Composite Hierarchical Anti-Disturbance Control with Multisensor Fusion for Compact Optoelectronic Platforms
In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes CO...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 18; no. 10; p. 3190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
21.09.2018
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation. |
---|---|
AbstractList | In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation. In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation.In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation. |
Author | Tian, Dapeng Wang, Yutang Dai, Ming |
AuthorAffiliation | 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; ytwang@ciomp.ac.cn (Y.W.); daim@vip.sina.com (M.D.) 4 Harbin Institute of Technology, Harbin 150001, China 3 Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China 2 University of Chinese Academy of Sciences, Beijing 100049, China |
AuthorAffiliation_xml | – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; ytwang@ciomp.ac.cn (Y.W.); daim@vip.sina.com (M.D.) – name: 2 University of Chinese Academy of Sciences, Beijing 100049, China – name: 3 Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China – name: 4 Harbin Institute of Technology, Harbin 150001, China |
Author_xml | – sequence: 1 givenname: Yutang orcidid: 0000-0001-5341-0159 surname: Wang fullname: Wang, Yutang – sequence: 2 givenname: Dapeng surname: Tian fullname: Tian, Dapeng – sequence: 3 givenname: Ming surname: Dai fullname: Dai, Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30241404$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1v1DAQhi1URD_gwB9APsIh1F9JnAtStdAPqagc4Gw5E7vryrEX2yni3-PtllWLOHnseeYda945RgchBoPQW0o-cj6Q00wlJZwO5AU6ooKJRjJGDp7Eh-g45ztCGOdcvkKHnDBBBRFHyK_ivInZFYMvnUk6wdqB9vgsFNd8drksadQBDF7FUFL0-Jcra_x18cVlE3JM-HzJLgZsa7jV0lDwzaZE4w3UguAAf_O61PScX6OXVvts3jyeJ-jH-Zfvq8vm-ubianV23YAQtDR9z4zU7TB1nSBmgoFQoruhs0PbCzv0cuK2kyAoI2DZaIUFDgYsJ2KcbL2coKud7hT1ndokN-v0W0Xt1MNDTLdKp-LAG1WLZZ1LK7q2E1yA7CXYYdRMjF0LYqpan3Zam2Wc62dMHYP2z0SfZ4Jbq9t4rzpGqymkCrx_FEjx52JyUbPLYLzXwcQlq4pRKiRt24q-e9pr3-SvXRX4sAMgxZyTsXuEErVdBbVfhcqe_sOCK7q4rY_a-f9U_AEqk7cu |
CitedBy_id | crossref_primary_10_3390_s19071658 crossref_primary_10_3390_app12073693 crossref_primary_10_3390_s20113107 crossref_primary_10_3390_s20205785 crossref_primary_10_1109_TII_2019_2954550 crossref_primary_10_3390_app11135856 crossref_primary_10_3390_en14206532 |
Cites_doi | 10.1109/TIE.2003.819695 10.1016/j.ijsolstr.2015.01.007 10.1016/j.ijsolstr.2016.04.034 10.3390/s17112648 10.1016/j.isatra.2013.12.008 10.1016/j.conengprac.2018.02.001 10.1080/00207170802227191 10.1109/TAES.2013.6494412 10.1007/s11071-015-2557-4 10.1109/3516.491410 10.1109/TMECH.2012.2230014 10.1109/TIE.2008.2011621 10.3901/JME.2013.15.122 10.1109/TVT.2007.904543 10.3390/rs8040316 10.1016/j.mechatronics.2014.11.005 10.1109/TMECH.2011.2163524 10.1109/TIE.2014.2327009 10.1109/TIE.2009.2017560 10.1109/41.857974 10.1109/ISOT.2012.6403293 10.1109/TIE.2015.2478397 10.1007/s10846-017-0662-y 10.1016/j.mechatronics.2017.04.009 10.1109/IECON.2016.7792967 10.1007/s11071-014-1760-z 10.1109/ECCE.2014.6953577 10.1016/j.mechatronics.2014.08.002 10.1016/j.ast.2016.04.019 10.1109/TII.2012.2226896 10.1016/j.isatra.2017.01.003 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s18103190 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_f4f800254656434c878cf9ba24b65c4d PMC6211030 30241404 10_3390_s18103190 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Youth Innovation Promotion Association of Chinese Academy of Sciences grantid: 2017257 – fundername: National Science Foundation of China grantid: 61673365 and 51705496 – fundername: CIOMP Knowledge Innovation Program grantid: Y4CX1SS145 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M NPM PJZUB PPXIY 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c441t-772e8a59d6640edc9010a696f9574f978d3f68c4120cf2bf4fc3cecf304bdffc3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:44 EDT 2025 Thu Aug 21 14:06:13 EDT 2025 Fri Jul 11 01:24:39 EDT 2025 Tue Aug 05 11:47:52 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Tue Jul 01 01:37:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | adaptive differential evolution algorithm compact optoelectronic platforms composite hierarchical anti-disturbance control phase-lag-free multisensor fusion |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-772e8a59d6640edc9010a696f9574f978d3f68c4120cf2bf4fc3cecf304bdffc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5341-0159 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18103190 |
PMID | 30241404 |
PQID | 2111148155 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f4f800254656434c878cf9ba24b65c4d pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211030 proquest_miscellaneous_2111148155 pubmed_primary_30241404 crossref_primary_10_3390_s18103190 crossref_citationtrail_10_3390_s18103190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180921 |
PublicationDateYYYYMMDD | 2018-09-21 |
PublicationDate_xml | – month: 9 year: 2018 text: 20180921 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2018 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Li (ref_27) 2016; 35 Babaghasabha (ref_11) 2015; 25 Liu (ref_20) 2013; 18 Foti (ref_33) 2016; 91 Xing (ref_5) 2013; 18 Liu (ref_25) 2013; 49 Kim (ref_36) 2003; 50 Cong (ref_22) 2016; 84 ref_30 Sariyildiz (ref_14) 2015; 62 Li (ref_39) 2013; 9 Aboudonia (ref_31) 2018; 90 ref_38 ref_37 Chen (ref_17) 2000; 47 Ohnishi (ref_13) 1996; 1 Han (ref_15) 2009; 56 Nowak (ref_16) 2018; 74 Sofla (ref_6) 2017; 44 Mary (ref_12) 2012; 5 Abdo (ref_4) 2014; 56 Yang (ref_18) 2013; 49 Herrmann (ref_29) 2009; 82 She (ref_19) 2007; 56 Chen (ref_23) 2014; 24 Peng (ref_32) 2015; 79 ref_1 Xiang (ref_34) 2015; 58 ref_3 Zhou (ref_24) 2017; 67 ref_2 Toloei (ref_7) 2016; 54 Chen (ref_9) 2016; 63 Xia (ref_10) 2013; 30 ref_26 Su (ref_28) 2013; 6 Xiong (ref_35) 2013; 37 ref_8 Jamaludin (ref_21) 2009; 56 24461337 - ISA Trans. 2014 Mar;53(2):591-602 28093203 - ISA Trans. 2017 Mar;67:293-305 29149050 - Sensors (Basel). 2017 Nov 17;17(11) |
References_xml | – volume: 50 start-page: 1207 year: 2003 ident: ref_36 article-title: Advanced disturbance observer design for mechanical positioning systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2003.819695 – volume: 6 start-page: 730 year: 2013 ident: ref_28 article-title: Contouring accuracy improvement of parametric free-form curves—A Fuzzy Logic-based Disturbance Compensation approach publication-title: IEEE Int. Conf. Mechatron. – volume: 58 start-page: 233 year: 2015 ident: ref_34 article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.01.007 – ident: ref_30 – volume: 91 start-page: 1 year: 2016 ident: ref_33 article-title: Mechanical modeling of metallic strands subjected to tension, torsion and bending publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.04.034 – ident: ref_3 – ident: ref_2 doi: 10.3390/s17112648 – volume: 56 start-page: 591 year: 2014 ident: ref_4 article-title: Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.12.008 – volume: 74 start-page: 44 year: 2018 ident: ref_16 article-title: Robust tuning of a first order reduced Active Disturbance Rejection Controller publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2018.02.001 – volume: 82 start-page: 721 year: 2009 ident: ref_29 article-title: Discrete adaptive neural network disturbance feedforward compensation for non-linear disturbances in servo-control applications publication-title: Int. J. Control doi: 10.1080/00207170802227191 – volume: 49 start-page: 1263 year: 2013 ident: ref_18 article-title: Nonlinear-Disturbance-Observer-Based Robust Flight Control for Airbreathing Hypersonic Vehicles publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2013.6494412 – volume: 35 start-page: 138 year: 2016 ident: ref_27 article-title: modeling and simulation of imbalance disturbance for inertially stabilized platforms publication-title: J. Vib. Shock – volume: 84 start-page: 1123 year: 2016 ident: ref_22 article-title: Isolation control for inertially stabilized platform based on nonlinear friction compensation publication-title: Nonlinear Dyn. doi: 10.1007/s11071-015-2557-4 – volume: 1 start-page: 56 year: 1996 ident: ref_13 article-title: Motion control for advanced mechatronics publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/3516.491410 – volume: 18 start-page: 1410 year: 2013 ident: ref_20 article-title: Active disturbance rejection control based on an improved equivalent-input-disturbance approach publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2012.2230014 – ident: ref_37 – volume: 30 start-page: 137 year: 2013 ident: ref_10 article-title: Recent developments in sliding mode control and active disturbance rejection control publication-title: Control Theory Appl. – volume: 37 start-page: 538 year: 2013 ident: ref_35 article-title: System identification method for Hammerstein model based on improved differential evolution algorithm publication-title: J. Nanjing Univ. Sci. Technol. – volume: 56 start-page: 900 year: 2009 ident: ref_15 article-title: From PID to active disturbance rejection control publication-title: IEEE Trans. Ind. Eletron. doi: 10.1109/TIE.2008.2011621 – volume: 49 start-page: 122 year: 2013 ident: ref_25 article-title: Nonlinear friction modeling and adaptive compensation on an inertially stabilized platform system for aerial remote sensing application publication-title: J. Mech. Eng. doi: 10.3901/JME.2013.15.122 – volume: 56 start-page: 3722 year: 2007 ident: ref_19 article-title: Estimation of equivalent input disturbance improves vehicular steering control publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2007.904543 – ident: ref_1 doi: 10.3390/rs8040316 – volume: 25 start-page: 27 year: 2015 ident: ref_11 article-title: Adaptive robust control of fully-constrained cable driven parallel Robots publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.11.005 – volume: 18 start-page: 86 year: 2013 ident: ref_5 article-title: Active disturbance rejection control for precise position tracking of ionic polymer-metal composite actuators publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2011.2163524 – volume: 62 start-page: 414 year: 2015 ident: ref_14 article-title: Stability and robustness of disturbance-observer-based motion control systems publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2327009 – volume: 56 start-page: 3848 year: 2009 ident: ref_21 article-title: Friction compensation of an XY teed table using friction-model-based reedforward and an inverse-model-based disturbance observer publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2009.2017560 – volume: 47 start-page: 932 year: 2000 ident: ref_17 article-title: A nonlinear disturbance observer for robotic manipulators publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/41.857974 – volume: 5 start-page: 262 year: 2012 ident: ref_12 article-title: H-infinity disturbance rejection for robust control of tractor trailer systems publication-title: Int. Rev. Autom. Control – ident: ref_8 doi: 10.1109/ISOT.2012.6403293 – volume: 63 start-page: 1083 year: 2016 ident: ref_9 article-title: Disturbance-Observer-Based Control and Related Methods—An Overview publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2478397 – volume: 90 start-page: 201 year: 2018 ident: ref_31 article-title: Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0662-y – volume: 44 start-page: 42 year: 2017 ident: ref_6 article-title: Integral based sliding mode stabilizing a camera platform using Kalman filter attitude estimation publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.04.009 – ident: ref_38 doi: 10.1109/IECON.2016.7792967 – volume: 79 start-page: 1563 year: 2015 ident: ref_32 article-title: Composite anti-disturbance controller for magnetically suspended control moment gyro subject to mismatched disturbances publication-title: Nonlinear Dyn. doi: 10.1007/s11071-014-1760-z – ident: ref_26 doi: 10.1109/ECCE.2014.6953577 – volume: 24 start-page: 1120 year: 2014 ident: ref_23 article-title: A friction identification approach based on dual-relay feedback configuration with application to an inertially stabilized platform publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.08.002 – volume: 54 start-page: 143 year: 2016 ident: ref_7 article-title: Design of predictive control and evaluate the effects of flight dynamics on performance of one axis gimbal system, considering disturbance publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.04.019 – volume: 9 start-page: 1879 year: 2013 ident: ref_39 article-title: Design and Implementation of Terminal Sliding Mode Control Method for PMSM Speed Regulation System publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2012.2226896 – volume: 67 start-page: 293 year: 2017 ident: ref_24 article-title: A compound scheme on parameters identification and adaptive compensation of nonlinear friction disturbance for the aerial inertially stabilized platform publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.01.003 – reference: 28093203 - ISA Trans. 2017 Mar;67:293-305 – reference: 29149050 - Sensors (Basel). 2017 Nov 17;17(11): – reference: 24461337 - ISA Trans. 2014 Mar;53(2):591-602 |
SSID | ssj0023338 |
Score | 2.276225 |
Snippet | In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3190 |
SubjectTerms | adaptive differential evolution algorithm compact optoelectronic platforms composite hierarchical anti-disturbance control phase-lag-free multisensor fusion |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN-ElgxhYorqx4yQjFKoKicdApW5R4tiiUpVUTfL_uXPS0KJKLGx9OIrrO_u-L737jpA7FA0LmAzdRGSZK6KMwSvY7nAQMu4Hivc1Fji_vsnRWLxM_MlKqy_MCWvkgZuF6xlhQluyDcBDcKHCIFQmShNPpNJXIsPTF2Lekky1VIsD82p0hDiQ-l4JcQzLddha9LEi_ZuQ5e8EyZWIM9wney1UpA_NFA_Ils4Pye6KgOARmeF2xrQrTUdTLCW2nU3gmryauk9gwXqRolnpoMlIp_jYldqi2xL4a7Ggwxofl1GArtQeDaqi7_Oq-OmOQz9mSYXItjwm4-Hz52Dktv0TXAUgp0LgrMPEjzIpBYMfg5kYiYykifxAGKCPGTcyVKLvMWW8FFZacaWV4UykmYE3J2Q7L3J9RqgMDBDBSESpQYE4lRrN_TCJmGFBAhzXIffLdY1VKy6OPS5mMZAMNEHcmcAht93QeaOosWnQIxqnG4Ai2PYDcI24dY34L9dwyM3StDFsGvwnJMl1UZexh4ECZWp8h5w2pu5uxQG1oOaQQ4I1J1iby_o3-fTLCnNLZNOcnf_H5C_IDmAzm5ri9S_JdrWo9RXgnyq9tq7-Dd3dBRQ priority: 102 providerName: Directory of Open Access Journals |
Title | Composite Hierarchical Anti-Disturbance Control with Multisensor Fusion for Compact Optoelectronic Platforms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30241404 https://www.proquest.com/docview/2111148155 https://pubmed.ncbi.nlm.nih.gov/PMC6211030 https://doaj.org/article/f4f800254656434c878cf9ba24b65c4d |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9gKHim9cIFoQBy6GjXe9ax8qREtDhNRSISLlZtlrL40U2a3tSPDvO7N2TI1y4BIlzlpeezye99YzbwDekWiY5iryU5nnvoxzjt_Q3fFByEWojZgWVOB8fqHmC_ltGS73YNtjs7-AzU5qR_2kFvX6w--bP5_Q4Y-JcSJl_9hglKJiHGTuBxiQNPnnuRxeJgRCuIbWVNPlYzzkncDQeNdRWHLq_bsg57-Zk3dC0ewhHPYYkn3ujP4I9oryMTy4oyz4BNbk55SPVbD5imqMXcsT3KdsV_4XNO2mzsje7LRLVWe0HstcNW6DxLaq2WxD62gMMS1zzwzTsu_XbfW3bQ67XKctQd7mKSxmZz9P537fWME3iH5aQtRFlIZxrpTkeDKUopGqWNk41NIir8yFVZGR04AbG2RWWiNMYazgMsst_ngG-2VVFi-AKW2RIcYyziwpx5nMFiKM0phbrlMkvx68317XxPSq49T8Yp0g-yATJIMJPHg7DL3upDZ2DToh4wwDSB3bbajqX0nvbAlOOHJl_ghWpZAm0pGxcZYGMlOhkbkHb7amTdCb6BVJWhbVpkkCiiCkXxN68Lwz9XAogXCGxIg80KObYDSX8T_l6sopdiui2YIf_c8ZvoT7CMpcTkowfQX7bb0pXiPwabMJ3NNLjZ_R7OsEDk7OLi5_TNwiwsTd8Ldl_QYo |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Hierarchical+Anti-Disturbance+Control+with+Multisensor+Fusion+for+Compact+Optoelectronic+Platforms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yutang&rft.au=Tian%2C+Dapeng&rft.au=Dai%2C+Ming&rft.date=2018-09-21&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft.spage=3190&rft_id=info:doi/10.3390%2Fs18103190&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18103190 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |