Fast crystal growth at ultra-low temperatures
It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combini...
Saved in:
Published in | Nature materials Vol. 20; no. 10; pp. 1431 - 1439 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.
Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase. |
---|---|
AbstractList | It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase. It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control. Charged colloidal systems undergo fast crystallization under deep supercooling due to a coupled mechanism involving the discrete advancement of the crystal growth front and defect repair inside the recently formed solid phase. It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control. It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control.It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification. Here we report fast crystal growth in charged colloidal systems under deep supercooling, where liquid diffusion is extremely low. By combining experiments and simulations, we show that this process occurs via wall-induced barrierless ordering consisting of two coupled steps: the step-like advancement of the rough interface that disintegrates frustration, followed by defect repairing inside the newly formed solid phase. The former is a diffusionless collective process, whereas the latter controls crystal quality. We further show that the intrinsic mechanical instability of a disordered glassy state subject to the crystal growth front allows for domino-like fast crystal growth even at ultra-low temperatures. These findings contribute to a deeper understanding of fast crystal growth and may be useful for applications related to vitrification prevention and crystal-quality control. |
Author | Ai, Jingdong Tan, Peng Li, Minhuan Tanaka, Hajime Gao, Qiong Huang, Jiping Xu, Lei Tang, Shixiang Xu, Limei Chen, Yanshuang Tong, Hua |
Author_xml | – sequence: 1 givenname: Qiong surname: Gao fullname: Gao, Qiong organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University – sequence: 2 givenname: Jingdong surname: Ai fullname: Ai, Jingdong organization: International Centre for Quantum Materials and School of Physics, Peking University – sequence: 3 givenname: Shixiang surname: Tang fullname: Tang, Shixiang organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University – sequence: 4 givenname: Minhuan orcidid: 0000-0003-0560-7533 surname: Li fullname: Li, Minhuan organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University – sequence: 5 givenname: Yanshuang surname: Chen fullname: Chen, Yanshuang organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University – sequence: 6 givenname: Jiping orcidid: 0000-0002-3617-3275 surname: Huang fullname: Huang, Jiping organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University – sequence: 7 givenname: Hua orcidid: 0000-0001-9201-7237 surname: Tong fullname: Tong, Hua organization: Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, School of Physics and Astronomy, Shanghai Jiao Tong University, Department of Physics, University of Science and Technology of China – sequence: 8 givenname: Lei orcidid: 0000-0001-9229-586X surname: Xu fullname: Xu, Lei organization: Department of Physics, The Chinese University of Hong Kong – sequence: 9 givenname: Limei surname: Xu fullname: Xu, Limei email: limei.xu@pku.edu.cn organization: International Centre for Quantum Materials and School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter – sequence: 10 givenname: Hajime orcidid: 0000-0002-4444-1890 surname: Tanaka fullname: Tanaka, Hajime email: tanaka@iis.u-tokyo.ac.jp organization: Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Research Center for Advanced Science and Technology, University of Tokyo – sequence: 11 givenname: Peng orcidid: 0000-0002-9163-8100 surname: Tan fullname: Tan, Peng email: tanpeng@fudan.edu.cn organization: State Key Laboratory of Surface Physics and Department of Physics, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33958770$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQQC1URD_gDzCgSCwsBp_t2MmIKgpIlVi6W47jlFRpUmxHqP8eQwpIHTqdh_d8pzdFo7ZrLULXQO6BsOzBc0gFw4QCJiTPGRZnaAJcCsyFIKPDG4DSMZp6vyGRTFNxgcaM5WkmJZkgvNA-JMbtfdBNsnbdZ3hPdEj6JjiNm-4zCXa7s06H3ll_ic4r3Xh7dZgztFo8reYvePn2_Dp_XGLDOQQss5JQknMoGTUZkKqymaZCyqIgRSpMrqUpcm7BSsqEASYo5KXkOi9JmXE2Q3fDtzvXffTWB7WtvbFNo1vb9V7RlHImSCogordH6KbrXRuPi5QUAAxSEqmbA9UXW1uqnau32u3Vb4cI0AEwrvPe2eoPAaK-Y6shtooJ1U9sJaKUHUmmDjrUXRvb1c1plQ2qj3vatXX_Z5-wvgBot5Bw |
CitedBy_id | crossref_primary_10_1063_5_0186597 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123149 crossref_primary_10_1002_adma_202313162 crossref_primary_10_1002_adfm_202419762 crossref_primary_10_1016_j_actamat_2024_119716 crossref_primary_10_1039_D3MH00734K crossref_primary_10_1103_PhysRevE_104_054607 crossref_primary_10_1103_RevModPhys_96_015002 crossref_primary_10_1016_j_ccr_2024_216035 crossref_primary_10_1103_PhysRevLett_132_018202 crossref_primary_10_1039_D3CE01081C crossref_primary_10_1016_j_commatsci_2022_111598 crossref_primary_10_1103_PhysRevResearch_6_L012012 crossref_primary_10_1021_acs_jpcc_2c04961 crossref_primary_10_1039_D3CE01063E crossref_primary_10_1039_D4CP02526A crossref_primary_10_1360_SSPMA_2024_0096 crossref_primary_10_1016_j_energy_2022_124627 crossref_primary_10_1103_PhysRevLett_132_078201 crossref_primary_10_1016_j_molliq_2022_120351 crossref_primary_10_1021_acs_nanolett_4c05632 crossref_primary_10_1016_j_powtec_2023_118615 crossref_primary_10_1038_s41467_023_41731_7 crossref_primary_10_1039_D2CP03638J crossref_primary_10_1021_jacs_4c14196 crossref_primary_10_1038_s41467_022_32241_z crossref_primary_10_1039_D3MH00365E crossref_primary_10_1007_s40195_021_01304_3 crossref_primary_10_1038_s41467_024_48110_w crossref_primary_10_15541_jim20220647 crossref_primary_10_1103_PhysRevLett_133_248202 crossref_primary_10_1063_5_0137352 crossref_primary_10_1038_s43246_023_00359_2 crossref_primary_10_1103_PhysRevLett_130_178201 crossref_primary_10_1039_D3SM00872J crossref_primary_10_1016_j_ensm_2025_104091 crossref_primary_10_1063_5_0208887 crossref_primary_10_1038_s41467_023_44332_6 crossref_primary_10_1038_s42254_023_00565_4 crossref_primary_10_1063_5_0155915 crossref_primary_10_1038_s41467_025_58057_1 crossref_primary_10_1016_j_jcrysgro_2022_126854 crossref_primary_10_1002_advs_202300798 crossref_primary_10_1038_s42005_023_01285_y crossref_primary_10_1103_PhysRevE_107_044119 crossref_primary_10_1016_j_xinn_2023_100458 |
Cites_doi | 10.1063/1.2815325 10.1080/14786440009463908 10.1023/A:1015824230008 10.1038/s41563-018-0174-6 10.1039/C4SM02365J 10.1126/science.1058457 10.1103/PhysRevLett.49.1496 10.1140/epje/i2012-12113-y 10.1103/PhysRevLett.103.135704 10.1073/pnas.1001040107 10.1103/PhysRevLett.104.205703 10.1063/1.329867 10.1038/nature16987 10.1103/PhysRevB.28.784 10.1016/S0022-2860(98)00875-8 10.1038/srep00505 10.1103/PhysRevE.80.031605 10.1103/PhysRevLett.107.175702 10.1016/0001-6160(82)90134-1 10.1103/PhysRevLett.108.025502 10.1103/PhysRevLett.103.035702 10.1126/science.1224763 10.1038/s41467-017-00017-5 10.1063/1.447334 10.1063/1.4880959 10.1038/nmat815 10.1007/s11467-018-0808-9 10.1103/PhysRevE.52.6415 10.1038/nphys2817 10.1038/nphys235 10.1103/PhysRevLett.97.228301 10.1088/0953-8984/15/48/017 10.1063/1.4962166 10.1038/nmat3034 10.1063/1.462864 10.1088/0953-8984/11/28/201 10.1038/nphys4034 10.1088/0953-8984/17/45/041 10.1103/PhysRevE.68.021407 10.1103/PhysRevLett.97.170201 10.1063/1.4774084 10.1038/s42254-019-0053-3 10.1515/zpch-1906-5511 10.1016/j.apsusc.2009.07.084 10.1103/PhysRevB.76.220201 10.1016/j.actamat.2017.08.015 10.1103/PhysRevE.68.011505 10.1063/1.2928844 10.1063/1.2977970 10.1016/j.actamat.2009.09.030 10.1006/jcis.1996.0217 10.1038/nmat1190 10.1103/PhysRevLett.106.195502 10.1126/science.1112399 10.1016/0022-0248(93)90307-I 10.1073/pnas.1813885116 10.1209/0295-5075/79/26005 10.1103/PhysRevE.95.052801 10.1038/s41567-020-1016-4 10.2172/10176421 10.1002/352760264X.ch9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 The Author(s), under exclusive licence to Springer Nature Limited 2021. 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
DOI | 10.1038/s41563-021-00993-6 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 1439 |
ExternalDocumentID | 33958770 10_1038_s41563_021_00993_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Rising Star program Grants No. 16QA1400600 – fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission) grantid: 20JC1414700; 20JC1414700 funderid: https://doi.org/10.13039/501100003399 – fundername: Hong Kong RGC (GRF 14306518 and GRF 14303415) – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JP25000002; JP20H05619; JP18H03675 funderid: https://doi.org/10.13039/501100001691 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11725521; 12035004; 11935002; 11525520; 11725521; 12035004 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China (Grant No. 2016YFA0300901) – fundername: Science and Technology Commission of Shanghai Municipality (Shanghai Municipal Science and Technology Commission) grantid: 20JC1414700 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11525520 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JP25000002 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JP18H03675 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11725521 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11935002 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JP20H05619 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12035004 |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c441t-78d020941d32c810ffe8a2677bb0b56c9a7cb94e1e7236c136219d74a9d0d843 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Mon Jul 21 11:12:16 EDT 2025 Fri Jul 25 09:03:43 EDT 2025 Mon Jul 21 05:34:38 EDT 2025 Tue Jul 01 02:14:02 EDT 2025 Thu Apr 24 23:44:05 EDT 2025 Fri Feb 21 02:40:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-78d020941d32c810ffe8a2677bb0b56c9a7cb94e1e7236c136219d74a9d0d843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9163-8100 0000-0001-9201-7237 0000-0002-3617-3275 0000-0001-9229-586X 0000-0002-4444-1890 0000-0003-0560-7533 |
PMID | 33958770 |
PQID | 2576113150 |
PQPubID | 27576 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2524360561 proquest_journals_2576113150 pubmed_primary_33958770 crossref_primary_10_1038_s41563_021_00993_6 crossref_citationtrail_10_1038_s41563_021_00993_6 springer_journals_10_1038_s41563_021_00993_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zaccarelli (CR7) 2009; 103 Gránásy, Pusztai, Börzsönyi, Warren, Douglas (CR10) 2004; 3 Maxwell-Garnett (CR56) 1904; 203 Steinhardt, Nelson, Ronchetti (CR61) 1983; 28 Watanabe, Kawasaki, Tanaka (CR21) 2011; 10 Tóth, Pusztai, Tegze, Tóth, Gránásy (CR29) 2011; 107 Palberg (CR42) 1999; 11 Russo, Tanaka (CR18) 2012; 2 Peng, Wang, Alsayed, Yodh, Han (CR39) 2010; 104 Shibuta (CR52) 2017; 8 Russo, Tanaka (CR44) 2016; 145 Ashkenazy, Averback (CR31) 2007; 79 Coriell, Turnbull (CR16) 1982; 30 Li (CR40) 2016; 531 Alsayed, Islam, Zhang, Collings, Yodh (CR38) 2005; 309 Ediger, Harrowell, Yu (CR6) 2008; 128 Bitzek, Koskinen, Gähler, Moseler, Gumbsch (CR59) 2006; 97 Mickel, Kapfer, Schröder-Turk, Mecke (CR63) 2013; 138 Shintani, Tanaka (CR24) 2006; 2 CR49 Dijkstra, van Roij (CR22) 2005; 17 CR47 Tanaka (CR4) 2003; 68 Tan, Xu, Xu (CR19) 2014; 10 Oxtoby, Harrowell (CR46) 1992; 96 Royall, Leunissen, van Blaaderen (CR55) 2003; 15 Tóth, Tegze, Pusztai, Gránásy (CR51) 2012; 108 Kawasaki, Tanaka (CR17) 2010; 107 Ashkenazy, Averback (CR28) 2010; 58 Tang, Wang, Svendsen, Raabe (CR50) 2017; 139 Wilson (CR14) 1900; 50 Tegze, Tóth, Gránásy (CR32) 2011; 106 Wang, Xu, Wang (CR45) 2018; 13 Gasser, Weeks, Schofield, Pusey, Weitz (CR35) 2001; 292 Tanaka (CR30) 2012; 35 Tegze (CR13) 2009; 103 Hikima, Hanaya, Oguni (CR3) 1999; 479 Hwang, Weitz, Spaepen (CR26) 2019; 116 Broughton, Gilmer, Jackson (CR1) 1982; 49 CR15 Arai, Tanaka (CR36) 2017; 13 Konishi, Tanaka (CR5) 2007; 76 CR57 Jackson, Gilmer, Temkin, Weinberg, Beatty (CR2) 1993; 128 Page, Sear (CR23) 2009; 80 Sear (CR12) 2008; 128 Aziz (CR33) 1982; 53 Nosé (CR58) 1984; 81 Lechner, Dellago (CR62) 2008; 129 Gránásy (CR9) 2003; 2 Tanaka, Tong, Shi, Russo (CR27) 2019; 1 Orava, Greer (CR8) 2014; 140 Sun, Xu, Harrowell (CR25) 2018; 17 Zhong, Kulovits, Wiezorek, Leonard (CR53) 2009; 256 Crocker, Grier (CR60) 1996; 179 Jackson (CR11) 2002; 10 Würth, Schwarz, Culis, Leiderer, Palberg (CR41) 1995; 52 Podmaniczky, Tóth, Tegze, Gránásy (CR48) 2017; 95 Wang, Wang, Peng, Zheng, Han (CR37) 2012; 338 Kratzer, Arnold (CR20) 2015; 11 Hynninen, Dijkstra (CR43) 2003; 68 Walden (CR54) 1906; 55 Dullens, Aarts, Kegel (CR34) 2006; 97 A Page (993_CR23) 2009; 80 M Ediger (993_CR6) 2008; 128 S Nosé (993_CR58) 1984; 81 P Tan (993_CR19) 2014; 10 GI Tóth (993_CR29) 2011; 107 GI Tóth (993_CR51) 2012; 108 J Orava (993_CR8) 2014; 140 S Tang (993_CR50) 2017; 139 T Kawasaki (993_CR17) 2010; 107 H Tanaka (993_CR4) 2003; 68 G Tegze (993_CR13) 2009; 103 993_CR47 Y Peng (993_CR39) 2010; 104 Y Shibuta (993_CR52) 2017; 8 H Tanaka (993_CR27) 2019; 1 JC Maxwell-Garnett (993_CR56) 1904; 203 KA Jackson (993_CR2) 1993; 128 M Dijkstra (993_CR22) 2005; 17 993_CR49 H Hwang (993_CR26) 2019; 116 F Podmaniczky (993_CR48) 2017; 95 T Konishi (993_CR5) 2007; 76 S Arai (993_CR36) 2017; 13 E Zaccarelli (993_CR7) 2009; 103 W Mickel (993_CR63) 2013; 138 E Bitzek (993_CR59) 2006; 97 993_CR15 993_CR57 H Shintani (993_CR24) 2006; 2 L Gránásy (993_CR9) 2003; 2 G Tegze (993_CR32) 2011; 106 RP Dullens (993_CR34) 2006; 97 M Würth (993_CR41) 1995; 52 HW Wilson (993_CR14) 1900; 50 B Li (993_CR40) 2016; 531 Y Ashkenazy (993_CR31) 2007; 79 C Royall (993_CR55) 2003; 15 JC Crocker (993_CR60) 1996; 179 T Palberg (993_CR42) 1999; 11 PJ Steinhardt (993_CR61) 1983; 28 J Russo (993_CR44) 2016; 145 T Hikima (993_CR3) 1999; 479 Y Ashkenazy (993_CR28) 2010; 58 U Gasser (993_CR35) 2001; 292 G Sun (993_CR25) 2018; 17 K Watanabe (993_CR21) 2011; 10 AM Alsayed (993_CR38) 2005; 309 KA Jackson (993_CR11) 2002; 10 J Russo (993_CR18) 2012; 2 Z Wang (993_CR37) 2012; 338 RP Sear (993_CR12) 2008; 128 P Walden (993_CR54) 1906; 55 R Wang (993_CR45) 2018; 13 J Broughton (993_CR1) 1982; 49 R Zhong (993_CR53) 2009; 256 DW Oxtoby (993_CR46) 1992; 96 W Lechner (993_CR62) 2008; 129 MJ Aziz (993_CR33) 1982; 53 L Gránásy (993_CR10) 2004; 3 S Coriell (993_CR16) 1982; 30 A-P Hynninen (993_CR43) 2003; 68 K Kratzer (993_CR20) 2015; 11 H Tanaka (993_CR30) 2012; 35 |
References_xml | – volume: 128 start-page: 034709 year: 2008 ident: CR6 article-title: Crystal growth kinetics exhibit a fragility-dependent decoupling from viscosity publication-title: J. Chem. Phys. doi: 10.1063/1.2815325 – volume: 50 start-page: 238 year: 1900 end-page: 250 ident: CR14 article-title: On the velocity of solidification and viscosity of super-cooled liquids publication-title: Philos. Mag. doi: 10.1080/14786440009463908 – ident: CR49 – volume: 10 start-page: 159 year: 2002 end-page: 169 ident: CR11 article-title: The interface kinetics of crystal growth processes publication-title: Interface Sci. doi: 10.1023/A:1015824230008 – volume: 17 start-page: 881 year: 2018 end-page: 886 ident: CR25 article-title: The mechanism of the ultrafast crystal growth of pure metals from their melts publication-title: Nat. Mater. doi: 10.1038/s41563-018-0174-6 – volume: 11 start-page: 2174 year: 2015 end-page: 2182 ident: CR20 article-title: Two-stage crystallization of charged colloids under low supersaturation conditions publication-title: Soft Matter doi: 10.1039/C4SM02365J – volume: 292 start-page: 258 year: 2001 end-page: 262 ident: CR35 article-title: Real-space imaging of nucleation and growth in colloidal crystallization publication-title: Science doi: 10.1126/science.1058457 – volume: 49 start-page: 1496 year: 1982 end-page: 1500 ident: CR1 article-title: Crystallization rates of a Lennard-Jones liquid publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1496 – volume: 35 year: 2012 ident: CR30 article-title: Bond orientational order in liquids: towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2012-12113-y – volume: 103 start-page: 135704 year: 2009 ident: CR7 article-title: Crystallization of hard-sphere glasses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.135704 – volume: 107 start-page: 14036 year: 2010 end-page: 14041 ident: CR17 article-title: Formation of a crystal nucleus from liquid publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1001040107 – volume: 104 start-page: 205703 year: 2010 ident: CR39 article-title: Melting of colloidal crystal films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.205703 – volume: 53 start-page: 1158 year: 1982 end-page: 1168 ident: CR33 article-title: Model for solute redistribution during rapid solidification publication-title: J. Appl. Phys. doi: 10.1063/1.329867 – volume: 531 start-page: 485 year: 2016 end-page: 488 ident: CR40 article-title: Modes of surface premelting in colloidal crystals composed of attractive particles publication-title: Nature doi: 10.1038/nature16987 – ident: CR15 – volume: 28 start-page: 784 year: 1983 ident: CR61 article-title: Bond-orientational order in liquids and glasses publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.784 – volume: 479 start-page: 245 year: 1999 end-page: 250 ident: CR3 article-title: Microscopic observation of a peculiar crystallization in the glass transition region and -process as potentially controlling the growth rate in triphenylethylene publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(98)00875-8 – ident: CR57 – volume: 2 year: 2012 ident: CR18 article-title: The microscopic pathway to crystallization in supercooled liquids publication-title: Sci. Rep. doi: 10.1038/srep00505 – volume: 80 start-page: 031605 year: 2009 ident: CR23 article-title: Freezing in the bulk controlled by prefreezing at a surface publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.031605 – volume: 107 start-page: 175702 year: 2011 ident: CR29 article-title: Amorphous nucleation precursor in highly nonequilibrium fluids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.175702 – volume: 30 start-page: 2135 year: 1982 end-page: 2139 ident: CR16 article-title: Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts publication-title: Acta Metall. doi: 10.1016/0001-6160(82)90134-1 – volume: 108 start-page: 025502 year: 2012 ident: CR51 article-title: Heterogeneous crystal nucleation: the effect of lattice mismatch publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.025502 – volume: 103 start-page: 035702 year: 2009 ident: CR13 article-title: Diffusion-controlled anisotropic growth of stable and metastable crystal polymorphs in the phase-field crystal model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.035702 – volume: 338 start-page: 87 year: 2012 end-page: 90 ident: CR37 article-title: Imaging the homogeneous nucleation during the melting of superheated colloidal crystals publication-title: Science doi: 10.1126/science.1224763 – volume: 8 start-page: 10 year: 2017 ident: CR52 article-title: Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal publication-title: Nat. Commun. doi: 10.1038/s41467-017-00017-5 – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: CR58 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 140 start-page: 214504 year: 2014 ident: CR8 article-title: Fast and slow crystal growth kinetics in glass-forming melts publication-title: J. Chem. Phys. doi: 10.1063/1.4880959 – volume: 2 start-page: 92 year: 2003 end-page: 96 ident: CR9 article-title: Growth of ‘dizzy dendrites’ in a random field of foreign particles publication-title: Nat. Mater. doi: 10.1038/nmat815 – volume: 13 start-page: 138116 year: 2018 ident: CR45 article-title: Molecular-scale processes affecting growth rates of ice at moderate supercooling publication-title: Front Phys. Beijing doi: 10.1007/s11467-018-0808-9 – volume: 52 start-page: 6415 year: 1995 ident: CR41 article-title: Growth kinetics of body centered cubic colloidal crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.52.6415 – volume: 10 start-page: 73 year: 2014 end-page: 79 ident: CR19 article-title: Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization publication-title: Nat. Phys. doi: 10.1038/nphys2817 – volume: 2 start-page: 200 year: 2006 end-page: 206 ident: CR24 article-title: Frustration on the way to crystallization in glass publication-title: Nat. Phys. doi: 10.1038/nphys235 – ident: CR47 – volume: 97 start-page: 228301 year: 2006 ident: CR34 article-title: Dynamic broadening of the crystal-fluid interface of colloidal hard spheres publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.228301 – volume: 15 start-page: S3581 year: 2003 end-page: S3596 ident: CR55 article-title: A new colloidal model system to study long-range interactions quantitatively in real space publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/48/017 – volume: 145 start-page: 211801 year: 2016 ident: CR44 article-title: Crystal nucleation as the ordering of multiple order parameters publication-title: J. Chem. Phys. doi: 10.1063/1.4962166 – volume: 10 start-page: 512 year: 2011 end-page: 520 ident: CR21 article-title: Structural origin of enhanced slow dynamics near a wall in glass-forming systems publication-title: Nat. Mater. doi: 10.1038/nmat3034 – volume: 96 start-page: 3834 year: 1992 end-page: 3843 ident: CR46 article-title: The effect of density change on crystal growth rates from the melt publication-title: J. Chem. Phys. doi: 10.1063/1.462864 – volume: 11 start-page: R323 year: 1999 end-page: R360 ident: CR42 article-title: Crystallization kinetics of repulsive colloidal spheres publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/11/28/201 – volume: 13 start-page: 503 year: 2017 end-page: 509 ident: CR36 article-title: Surface-assisted single-crystal formation of charged colloids publication-title: Nat. Phys. doi: 10.1038/nphys4034 – volume: 17 start-page: S3507 year: 2005 end-page: S3514 ident: CR22 article-title: Entropic wetting in colloidal suspensions publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/17/45/041 – volume: 68 start-page: 021407 year: 2003 ident: CR43 article-title: Phase diagrams of hard-core repulsive Yukawa particles publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021407 – volume: 97 start-page: 170201 year: 2006 ident: CR59 article-title: Structural relaxation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.170201 – volume: 138 start-page: 044501 year: 2013 ident: CR63 article-title: Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter publication-title: J. Chem. Phys. doi: 10.1063/1.4774084 – volume: 1 start-page: 333 year: 2019 end-page: 348 ident: CR27 article-title: Revealing key structural features hidden in liquids and glasses publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0053-3 – volume: 55 start-page: 207 year: 1906 end-page: 249 ident: CR54 article-title: Organic solvents and ionization media. III. Interior friction and its relation to conductivity publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1906-5511 – volume: 203 start-page: 385 year: 1904 end-page: 420 ident: CR56 article-title: Colours in metal glasses and in metallic films publication-title: Philos. Trans. R. Soc. A – volume: 256 start-page: 105 year: 2009 end-page: 111 ident: CR53 article-title: Four-zone solidification microstructure formed by laser melting of copper thin films publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.07.084 – volume: 76 start-page: 220201 year: 2007 ident: CR5 article-title: Possible origin of enhanced crystal growth in a glass publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.220201 – volume: 139 start-page: 196 year: 2017 end-page: 204 ident: CR50 article-title: Competitive bcc and fcc crystal nucleation from non-equilibrium liquids studied by phase-field crystal simulation publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.015 – volume: 68 start-page: 011505 year: 2003 ident: CR4 article-title: Possible resolution of the Kauzmann paradox in supercooled liquids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.011505 – volume: 128 start-page: 214513 year: 2008 ident: CR12 article-title: Nucleation in the presence of slow microscopic dynamics publication-title: J. Chem. Phys. doi: 10.1063/1.2928844 – volume: 129 start-page: 114707 year: 2008 ident: CR62 article-title: Accurate determination of crystal structures based on averaged local bond order parameters publication-title: J. Chem. Phys. doi: 10.1063/1.2977970 – volume: 58 start-page: 524 year: 2010 end-page: 530 ident: CR28 article-title: Kinetic stages in the crystallization of deeply undercooled body-centered-cubic and face-centered-cubic metals publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.09.030 – volume: 179 start-page: 298 year: 1996 end-page: 310 ident: CR60 article-title: Methods of digital video microscopy for colloidal studies publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0217 – volume: 3 start-page: 645 year: 2004 end-page: 650 ident: CR10 article-title: A general mechanism of polycrystalline growth publication-title: Nat. Mater. doi: 10.1038/nmat1190 – volume: 106 start-page: 195502 year: 2011 ident: CR32 article-title: Faceting and branching in 2D crystal growth publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.195502 – volume: 309 start-page: 1207 year: 2005 end-page: 1210 ident: CR38 article-title: Premelting at defects within bulk colloidal crystals publication-title: Science doi: 10.1126/science.1112399 – volume: 128 start-page: 127 year: 1993 end-page: 138 ident: CR2 article-title: Non-equilibrium phase transformations publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(93)90307-I – volume: 116 start-page: 1180 year: 2019 end-page: 1184 ident: CR26 article-title: Direct observation of crystallization and melting with colloids publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1813885116 – volume: 79 start-page: 26005 year: 2007 ident: CR31 article-title: Atomic mechanisms controlling crystallization behaviour in metals at deep undercoolings publication-title: Europhys. Lett. doi: 10.1209/0295-5075/79/26005 – volume: 95 start-page: 052801 year: 2017 ident: CR48 article-title: Hydrodynamic theory of freezing: nucleation and polycrystalline growth publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.052801 – volume: 106 start-page: 195502 year: 2011 ident: 993_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.195502 – volume: 13 start-page: 138116 year: 2018 ident: 993_CR45 publication-title: Front Phys. Beijing doi: 10.1007/s11467-018-0808-9 – volume: 128 start-page: 214513 year: 2008 ident: 993_CR12 publication-title: J. Chem. Phys. doi: 10.1063/1.2928844 – volume: 79 start-page: 26005 year: 2007 ident: 993_CR31 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/79/26005 – ident: 993_CR47 doi: 10.1038/s41567-020-1016-4 – volume: 2 start-page: 200 year: 2006 ident: 993_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys235 – volume: 53 start-page: 1158 year: 1982 ident: 993_CR33 publication-title: J. Appl. Phys. doi: 10.1063/1.329867 – volume: 10 start-page: 159 year: 2002 ident: 993_CR11 publication-title: Interface Sci. doi: 10.1023/A:1015824230008 – volume: 35 year: 2012 ident: 993_CR30 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2012-12113-y – volume: 479 start-page: 245 year: 1999 ident: 993_CR3 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(98)00875-8 – volume: 531 start-page: 485 year: 2016 ident: 993_CR40 publication-title: Nature doi: 10.1038/nature16987 – volume: 145 start-page: 211801 year: 2016 ident: 993_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.4962166 – volume: 15 start-page: S3581 year: 2003 ident: 993_CR55 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/48/017 – volume: 68 start-page: 011505 year: 2003 ident: 993_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.011505 – volume: 95 start-page: 052801 year: 2017 ident: 993_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.052801 – volume: 28 start-page: 784 year: 1983 ident: 993_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.784 – volume: 2 start-page: 92 year: 2003 ident: 993_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat815 – volume: 68 start-page: 021407 year: 2003 ident: 993_CR43 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.021407 – volume: 203 start-page: 385 year: 1904 ident: 993_CR56 publication-title: Philos. Trans. R. Soc. A – volume: 97 start-page: 228301 year: 2006 ident: 993_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.228301 – volume: 13 start-page: 503 year: 2017 ident: 993_CR36 publication-title: Nat. Phys. doi: 10.1038/nphys4034 – volume: 107 start-page: 14036 year: 2010 ident: 993_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1001040107 – volume: 292 start-page: 258 year: 2001 ident: 993_CR35 publication-title: Science doi: 10.1126/science.1058457 – volume: 338 start-page: 87 year: 2012 ident: 993_CR37 publication-title: Science doi: 10.1126/science.1224763 – volume: 55 start-page: 207 year: 1906 ident: 993_CR54 publication-title: Z. Phys. Chem. doi: 10.1515/zpch-1906-5511 – volume: 8 start-page: 10 year: 2017 ident: 993_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00017-5 – volume: 11 start-page: 2174 year: 2015 ident: 993_CR20 publication-title: Soft Matter doi: 10.1039/C4SM02365J – volume: 103 start-page: 135704 year: 2009 ident: 993_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.135704 – ident: 993_CR57 doi: 10.2172/10176421 – volume: 96 start-page: 3834 year: 1992 ident: 993_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.462864 – volume: 1 start-page: 333 year: 2019 ident: 993_CR27 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0053-3 – volume: 76 start-page: 220201 year: 2007 ident: 993_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.220201 – volume: 108 start-page: 025502 year: 2012 ident: 993_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.025502 – volume: 80 start-page: 031605 year: 2009 ident: 993_CR23 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.031605 – volume: 49 start-page: 1496 year: 1982 ident: 993_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.49.1496 – volume: 81 start-page: 511 year: 1984 ident: 993_CR58 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 11 start-page: R323 year: 1999 ident: 993_CR42 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/11/28/201 – volume: 139 start-page: 196 year: 2017 ident: 993_CR50 publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.08.015 – volume: 256 start-page: 105 year: 2009 ident: 993_CR53 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2009.07.084 – volume: 10 start-page: 512 year: 2011 ident: 993_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat3034 – volume: 179 start-page: 298 year: 1996 ident: 993_CR60 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0217 – ident: 993_CR49 doi: 10.1002/352760264X.ch9 – volume: 140 start-page: 214504 year: 2014 ident: 993_CR8 publication-title: J. Chem. Phys. doi: 10.1063/1.4880959 – volume: 2 year: 2012 ident: 993_CR18 publication-title: Sci. Rep. doi: 10.1038/srep00505 – volume: 17 start-page: 881 year: 2018 ident: 993_CR25 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0174-6 – volume: 103 start-page: 035702 year: 2009 ident: 993_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.035702 – volume: 50 start-page: 238 year: 1900 ident: 993_CR14 publication-title: Philos. Mag. doi: 10.1080/14786440009463908 – volume: 58 start-page: 524 year: 2010 ident: 993_CR28 publication-title: Acta Mater. doi: 10.1016/j.actamat.2009.09.030 – volume: 128 start-page: 127 year: 1993 ident: 993_CR2 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(93)90307-I – volume: 17 start-page: S3507 year: 2005 ident: 993_CR22 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/17/45/041 – volume: 52 start-page: 6415 year: 1995 ident: 993_CR41 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.52.6415 – volume: 107 start-page: 175702 year: 2011 ident: 993_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.175702 – volume: 309 start-page: 1207 year: 2005 ident: 993_CR38 publication-title: Science doi: 10.1126/science.1112399 – volume: 138 start-page: 044501 year: 2013 ident: 993_CR63 publication-title: J. Chem. Phys. doi: 10.1063/1.4774084 – volume: 128 start-page: 034709 year: 2008 ident: 993_CR6 publication-title: J. Chem. Phys. doi: 10.1063/1.2815325 – volume: 3 start-page: 645 year: 2004 ident: 993_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat1190 – ident: 993_CR15 – volume: 116 start-page: 1180 year: 2019 ident: 993_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1813885116 – volume: 10 start-page: 73 year: 2014 ident: 993_CR19 publication-title: Nat. Phys. doi: 10.1038/nphys2817 – volume: 104 start-page: 205703 year: 2010 ident: 993_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.205703 – volume: 30 start-page: 2135 year: 1982 ident: 993_CR16 publication-title: Acta Metall. doi: 10.1016/0001-6160(82)90134-1 – volume: 97 start-page: 170201 year: 2006 ident: 993_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.170201 – volume: 129 start-page: 114707 year: 2008 ident: 993_CR62 publication-title: J. Chem. Phys. doi: 10.1063/1.2977970 |
SSID | ssj0021556 |
Score | 2.5812984 |
Snippet | It is believed that the slow liquid diffusion and geometric frustration brought by a rapid, deep quench inhibit fast crystallization and promote vitrification.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1431 |
SubjectTerms | 639/301/119/1002 639/301/119/2795 639/301/119/544 639/301/923/218 639/301/923/916 Biomaterials Chemistry and Materials Science Condensed Matter Physics Control stability Crystal defects Crystal growth Crystallization Crystals Diffusion rate Disintegration Low temperature Materials Science Nanotechnology Optical and Electronic Materials Quality control Solid phases Supercooling Vitrification |
Title | Fast crystal growth at ultra-low temperatures |
URI | https://link.springer.com/article/10.1038/s41563-021-00993-6 https://www.ncbi.nlm.nih.gov/pubmed/33958770 https://www.proquest.com/docview/2576113150 https://www.proquest.com/docview/2524360561 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZ4XOCAeDNeKhI3iGgea5ITYoiCkJgQAmm3Kk0DHKYN1k6If4_TZhsIwaU5NEkj240_x44NcCx4Ym2sBGH-hoyg1hLVtozEWjkhtXaiLtN5101unsRtr90LB25lCKuc7In1Rl0MrT8jP_PAmFKO-OX87Z34qlHeuxpKaMzDok9d5kO6ZG9mcKGubG4XyYQgrmDh0kzM1VnpDRfvwURjOvYxbMlPxfQLbf7ylNYKKF2FlYAco4uG1Wsw5wbrsPwtn-AGkNSUVWRHnwj5-tELWtjVa2SqaNyvRob0hx-Rz0QV0iiXm_CYXj1e3pBQD4FYBC0VkapAcKcFLTizisbPz04ZlkiZ53HeTqw20uZaOOokQxZQ1E1UF1IYXcSFEnwLFgbDgduByOSJNCJnXCAcEmiB4TySMiOlZbLQrgV0QovMhlzhvmRFP6t91lxlDf0ypF9W0y9LWnAyHfPWZMr4t_f-hMRZ-GvKbMbjFhxNX6O8eyeGGbjh2PdhKF_e7mnBdsOa6ec4RxmQEkefTng1m_zvtez-v5Y9WGJeTuoIvn1YqEZjd4BIpMoPa3HDp0qvD2HxIu10uth2rrr3D19JdNfU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOBQOCFoKyzOV2hO1Nn5sbB8QQsCylMdpK3GzHMfAYbULm6wQP4r_yDiPpRWCG-fYjjP-7Pkm45kB-Cl44lysBGEhQkZQ54jqOEZirbyQWntRlum8vEp6f8Wf6871DDw3sTDhWmVzJpYHdTZy4R95OxBjSjnyl4P7BxKqRgXvalNCo4LFuX96RJMt3z87xvX9xVj3pH_UI3VVAeJQ9RdEqgwpkhY048wpGt_ceGVZImWaxmkncdpKl2rhqZcMP4TiCU91JoXVWZwpwXHYWZgXnOuwoVT3dGrfoWqugplkQpDGsDpGJ-aqnQc7KThM0XaPw5W55H89-IbcvnHMlvquuwxLNVGNDitkrcCMH36FxX_SF34D0rV5EbnxEzLMQXSLBn1xF9kimgyKsSWD0WMUEl_VWZvzVeh_hqC-w9xwNPTrENk0kVakjAtkXwINPhxHUmaldExm2reANrIwrk5NHipkDEzpIufKVPIzKD9Tys8kLdib9rmvEnN82HqrEbGpN2luXiHVgh_Tx7i9gs_EDv1oEtowhHMws1qwVi3N9HUIgY6SEnv_btbqdfD357Lx8Vx24Uuvf3lhLs6uzjdhgQXMlJcHt2CuGE_8NpKgIt0poReB-WSovwAOlg8B |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4sLZBKcAJr40cy9qFCqGXVtzgUaW-W43jhsNotm6yq_jT-HeM8dkFVe-s5tuOMP9vfZF4AH5TMvU-1YiJGyCjuPdOZFyw1Oig0JqimTOfpWX7wQx2Ns_EG_OljYaJbZX8mNgd1OffxH_kwEmPOJfGX4aRzi_i-P_py8ZvFClLR0tqX02ghchyuLkl9q3YP92mtPwox-na-d8C6CgPMEw2oGeqS6JJRvJTCa55OJkE7kSMWRVpkuTcOfWFU4AEFfRSn056bEpUzZVpqJWnYe3AfZcbjFsPxWteja7oNbMKcEaURXbxOKvWwijpTNJ6SHp9G97n8_zvxGtG9ZqRt7r7RE3jckdbka4uyp7ARZs_g0T-pDJ8DG7mqTvziitjmNPlJyn39K3F1spzWC8em88skJsHqMjhXL-D8LgT1EjZn81l4DYkrcnSqEFIRE1Ok_NE4yIVD9AJLEwbAe1lY36Upj9UyprYxl0ttW_lZkp9t5GfzAXxa9blok3Tc2nq7F7HtNmxl1_AawM7qMW21aD9xszBfxjaCoB1VrgG8apdm9TopTaYRqffnfq3Wg988lze3z-U9PCCQ25PDs-MteCgiZBo_wm3YrBfL8Jb4UF28a5CXgL1jpP8F2BgTLg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+crystal+growth+at+ultra-low+temperatures&rft.jtitle=Nature+materials&rft.au=Gao%2C+Qiong&rft.au=Ai%2C+Jingdong&rft.au=Tang%2C+Shixiang&rft.au=Li%2C+Minhuan&rft.date=2021-10-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=10&rft.spage=1431&rft.epage=1439&rft_id=info:doi/10.1038%2Fs41563-021-00993-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_021_00993_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |