An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations

Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely use...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 5; p. 1777
Main Authors Serrano-Mamolar, Ana, Arevalillo-Herráez, Miguel, Chicote-Huete, Guillermo, Boticario, Jesus G.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 04.03.2021
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.
AbstractList Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students' affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students' affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.
Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.
Author Chicote-Huete, Guillermo
Serrano-Mamolar, Ana
Arevalillo-Herráez, Miguel
Boticario, Jesus G.
AuthorAffiliation 2 Departament d’Informàtica, Universitat de València, 46100 Burjassot, Valencia, Spain; miguel.arevalillo@uv.es (M.A.-H.); guillermo.chicote@uv.es (G.C.-H.)
1 aDeNu Research Group, Artificial Intelligence Department, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain; jgb@dia.uned.es
AuthorAffiliation_xml – name: 2 Departament d’Informàtica, Universitat de València, 46100 Burjassot, Valencia, Spain; miguel.arevalillo@uv.es (M.A.-H.); guillermo.chicote@uv.es (G.C.-H.)
– name: 1 aDeNu Research Group, Artificial Intelligence Department, Universidad Nacional de Educación a Distancia, 28040 Madrid, Spain; jgb@dia.uned.es
Author_xml – sequence: 1
  givenname: Ana
  orcidid: 0000-0002-0027-7128
  surname: Serrano-Mamolar
  fullname: Serrano-Mamolar, Ana
– sequence: 2
  givenname: Miguel
  orcidid: 0000-0002-0350-2079
  surname: Arevalillo-Herráez
  fullname: Arevalillo-Herráez, Miguel
– sequence: 3
  givenname: Guillermo
  orcidid: 0000-0002-7736-5572
  surname: Chicote-Huete
  fullname: Chicote-Huete, Guillermo
– sequence: 4
  givenname: Jesus G.
  orcidid: 0000-0003-4949-9220
  surname: Boticario
  fullname: Boticario, Jesus G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33806438$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUQCNURB-w4AeQl7AI9Su2s0EaRqUdqYWKglhajuPMeOSJp7ZT0W_qT-JMyqhFbPy499xzLdvHxUHve1MUbxH8SEgNTyNGsEKc8xfFEaKYlgJjePBkfVgcx7iGEBNCxKviMI-QUSKOiodZDxZ9Cqq8GZq10QnMttvglV6BzyqaFvgepJUZo85qlWze-w5cXF2B5MF1MK3NNXPfazNadnnbg7N2mGDlxmQyv1MEXfAb8NX3NpNDtHcGXK_uo_XOL7PagRu7zHwc678b5cpfPrg2R9OwU8XXxcsu582bx_mk-Pnl7Mf8orz8dr6Yzy5LTSlKJVct65quonVdd4wwgzVhuGaaENRQrllNFK0VMp3QXdVAqI3mVHGBoGao5eSkWEze1qu13Aa7UeFeemXlLuDDUqqQrHZGtriqBdGVwpxTqIjIDZAmRpGqgkyJ7Po0ubZDszHtdEvumfR5prcrufR3ktcM8QplwftHQfC3g4lJbmzUxjnVGz9EiSsoKiaYIBl997TXvsnf187AhwnQwccYTLdHEJTjT5L7n5TZ039YbdPuHfIxrftPxR8FYszI
CitedBy_id crossref_primary_10_5298_046560
Cites_doi 10.1109/STSIVA.2014.7010181
10.1080/02699939208411068
10.3390/s18072074
10.2196/preprints.10828
10.1201/9781498710411
10.3390/s19204520
10.1109/TAFFC.2014.2327617
10.1037/1528-3542.6.3.356
10.1023/B:BTTJ.0000047603.37042.33
10.1037/a0019243
10.3390/s18124271
10.3390/s19194079
10.1109/TSMCA.2011.2116000
10.1093/mind/os-IX.34.188
10.1109/T-AFFC.2010.7
10.1109/T-AFFC.2011.30
10.1111/bjet.12156
10.1109/ICMLA.2018.00062
10.1109/TAFFC.2018.2877986
10.1155/2014/484873
10.1109/TPAMI.2008.26
10.1109/ACCESS.2018.2854966
10.3390/s19081863
10.3390/s19132999
10.1016/j.jnca.2019.102447
10.1007/978-3-319-61425-0_4
10.1016/j.knosys.2017.06.024
10.1109/TAFFC.2014.2316163
10.1109/T-AFFC.2012.16
10.3389/fnhum.2019.00057
10.3390/s20030592
10.1007/978-3-642-21869-9_19
10.3233/AIC-190624
10.1109/ICBL.2015.7387633
10.18608/jla.2014.11.6
10.1037/h0077714
10.1007/s11042-016-4203-7
10.1109/JSEN.2016.2533266
10.1093/oso/9780195104462.001.0001
10.1007/978-3-642-10347-6_5
10.1016/j.ijhcs.2009.12.003
10.1016/j.procs.2016.05.264
10.1109/TIFS.2017.2778010
10.1016/j.jcps.2011.08.003
10.1007/978-3-030-02631-8_5
10.3390/s18061714
10.1109/CYBERNETICSCOM.2019.8875677
10.4236/jcc.2017.54001
10.3390/s20082384
10.1109/ACII.2013.100
10.1109/RCAR.2016.7784015
10.1145/2682899
10.1007/s10648-006-9033-0
10.1109/DSR.2011.6026823
10.1145/3264913
10.1109/EXPAT.2017.7984354
10.1080/13614568.2015.1058428
10.3389/fpsyg.2020.01111
10.1109/T-AFFC.2012.4
10.1016/j.future.2018.02.033
10.1037/a0032674
10.1109/TITS.2005.848368
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/s21051777
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d25983c5a27740a38b471c3ea35506a8
PMC7961751
33806438
10_3390_s21051777
Genre Journal Article
GrantInformation_xml – fundername: Ministerio de Economía y Competitividad
  grantid: PGC2018-096463-B-I00
– fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: PGC2018-102279-B-I00
– fundername: Ministerio de Economía y Competitividad
  grantid: TIN2014-59641-C2-1-P
– fundername: Ministerio de Economía y Competitividad
  grantid: TIN2014-59641-C2-2-P
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-7ad6fbf54999f636e2c36296c331b47c693a49a1ef8cf5b00cec74a7810c61d73
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:15:13 EDT 2025
Thu Aug 21 18:13:45 EDT 2025
Fri Jul 11 07:53:30 EDT 2025
Mon Jul 21 05:53:49 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
Tue Jul 01 03:56:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords learner modelling
user-centred systems
physiological sensors
nonintrusive
affective computing
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7ad6fbf54999f636e2c36296c331b47c693a49a1ef8cf5b00cec74a7810c61d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0350-2079
0000-0003-4949-9220
0000-0002-0027-7128
0000-0002-7736-5572
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21051777
PMID 33806438
PQID 2508568683
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d25983c5a27740a38b471c3ea35506a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7961751
proquest_miscellaneous_2508568683
pubmed_primary_33806438
crossref_primary_10_3390_s21051777
crossref_citationtrail_10_3390_s21051777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210304
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 3
  year: 2021
  text: 20210304
  day: 4
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_14
ref_13
(ref_57) 2013; 105
Santos (ref_64) 2016; 16
ref_12
ref_11
ref_10
ref_54
Santos (ref_16) 2015; Volume 9112
ref_19
ref_17
ref_15
Santos (ref_62) 2016; 22
Whitehill (ref_38) 2014; 5
ref_61
Valenza (ref_50) 2012; 3
Egloff (ref_67) 2006; 6
Greco (ref_48) 2018; 8
Chanel (ref_59) 2011; 41
ref_25
ref_69
ref_68
ref_22
ref_66
ref_21
ref_65
ref_20
ref_63
Egges (ref_33) 2009; Volume 5884
Ocumpaugh (ref_41) 2014; 45
Maiorana (ref_24) 2018; 13
ref_29
ref_28
ref_27
ref_26
Shoumy (ref_37) 2020; 149
Shin (ref_55) 2017; 76
James (ref_6) 1884; os-IX
Kim (ref_49) 2008; 30
ref_72
Wen (ref_56) 2014; 5
Arnau (ref_42) 2017; 132
ref_70
Toala (ref_44) 2019; 32
Arnau (ref_43) 2018; 13
Lascio (ref_60) 2018; 2
Pekrun (ref_3) 2010; 102
ref_35
ref_32
ref_31
Petrantonakis (ref_53) 2010; 1
Baker (ref_5) 2010; 68
Pardos (ref_2) 2014; 1
ref_39
Alzoubi (ref_58) 2012; 3
Kleinsmith (ref_71) 2013; 4
Farzaneh (ref_36) 2019; Volume 11626 LNAI
ref_47
Krishna (ref_30) 2012; 22
ref_46
Krithika (ref_45) 2016; Volume 85
Russell (ref_51) 1980; 39
Ainley (ref_4) 2006; 18
Ekman (ref_52) 1992; 6
ref_40
Baker (ref_23) 2018; 6
Kamioka (ref_18) 2017; 5
Nalepa (ref_34) 2019; 92
ref_9
ref_8
Picard (ref_1) 2004; 22
ref_7
References_xml – ident: ref_25
  doi: 10.1109/STSIVA.2014.7010181
– volume: 6
  start-page: 169
  year: 1992
  ident: ref_52
  article-title: An Argument for Basic Emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– ident: ref_8
  doi: 10.3390/s18072074
– ident: ref_14
  doi: 10.2196/preprints.10828
– ident: ref_69
  doi: 10.1201/9781498710411
– volume: Volume 11626 LNAI
  start-page: 73
  year: 2019
  ident: ref_36
  article-title: Developing a deep learning-based affect recognition system for young children
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: ref_15
  doi: 10.3390/s19204520
– volume: 5
  start-page: 126
  year: 2014
  ident: ref_56
  article-title: Emotion recognition based on multi-variant correlation of physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2327617
– volume: 6
  start-page: 356
  year: 2006
  ident: ref_67
  article-title: Spontaneous emotion regulation during evaluated speaking tasks: Associations with negative affect, anxiety expression, memory, and physiological responding
  publication-title: Emotion
  doi: 10.1037/1528-3542.6.3.356
– volume: 22
  start-page: 253
  year: 2004
  ident: ref_1
  article-title: Affective learning—A manifesto
  publication-title: BT Technol. J.
  doi: 10.1023/B:BTTJ.0000047603.37042.33
– ident: ref_68
– ident: ref_65
– ident: ref_39
– volume: 102
  start-page: 531
  year: 2010
  ident: ref_3
  article-title: Boredom in Achievement Settings: Exploring Control-Value Antecedents and Performance Outcomes of a Neglected Emotion
  publication-title: J. Educ. Psychol.
  doi: 10.1037/a0019243
– ident: ref_11
  doi: 10.3390/s18124271
– ident: ref_26
  doi: 10.3390/s19194079
– volume: 41
  start-page: 1052
  year: 2011
  ident: ref_59
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2011.2116000
– volume: os-IX
  start-page: 188
  year: 1884
  ident: ref_6
  article-title: II.—WHAT IS AN EMOTION ?
  publication-title: Mind
  doi: 10.1093/mind/os-IX.34.188
– volume: 1
  start-page: 81
  year: 2010
  ident: ref_53
  article-title: Emotion recognition from brain signals using hybrid adaptive filtering and higher order crossings analysis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.7
– volume: 3
  start-page: 237
  year: 2012
  ident: ref_50
  article-title: The role of nonlinear dynamics in affective valence and arousal recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.30
– volume: 45
  start-page: 487
  year: 2014
  ident: ref_41
  article-title: Population validity for educational data mining models: A case study in affect detection
  publication-title: Br. J. Educ. Technol.
  doi: 10.1111/bjet.12156
– ident: ref_35
  doi: 10.1109/ICMLA.2018.00062
– ident: ref_22
  doi: 10.1109/TAFFC.2018.2877986
– ident: ref_70
  doi: 10.1155/2014/484873
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref_49
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 6
  start-page: 39154
  year: 2018
  ident: ref_23
  article-title: A Machine Learning Approach to Leverage Individual Keyboard and Mouse Interaction Behavior from Multiple Users in Real-World Learning Scenarios
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2854966
– ident: ref_27
  doi: 10.3390/s19081863
– ident: ref_20
  doi: 10.3390/s19132999
– volume: 149
  start-page: 102447
  year: 2020
  ident: ref_37
  article-title: Multimodal big data affective analytics: A comprehensive survey using text, audio, visual and physiological signals
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2019.102447
– ident: ref_40
  doi: 10.1007/978-3-319-61425-0_4
– volume: 132
  start-page: 85
  year: 2017
  ident: ref_42
  article-title: Adding sensor-free intention-based affective support to an Intelligent Tutoring System
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.024
– volume: 5
  start-page: 86
  year: 2014
  ident: ref_38
  article-title: The faces of engagement: Automatic recognition of student engagement from facial expressions
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2316163
– volume: 4
  start-page: 15
  year: 2013
  ident: ref_71
  article-title: Affective body expression perception and recognition: A survey
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.16
– ident: ref_13
  doi: 10.3389/fnhum.2019.00057
– ident: ref_28
  doi: 10.3390/s20030592
– ident: ref_7
– ident: ref_61
  doi: 10.1007/978-3-642-21869-9_19
– volume: 32
  start-page: 161
  year: 2019
  ident: ref_44
  article-title: Intelligent tutoring system to improve learning outcomes
  publication-title: AI Commun.
  doi: 10.3233/AIC-190624
– ident: ref_19
  doi: 10.1109/ICBL.2015.7387633
– volume: 1
  start-page: 107
  year: 2014
  ident: ref_2
  article-title: Affective States and State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year Learning Outcomes
  publication-title: J. Learn. Anal.
  doi: 10.18608/jla.2014.11.6
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_51
  article-title: A circumplex model of affect
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 76
  start-page: 11449
  year: 2017
  ident: ref_55
  article-title: Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-016-4203-7
– volume: Volume 9112
  start-page: 429
  year: 2015
  ident: ref_16
  article-title: Filtering of spontaneous and low intensity emotions in educational contexts
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 16
  start-page: 3865
  year: 2016
  ident: ref_64
  article-title: An open sensing and acting platform for context-aware affective support in ambient intelligent educational settings
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2533266
– ident: ref_72
  doi: 10.1093/oso/9780195104462.001.0001
– volume: Volume 5884
  start-page: 53
  year: 2009
  ident: ref_33
  article-title: Applying Affect Recognition in Serious Games: The PlayMancer Project
  publication-title: Motion in Games
  doi: 10.1007/978-3-642-10347-6_5
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_48
  article-title: Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors
  publication-title: Sci. Rep.
– ident: ref_21
– volume: 68
  start-page: 223
  year: 2010
  ident: ref_5
  article-title: Better to be frustrated than bored: The incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three different computer-based learning environments
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2009.12.003
– volume: 13
  start-page: 63
  year: 2018
  ident: ref_43
  article-title: On Incorporating Affective Support to an Intelligent Tutoring System: An Empirical Study
  publication-title: IEEE-RITA
– volume: Volume 85
  start-page: 767
  year: 2016
  ident: ref_45
  article-title: Student Emotion Recognition System (SERS) for e-learning Improvement Based on Learner Concentration Metric
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.05.264
– volume: 13
  start-page: 1123
  year: 2018
  ident: ref_24
  article-title: Longitudinal Evaluation of EEG-Based Biometric Recognition
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2778010
– volume: 22
  start-page: 332
  year: 2012
  ident: ref_30
  article-title: An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior
  publication-title: J. Consum. Psychol.
  doi: 10.1016/j.jcps.2011.08.003
– ident: ref_9
  doi: 10.1007/978-3-030-02631-8_5
– ident: ref_10
  doi: 10.3390/s18061714
– ident: ref_17
  doi: 10.1109/CYBERNETICSCOM.2019.8875677
– volume: 5
  start-page: 1
  year: 2017
  ident: ref_18
  article-title: Detection of Learner’s Concentration in Distance Learning System with Multiple Biological Information
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2017.54001
– ident: ref_29
  doi: 10.3390/s20082384
– ident: ref_46
– ident: ref_31
  doi: 10.1109/ACII.2013.100
– ident: ref_54
  doi: 10.1109/RCAR.2016.7784015
– ident: ref_47
  doi: 10.1145/2682899
– volume: 18
  start-page: 391
  year: 2006
  ident: ref_4
  article-title: Connecting with learning: Motivation, affect and cognition in interest processes
  publication-title: Educ. Psychol. Rev.
  doi: 10.1007/s10648-006-9033-0
– ident: ref_32
  doi: 10.1109/DSR.2011.6026823
– volume: 2
  start-page: 21
  year: 2018
  ident: ref_60
  article-title: Unobtrusive Assessment of Students’ Emotional Engagement during Lectures Using Electrodermal Activity Sensors
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3264913
– ident: ref_12
  doi: 10.1109/EXPAT.2017.7984354
– volume: 22
  start-page: 27
  year: 2016
  ident: ref_62
  article-title: Toward interactive context-aware affective educational recommendations in computer-assisted language learning
  publication-title: New Rev. Hypermedia Multimedia
  doi: 10.1080/13614568.2015.1058428
– ident: ref_66
  doi: 10.3389/fpsyg.2020.01111
– volume: 3
  start-page: 298
  year: 2012
  ident: ref_58
  article-title: Detecting naturalistic expressions of nonbasic affect using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.4
– volume: 92
  start-page: 490
  year: 2019
  ident: ref_34
  article-title: Mobile platform for affective context-aware systems
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.033
– volume: 105
  start-page: 1082
  year: 2013
  ident: ref_57
  article-title: A selective meta-analysis on the relative incidence of discrete affective states during learning with technology
  publication-title: J. Educ. Psychol.
  doi: 10.1037/a0032674
– ident: ref_63
  doi: 10.1109/TITS.2005.848368
SSID ssj0023338
Score 2.341579
Snippet Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1777
SubjectTerms affective computing
Emotions
Heart Rate
Humans
learner modelling
nonintrusive
physiological sensors
Skin Temperature
user-centred systems
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yJz2Ib8cXpXjwEjbd6c7jOLu4jMIsoi7srUknaR1Y0uK04H_yT1qV7mlnZMGL13RCQlcl9X1J5Qtjr3Up2iJawUMXJK98sLzVInBltLaaQkY-PV-fq9VF9f6yvtx76otywkZ54PHHHQfE50b62pUIVISTpsXl1MvoMFAK5fI1X4x5OzI1US2JzGvUEZJI6o-3SGzqQmt9EH2ySP91yPLvBMm9iHN2h92eoCIsxyHeZTdiusdu7QkI3me_lgneUWOOCwDtqMBy0giHEwxPAfoEiPBg-eeYGvoOVus1DD18-E6nNAOc0tXFNOnnwibBnPWB3Wf5qp_DFugiCpzT7i3d08BFEnL26G7xhE-bL6TFTO0_IvrkOU0HS4dRTHz7gF2cvf18uuLT8wvcI0YauHZBdW1HBNJ2SqpYeox2VnkpCzSCV1a6yroidsZ3NU5fH72unDaF8KoIWj5kR6lP8TEDp11hkCrpyoZKVM4KFRDa2aAFEqqyXrA3O7M0ftImpycyrhrkKGTBZrbggr2aq34bBTmuq3RCtp0rkIZ2LkDPaibPav7lWQv2cucZDc45OkhxKfY_tg3CRlMro4xcsEejp8xdoeMRysPW-sCHDsZy-CVtvmZdb20RTtbFk_8x-KfsZknZN5QtVz1jR-gZ8TnCp6F9kWfKb-z7GZI
  priority: 102
  providerName: Directory of Open Access Journals
Title An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations
URI https://www.ncbi.nlm.nih.gov/pubmed/33806438
https://www.proquest.com/docview/2508568683
https://pubmed.ncbi.nlm.nih.gov/PMC7961751
https://doaj.org/article/d25983c5a27740a38b471c3ea35506a8
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lj9MwEB7tQ0LLAfGmPCqDOHAJJHHisQ8ItastBanVaqFSb5FrJ0ulVQJtkJbfxJ9kJk3DFpVLD4nzaMb2fJ9n_A3Aa4zDRZSbMPCFl0HivAkWGPpAaUSD7DKa6Plkqsaz5PM8nR_AtsZm-wHXe6kd15Oara7eXv_49YEG_HtmnETZ362JtqQRIh7CMd0duZDBJOmCCbEkGrYRFdptfgK36Az7ZL3jlRrx_n2I89_EyRueaHQX7rQQUgw2Nr8HB3l5H27fEBZ8AL8HpfjEFwc0MfBKixi02uFiSG7Li6oUhPzE4G_4WlSFGE8moq7E-YqjN7U45S2NZaurK5al6LJB6PGNrNV1vRa8QUVMeVWX92_Q5CmarNLtpCq-LC_5W_P1F4RKgyZ9h47WG5Hx9UOYjc6-no6DtixD4Ag71QFar4pFwcTSFEqqPHbkBY1yUkaLBJ0y0ibGRnmhXZHSsHa5w8SijkKnIo_yERyVVZk_AWHRRpooFCbGJ2FiTag8QT7jMSSiFac9eLM1S-ZazXIunXGVEXdhY2adMXvwqmv6fSPUsa_RkG3bNWBt7eZAtbrM2qGaeWKEWrrUxgSNQys1_anIydwSNAuV1T14ue0ZGY1FDrDYMq9-rjOCkzpVWmnZg8ebntI9atvTeoA7fWjnXXbPlMtvjd43GoKZafT0v_d8Bicxp9pwalzyHI7I3PkLwkr1og-HOEf61aOPfTgenk3PL_rNukO_GSN_APNcF8I
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intra-Subject+Approach+Based+on+the+Application+of+HMM+to+Predict+Concentration+in+Educational+Contexts+from+Nonintrusive+Physiological+Signals+in+Real-World+Situations&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Serrano-Mamolar%2C+Ana&rft.au=Arevalillo-Herr%C3%A1ez%2C+Miguel&rft.au=Chicote-Huete%2C+Guillermo&rft.au=Boticario%2C+Jesus+G&rft.date=2021-03-04&rft.eissn=1424-8220&rft.volume=21&rft.issue=5&rft_id=info:doi/10.3390%2Fs21051777&rft_id=info%3Apmid%2F33806438&rft.externalDocID=33806438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon