736154591:CAS:528:DyaL2sXjtV2nsg%3D%3D3796297
Wu, X. An iterative convolutional neural network algorithm improves electron microscopy image segmentation. Comput. Sci., pp. 1–9, 2015.
CommandeurFGoellerMBetancurJCadetSDorisMXiCBermanDSSlomkaPJTamarappooBKDeyDDeep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CTIEEE Trans. Med. Imaging201837818351846299943626076348
RajendranPMadheswaranMHybrid medical image classification using association rule mining with decision tree algorithmComput. Sci.201031011731178
YuLChenHDouQQinJHengPAIntegrating online and offline 3D deep learning for automated polyp detection in colonoscopy videosIEEE J. Biomed. Health Inform.20172116575
Palacharla, P. K. Machine learning driven model inversion methodology to detect reniform nematodes in cotton. Dissertations & Theses - Gradworks, 2011.
YoshizumiTNakamuraTYamaneMIslamAHMenjuMYamasakiKAraiTKotaniKFunahashiTYamashitaSAbdominal fat: standardized technique for measurement at CTRadiology199921112832861:STN:280:DyaK1M3gsFCrsQ%3D%3D10189485
KumarKVVKishorePVVIndian classical dance mudra classification using hog features and svm classifierInt. J. Electr. Comput. Eng.2018752537
Li, Z. and Y. Yu. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks. In: Conference: International Joint Conference on Artificial Intelligence (IJCAI), New York, 2016.
WangYQiuYThaiTMooreKHongLZhengBA two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT imagesComput. Methods Program. Biomed.201714497104
TajbakhshNGuruduSRLiangJAutomated polyp detection in colonoscopy videos using shape and context informationIEEE Trans. Med. Imaging201635263064426462083
WangPHuXLiYLiuQZhuXAutomatic cell nuclei segmentation and classification of breast cancer histopathology imagesSignal Process.2016122113
KleinStefanvan der HeideUulke A.LipsIrene M.van VulpenMarcoStaringMariusPluimJosien P. W.Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual informationMedical Physics20083541407141718491536
QiuYTanMMcmeekinSThaiTDingKMooreKLiuHZhengBEarly prediction of clinical benefit of treating ovarian cancer using quantitative ct image feature analysisActa Radiol.2016579114926663390
EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patientsIEEE Trans. Biomed. Eng.20166351034104326390440
ChenLCPapandreouGKokkinosIMurphyKYuilleALDeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Trans. Pattern Anal. Mach. Intell.201840483484828463186
HeYKeuperMSchieleBFritzMLearning dilation factors for semantic segmentation of street scenesLNCS2017104964151
ShelhamerELongJDarrellTFully convolutional networks for semantic segmentationIEEE Trans. Pattern Anal. Mach. Intell.2014394640651
MunECBlackburnGLMatthewsJBCurrent status of medical and surgical therapy for obesityGastroenterology200112036696811:STN:280:DC%2BD3M7lvV2mtg%3D%3D11179243
YoonDYMoonJHKimHKChoiCSChangSKYunEJSeoYLComparison of low-dose ct and mr for measurement of intra-abdominal adipose tissue 1: a phantom and human studyAcad. Radiol.2008151627018078908
DesprésJPLemieuxIBergeronJPibarotPMathieuPLaroseERodésCabauJBertrandOFPoirierPAbdominal obesity and the metabolic syndrome: contribution to global cardiometabolic riskArterioscler. Thromb. Vasc. Biol.2008286103918356555
AghaeiFTanMHollingsworthABZhengBApplying a new quantitative global breast mri feature analysis scheme to assess tumor response to chemotherapyJ. Magn. Resonance Imaging201644510991106
KissebahAHVydelingumNMurrayREvansDJ
N Tajbakhsh (2349_CR67) 2016; 35
2349_CR5
2349_CR6
LC Chen (2349_CR10) 2018; 40
2349_CR7
L Yu (2349_CR79) 2017; 21
2349_CR1
2349_CR26
N Shen (2349_CR62) 2019
2349_CR28
R Ochs (2349_CR49) 2007; 11
P Rajendran (2349_CR57) 2010; 3
2349_CR29
T Langer (2349_CR38) 2019; 81
K Tokunaga (2349_CR68) 1983; 7
2349_CR23
J Kullberg (2349_CR35) 2017; 7
2349_CR24
2349_CR25
T Yoshizumi (2349_CR78) 1999; 211
KVV Kumar (2349_CR36) 2018; 7
2349_CR21
2349_CR65
AN Peiris (2349_CR54) 1989; 110
2349_CR60
E Shelhamer (2349_CR61) 2014; 39
AH Kissebah (2349_CR32) 2010; 5
DWS Van (2349_CR69) 2014; 2
SCN Hui (2349_CR27) 2017; 45
S Makrogiannis (2349_CR42) 2013; 20
K Athanassiadi (2349_CR3) 2014; 42
B Larsson (2349_CR39) 1984; 288
KN Slaughter (2349_CR64) 2014; 133
F Pedregosa (2349_CR53) 2013; 12
J Liu (2349_CR41) 2018; 99
DY Yoon (2349_CR77) 2008; 15
T Nakamura (2349_CR47) 1994; 107
JP Després (2349_CR15) 2008; 28
F Commandeur (2349_CR13) 2018; 37
Sinno Jialin Pan (2349_CR63) 2010; 22
2349_CR30
2349_CR74
2349_CR75
2349_CR76
2349_CR70
Liang-Chieh Chen (2349_CR12) 2018
LE Moses (2349_CR45) 1993; 12
EC Mun (2349_CR46) 2001; 120
Y Wang (2349_CR72) 2017; 144
S Fujioka (2349_CR19) 1987; 36
Y He (2349_CR22) 2017; 10496
N Emaminejad (2349_CR17) 2016; 63
2349_CR48
2349_CR44
AH Kissebah (2349_CR33) 1982; 54
2349_CR40
MA Chandra (2349_CR9) 2018; 2
V Badrinarayanan (2349_CR4) 2015; 39
2349_CR80
2349_CR81
S Caprio (2349_CR8) 1999; 11
T. S. Furey (2349_CR20) 2000; 16
CL Ogden (2349_CR50) 2014; 311
Y Qiu (2349_CR56) 2016; 57
JAK Suykens (2349_CR66) 1999; 9
P Wang (2349_CR71) 2016; 122
SH Kim (2349_CR31) 2010; 6
J Martinezuseros (2349_CR43) 2016; 14
2349_CR59
2349_CR16
2349_CR18
2349_CR11
H Kvist (2349_CR37) 1986; 250
2349_CR55
Y Wang (2349_CR73) 2016; 12
2349_CR14
2349_CR58
Stefan Klein (2349_CR34) 2008; 35
2349_CR51
2349_CR52
F Aghaei (2349_CR2) 2016; 44
References_xml – reference: Boris, G., P. Jean Michel, B. Franck, L. Sylvain, G. Sverine, C. Jean-Pierre, K. Denis, H. Patrick, B. Christophe, and C. Bruno. Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59(3):341–347, 2010.
– reference: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split/.
– reference: TajbakhshNGuruduSRLiangJAutomated polyp detection in colonoscopy videos using shape and context informationIEEE Trans. Med. Imaging201635263064426462083
– reference: Yu, F. and V. Koltun. Multi-scale context aggregation by dilated convolutions. In: Conference Paper at ICLR, pp. 1–9, 2016.
– reference: Walid, Z., T. Brown, A. Murtada, and S. Ali. The application of deep learning to quantify SAT/VAT in human abdominal area. In: Advances in Science and Engineering Technology International Conferences (ASET), 2019, pp. 1–5.
– reference: Yi, L. and Y. F. Zheng. One-against-all multi-class SVM classification using reliability measures. In: IEEE International Joint Conference on Neural Networks, vol. 2, 2013, pp. 849-854.
– reference: YuLChenHDouQQinJHengPAIntegrating online and offline 3D deep learning for automated polyp detection in colonoscopy videosIEEE J. Biomed. Health Inform.20172116575
– reference: EmaminejadNQianWGuanYTanMQiuYLiuHZhengBFusion of quantitative image and genomic biomarkers to improve prognosis assessment of early stage lung cancer patientsIEEE Trans. Biomed. Eng.20166351034104326390440
– reference: AghaeiFTanMHollingsworthABZhengBApplying a new quantitative global breast mri feature analysis scheme to assess tumor response to chemotherapyJ. Magn. Resonance Imaging201644510991106
– reference: FujiokaSMatsuzawaYTokunagaKTaruiSContribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesityMetab. Clin. Exp.198736154591:CAS:528:DyaL2sXjtV2nsg%3D%3D3796297
– reference: Chen, L. C., G. Papandreou, F. Schroff, and H. Adam. Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587, 2017.
– reference: PedregosaFVaroquauxGGramfortAMichelVLouppeGScikit-learn: machine learning in pythonJ. Mach. Learn. Res.2013121028252830
– reference: YoonDYMoonJHKimHKChoiCSChangSKYunEJSeoYLComparison of low-dose ct and mr for measurement of intra-abdominal adipose tissue 1: a phantom and human studyAcad. Radiol.2008151627018078908
– reference: DesprésJPLemieuxIBergeronJPibarotPMathieuPLaroseERodésCabauJBertrandOFPoirierPAbdominal obesity and the metabolic syndrome: contribution to global cardiometabolic riskArterioscler. Thromb. Vasc. Biol.2008286103918356555
– reference: PanSinno JialinYangQiangA Survey on Transfer LearningIEEE Transactions on Knowledge and Data Engineering2010221013451359
– reference: Pomponiu, V., H. Hariharan, B. Zheng, and D. Gur. Improving breast mass detection using histogram of oriented gradients. In: Medical Imaging: Computer-Aided Diagnosis, vol. 9035, 2014, p. 90351R.
– reference: WangPHuXLiYLiuQZhuXAutomatic cell nuclei segmentation and classification of breast cancer histopathology imagesSignal Process.2016122113
– reference: HeYKeuperMSchieleBFritzMLearning dilation factors for semantic segmentation of street scenesLNCS2017104964151
– reference: Agarwal, C., A. H. Dallal, M. R. Arbabshirani, A. Patel, and G. Moore, Unsupervised quantification of abdominal fat from CT images using greedy snakes. In: Society of Photo-optical Instrumentation Engineers, 2017, p. 101332T.
– reference: KullbergJHedströmABrandbergJStrandRJohanssonLBergströmGAhlströmHAutomated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for large-scale studiesSci Rep20177110425288747435585405
– reference: ChandraMABediSSSurvey on svm and their application in image classificationInt. J. Inform. Technol.20182111
– reference: ChenLCPapandreouGKokkinosIMurphyKYuilleALDeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFSIEEE Trans. Pattern Anal. Mach. Intell.201840483484828463186
– reference: KumarKVVKishorePVVIndian classical dance mudra classification using hog features and svm classifierInt. J. Electr. Comput. Eng.2018752537
– reference: OchsRGoldinJAbtinFKimHBrownKBatraPRobackDMcnitt-GrayMBrownMAutomated classification of lung bronchovascular anatomy in CT using adaboostMed. Image Anal.2007113315324174825002041873
– reference: SlaughterKNThaiTPenarozaSBenbrookDMThavathiruEDingKNelsonTMcmeekinDSMooreKNMeasurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancerGynecol. Oncol.2014133111151:CAS:528:DC%2BC2cXkvV2mtbY%3D24680585
– reference: LarssonBSvärdsuddKWelinLWilhelmsenLBjörntorpPTibblinGAbdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913Br. Med. J.19842886428140114041:STN:280:DyaL2c3gsVGhtw%3D%3D
– reference: LiuJChenFPanCZhuMZhangXZhangLLiaoHA cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomasIEEE Trans. Bio-Med. Eng.20189911:CAS:528:DC%2BC2sXhvFejt7jN
– reference: Wu, X. An iterative convolutional neural network algorithm improves electron microscopy image segmentation. Comput. Sci., pp. 1–9, 2015.
– reference: Hill, J. E., M. Fernandez-Del-Valle, R. Hayden, and S. Mitra. An automated segmentation for direct assessment of adipose tissue distribution from thoracic and abdominal dixon-technique mr images. In: Society of Photo-optical Instrumentation Engineers, vol. 10133, 2017, p. 1013315.
– reference: KvistHSjoestroemLChowdhuryBAlpstenMArvidssonBLarssonLCederbladADetermination of total adipose tissue and body fat in women by computed tomography, 40k, and tritiumAm. J. Physiol.19862506 Pt 1E7363717334
– reference: KissebahAHPeirisANBiology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitusDiabetes Metab. Rev.20105283109
– reference: RajendranPMadheswaranMHybrid medical image classification using association rule mining with decision tree algorithmComput. Sci.201031011731178
– reference: MartinezuserosJGarciafoncillasJObesity and colorectal cancer: molecular features of adipose tissueJ. Transl. Med.2016141112
– reference: CaprioSRelationship between abdominal visceral fat and metabolic risk factors in obese adolescentsAm. J. Hum. Biol.199911225926611533949
– reference: Huang, G., Z. Liu, V. D. M. Laurens, and K. Q. Weinberger. Densely connected convolutional networks. In: European Conference on Computer Vision, vol. 2017-January, pp. 2261–2269, 2016.
– reference: YoshizumiTNakamuraTYamaneMIslamAHMenjuMYamasakiKAraiTKotaniKFunahashiTYamashitaSAbdominal fat: standardized technique for measurement at CTRadiology199921112832861:STN:280:DyaK1M3gsFCrsQ%3D%3D10189485
– reference: Zhao, H., J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2017-January, 2017, pp. 6230–6239.
– reference: OgdenCLCarrollMDKitBKFlegalKMPrevalence of childhood and adult obesity in the united states, 2011–2012JAMA201431188061:CAS:528:DC%2BC2cXjvVOhs74%3D245702444770258
– reference: LangerTHedstromAMorwaldKWeghuberDForslundABergstenPAhlstromHKullbergJFully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRIMagn. Reson. Med.201981427362745
– reference: NakamuraTTokunagaKShimomuraINishidaMYoshidaSKotaniKIslamAHMWKenoYKobatakeTNagaiYContribution of visceral fat accumulation to the development of coronary artery disease in non-obese menAtherosclerosis199410722392461:STN:280:DyaK2M%2FntFGksw%3D%3D7980698
– reference: TokunagaKMatsuzawaYIshikawaKTaruiSA novel technique for the determination of body fat by computed tomographyInt. J. Obes.1983754374451:STN:280:DyaL2c%2FmtVGmtw%3D%3D6642855
– reference: HuiSCNZhangTShiLWangDChuWCWAutomated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRIMag. Reson. Imaging20174597104
– reference: Neumann, D., T. Langner, F. Ulbrich, D. Spitta, and D. Goehring. Online vehicle detection using haar-like, LBP and HOG feature based image classifiers with stereo vision preselection. In: Proceedings of the on Intelligent Vehicles Symposium, 2017.
– reference: Estrada, S., R. Lu, S. Conjeti, X. Orozco-Ruiz, J. Panos-Willuhn, M. M. B. Breteler, and M. Reuter. FatSegNet: a fully automated deep learning pipeline for adipose tissue segmentation on abdominal dixon MRI. CoRR. arXiv:abs/1904.02082, 2019.
– reference: FureyT. S.CristianiniN.DuffyN.BednarskiD. W.SchummerM.HausslerD.Support vector machine classification and validation of cancer tissue samples using microarray expression dataBioinformatics200016109069141:CAS:528:DC%2BD3MXjvVWltA%3D%3D11120680
– reference: CommandeurFGoellerMBetancurJCadetSDorisMXiCBermanDSSlomkaPJTamarappooBKDeyDDeep learning for quantification of epicardial and thoracic adipose tissue from non-contrast CTIEEE Trans. Med. Imaging201837818351846299943626076348
– reference: Li, Z. and Y. Yu. Protein secondary structure prediction using cascaded convolutional and recurrent neural networks. In: Conference: International Joint Conference on Artificial Intelligence (IJCAI), New York, 2016.
– reference: Ke, Y., X. Wang, L. Le, R. M. Summers, Y. Ke, X. Wang, L. Le, R. M. Summers, Y. Ke, and X. Wang. Deeplesion: automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations. arXiv:1710.01766, 2017.
– reference: Saha, S., A. Mahmud, A. A. Ali, and M. A. Amin. Classifying digital X-ray images into different human body parts. In: International Conference on Informatics, 2016, pp. 67–71.
– reference: MosesLEShapiroDLittenbergBCombining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerationsStat. Med.19931214129313161:STN:280:DyaK2c%2FitlGkug%3D%3D8210827
– reference: Mensink, S. D., J. W. Spliethoff, R. Belder, J. M. Klaase, R. Bezooijen, and C. H. Slump. Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans. In: Medical Imaging 2011: Computer-Aided Diagnosis, vol. 7963, no. 0, p. 79632Q, 2011.
– reference: S. Hai, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and Y. Lin. Region segmentation in histopathological breast cancer images using deep convolutional neural network. In: IEEE International Symposium on Biomedical Imaging, 2015, pp. 55–58.
– reference: Jegou, S., M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio. The one hundred layers tiramisu: fully convolutional dense nets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1175–1183, 2016.
– reference: Xie, J., L. Yang, S. C. Zhu, and N. W. Ying. A theory of generative convnet. In: International Conference on International Conference on Machine Learning, 2016.
– reference: QiuYTanMMcmeekinSThaiTDingKMooreKLiuHZhengBEarly prediction of clinical benefit of treating ovarian cancer using quantitative ct image feature analysisActa Radiol.2016579114926663390
– reference: Palacharla, P. K. Machine learning driven model inversion methodology to detect reniform nematodes in cotton. Dissertations & Theses - Gradworks, 2011.
– reference: PeirisANSothmannMSHoffmannRGHennesMIWilsonCRGustafsonABKissebahAHAdiposity, fat distribution, and cardiovascular riskAnn. Int. Med.1989110118678721:STN:280:DyaL1M3ksFGksw%3D%3D2655520
– reference: BadrinarayananVKendallACipollaRSegNet: a deep convolutional encoder-decoder architecture for scene segmentationIEEE Trans. Pattern Anal. Mach. Intell.2015399924812495
– reference: SuykensJAKVandewalleJLeast squares support vector machine classifiersNeural Process. Lett.199993293300
– reference: WangYQiuYThaiTMooreKHongLZhengBA two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT imagesComput. Methods Program. Biomed.201714497104
– reference: ChenLiang-ChiehZhuYukunPapandreouGeorgeSchroffFlorianAdamHartwigEncoder-Decoder with Atrous Separable Convolution for Semantic Image SegmentationComputer Vision – ECCV 20182018ChamSpringer International Publishing833851
– reference: Ioffe, S. and C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
– reference: MunECBlackburnGLMatthewsJBCurrent status of medical and surgical therapy for obesityGastroenterology200112036696811:STN:280:DC%2BD3M7lvV2mtg%3D%3D11179243
– reference: Ronneberger, O., P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing & Computer-assisted Intervention, vol. 9351, 2015, pp. 234–241.
– reference: Romero, D., J. C. Ramirez, and A. Marmol. Quantification of subcutaneous and visceral adipose tissue using CT. In: IEEE International Workshop on Medical Measurement & Applications, 2006, pp. 128–133.
– reference: ShelhamerELongJDarrellTFully convolutional networks for semantic segmentationIEEE Trans. Pattern Anal. Mach. Intell.2014394640651
– reference: Spasojević, A., O. Stojanov, T. L. Turukalo, and O. Sveljo, Estimation of subcutaneous and visceral fat tissue volume on abdominal MR images, 2015, pp. 217–220.
– reference: Oquab, M., L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision & Pattern Recognition, 2014, pp. 1717–1724.
– reference: KleinStefanvan der HeideUulke A.LipsIrene M.van VulpenMarcoStaringMariusPluimJosien P. W.Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual informationMedical Physics20083541407141718491536
– reference: ShenNLiXZhengSZhangLFuYLiuXLiMLiJGuoSZhangHAutomated and accurate quantification of subcutaneous and visceral adipose tissue from magnetic resonance imaging based on machine learningMagn. Reson. Imaging.201910.1016/j.mri.2019.04.00731484043
– reference: Hinton, G. and T. Tieleman. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA 4:26–30, 2012.
– reference: Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, vol. 2, 2005.
– reference: AthanassiadiKMakrygianniABalisEAlevizopoulosNVaslamatzisMVourlakouCFalse-positive and false-negative rate after positron emission tomography/computer tomography scan for mediastinal staging in non-small-cell lung cancerEur. Respir. J.201442193100
– reference: KissebahAHVydelingumNMurrayREvansDJHartzAJKalkhoffRKAdamsPWRelation of body fat distribution to metabolic complications of obesityJ. Clin. Endocrinol. Metab.19825422542541:STN:280:DyaL38%2FpvVGhsg%3D%3D7033275
– reference: Brebisson, A. D. and G. Montana. Deep neural networks for anatomical brain segmentation. In: Computer Vision & Pattern Recognition Workshops, vol. 2015-October, 2015, pp. 20–28.
– reference: MakrogiannisSCaturegliGDavatzikosCFerrucciLComputer-aided assessment of regional abdominal fat with food residue removal in CTAcad. Radiol.2013201114131421241193543954576
– reference: KimSHLeeJHKoBNamJYX-ray image classification using random forests with local binary patternsInternational Conference on Machine Learning & Cybernetics20106July31903194
– reference: Balasubramanian, T., S. Krishnan, M. Mohanakrishnan, K. R. Rao, C. V. Kumar, and K. Nirmala. Hog feature based SVM classification of glaucomatous fundus image with extraction of blood vessels. In: India Conference, 2017, pp. 1–4.
– reference: Drozdzal, M., E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connections in biomedical image segmentation. arXiv:1608.04117, 2016.
– reference: VanDWSSchönbergerJLNuneziglesiasJBoulogneFWarnerJDYagerNGouillartEYuTContributorsTSScikit-image: image processing in pythonPeerJ201422e453
– reference: WangYThaiTMooreKDingKMcmeekinSLiuHZhengBQuantitative measurement of adiposity using CT images to predict the benefit of bevacizumab-based chemotherapy in epithelial ovarian cancer patientsOncol. Lett.20161216806861:CAS:528:DC%2BC1cXnvFKrt7o%3D273472004907303
– volume: 7
  start-page: 2537
  issue: 5
  year: 2018
  ident: 2349_CR36
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 99
  start-page: 1
  year: 2018
  ident: 2349_CR41
  publication-title: IEEE Trans. Bio-Med. Eng.
– volume: 110
  start-page: 867
  issue: 11
  year: 1989
  ident: 2349_CR54
  publication-title: Ann. Int. Med.
  doi: 10.7326/0003-4819-110-11-867
– volume: 120
  start-page: 669
  issue: 3
  year: 2001
  ident: 2349_CR46
  publication-title: Gastroenterology
  doi: 10.1053/gast.2001.22430
– ident: 2349_CR21
– ident: 2349_CR25
– volume: 2
  start-page: 1
  year: 2018
  ident: 2349_CR9
  publication-title: Int. J. Inform. Technol.
– ident: 2349_CR29
– volume: 14
  start-page: 1
  issue: 1
  year: 2016
  ident: 2349_CR43
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-015-0757-9
– ident: 2349_CR44
– ident: 2349_CR16
– volume: 45
  start-page: 97
  year: 2017
  ident: 2349_CR27
  publication-title: Mag. Reson. Imaging
– ident: 2349_CR40
– volume: 144
  start-page: 97
  year: 2017
  ident: 2349_CR72
  publication-title: Comput. Methods Program. Biomed.
  doi: 10.1016/j.cmpb.2017.03.017
– volume: 11
  start-page: 259
  issue: 2
  year: 1999
  ident: 2349_CR8
  publication-title: Am. J. Hum. Biol.
  doi: 10.1002/(SICI)1520-6300(1999)11:2<259::AID-AJHB13>3.0.CO;2-W
– volume: 10496
  start-page: 41
  year: 2017
  ident: 2349_CR22
  publication-title: LNCS
– ident: 2349_CR52
  doi: 10.1109/Multi-Temp.2011.6005095
– volume: 2
  start-page: e453
  issue: 2
  year: 2014
  ident: 2349_CR69
  publication-title: PeerJ
– ident: 2349_CR58
– volume: 6
  start-page: 3190
  issue: July
  year: 2010
  ident: 2349_CR31
  publication-title: International Conference on Machine Learning & Cybernetics
– year: 2019
  ident: 2349_CR62
  publication-title: Magn. Reson. Imaging.
  doi: 10.1016/j.mri.2019.04.007
– volume: 16
  start-page: 906
  issue: 10
  year: 2000
  ident: 2349_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 35
  start-page: 630
  issue: 2
  year: 2016
  ident: 2349_CR67
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2015.2487997
– volume: 39
  start-page: 2481
  issue: 99
  year: 2015
  ident: 2349_CR4
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 2349_CR6
  doi: 10.1136/gut.2009.188946
– volume: 42
  start-page: 93
  issue: 1
  year: 2014
  ident: 2349_CR3
  publication-title: Eur. Respir. J.
– ident: 2349_CR28
– volume: 107
  start-page: 239
  issue: 2
  year: 1994
  ident: 2349_CR47
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(94)90025-6
– ident: 2349_CR30
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 2349_CR63
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2009.191
– ident: 2349_CR76
– volume: 15
  start-page: 62
  issue: 1
  year: 2008
  ident: 2349_CR77
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2007.07.013
– volume: 63
  start-page: 1034
  issue: 5
  year: 2016
  ident: 2349_CR17
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2477688
– volume: 81
  start-page: 2736
  issue: 4
  year: 2019
  ident: 2349_CR38
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27550
– volume: 57
  start-page: 1149
  issue: 9
  year: 2016
  ident: 2349_CR56
  publication-title: Acta Radiol.
  doi: 10.1177/0284185115620947
– ident: 2349_CR24
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 2349_CR79
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2637004
– volume: 20
  start-page: 1413
  issue: 11
  year: 2013
  ident: 2349_CR42
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.08.007
– volume: 7
  start-page: 10425
  issue: 1
  year: 2017
  ident: 2349_CR35
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-08925-8
– ident: 2349_CR65
  doi: 10.1109/NEUREL.2014.7011511
– ident: 2349_CR59
– volume: 11
  start-page: 315
  issue: 3
  year: 2007
  ident: 2349_CR49
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.03.004
– volume: 5
  start-page: 83
  issue: 2
  year: 2010
  ident: 2349_CR32
  publication-title: Diabetes Metab. Rev.
  doi: 10.1002/dmr.5610050202
– ident: 2349_CR5
  doi: 10.1109/INDICON.2016.7838902
– volume: 35
  start-page: 1407
  issue: 4
  year: 2008
  ident: 2349_CR34
  publication-title: Medical Physics
  doi: 10.1118/1.2842076
– ident: 2349_CR75
– volume: 122
  start-page: 1
  year: 2016
  ident: 2349_CR71
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.11.011
– ident: 2349_CR1
  doi: 10.1117/12.2254139
– volume: 28
  start-page: 1039
  issue: 6
  year: 2008
  ident: 2349_CR15
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.107.159228
– ident: 2349_CR23
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 2349_CR10
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 2349_CR81
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 2349_CR66
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 37
  start-page: 1835
  issue: 8
  year: 2018
  ident: 2349_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2804799
– volume: 44
  start-page: 1099
  issue: 5
  year: 2016
  ident: 2349_CR2
  publication-title: J. Magn. Resonance Imaging
  doi: 10.1002/jmri.25276
– volume: 7
  start-page: 437
  issue: 5
  year: 1983
  ident: 2349_CR68
  publication-title: Int. J. Obes.
– volume: 12
  start-page: 2825
  issue: 10
  year: 2013
  ident: 2349_CR53
  publication-title: J. Mach. Learn. Res.
– volume: 288
  start-page: 1401
  issue: 6428
  year: 1984
  ident: 2349_CR39
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.288.6428.1401
– ident: 2349_CR7
– ident: 2349_CR14
– volume: 311
  start-page: 806
  issue: 8
  year: 2014
  ident: 2349_CR50
  publication-title: JAMA
  doi: 10.1001/jama.2014.732
– ident: 2349_CR51
  doi: 10.1109/CVPR.2014.222
– ident: 2349_CR18
– volume: 3
  start-page: 1173
  issue: 10
  year: 2010
  ident: 2349_CR57
  publication-title: Comput. Sci.
– start-page: 833
  volume-title: Computer Vision – ECCV 2018
  year: 2018
  ident: 2349_CR12
  doi: 10.1007/978-3-030-01234-2_49
– ident: 2349_CR48
  doi: 10.1109/IVS.2017.7995810
– volume: 211
  start-page: 283
  issue: 1
  year: 1999
  ident: 2349_CR78
  publication-title: Radiology
  doi: 10.1148/radiology.211.1.r99ap15283
– ident: 2349_CR60
  doi: 10.1109/ICIEV.2016.7760190
– ident: 2349_CR80
– ident: 2349_CR26
– volume: 250
  start-page: E736
  issue: 6 Pt 1
  year: 1986
  ident: 2349_CR37
  publication-title: Am. J. Physiol.
– volume: 54
  start-page: 254
  issue: 2
  year: 1982
  ident: 2349_CR33
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jcem-54-2-254
– volume: 12
  start-page: 680
  issue: 1
  year: 2016
  ident: 2349_CR73
  publication-title: Oncol. Lett.
  doi: 10.3892/ol.2016.4648
– volume: 12
  start-page: 1293
  issue: 14
  year: 1993
  ident: 2349_CR45
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780121403
– volume: 36
  start-page: 54
  issue: 1
  year: 1987
  ident: 2349_CR19
  publication-title: Metab. Clin. Exp.
  doi: 10.1016/0026-0495(87)90063-1
– ident: 2349_CR55
  doi: 10.1117/12.2044281
– volume: 133
  start-page: 11
  issue: 1
  year: 2014
  ident: 2349_CR64
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2014.01.031
– volume: 39
  start-page: 640
  issue: 4
  year: 2014
  ident: 2349_CR61
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– ident: 2349_CR11
– ident: 2349_CR74
– ident: 2349_CR70
SSID ssj0011835
Score 2.4216504
Snippet One major role of an accurate distribution of abdominal adipose tissue is to predict disease risk. This paper proposes a novel effective three-level...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 312
SubjectTerms Abdomen
Adipose tissue
Artificial neural networks
Automation
Biochemistry
Biological and Medical Physics
Biomarkers
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Classifiers
Computed tomography
Feasibility studies
Health risks
Image processing
Image segmentation
Learning
Medical imaging
Neural networks
Standard deviation
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAcEJRXoKBB4gaRNrbj2MdoRVUh7V66i3qLbMepKrZJRXYP_fcdO8m2qIDEISc_EvlzZr7xeGYAPhea9JpjIWKZ-1RkXqS6mJk0Y03jZ7WsZQyPXizlyVp8P8vPxqCwfrrtPrkko6S-E-xGypNMX3oYFzrlD-FRTrZ7uMi1ZuXed0CbdKhboMkw0lKMoTJ_nuN3dXSPY97zj0a1c_wcno18EcsB4BfwwLeH8PROFsFDeLwY_eMv4WfZ4pCPmIQYzpdLXMQK0UjUFIO1eY3lbtsRS_U1nvrzeFeoPUcSH25HNNF3ux5NW-OPi96F0yos64urrve4igBh1-J8haeER_8K1sffVvOTdCynkDriPNu0sEJpa4RRlliPti7jhjmvfc6MZaT6G6m0bzJpyGrx3llJLVoJlc-4qJXnr-Gg7Vr_FtAWStSmsdLNYsI1K5omZ9bIwkjdOJtANq1q5cZc46Hkxaa6zZIckKgIiSoiUfEEvuzHXA2ZNv7Z-2gCqxr_ur4KqX1IAmdcJfBp33wZVmyzGdYw9AkmLxGpBN4MIO9fx0PZYq10Al8n1G8n__u3vPu_7u_hCQtGezzHOYKD7a-d_0DMZms_xo18A_Bb66Y
  priority: 102
  providerName: Springer Nature
Title An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans
URI https://link.springer.com/article/10.1007/s10439-019-02349-3
https://www.ncbi.nlm.nih.gov/pubmed/31451989
https://www.proquest.com/docview/2280219138
https://www.proquest.com/docview/2281107741
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7BJiF4QDBgBMZkJN4gIj9cx35CadVuAjVCrEXlKbIdZ5ooSbe0D_z3nB23BU3sIcmDncTyZ5-_O_vuAN5lAtc1nViP5dSENDY0FFkkwzipaxNVrGLOPXpasPM5_bwYLLzBrfPHKrcy0QnqqtXWRv7Rhm3B2RWn_NPqOrRZo-zuqk-hcR8ObegyO6qzxU7hQu7cJ9iMBKpIglHvNONd53ApRkUarySlIkz_XZhusc1bO6VuAZo8gceeOZK8h_op3DPNETz6K57gETyY-p3yZ_Azb0gfmRjFGRkVBZm6XNEESSqxeudvkm_WLfJVU5ELc-lODTWXBAWJ3iBhNO2mI7KpyPerTlu7Fcmrq1XbGTJzUJG2IaMZuUBkuucwn4xno_PQJ1YINbKfdZgpyoWSVHKF_EcoHacy0UaYQSJVgiSgZlyYOmYS9RdjtGJYIjjlgyilFTfpCzho2sa8BKIyTitZK6YjF3pN0boeJEqyTDJRaxVAvO3VUvuo4zb5xbLcx0u2SJSIROmQKNMA3u_eWfUxN-6sfbIFq_Tzryv3oyWAt7viX7bHlsu-D20dq_wipQrguAd597vUJjAWXATwYYv6_uP_b8uru9vyGh4mVl13FpwTOFjfbMwb5DRrdeoGLt755OwUDvPJcFjY59mPL2N8DsfF129YOk_yP80q9SY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GkMiY8DgvEVGGAkOEFEY7uOfUCoKpSOrb2sQ7tltuNMEyUppBXan-I38uwkLWhitx1ysuNE7_vD7z2AV6lCvWapr1hmLuaJ47FKezpOaFG4Xi5yEcqjJ1MxPuJfjvvHW_C7q4Xx1yo7mRgEdV5ZHyN_59u2IHclTH5Y_Ij91CifXe1GaDRkse_Of6HLVr_f-4j4fU3p6NNsOI7bqQKxRdW_jFPDpTKaa2lQ-StjE6apdcr1qTYUNWAhpHJFIjQa785ZI3BFSS77PcZz6Rieew2uc4aa3Femjz6vsxbIHs3EBIUumRK8LdJpS_VQ9aPjjg9lXMXsX0V4wbq9kJkNCm90F-60lioZNKR1D7ZcuQO3_-pfuAM3Jm1m_j58G5Sk6YSM4pMMp1MyCbOpCRrFxPu552SwWlZoH7ucHLrTcEupPCUouOwKDVRXrWqiy5x8Pautj5ORQX62qGpHZoE0SFWS4YwcIiXUD-DoSkD-ELbLqnSPgZhU8lwXRtheaPVmeFH0qdEi1UIV1kSQdFDNbNvl3A_bmGeb_sweExliIguYyFgEb9bvLJoeH5fu3u2QlbX8Xmcb6ozg5Xr5u4fYfN7A0O_xzjaacBE8apC8_hzzA5OVVBG87bC-Ofz___Lk8n95ATfHs8lBdrA33X8Kt6gPFYTo0S5sL3-u3DO0p5bmeSBiAidXzTV_ANmiK3I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED-xIqHtYWLsKxvbPGl72iIax3XiB4S6QgVjjdAoE2_BdhyE1iXd0grxr_HXcXaSdhMabzzkyY4T-b5-d_bdAXyIBNo1TW3Gcmh8Fhjmi6gr_YDmuelmPOMuPXqU8P0T9vW0d7oC120ujL1W2epEp6izUtsY-ZYt24LSFYTxVt5cizjaHe5Mf_u2g5Q9aW3badQscmiuLtF9q7YPdpHWHykd7o0H-37TYcDXCANmfqRYLJRkMlYIBITSQSipNsL0qFQUrWHOY2HygEsE8sZoxXFExCzudUOWxSbEdR_AamS9og6sftlLjr4vzjBQWOr-CQIdNMFZk7LTJO4hEEA3Hh8aMuGH_5rFW1j31jmtM3_DdXjc4FbSrxntCayYYgMe_VXNcAPWRs05_VP42S9IXRcZlSkZJAkZuU7VBCEysV7vFenPZyWiZZORY3Pu7iwV5wTVmJ4jXDXlvCKyyMiPi0rbqBnpZxfTsjJk7BiFlAUZjMkx8kX1DE7uZdOfQ6coC_MSiIpilslccd11hd8Uy_MeVZJHkotcKw-CdldT3dQ8t603JumyWrOlRIqUSB0l0tCDT4t3pnXFjztnb7bEShvpr9Ilr3rwfjH8y-7YZFLvoZ1jXW8EdB68qIm8-Fxo2yeLWHjwuaX6cvH__8uru__lHayhxKTfDpLD1_CQ2riBCyVtQmf2Z27eILiaqbcNFxM4u2_BuQEa3TEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+CNN+Method+for+Fully+Automated+Segmenting+Subcutaneous+and+Visceral+Adipose+Tissue+on+CT+Scans&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Wang%2C+Zheng&rft.au=Yu%2C+Meng&rft.au=Weng%2C+Futian&rft.au=Chen%2C+Yinghao&rft.date=2020-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=48&rft.issue=1&rft.spage=312&rft.epage=328&rft_id=info:doi/10.1007%2Fs10439-019-02349-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon