Fast crystal growth at ultra-low temperatures

It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combini...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 10; pp. 1431 - 1439
Main Authors Gao, Qiong, Ai, Jingdong, Tang, Shixiang, Li, Minhuan, Chen, Yanshuang, Huang, Jiping, Tong, Hua, Xu, Lei, Xu, Limei, Tanaka, Hajime, Tan, Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control. Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase.
AbstractList It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase.
It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control. Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase.
It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.
It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.
Author Ai, Jingdong
Tan, Peng
Li, Minhuan
Tanaka, Hajime
Gao, Qiong
Huang, Jiping
Xu, Lei
Tang, Shixiang
Xu, Limei
Chen, Yanshuang
Tong, Hua
Author_xml – sequence: 1
  givenname: Qiong
  surname: Gao
  fullname: Gao, Qiong
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
– sequence: 2
  givenname: Jingdong
  surname: Ai
  fullname: Ai, Jingdong
  organization: International Centre for Quantum Materials and School of Physics, Peking University
– sequence: 3
  givenname: Shixiang
  surname: Tang
  fullname: Tang, Shixiang
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
– sequence: 4
  givenname: Minhuan
  orcidid: 0000-0003-0560-7533
  surname: Li
  fullname: Li, Minhuan
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
– sequence: 5
  givenname: Yanshuang
  surname: Chen
  fullname: Chen, Yanshuang
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
– sequence: 6
  givenname: Jiping
  orcidid: 0000-0002-3617-3275
  surname: Huang
  fullname: Huang, Jiping
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
– sequence: 7
  givenname: Hua
  orcidid: 0000-0001-9201-7237
  surname: Tong
  fullname: Tong, Hua
  organization: Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, School of Physics and Astronomy, Shanghai Jiao Tong University, Department of Physics, University of Science and Technology of China
– sequence: 8
  givenname: Lei
  orcidid: 0000-0001-9229-586X
  surname: Xu
  fullname: Xu, Lei
  organization: Department of Physics, The Chinese University of Hong Kong
– sequence: 9
  givenname: Limei
  surname: Xu
  fullname: Xu, Limei
  email: limei.xu@pku.edu.cn
  organization: International Centre for Quantum Materials and School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter
– sequence: 10
  givenname: Hajime
  orcidid: 0000-0002-4444-1890
  surname: Tanaka
  fullname: Tanaka, Hajime
  email: tanaka@iis.u-tokyo.ac.jp
  organization: Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Research Center for Advanced Science and Technology, University of Tokyo
– sequence: 11
  givenname: Peng
  orcidid: 0000-0002-9163-8100
  surname: Tan
  fullname: Tan, Peng
  email: tanpeng@fudan.edu.cn
  organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33958770$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC1URD_gDzCgSCwsBp_t2MmIKgpIlVi6W47jlFRpUmxHqP8eQwpIHTqdh_d8pzdFo7ZrLULXQO6BsOzBc0gFw4QCJiTPGRZnaAJcCsyFIKPDG4DSMZp6vyGRTFNxgcaM5WkmJZkgvNA-JMbtfdBNsnbdZ3hPdEj6JjiNm-4zCXa7s06H3ll_ic4r3Xh7dZgztFo8reYvePn2_Dp_XGLDOQQss5JQknMoGTUZkKqymaZCyqIgRSpMrqUpcm7BSsqEASYo5KXkOi9JmXE2Q3fDtzvXffTWB7WtvbFNo1vb9V7RlHImSCogordH6KbrXRuPi5QUAAxSEqmbA9UXW1uqnau32u3Vb4cI0AEwrvPe2eoPAaK-Y6shtooJ1U9sJaKUHUmmDjrUXRvb1c1plQ2qj3vatXX_Z5-wvgBot5Bw
CitedBy_id crossref_primary_10_1063_5_0186597
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123149
crossref_primary_10_1002_adma_202313162
crossref_primary_10_1002_adfm_202419762
crossref_primary_10_1016_j_actamat_2024_119716
crossref_primary_10_1039_D3MH00734K
crossref_primary_10_1103_PhysRevE_104_054607
crossref_primary_10_1103_RevModPhys_96_015002
crossref_primary_10_1016_j_ccr_2024_216035
crossref_primary_10_1103_PhysRevLett_132_018202
crossref_primary_10_1039_D3CE01081C
crossref_primary_10_1016_j_commatsci_2022_111598
crossref_primary_10_1103_PhysRevResearch_6_L012012
crossref_primary_10_1021_acs_jpcc_2c04961
crossref_primary_10_1039_D3CE01063E
crossref_primary_10_1039_D4CP02526A
crossref_primary_10_1360_SSPMA_2024_0096
crossref_primary_10_1016_j_energy_2022_124627
crossref_primary_10_1103_PhysRevLett_132_078201
crossref_primary_10_1016_j_molliq_2022_120351
crossref_primary_10_1021_acs_nanolett_4c05632
crossref_primary_10_1016_j_powtec_2023_118615
crossref_primary_10_1038_s41467_023_41731_7
crossref_primary_10_1039_D2CP03638J
crossref_primary_10_1021_jacs_4c14196
crossref_primary_10_1038_s41467_022_32241_z
crossref_primary_10_1039_D3MH00365E
crossref_primary_10_1007_s40195_021_01304_3
crossref_primary_10_1038_s41467_024_48110_w
crossref_primary_10_15541_jim20220647
crossref_primary_10_1103_PhysRevLett_133_248202
crossref_primary_10_1063_5_0137352
crossref_primary_10_1038_s43246_023_00359_2
crossref_primary_10_1103_PhysRevLett_130_178201
crossref_primary_10_1039_D3SM00872J
crossref_primary_10_1016_j_ensm_2025_104091
crossref_primary_10_1063_5_0208887
crossref_primary_10_1038_s41467_023_44332_6
crossref_primary_10_1038_s42254_023_00565_4
crossref_primary_10_1063_5_0155915
crossref_primary_10_1038_s41467_025_58057_1
crossref_primary_10_1016_j_jcrysgro_2022_126854
crossref_primary_10_1002_advs_202300798
crossref_primary_10_1038_s42005_023_01285_y
crossref_primary_10_1103_PhysRevE_107_044119
crossref_primary_10_1016_j_xinn_2023_100458
Cites_doi 10.1063/1.2815325
10.1080/14786440009463908
10.1023/A:1015824230008
10.1038/s41563-018-0174-6
10.1039/C4SM02365J
10.1126/science.1058457
10.1103/PhysRevLett.49.1496
10.1140/epje/i2012-12113-y
10.1103/PhysRevLett.103.135704
10.1073/pnas.1001040107
10.1103/PhysRevLett.104.205703
10.1063/1.329867
10.1038/nature16987
10.1103/PhysRevB.28.784
10.1016/S0022-2860(98)00875-8
10.1038/srep00505
10.1103/PhysRevE.80.031605
10.1103/PhysRevLett.107.175702
10.1016/0001-6160(82)90134-1
10.1103/PhysRevLett.108.025502
10.1103/PhysRevLett.103.035702
10.1126/science.1224763
10.1038/s41467-017-00017-5
10.1063/1.447334
10.1063/1.4880959
10.1038/nmat815
10.1007/s11467-018-0808-9
10.1103/PhysRevE.52.6415
10.1038/nphys2817
10.1038/nphys235
10.1103/PhysRevLett.97.228301
10.1088/0953-8984/15/48/017
10.1063/1.4962166
10.1038/nmat3034
10.1063/1.462864
10.1088/0953-8984/11/28/201
10.1038/nphys4034
10.1088/0953-8984/17/45/041
10.1103/PhysRevE.68.021407
10.1103/PhysRevLett.97.170201
10.1063/1.4774084
10.1038/s42254-019-0053-3
10.1515/zpch-1906-5511
10.1016/j.apsusc.2009.07.084
10.1103/PhysRevB.76.220201
10.1016/j.actamat.2017.08.015
10.1103/PhysRevE.68.011505
10.1063/1.2928844
10.1063/1.2977970
10.1016/j.actamat.2009.09.030
10.1006/jcis.1996.0217
10.1038/nmat1190
10.1103/PhysRevLett.106.195502
10.1126/science.1112399
10.1016/0022-0248(93)90307-I
10.1073/pnas.1813885116
10.1209/0295-5075/79/26005
10.1103/PhysRevE.95.052801
10.1038/s41567-020-1016-4
10.2172/10176421
10.1002/352760264X.ch9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
The Author(s), under exclusive licence to Springer Nature Limited 2021.
2021. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-021-00993-6
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 1439
ExternalDocumentID 33958770
10_1038_s41563_021_00993_6
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Rising Star program Grants No. 16QA1400600
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: 20JC1414700; 20JC1414700
  funderid: https://doi.org/10.13039/501100003399
– fundername: Hong Kong RGC (GRF 14306518 and GRF 14303415)
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP25000002; JP20H05619; JP18H03675
  funderid: https://doi.org/10.13039/501100001691
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11725521; 12035004; 11935002; 11525520; 11725521; 12035004
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China (Grant No. 2016YFA0300901)
– fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission)
  grantid: 20JC1414700
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11525520
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP25000002
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP18H03675
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11725521
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11935002
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP20H05619
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12035004
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c441t-78d020941d32c810ffe8a2677bb0b56c9a7cb94e1e7236c136219d74a9d0d843
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Mon Jul 21 11:12:16 EDT 2025
Fri Jul 25 09:03:43 EDT 2025
Mon Jul 21 05:34:38 EDT 2025
Tue Jul 01 02:14:02 EDT 2025
Thu Apr 24 23:44:05 EDT 2025
Fri Feb 21 02:40:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-78d020941d32c810ffe8a2677bb0b56c9a7cb94e1e7236c136219d74a9d0d843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9163-8100
0000-0001-9201-7237
0000-0002-3617-3275
0000-0001-9229-586X
0000-0002-4444-1890
0000-0003-0560-7533
PMID 33958770
PQID 2576113150
PQPubID 27576
PageCount 9
ParticipantIDs proquest_miscellaneous_2524360561
proquest_journals_2576113150
pubmed_primary_33958770
crossref_primary_10_1038_s41563_021_00993_6
crossref_citationtrail_10_1038_s41563_021_00993_6
springer_journals_10_1038_s41563_021_00993_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zaccarelli (CR7) 2009; 103
Gránásy, Pusztai, Börzsönyi, Warren, Douglas (CR10) 2004; 3
Maxwell-Garnett (CR56) 1904; 203
Steinhardt, Nelson, Ronchetti (CR61) 1983; 28
Watanabe, Kawasaki, Tanaka (CR21) 2011; 10
Tóth, Pusztai, Tegze, Tóth, Gránásy (CR29) 2011; 107
Palberg (CR42) 1999; 11
Russo, Tanaka (CR18) 2012; 2
Peng, Wang, Alsayed, Yodh, Han (CR39) 2010; 104
Shibuta (CR52) 2017; 8
Russo, Tanaka (CR44) 2016; 145
Ashkenazy, Averback (CR31) 2007; 79
Coriell, Turnbull (CR16) 1982; 30
Li (CR40) 2016; 531
Alsayed, Islam, Zhang, Collings, Yodh (CR38) 2005; 309
Ediger, Harrowell, Yu (CR6) 2008; 128
Bitzek, Koskinen, Gähler, Moseler, Gumbsch (CR59) 2006; 97
Mickel, Kapfer, Schröder-Turk, Mecke (CR63) 2013; 138
Shintani, Tanaka (CR24) 2006; 2
CR49
Dijkstra, van Roij (CR22) 2005; 17
CR47
Tanaka (CR4) 2003; 68
Tan, Xu, Xu (CR19) 2014; 10
Oxtoby, Harrowell (CR46) 1992; 96
Royall, Leunissen, van Blaaderen (CR55) 2003; 15
Tóth, Tegze, Pusztai, Gránásy (CR51) 2012; 108
Kawasaki, Tanaka (CR17) 2010; 107
Ashkenazy, Averback (CR28) 2010; 58
Tang, Wang, Svendsen, Raabe (CR50) 2017; 139
Wilson (CR14) 1900; 50
Tegze, Tóth, Gránásy (CR32) 2011; 106
Wang, Xu, Wang (CR45) 2018; 13
Gasser, Weeks, Schofield, Pusey, Weitz (CR35) 2001; 292
Tanaka (CR30) 2012; 35
Tegze (CR13) 2009; 103
Hikima, Hanaya, Oguni (CR3) 1999; 479
Hwang, Weitz, Spaepen (CR26) 2019; 116
Broughton, Gilmer, Jackson (CR1) 1982; 49
CR15
Arai, Tanaka (CR36) 2017; 13
Konishi, Tanaka (CR5) 2007; 76
CR57
Jackson, Gilmer, Temkin, Weinberg, Beatty (CR2) 1993; 128
Page, Sear (CR23) 2009; 80
Sear (CR12) 2008; 128
Aziz (CR33) 1982; 53
Nosé (CR58) 1984; 81
Lechner, Dellago (CR62) 2008; 129
Gránásy (CR9) 2003; 2
Tanaka, Tong, Shi, Russo (CR27) 2019; 1
Orava, Greer (CR8) 2014; 140
Sun, Xu, Harrowell (CR25) 2018; 17
Zhong, Kulovits, Wiezorek, Leonard (CR53) 2009; 256
Crocker, Grier (CR60) 1996; 179
Jackson (CR11) 2002; 10
Würth, Schwarz, Culis, Leiderer, Palberg (CR41) 1995; 52
Podmaniczky, Tóth, Tegze, Gránásy (CR48) 2017; 95
Wang, Wang, Peng, Zheng, Han (CR37) 2012; 338
Kratzer, Arnold (CR20) 2015; 11
Hynninen, Dijkstra (CR43) 2003; 68
Walden (CR54) 1906; 55
Dullens, Aarts, Kegel (CR34) 2006; 97
A Page (993_CR23) 2009; 80
M Ediger (993_CR6) 2008; 128
S Nosé (993_CR58) 1984; 81
P Tan (993_CR19) 2014; 10
GI Tóth (993_CR29) 2011; 107
GI Tóth (993_CR51) 2012; 108
J Orava (993_CR8) 2014; 140
S Tang (993_CR50) 2017; 139
T Kawasaki (993_CR17) 2010; 107
H Tanaka (993_CR4) 2003; 68
G Tegze (993_CR13) 2009; 103
993_CR47
Y Peng (993_CR39) 2010; 104
Y Shibuta (993_CR52) 2017; 8
H Tanaka (993_CR27) 2019; 1
JC Maxwell-Garnett (993_CR56) 1904; 203
KA Jackson (993_CR2) 1993; 128
M Dijkstra (993_CR22) 2005; 17
993_CR49
H Hwang (993_CR26) 2019; 116
F Podmaniczky (993_CR48) 2017; 95
T Konishi (993_CR5) 2007; 76
S Arai (993_CR36) 2017; 13
E Zaccarelli (993_CR7) 2009; 103
W Mickel (993_CR63) 2013; 138
E Bitzek (993_CR59) 2006; 97
993_CR15
993_CR57
H Shintani (993_CR24) 2006; 2
L Gránásy (993_CR9) 2003; 2
G Tegze (993_CR32) 2011; 106
RP Dullens (993_CR34) 2006; 97
M Würth (993_CR41) 1995; 52
HW Wilson (993_CR14) 1900; 50
B Li (993_CR40) 2016; 531
Y Ashkenazy (993_CR31) 2007; 79
C Royall (993_CR55) 2003; 15
JC Crocker (993_CR60) 1996; 179
T Palberg (993_CR42) 1999; 11
PJ Steinhardt (993_CR61) 1983; 28
J Russo (993_CR44) 2016; 145
T Hikima (993_CR3) 1999; 479
Y Ashkenazy (993_CR28) 2010; 58
U Gasser (993_CR35) 2001; 292
G Sun (993_CR25) 2018; 17
K Watanabe (993_CR21) 2011; 10
AM Alsayed (993_CR38) 2005; 309
KA Jackson (993_CR11) 2002; 10
J Russo (993_CR18) 2012; 2
Z Wang (993_CR37) 2012; 338
RP Sear (993_CR12) 2008; 128
P Walden (993_CR54) 1906; 55
R Wang (993_CR45) 2018; 13
J Broughton (993_CR1) 1982; 49
R Zhong (993_CR53) 2009; 256
DW Oxtoby (993_CR46) 1992; 96
W Lechner (993_CR62) 2008; 129
MJ Aziz (993_CR33) 1982; 53
L Gránásy (993_CR10) 2004; 3
S Coriell (993_CR16) 1982; 30
A-P Hynninen (993_CR43) 2003; 68
K Kratzer (993_CR20) 2015; 11
H Tanaka (993_CR30) 2012; 35
References_xml – volume: 128
  start-page: 034709
  year: 2008
  ident: CR6
  article-title: Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2815325
– volume: 50
  start-page: 238
  year: 1900
  end-page: 250
  ident: CR14
  article-title: On the velocity of solidification and viscosity of super-cooled liquids
  publication-title: Philos. Mag.
  doi: 10.1080/14786440009463908
– ident: CR49
– volume: 10
  start-page: 159
  year: 2002
  end-page: 169
  ident: CR11
  article-title: The interface kinetics of crystal growth processes
  publication-title: Interface Sci.
  doi: 10.1023/A:1015824230008
– volume: 17
  start-page: 881
  year: 2018
  end-page: 886
  ident: CR25
  article-title: The mechanism of the ultrafast crystal growth of pure metals from their melts
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0174-6
– volume: 11
  start-page: 2174
  year: 2015
  end-page: 2182
  ident: CR20
  article-title: Two-stage crystallization of charged colloids under low supersaturation conditions
  publication-title: Soft Matter
  doi: 10.1039/C4SM02365J
– volume: 292
  start-page: 258
  year: 2001
  end-page: 262
  ident: CR35
  article-title: Real-space imaging of nucleation and growth in colloidal crystallization
  publication-title: Science
  doi: 10.1126/science.1058457
– volume: 49
  start-page: 1496
  year: 1982
  end-page: 1500
  ident: CR1
  article-title: Crystallization rates of a Lennard-Jones liquid
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1496
– volume: 35
  year: 2012
  ident: CR30
  article-title: Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2012-12113-y
– volume: 103
  start-page: 135704
  year: 2009
  ident: CR7
  article-title: Crystallization of hard-sphere glasses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.135704
– volume: 107
  start-page: 14036
  year: 2010
  end-page: 14041
  ident: CR17
  article-title: Formation of a crystal nucleus from liquid
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1001040107
– volume: 104
  start-page: 205703
  year: 2010
  ident: CR39
  article-title: Melting of colloidal crystal films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.205703
– volume: 53
  start-page: 1158
  year: 1982
  end-page: 1168
  ident: CR33
  article-title: Model for solute redistribution during rapid solidification
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329867
– volume: 531
  start-page: 485
  year: 2016
  end-page: 488
  ident: CR40
  article-title: Modes of surface premelting in colloidal crystals composed of attractive particles
  publication-title: Nature
  doi: 10.1038/nature16987
– ident: CR15
– volume: 28
  start-page: 784
  year: 1983
  ident: CR61
  article-title: Bond-orientational order in liquids and glasses
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.784
– volume: 479
  start-page: 245
  year: 1999
  end-page: 250
  ident: CR3
  article-title: Microscopic observation of a peculiar crystallization in the glass transition region and -process as potentially controlling the growth rate in triphenylethylene
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(98)00875-8
– ident: CR57
– volume: 2
  year: 2012
  ident: CR18
  article-title: The microscopic pathway to crystallization in supercooled liquids
  publication-title: Sci. Rep.
  doi: 10.1038/srep00505
– volume: 80
  start-page: 031605
  year: 2009
  ident: CR23
  article-title: Freezing in the bulk controlled by prefreezing at a surface
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.031605
– volume: 107
  start-page: 175702
  year: 2011
  ident: CR29
  article-title: Amorphous nucleation precursor in highly nonequilibrium fluids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.175702
– volume: 30
  start-page: 2135
  year: 1982
  end-page: 2139
  ident: CR16
  article-title: Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(82)90134-1
– volume: 108
  start-page: 025502
  year: 2012
  ident: CR51
  article-title: Heterogeneous crystal nucleation: the effect of lattice mismatch
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.025502
– volume: 103
  start-page: 035702
  year: 2009
  ident: CR13
  article-title: Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.035702
– volume: 338
  start-page: 87
  year: 2012
  end-page: 90
  ident: CR37
  article-title: Imaging the homogeneous nucleation during the melting of superheated colloidal crystals
  publication-title: Science
  doi: 10.1126/science.1224763
– volume: 8
  start-page: 10
  year: 2017
  ident: CR52
  article-title: Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00017-5
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: CR58
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 140
  start-page: 214504
  year: 2014
  ident: CR8
  article-title: Fast and slow crystal growth kinetics in glass-forming melts
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880959
– volume: 2
  start-page: 92
  year: 2003
  end-page: 96
  ident: CR9
  article-title: Growth of ‘dizzy dendrites’ in a random field of foreign particles
  publication-title: Nat. Mater.
  doi: 10.1038/nmat815
– volume: 13
  start-page: 138116
  year: 2018
  ident: CR45
  article-title: Molecular-scale processes affecting growth rates of ice at moderate supercooling
  publication-title: Front Phys. Beijing
  doi: 10.1007/s11467-018-0808-9
– volume: 52
  start-page: 6415
  year: 1995
  ident: CR41
  article-title: Growth kinetics of body centered cubic colloidal crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.52.6415
– volume: 10
  start-page: 73
  year: 2014
  end-page: 79
  ident: CR19
  article-title: Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2817
– volume: 2
  start-page: 200
  year: 2006
  end-page: 206
  ident: CR24
  article-title: Frustration on the way to crystallization in glass
  publication-title: Nat. Phys.
  doi: 10.1038/nphys235
– ident: CR47
– volume: 97
  start-page: 228301
  year: 2006
  ident: CR34
  article-title: Dynamic broadening of the crystal-fluid interface of colloidal hard spheres
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.228301
– volume: 15
  start-page: S3581
  year: 2003
  end-page: S3596
  ident: CR55
  article-title: A new colloidal model system to study long-range interactions quantitatively in real space
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/48/017
– volume: 145
  start-page: 211801
  year: 2016
  ident: CR44
  article-title: Crystal nucleation as the ordering of multiple order parameters
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4962166
– volume: 10
  start-page: 512
  year: 2011
  end-page: 520
  ident: CR21
  article-title: Structural origin of enhanced slow dynamics near a wall in glass-forming systems
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3034
– volume: 96
  start-page: 3834
  year: 1992
  end-page: 3843
  ident: CR46
  article-title: The effect of density change on crystal growth rates from the melt
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462864
– volume: 11
  start-page: R323
  year: 1999
  end-page: R360
  ident: CR42
  article-title: Crystallization kinetics of repulsive colloidal spheres
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/11/28/201
– volume: 13
  start-page: 503
  year: 2017
  end-page: 509
  ident: CR36
  article-title: Surface-assisted single-crystal formation of charged colloids
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4034
– volume: 17
  start-page: S3507
  year: 2005
  end-page: S3514
  ident: CR22
  article-title: Entropic wetting in colloidal suspensions
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/17/45/041
– volume: 68
  start-page: 021407
  year: 2003
  ident: CR43
  article-title: Phase diagrams of hard-core repulsive Yukawa particles
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.021407
– volume: 97
  start-page: 170201
  year: 2006
  ident: CR59
  article-title: Structural relaxation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.170201
– volume: 138
  start-page: 044501
  year: 2013
  ident: CR63
  article-title: Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4774084
– volume: 1
  start-page: 333
  year: 2019
  end-page: 348
  ident: CR27
  article-title: Revealing key structural features hidden in liquids and glasses
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0053-3
– volume: 55
  start-page: 207
  year: 1906
  end-page: 249
  ident: CR54
  article-title: Organic solvents and ionization media. III. Interior friction and its relation to conductivity
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1906-5511
– volume: 203
  start-page: 385
  year: 1904
  end-page: 420
  ident: CR56
  article-title: Colours in metal glasses and in metallic films
  publication-title: Philos. Trans. R. Soc. A
– volume: 256
  start-page: 105
  year: 2009
  end-page: 111
  ident: CR53
  article-title: Four-zone solidification microstructure formed by laser melting of copper thin films
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.07.084
– volume: 76
  start-page: 220201
  year: 2007
  ident: CR5
  article-title: Possible origin of enhanced crystal growth in a glass
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.220201
– volume: 139
  start-page: 196
  year: 2017
  end-page: 204
  ident: CR50
  article-title: Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.015
– volume: 68
  start-page: 011505
  year: 2003
  ident: CR4
  article-title: Possible resolution of the Kauzmann paradox in supercooled liquids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.011505
– volume: 128
  start-page: 214513
  year: 2008
  ident: CR12
  article-title: Nucleation in the presence of slow microscopic dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2928844
– volume: 129
  start-page: 114707
  year: 2008
  ident: CR62
  article-title: Accurate determination of crystal structures based on averaged local bond order parameters
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2977970
– volume: 58
  start-page: 524
  year: 2010
  end-page: 530
  ident: CR28
  article-title: Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.09.030
– volume: 179
  start-page: 298
  year: 1996
  end-page: 310
  ident: CR60
  article-title: Methods of digital video microscopy for colloidal studies
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0217
– volume: 3
  start-page: 645
  year: 2004
  end-page: 650
  ident: CR10
  article-title: A general mechanism of polycrystalline growth
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1190
– volume: 106
  start-page: 195502
  year: 2011
  ident: CR32
  article-title: Faceting and branching in 2D crystal growth
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.195502
– volume: 309
  start-page: 1207
  year: 2005
  end-page: 1210
  ident: CR38
  article-title: Premelting at defects within bulk colloidal crystals
  publication-title: Science
  doi: 10.1126/science.1112399
– volume: 128
  start-page: 127
  year: 1993
  end-page: 138
  ident: CR2
  article-title: Non-equilibrium phase transformations
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(93)90307-I
– volume: 116
  start-page: 1180
  year: 2019
  end-page: 1184
  ident: CR26
  article-title: Direct observation of crystallization and melting with colloids
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1813885116
– volume: 79
  start-page: 26005
  year: 2007
  ident: CR31
  article-title: Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/79/26005
– volume: 95
  start-page: 052801
  year: 2017
  ident: CR48
  article-title: Hydrodynamic theory of freezing: nucleation and polycrystalline growth
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.052801
– volume: 106
  start-page: 195502
  year: 2011
  ident: 993_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.195502
– volume: 13
  start-page: 138116
  year: 2018
  ident: 993_CR45
  publication-title: Front Phys. Beijing
  doi: 10.1007/s11467-018-0808-9
– volume: 128
  start-page: 214513
  year: 2008
  ident: 993_CR12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2928844
– volume: 79
  start-page: 26005
  year: 2007
  ident: 993_CR31
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/79/26005
– ident: 993_CR47
  doi: 10.1038/s41567-020-1016-4
– volume: 2
  start-page: 200
  year: 2006
  ident: 993_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys235
– volume: 53
  start-page: 1158
  year: 1982
  ident: 993_CR33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329867
– volume: 10
  start-page: 159
  year: 2002
  ident: 993_CR11
  publication-title: Interface Sci.
  doi: 10.1023/A:1015824230008
– volume: 35
  year: 2012
  ident: 993_CR30
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2012-12113-y
– volume: 479
  start-page: 245
  year: 1999
  ident: 993_CR3
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(98)00875-8
– volume: 531
  start-page: 485
  year: 2016
  ident: 993_CR40
  publication-title: Nature
  doi: 10.1038/nature16987
– volume: 145
  start-page: 211801
  year: 2016
  ident: 993_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4962166
– volume: 15
  start-page: S3581
  year: 2003
  ident: 993_CR55
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/48/017
– volume: 68
  start-page: 011505
  year: 2003
  ident: 993_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.011505
– volume: 95
  start-page: 052801
  year: 2017
  ident: 993_CR48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.052801
– volume: 28
  start-page: 784
  year: 1983
  ident: 993_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.784
– volume: 2
  start-page: 92
  year: 2003
  ident: 993_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat815
– volume: 68
  start-page: 021407
  year: 2003
  ident: 993_CR43
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.021407
– volume: 203
  start-page: 385
  year: 1904
  ident: 993_CR56
  publication-title: Philos. Trans. R. Soc. A
– volume: 97
  start-page: 228301
  year: 2006
  ident: 993_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.228301
– volume: 13
  start-page: 503
  year: 2017
  ident: 993_CR36
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4034
– volume: 107
  start-page: 14036
  year: 2010
  ident: 993_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1001040107
– volume: 292
  start-page: 258
  year: 2001
  ident: 993_CR35
  publication-title: Science
  doi: 10.1126/science.1058457
– volume: 338
  start-page: 87
  year: 2012
  ident: 993_CR37
  publication-title: Science
  doi: 10.1126/science.1224763
– volume: 55
  start-page: 207
  year: 1906
  ident: 993_CR54
  publication-title: Z. Phys. Chem.
  doi: 10.1515/zpch-1906-5511
– volume: 8
  start-page: 10
  year: 2017
  ident: 993_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00017-5
– volume: 11
  start-page: 2174
  year: 2015
  ident: 993_CR20
  publication-title: Soft Matter
  doi: 10.1039/C4SM02365J
– volume: 103
  start-page: 135704
  year: 2009
  ident: 993_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.135704
– ident: 993_CR57
  doi: 10.2172/10176421
– volume: 96
  start-page: 3834
  year: 1992
  ident: 993_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462864
– volume: 1
  start-page: 333
  year: 2019
  ident: 993_CR27
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0053-3
– volume: 76
  start-page: 220201
  year: 2007
  ident: 993_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.220201
– volume: 108
  start-page: 025502
  year: 2012
  ident: 993_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.025502
– volume: 80
  start-page: 031605
  year: 2009
  ident: 993_CR23
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.031605
– volume: 49
  start-page: 1496
  year: 1982
  ident: 993_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.49.1496
– volume: 81
  start-page: 511
  year: 1984
  ident: 993_CR58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 11
  start-page: R323
  year: 1999
  ident: 993_CR42
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/11/28/201
– volume: 139
  start-page: 196
  year: 2017
  ident: 993_CR50
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.08.015
– volume: 256
  start-page: 105
  year: 2009
  ident: 993_CR53
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2009.07.084
– volume: 10
  start-page: 512
  year: 2011
  ident: 993_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3034
– volume: 179
  start-page: 298
  year: 1996
  ident: 993_CR60
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0217
– ident: 993_CR49
  doi: 10.1002/352760264X.ch9
– volume: 140
  start-page: 214504
  year: 2014
  ident: 993_CR8
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4880959
– volume: 2
  year: 2012
  ident: 993_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/srep00505
– volume: 17
  start-page: 881
  year: 2018
  ident: 993_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0174-6
– volume: 103
  start-page: 035702
  year: 2009
  ident: 993_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.035702
– volume: 50
  start-page: 238
  year: 1900
  ident: 993_CR14
  publication-title: Philos. Mag.
  doi: 10.1080/14786440009463908
– volume: 58
  start-page: 524
  year: 2010
  ident: 993_CR28
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2009.09.030
– volume: 128
  start-page: 127
  year: 1993
  ident: 993_CR2
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(93)90307-I
– volume: 17
  start-page: S3507
  year: 2005
  ident: 993_CR22
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/17/45/041
– volume: 52
  start-page: 6415
  year: 1995
  ident: 993_CR41
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.52.6415
– volume: 107
  start-page: 175702
  year: 2011
  ident: 993_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.175702
– volume: 309
  start-page: 1207
  year: 2005
  ident: 993_CR38
  publication-title: Science
  doi: 10.1126/science.1112399
– volume: 138
  start-page: 044501
  year: 2013
  ident: 993_CR63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4774084
– volume: 128
  start-page: 034709
  year: 2008
  ident: 993_CR6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2815325
– volume: 3
  start-page: 645
  year: 2004
  ident: 993_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1190
– ident: 993_CR15
– volume: 116
  start-page: 1180
  year: 2019
  ident: 993_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1813885116
– volume: 10
  start-page: 73
  year: 2014
  ident: 993_CR19
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2817
– volume: 104
  start-page: 205703
  year: 2010
  ident: 993_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.205703
– volume: 30
  start-page: 2135
  year: 1982
  ident: 993_CR16
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(82)90134-1
– volume: 97
  start-page: 170201
  year: 2006
  ident: 993_CR59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.170201
– volume: 129
  start-page: 114707
  year: 2008
  ident: 993_CR62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2977970
SSID ssj0021556
Score 2.5812984
Snippet It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1431
SubjectTerms 639/301/119/1002
639/301/119/2795
639/301/119/544
639/301/923/218
639/301/923/916
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Control stability
Crystal defects
Crystal growth
Crystallization
Crystals
Diffusion rate
Disintegration
Low temperature
Materials Science
Nanotechnology
Optical and Electronic Materials
Quality control
Solid phases
Supercooling
Vitrification
Title Fast crystal growth at ultra-low temperatures
URI https://link.springer.com/article/10.1038/s41563-021-00993-6
https://www.ncbi.nlm.nih.gov/pubmed/33958770
https://www.proquest.com/docview/2576113150
https://www.proquest.com/docview/2524360561
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeDNeKhI3iGgea5ITYoiCkJgQAmm3Kk0DHKYN1k6If4_TZhsIwaU5NEkj240_x44NcCx4Ym2sBGH-hoyg1hLVtozEWjkhtXaiLtN5101unsRtr90LB25lCKuc7In1Rl0MrT8jP_PAmFKO-OX87Z34qlHeuxpKaMzDok9d5kO6ZG9mcKGubG4XyYQgrmDh0kzM1VnpDRfvwURjOvYxbMlPxfQLbf7ylNYKKF2FlYAco4uG1Wsw5wbrsPwtn-AGkNSUVWRHnwj5-tELWtjVa2SqaNyvRob0hx-Rz0QV0iiXm_CYXj1e3pBQD4FYBC0VkapAcKcFLTizisbPz04ZlkiZ53HeTqw20uZaOOokQxZQ1E1UF1IYXcSFEnwLFgbDgduByOSJNCJnXCAcEmiB4TySMiOlZbLQrgV0QovMhlzhvmRFP6t91lxlDf0ypF9W0y9LWnAyHfPWZMr4t_f-hMRZ-GvKbMbjFhxNX6O8eyeGGbjh2PdhKF_e7mnBdsOa6ec4RxmQEkefTng1m_zvtez-v5Y9WGJeTuoIvn1YqEZjd4BIpMoPa3HDp0qvD2HxIu10uth2rrr3D19JdNfU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOCFoKyzOV2hO1Nn5sbB8QQsCylMdpK3GzHMfAYbULm6wQP4r_yDiPpRWCG-fYjjP-7Pkm45kB-Cl44lysBGEhQkZQ54jqOEZirbyQWntRlum8vEp6f8Wf6871DDw3sTDhWmVzJpYHdTZy4R95OxBjSjnyl4P7BxKqRgXvalNCo4LFuX96RJMt3z87xvX9xVj3pH_UI3VVAeJQ9RdEqgwpkhY048wpGt_ceGVZImWaxmkncdpKl2rhqZcMP4TiCU91JoXVWZwpwXHYWZgXnOuwoVT3dGrfoWqugplkQpDGsDpGJ-aqnQc7KThM0XaPw5W55H89-IbcvnHMlvquuwxLNVGNDitkrcCMH36FxX_SF34D0rV5EbnxEzLMQXSLBn1xF9kimgyKsSWD0WMUEl_VWZvzVeh_hqC-w9xwNPTrENk0kVakjAtkXwINPhxHUmaldExm2reANrIwrk5NHipkDEzpIufKVPIzKD9Tys8kLdib9rmvEnN82HqrEbGpN2luXiHVgh_Tx7i9gs_EDv1oEtowhHMws1qwVi3N9HUIgY6SEnv_btbqdfD357Lx8Vx24Uuvf3lhLs6uzjdhgQXMlJcHt2CuGE_8NpKgIt0poReB-WSovwAOlg8B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sLZBKcAJr40cy9qFCqGXVtzgUaW-W43jhsNotm6yq_jT-HeM8dkFVe-s5tuOMP9vfZF4AH5TMvU-1YiJGyCjuPdOZFyw1Oig0JqimTOfpWX7wQx2Ns_EG_OljYaJbZX8mNgd1OffxH_kwEmPOJfGX4aRzi_i-P_py8ZvFClLR0tqX02ghchyuLkl9q3YP92mtPwox-na-d8C6CgPMEw2oGeqS6JJRvJTCa55OJkE7kSMWRVpkuTcOfWFU4AEFfRSn056bEpUzZVpqJWnYe3AfZcbjFsPxWteja7oNbMKcEaURXbxOKvWwijpTNJ6SHp9G97n8_zvxGtG9ZqRt7r7RE3jckdbka4uyp7ARZs_g0T-pDJ8DG7mqTvziitjmNPlJyn39K3F1spzWC8em88skJsHqMjhXL-D8LgT1EjZn81l4DYkrcnSqEFIRE1Ok_NE4yIVD9AJLEwbAe1lY36Upj9UyprYxl0ttW_lZkp9t5GfzAXxa9blok3Tc2nq7F7HtNmxl1_AawM7qMW21aD9xszBfxjaCoB1VrgG8apdm9TopTaYRqffnfq3Wg988lze3z-U9PCCQ25PDs-MteCgiZBo_wm3YrBfL8Jb4UF28a5CXgL1jpP8F2BgTLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+crystal+growth+at+ultra-low+temperatures&rft.jtitle=Nature+materials&rft.au=Gao%2C+Qiong&rft.au=Ai%2C+Jingdong&rft.au=Tang%2C+Shixiang&rft.au=Li%2C+Minhuan&rft.date=2021-10-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=10&rft.spage=1431&rft.epage=1439&rft_id=info:doi/10.1038%2Fs41563-021-00993-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_021_00993_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon