An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations
Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely use...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 5; p. 1777 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
04.03.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task. |
---|---|
AbstractList | Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students' affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students' affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task. Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task. |
Author | Chicote-Huete, Guillermo Serrano-Mamolar, Ana Arevalillo-Herráez, Miguel Boticario, Jesus G. |
AuthorAffiliation | 2 Departament d’Informàtica, Universitat de València, 46100 Burjassot, Valencia, Spain; miguel.arevalillo@uv.es (M.A.-H.); guillermo.chicote@uv.es (G.C.-H.) 1 aDeNu Research Group, Artificial Intelligence Department, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain; jgb@dia.uned.es |
AuthorAffiliation_xml | – name: 2 Departament d’Informàtica, Universitat de València, 46100 Burjassot, Valencia, Spain; miguel.arevalillo@uv.es (M.A.-H.); guillermo.chicote@uv.es (G.C.-H.) – name: 1 aDeNu Research Group, Artificial Intelligence Department, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain; jgb@dia.uned.es |
Author_xml | – sequence: 1 givenname: Ana orcidid: 0000-0002-0027-7128 surname: Serrano-Mamolar fullname: Serrano-Mamolar, Ana – sequence: 2 givenname: Miguel orcidid: 0000-0002-0350-2079 surname: Arevalillo-Herráez fullname: Arevalillo-Herráez, Miguel – sequence: 3 givenname: Guillermo orcidid: 0000-0002-7736-5572 surname: Chicote-Huete fullname: Chicote-Huete, Guillermo – sequence: 4 givenname: Jesus G. orcidid: 0000-0003-4949-9220 surname: Boticario fullname: Boticario, Jesus G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33806438$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAUQCNURB-w4AeQl7AI9Su2s0EaRqUdqYWKglhajuPMeOSJp7ZT0W_qT-JMyqhFbPy499xzLdvHxUHve1MUbxH8SEgNTyNGsEKc8xfFEaKYlgJjePBkfVgcx7iGEBNCxKviMI-QUSKOiodZDxZ9Cqq8GZq10QnMttvglV6BzyqaFvgepJUZo85qlWze-w5cXF2B5MF1MK3NNXPfazNadnnbg7N2mGDlxmQyv1MEXfAb8NX3NpNDtHcGXK_uo_XOL7PagRu7zHwc678b5cpfPrg2R9OwU8XXxcsu582bx_mk-Pnl7Mf8orz8dr6Yzy5LTSlKJVct65quonVdd4wwgzVhuGaaENRQrllNFK0VMp3QXdVAqI3mVHGBoGao5eSkWEze1qu13Aa7UeFeemXlLuDDUqqQrHZGtriqBdGVwpxTqIjIDZAmRpGqgkyJ7Po0ubZDszHtdEvumfR5prcrufR3ktcM8QplwftHQfC3g4lJbmzUxjnVGz9EiSsoKiaYIBl997TXvsnf187AhwnQwccYTLdHEJTjT5L7n5TZ039YbdPuHfIxrftPxR8FYszI |
CitedBy_id | crossref_primary_10_5298_046560 |
Cites_doi | 10.1109/STSIVA.2014.7010181 10.1080/02699939208411068 10.3390/s18072074 10.2196/preprints.10828 10.1201/9781498710411 10.3390/s19204520 10.1109/TAFFC.2014.2327617 10.1037/1528-3542.6.3.356 10.1023/B:BTTJ.0000047603.37042.33 10.1037/a0019243 10.3390/s18124271 10.3390/s19194079 10.1109/TSMCA.2011.2116000 10.1093/mind/os-IX.34.188 10.1109/T-AFFC.2010.7 10.1109/T-AFFC.2011.30 10.1111/bjet.12156 10.1109/ICMLA.2018.00062 10.1109/TAFFC.2018.2877986 10.1155/2014/484873 10.1109/TPAMI.2008.26 10.1109/ACCESS.2018.2854966 10.3390/s19081863 10.3390/s19132999 10.1016/j.jnca.2019.102447 10.1007/978-3-319-61425-0_4 10.1016/j.knosys.2017.06.024 10.1109/TAFFC.2014.2316163 10.1109/T-AFFC.2012.16 10.3389/fnhum.2019.00057 10.3390/s20030592 10.1007/978-3-642-21869-9_19 10.3233/AIC-190624 10.1109/ICBL.2015.7387633 10.18608/jla.2014.11.6 10.1037/h0077714 10.1007/s11042-016-4203-7 10.1109/JSEN.2016.2533266 10.1093/oso/9780195104462.001.0001 10.1007/978-3-642-10347-6_5 10.1016/j.ijhcs.2009.12.003 10.1016/j.procs.2016.05.264 10.1109/TIFS.2017.2778010 10.1016/j.jcps.2011.08.003 10.1007/978-3-030-02631-8_5 10.3390/s18061714 10.1109/CYBERNETICSCOM.2019.8875677 10.4236/jcc.2017.54001 10.3390/s20082384 10.1109/ACII.2013.100 10.1109/RCAR.2016.7784015 10.1145/2682899 10.1007/s10648-006-9033-0 10.1109/DSR.2011.6026823 10.1145/3264913 10.1109/EXPAT.2017.7984354 10.1080/13614568.2015.1058428 10.3389/fpsyg.2020.01111 10.1109/T-AFFC.2012.4 10.1016/j.future.2018.02.033 10.1037/a0032674 10.1109/TITS.2005.848368 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s21051777 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d25983c5a27740a38b471c3ea35506a8 PMC7961751 33806438 10_3390_s21051777 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: PGC2018-096463-B-I00 – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: PGC2018-102279-B-I00 – fundername: Ministerio de Economía y Competitividad grantid: TIN2014-59641-C2-1-P – fundername: Ministerio de Economía y Competitividad grantid: TIN2014-59641-C2-2-P |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-7ad6fbf54999f636e2c36296c331b47c693a49a1ef8cf5b00cec74a7810c61d73 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:15:13 EDT 2025 Thu Aug 21 18:13:45 EDT 2025 Fri Jul 11 07:53:30 EDT 2025 Mon Jul 21 05:53:49 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 Tue Jul 01 03:56:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | learner modelling user-centred systems physiological sensors nonintrusive affective computing |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7ad6fbf54999f636e2c36296c331b47c693a49a1ef8cf5b00cec74a7810c61d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0350-2079 0000-0003-4949-9220 0000-0002-0027-7128 0000-0002-7736-5572 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21051777 |
PMID | 33806438 |
PQID | 2508568683 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d25983c5a27740a38b471c3ea35506a8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7961751 proquest_miscellaneous_2508568683 pubmed_primary_33806438 crossref_primary_10_3390_s21051777 crossref_citationtrail_10_3390_s21051777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210304 |
PublicationDateYYYYMMDD | 2021-03-04 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210304 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | ref_14 ref_13 (ref_57) 2013; 105 Santos (ref_64) 2016; 16 ref_12 ref_11 ref_10 ref_54 Santos (ref_16) 2015; Volume 9112 ref_19 ref_17 ref_15 Santos (ref_62) 2016; 22 Whitehill (ref_38) 2014; 5 ref_61 Valenza (ref_50) 2012; 3 Egloff (ref_67) 2006; 6 Greco (ref_48) 2018; 8 Chanel (ref_59) 2011; 41 ref_25 ref_69 ref_68 ref_22 ref_66 ref_21 ref_65 ref_20 ref_63 Egges (ref_33) 2009; Volume 5884 Ocumpaugh (ref_41) 2014; 45 Maiorana (ref_24) 2018; 13 ref_29 ref_28 ref_27 ref_26 Shoumy (ref_37) 2020; 149 Shin (ref_55) 2017; 76 James (ref_6) 1884; os-IX Kim (ref_49) 2008; 30 ref_72 Wen (ref_56) 2014; 5 Arnau (ref_42) 2017; 132 ref_70 Toala (ref_44) 2019; 32 Arnau (ref_43) 2018; 13 Lascio (ref_60) 2018; 2 Pekrun (ref_3) 2010; 102 ref_35 ref_32 ref_31 Petrantonakis (ref_53) 2010; 1 Baker (ref_5) 2010; 68 Pardos (ref_2) 2014; 1 ref_39 Alzoubi (ref_58) 2012; 3 Kleinsmith (ref_71) 2013; 4 Farzaneh (ref_36) 2019; Volume 11626 LNAI ref_47 Krishna (ref_30) 2012; 22 ref_46 Krithika (ref_45) 2016; Volume 85 Russell (ref_51) 1980; 39 Ainley (ref_4) 2006; 18 Ekman (ref_52) 1992; 6 ref_40 Baker (ref_23) 2018; 6 Kamioka (ref_18) 2017; 5 Nalepa (ref_34) 2019; 92 ref_9 ref_8 Picard (ref_1) 2004; 22 ref_7 |
References_xml | – ident: ref_25 doi: 10.1109/STSIVA.2014.7010181 – volume: 6 start-page: 169 year: 1992 ident: ref_52 article-title: An Argument for Basic Emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – ident: ref_8 doi: 10.3390/s18072074 – ident: ref_14 doi: 10.2196/preprints.10828 – ident: ref_69 doi: 10.1201/9781498710411 – volume: Volume 11626 LNAI start-page: 73 year: 2019 ident: ref_36 article-title: Developing a deep learning-based affect recognition system for young children publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: ref_15 doi: 10.3390/s19204520 – volume: 5 start-page: 126 year: 2014 ident: ref_56 article-title: Emotion recognition based on multi-variant correlation of physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2327617 – volume: 6 start-page: 356 year: 2006 ident: ref_67 article-title: Spontaneous emotion regulation during evaluated speaking tasks: Associations with negative affect, anxiety expression, memory, and physiological responding publication-title: Emotion doi: 10.1037/1528-3542.6.3.356 – volume: 22 start-page: 253 year: 2004 ident: ref_1 article-title: Affective learning—A manifesto publication-title: BT Technol. J. doi: 10.1023/B:BTTJ.0000047603.37042.33 – ident: ref_68 – ident: ref_65 – ident: ref_39 – volume: 102 start-page: 531 year: 2010 ident: ref_3 article-title: Boredom in Achievement Settings: Exploring Control-Value Antecedents and Performance Outcomes of a Neglected Emotion publication-title: J. Educ. Psychol. doi: 10.1037/a0019243 – ident: ref_11 doi: 10.3390/s18124271 – ident: ref_26 doi: 10.3390/s19194079 – volume: 41 start-page: 1052 year: 2011 ident: ref_59 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2011.2116000 – volume: os-IX start-page: 188 year: 1884 ident: ref_6 article-title: II.—WHAT IS AN EMOTION ? publication-title: Mind doi: 10.1093/mind/os-IX.34.188 – volume: 1 start-page: 81 year: 2010 ident: ref_53 article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.7 – volume: 3 start-page: 237 year: 2012 ident: ref_50 article-title: The role of nonlinear dynamics in affective valence and arousal recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.30 – volume: 45 start-page: 487 year: 2014 ident: ref_41 article-title: Population validity for educational data mining models: A case study in affect detection publication-title: Br. J. Educ. Technol. doi: 10.1111/bjet.12156 – ident: ref_35 doi: 10.1109/ICMLA.2018.00062 – ident: ref_22 doi: 10.1109/TAFFC.2018.2877986 – ident: ref_70 doi: 10.1155/2014/484873 – volume: 30 start-page: 2067 year: 2008 ident: ref_49 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – volume: 6 start-page: 39154 year: 2018 ident: ref_23 article-title: A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior from Multiple Users in Real-World Learning Scenarios publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2854966 – ident: ref_27 doi: 10.3390/s19081863 – ident: ref_20 doi: 10.3390/s19132999 – volume: 149 start-page: 102447 year: 2020 ident: ref_37 article-title: Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.102447 – ident: ref_40 doi: 10.1007/978-3-319-61425-0_4 – volume: 132 start-page: 85 year: 2017 ident: ref_42 article-title: Adding sensor-free intention-based affective support to an Intelligent Tutoring System publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.024 – volume: 5 start-page: 86 year: 2014 ident: ref_38 article-title: The faces of engagement: Automatic recognition of student engagement from facial expressions publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2316163 – volume: 4 start-page: 15 year: 2013 ident: ref_71 article-title: Affective body expression perception and recognition: A survey publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2012.16 – ident: ref_13 doi: 10.3389/fnhum.2019.00057 – ident: ref_28 doi: 10.3390/s20030592 – ident: ref_7 – ident: ref_61 doi: 10.1007/978-3-642-21869-9_19 – volume: 32 start-page: 161 year: 2019 ident: ref_44 article-title: Intelligent tutoring system to improve learning outcomes publication-title: AI Commun. doi: 10.3233/AIC-190624 – ident: ref_19 doi: 10.1109/ICBL.2015.7387633 – volume: 1 start-page: 107 year: 2014 ident: ref_2 article-title: Affective States and State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year Learning Outcomes publication-title: J. Learn. Anal. doi: 10.18608/jla.2014.11.6 – volume: 39 start-page: 1161 year: 1980 ident: ref_51 article-title: A circumplex model of affect publication-title: J. Pers. Soc. Psychol. doi: 10.1037/h0077714 – volume: 76 start-page: 11449 year: 2017 ident: ref_55 article-title: Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-016-4203-7 – volume: Volume 9112 start-page: 429 year: 2015 ident: ref_16 article-title: Filtering of spontaneous and low intensity emotions in educational contexts publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 16 start-page: 3865 year: 2016 ident: ref_64 article-title: An open sensing and acting platform for context-aware affective support in ambient intelligent educational settings publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2533266 – ident: ref_72 doi: 10.1093/oso/9780195104462.001.0001 – volume: Volume 5884 start-page: 53 year: 2009 ident: ref_33 article-title: Applying Affect Recognition in Serious Games: The PlayMancer Project publication-title: Motion in Games doi: 10.1007/978-3-642-10347-6_5 – volume: 8 start-page: 1 year: 2018 ident: ref_48 article-title: Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors publication-title: Sci. Rep. – ident: ref_21 – volume: 68 start-page: 223 year: 2010 ident: ref_5 article-title: Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three different computer-based learning environments publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2009.12.003 – volume: 13 start-page: 63 year: 2018 ident: ref_43 article-title: On Incorporating Affective Support to an Intelligent Tutoring System: An Empirical Study publication-title: IEEE-RITA – volume: Volume 85 start-page: 767 year: 2016 ident: ref_45 article-title: Student Emotion Recognition System (SERS) for e-learning Improvement Based on Learner Concentration Metric publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.05.264 – volume: 13 start-page: 1123 year: 2018 ident: ref_24 article-title: Longitudinal Evaluation of EEG-Based Biometric Recognition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2778010 – volume: 22 start-page: 332 year: 2012 ident: ref_30 article-title: An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior publication-title: J. Consum. Psychol. doi: 10.1016/j.jcps.2011.08.003 – ident: ref_9 doi: 10.1007/978-3-030-02631-8_5 – ident: ref_10 doi: 10.3390/s18061714 – ident: ref_17 doi: 10.1109/CYBERNETICSCOM.2019.8875677 – volume: 5 start-page: 1 year: 2017 ident: ref_18 article-title: Detection of Learner’s Concentration in Distance Learning System with Multiple Biological Information publication-title: J. Comput. Commun. doi: 10.4236/jcc.2017.54001 – ident: ref_29 doi: 10.3390/s20082384 – ident: ref_46 – ident: ref_31 doi: 10.1109/ACII.2013.100 – ident: ref_54 doi: 10.1109/RCAR.2016.7784015 – ident: ref_47 doi: 10.1145/2682899 – volume: 18 start-page: 391 year: 2006 ident: ref_4 article-title: Connecting with learning: Motivation, affect and cognition in interest processes publication-title: Educ. Psychol. Rev. doi: 10.1007/s10648-006-9033-0 – ident: ref_32 doi: 10.1109/DSR.2011.6026823 – volume: 2 start-page: 21 year: 2018 ident: ref_60 article-title: Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3264913 – ident: ref_12 doi: 10.1109/EXPAT.2017.7984354 – volume: 22 start-page: 27 year: 2016 ident: ref_62 article-title: Toward interactive context-aware affective educational recommendations in computer-assisted language learning publication-title: New Rev. Hypermedia Multimedia doi: 10.1080/13614568.2015.1058428 – ident: ref_66 doi: 10.3389/fpsyg.2020.01111 – volume: 3 start-page: 298 year: 2012 ident: ref_58 article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2012.4 – volume: 92 start-page: 490 year: 2019 ident: ref_34 article-title: Mobile platform for affective context-aware systems publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.033 – volume: 105 start-page: 1082 year: 2013 ident: ref_57 article-title: A selective meta-analysis on the relative incidence of discrete affective states during learning with technology publication-title: J. Educ. Psychol. doi: 10.1037/a0032674 – ident: ref_63 doi: 10.1109/TITS.2005.848368 |
SSID | ssj0023338 |
Score | 2.341579 |
Snippet | Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1777 |
SubjectTerms | affective computing Emotions Heart Rate Humans learner modelling nonintrusive physiological sensors Skin Temperature user-centred systems |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJz2Ib8cXpXjwEjbd6c7jOLu4jMIsoi7srUknaR1Y0uK04H_yT1qV7mlnZMGL13RCQlcl9X1J5Qtjr3Up2iJawUMXJK98sLzVInBltLaaQkY-PV-fq9VF9f6yvtx76otywkZ54PHHHQfE50b62pUIVISTpsXl1MvoMFAK5fI1X4x5OzI1US2JzGvUEZJI6o-3SGzqQmt9EH2ySP91yPLvBMm9iHN2h92eoCIsxyHeZTdiusdu7QkI3me_lgneUWOOCwDtqMBy0giHEwxPAfoEiPBg-eeYGvoOVus1DD18-E6nNAOc0tXFNOnnwibBnPWB3Wf5qp_DFugiCpzT7i3d08BFEnL26G7xhE-bL6TFTO0_IvrkOU0HS4dRTHz7gF2cvf18uuLT8wvcI0YauHZBdW1HBNJ2SqpYeox2VnkpCzSCV1a6yroidsZ3NU5fH72unDaF8KoIWj5kR6lP8TEDp11hkCrpyoZKVM4KFRDa2aAFEqqyXrA3O7M0ftImpycyrhrkKGTBZrbggr2aq34bBTmuq3RCtp0rkIZ2LkDPaibPav7lWQv2cucZDc45OkhxKfY_tg3CRlMro4xcsEejp8xdoeMRysPW-sCHDsZy-CVtvmZdb20RTtbFk_8x-KfsZknZN5QtVz1jR-gZ8TnCp6F9kWfKb-z7GZI priority: 102 providerName: Directory of Open Access Journals |
Title | An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33806438 https://www.proquest.com/docview/2508568683 https://pubmed.ncbi.nlm.nih.gov/PMC7961751 https://doaj.org/article/d25983c5a27740a38b471c3ea35506a8 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ0LLAfGmPCqDOHAJJHHisQ8ItastBanVaqFSb5FrJ0ulVQJtkJbfxJ9kJk3DFpVLD4nzaMb2fJ9n_A3Aa4zDRZSbMPCFl0HivAkWGPpAaUSD7DKa6Plkqsaz5PM8nR_AtsZm-wHXe6kd15Oara7eXv_49YEG_HtmnETZ362JtqQRIh7CMd0duZDBJOmCCbEkGrYRFdptfgK36Az7ZL3jlRrx_n2I89_EyRueaHQX7rQQUgw2Nr8HB3l5H27fEBZ8AL8HpfjEFwc0MfBKixi02uFiSG7Li6oUhPzE4G_4WlSFGE8moq7E-YqjN7U45S2NZaurK5al6LJB6PGNrNV1vRa8QUVMeVWX92_Q5CmarNLtpCq-LC_5W_P1F4RKgyZ9h47WG5Hx9UOYjc6-no6DtixD4Ag71QFar4pFwcTSFEqqPHbkBY1yUkaLBJ0y0ibGRnmhXZHSsHa5w8SijkKnIo_yERyVVZk_AWHRRpooFCbGJ2FiTag8QT7jMSSiFac9eLM1S-ZazXIunXGVEXdhY2adMXvwqmv6fSPUsa_RkG3bNWBt7eZAtbrM2qGaeWKEWrrUxgSNQys1_anIydwSNAuV1T14ue0ZGY1FDrDYMq9-rjOCkzpVWmnZg8ebntI9atvTeoA7fWjnXXbPlMtvjd43GoKZafT0v_d8Bicxp9pwalzyHI7I3PkLwkr1og-HOEf61aOPfTgenk3PL_rNukO_GSN_APNcF8I |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intra-Subject+Approach+Based+on+the+Application+of+HMM+to+Predict+Concentration+in+Educational+Contexts+from+Nonintrusive+Physiological+Signals+in+Real-World+Situations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Serrano-Mamolar%2C+Ana&rft.au=Arevalillo-Herr%C3%A1ez%2C+Miguel&rft.au=Chicote-Huete%2C+Guillermo&rft.au=Boticario%2C+Jesus+G&rft.date=2021-03-04&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fs21051777&rft_id=info%3Apmid%2F33806438&rft.externalDocID=33806438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |