Composite Hierarchical Anti-Disturbance Control with Multisensor Fusion for Compact Optoelectronic Platforms

In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes CO...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 10; p. 3190
Main Authors Wang, Yutang, Tian, Dapeng, Dai, Ming
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 21.09.2018
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation.
AbstractList In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation.
In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation.In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range of mission-specific tasks such as disaster relief, crop testing, and firefighting. However, the strict constraint of structure space makes COPs subject to multi-source disturbances. The application of a low-cost and low-precision sensor also affects the system control performance. A composite hierarchical anti-disturbance control (CHADC) scheme with multisensor fusion is explored herein to improve the motion performance of COPs in the presence of internal and external disturbances. Composite disturbance modelling combining the characteristic of wire-wound moment is presented in the inner layer. The adaptive mutation differential evolution algorithm is implemented to identify and optimise the model parameters of the system internal disturbance. Inverse model compensation and finite-time nonlinear disturbance observer are then constructed to compensate for multiple disturbances. A non-singular terminal sliding mode controller is constructed to attenuate disturbance in the outer layer. A stability analysis for both the composite disturbance compensator and the closed-loop system is provided using Lyapunov stability arguments. The phase lag-free low-pass filter is implemented to interfuse multiple sensors with different order information and achieve satisfactory noise suppression without phase lag. Experimental results demonstrate that the proposed CHADC strategy with a higher-quality signal has an improved performance for multi-source disturbance compensation.
Author Tian, Dapeng
Wang, Yutang
Dai, Ming
AuthorAffiliation 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; ytwang@ciomp.ac.cn (Y.W.); daim@vip.sina.com (M.D.)
4 Harbin Institute of Technology, Harbin 150001, China
3 Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
AuthorAffiliation_xml – name: 1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; ytwang@ciomp.ac.cn (Y.W.); daim@vip.sina.com (M.D.)
– name: 2 University of Chinese Academy of Sciences, Beijing 100049, China
– name: 3 Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China
– name: 4 Harbin Institute of Technology, Harbin 150001, China
Author_xml – sequence: 1
  givenname: Yutang
  orcidid: 0000-0001-5341-0159
  surname: Wang
  fullname: Wang, Yutang
– sequence: 2
  givenname: Dapeng
  surname: Tian
  fullname: Tian, Dapeng
– sequence: 3
  givenname: Ming
  surname: Dai
  fullname: Dai, Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30241404$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhi1URD_gwB9APsIh1F9JnAtStdAPqagc4Gw5E7vryrEX2yni3-PtllWLOHnseeYda945RgchBoPQW0o-cj6Q00wlJZwO5AU6ooKJRjJGDp7Eh-g45ztCGOdcvkKHnDBBBRFHyK_ivInZFYMvnUk6wdqB9vgsFNd8drksadQBDF7FUFL0-Jcra_x18cVlE3JM-HzJLgZsa7jV0lDwzaZE4w3UguAAf_O61PScX6OXVvts3jyeJ-jH-Zfvq8vm-ubianV23YAQtDR9z4zU7TB1nSBmgoFQoruhs0PbCzv0cuK2kyAoI2DZaIUFDgYsJ2KcbL2coKud7hT1ndokN-v0W0Xt1MNDTLdKp-LAG1WLZZ1LK7q2E1yA7CXYYdRMjF0LYqpan3Zam2Wc62dMHYP2z0SfZ4Jbq9t4rzpGqymkCrx_FEjx52JyUbPLYLzXwcQlq4pRKiRt24q-e9pr3-SvXRX4sAMgxZyTsXuEErVdBbVfhcqe_sOCK7q4rY_a-f9U_AEqk7cu
CitedBy_id crossref_primary_10_3390_s19071658
crossref_primary_10_3390_app12073693
crossref_primary_10_3390_s20113107
crossref_primary_10_3390_s20205785
crossref_primary_10_1109_TII_2019_2954550
crossref_primary_10_3390_app11135856
crossref_primary_10_3390_en14206532
Cites_doi 10.1109/TIE.2003.819695
10.1016/j.ijsolstr.2015.01.007
10.1016/j.ijsolstr.2016.04.034
10.3390/s17112648
10.1016/j.isatra.2013.12.008
10.1016/j.conengprac.2018.02.001
10.1080/00207170802227191
10.1109/TAES.2013.6494412
10.1007/s11071-015-2557-4
10.1109/3516.491410
10.1109/TMECH.2012.2230014
10.1109/TIE.2008.2011621
10.3901/JME.2013.15.122
10.1109/TVT.2007.904543
10.3390/rs8040316
10.1016/j.mechatronics.2014.11.005
10.1109/TMECH.2011.2163524
10.1109/TIE.2014.2327009
10.1109/TIE.2009.2017560
10.1109/41.857974
10.1109/ISOT.2012.6403293
10.1109/TIE.2015.2478397
10.1007/s10846-017-0662-y
10.1016/j.mechatronics.2017.04.009
10.1109/IECON.2016.7792967
10.1007/s11071-014-1760-z
10.1109/ECCE.2014.6953577
10.1016/j.mechatronics.2014.08.002
10.1016/j.ast.2016.04.019
10.1109/TII.2012.2226896
10.1016/j.isatra.2017.01.003
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s18103190
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_f4f800254656434c878cf9ba24b65c4d
PMC6211030
30241404
10_3390_s18103190
Genre Journal Article
GrantInformation_xml – fundername: Youth Innovation Promotion Association of Chinese Academy of Sciences
  grantid: 2017257
– fundername: National Science Foundation of China
  grantid: 61673365 and 51705496
– fundername: CIOMP Knowledge Innovation Program
  grantid: Y4CX1SS145
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
NPM
PJZUB
PPXIY
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c441t-772e8a59d6640edc9010a696f9574f978d3f68c4120cf2bf4fc3cecf304bdffc3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:44 EDT 2025
Thu Aug 21 14:06:13 EDT 2025
Fri Jul 11 01:24:39 EDT 2025
Tue Aug 05 11:47:52 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 01:37:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords adaptive differential evolution algorithm
compact optoelectronic platforms
composite hierarchical anti-disturbance control
phase-lag-free multisensor fusion
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-772e8a59d6640edc9010a696f9574f978d3f68c4120cf2bf4fc3cecf304bdffc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5341-0159
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18103190
PMID 30241404
PQID 2111148155
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f4f800254656434c878cf9ba24b65c4d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211030
proquest_miscellaneous_2111148155
pubmed_primary_30241404
crossref_primary_10_3390_s18103190
crossref_citationtrail_10_3390_s18103190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180921
PublicationDateYYYYMMDD 2018-09-21
PublicationDate_xml – month: 9
  year: 2018
  text: 20180921
  day: 21
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Li (ref_27) 2016; 35
Babaghasabha (ref_11) 2015; 25
Liu (ref_20) 2013; 18
Foti (ref_33) 2016; 91
Xing (ref_5) 2013; 18
Liu (ref_25) 2013; 49
Kim (ref_36) 2003; 50
Cong (ref_22) 2016; 84
ref_30
Sariyildiz (ref_14) 2015; 62
Li (ref_39) 2013; 9
Aboudonia (ref_31) 2018; 90
ref_38
ref_37
Chen (ref_17) 2000; 47
Ohnishi (ref_13) 1996; 1
Han (ref_15) 2009; 56
Nowak (ref_16) 2018; 74
Sofla (ref_6) 2017; 44
Mary (ref_12) 2012; 5
Abdo (ref_4) 2014; 56
Yang (ref_18) 2013; 49
Herrmann (ref_29) 2009; 82
She (ref_19) 2007; 56
Chen (ref_23) 2014; 24
Peng (ref_32) 2015; 79
ref_1
Xiang (ref_34) 2015; 58
ref_3
Zhou (ref_24) 2017; 67
ref_2
Toloei (ref_7) 2016; 54
Chen (ref_9) 2016; 63
Xia (ref_10) 2013; 30
ref_26
Su (ref_28) 2013; 6
Xiong (ref_35) 2013; 37
ref_8
Jamaludin (ref_21) 2009; 56
24461337 - ISA Trans. 2014 Mar;53(2):591-602
28093203 - ISA Trans. 2017 Mar;67:293-305
29149050 - Sensors (Basel). 2017 Nov 17;17(11)
References_xml – volume: 50
  start-page: 1207
  year: 2003
  ident: ref_36
  article-title: Advanced disturbance observer design for mechanical positioning systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2003.819695
– volume: 6
  start-page: 730
  year: 2013
  ident: ref_28
  article-title: Contouring accuracy improvement of parametric free-form curves—A Fuzzy Logic-based Disturbance Compensation approach
  publication-title: IEEE Int. Conf. Mechatron.
– volume: 58
  start-page: 233
  year: 2015
  ident: ref_34
  article-title: Modeling of multi-strand wire ropes subjected to axial tension and torsion loads
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.01.007
– ident: ref_30
– volume: 91
  start-page: 1
  year: 2016
  ident: ref_33
  article-title: Mechanical modeling of metallic strands subjected to tension, torsion and bending
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.04.034
– ident: ref_3
– ident: ref_2
  doi: 10.3390/s17112648
– volume: 56
  start-page: 591
  year: 2014
  ident: ref_4
  article-title: Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2013.12.008
– volume: 74
  start-page: 44
  year: 2018
  ident: ref_16
  article-title: Robust tuning of a first order reduced Active Disturbance Rejection Controller
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2018.02.001
– volume: 82
  start-page: 721
  year: 2009
  ident: ref_29
  article-title: Discrete adaptive neural network disturbance feedforward compensation for non-linear disturbances in servo-control applications
  publication-title: Int. J. Control
  doi: 10.1080/00207170802227191
– volume: 49
  start-page: 1263
  year: 2013
  ident: ref_18
  article-title: Nonlinear-Disturbance-Observer-Based Robust Flight Control for Airbreathing Hypersonic Vehicles
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2013.6494412
– volume: 35
  start-page: 138
  year: 2016
  ident: ref_27
  article-title: modeling and simulation of imbalance disturbance for inertially stabilized platforms
  publication-title: J. Vib. Shock
– volume: 84
  start-page: 1123
  year: 2016
  ident: ref_22
  article-title: Isolation control for inertially stabilized platform based on nonlinear friction compensation
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-015-2557-4
– volume: 1
  start-page: 56
  year: 1996
  ident: ref_13
  article-title: Motion control for advanced mechatronics
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/3516.491410
– volume: 18
  start-page: 1410
  year: 2013
  ident: ref_20
  article-title: Active disturbance rejection control based on an improved equivalent-input-disturbance approach
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2012.2230014
– ident: ref_37
– volume: 30
  start-page: 137
  year: 2013
  ident: ref_10
  article-title: Recent developments in sliding mode control and active disturbance rejection control
  publication-title: Control Theory Appl.
– volume: 37
  start-page: 538
  year: 2013
  ident: ref_35
  article-title: System identification method for Hammerstein model based on improved differential evolution algorithm
  publication-title: J. Nanjing Univ. Sci. Technol.
– volume: 56
  start-page: 900
  year: 2009
  ident: ref_15
  article-title: From PID to active disturbance rejection control
  publication-title: IEEE Trans. Ind. Eletron.
  doi: 10.1109/TIE.2008.2011621
– volume: 49
  start-page: 122
  year: 2013
  ident: ref_25
  article-title: Nonlinear friction modeling and adaptive compensation on an inertially stabilized platform system for aerial remote sensing application
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2013.15.122
– volume: 56
  start-page: 3722
  year: 2007
  ident: ref_19
  article-title: Estimation of equivalent input disturbance improves vehicular steering control
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2007.904543
– ident: ref_1
  doi: 10.3390/rs8040316
– volume: 25
  start-page: 27
  year: 2015
  ident: ref_11
  article-title: Adaptive robust control of fully-constrained cable driven parallel Robots
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.11.005
– volume: 18
  start-page: 86
  year: 2013
  ident: ref_5
  article-title: Active disturbance rejection control for precise position tracking of ionic polymer-metal composite actuators
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2011.2163524
– volume: 62
  start-page: 414
  year: 2015
  ident: ref_14
  article-title: Stability and robustness of disturbance-observer-based motion control systems
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2327009
– volume: 56
  start-page: 3848
  year: 2009
  ident: ref_21
  article-title: Friction compensation of an XY teed table using friction-model-based reedforward and an inverse-model-based disturbance observer
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2009.2017560
– volume: 47
  start-page: 932
  year: 2000
  ident: ref_17
  article-title: A nonlinear disturbance observer for robotic manipulators
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.857974
– volume: 5
  start-page: 262
  year: 2012
  ident: ref_12
  article-title: H-infinity disturbance rejection for robust control of tractor trailer systems
  publication-title: Int. Rev. Autom. Control
– ident: ref_8
  doi: 10.1109/ISOT.2012.6403293
– volume: 63
  start-page: 1083
  year: 2016
  ident: ref_9
  article-title: Disturbance-Observer-Based Control and Related Methods—An Overview
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2478397
– volume: 90
  start-page: 201
  year: 2018
  ident: ref_31
  article-title: Composite hierarchical anti-disturbance control of a quadrotor UAV in the presence of matched and mismatched disturbances
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0662-y
– volume: 44
  start-page: 42
  year: 2017
  ident: ref_6
  article-title: Integral based sliding mode stabilizing a camera platform using Kalman filter attitude estimation
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.04.009
– ident: ref_38
  doi: 10.1109/IECON.2016.7792967
– volume: 79
  start-page: 1563
  year: 2015
  ident: ref_32
  article-title: Composite anti-disturbance controller for magnetically suspended control moment gyro subject to mismatched disturbances
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1760-z
– ident: ref_26
  doi: 10.1109/ECCE.2014.6953577
– volume: 24
  start-page: 1120
  year: 2014
  ident: ref_23
  article-title: A friction identification approach based on dual-relay feedback configuration with application to an inertially stabilized platform
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2014.08.002
– volume: 54
  start-page: 143
  year: 2016
  ident: ref_7
  article-title: Design of predictive control and evaluate the effects of flight dynamics on performance of one axis gimbal system, considering disturbance
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.04.019
– volume: 9
  start-page: 1879
  year: 2013
  ident: ref_39
  article-title: Design and Implementation of Terminal Sliding Mode Control Method for PMSM Speed Regulation System
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2226896
– volume: 67
  start-page: 293
  year: 2017
  ident: ref_24
  article-title: A compound scheme on parameters identification and adaptive compensation of nonlinear friction disturbance for the aerial inertially stabilized platform
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.01.003
– reference: 28093203 - ISA Trans. 2017 Mar;67:293-305
– reference: 29149050 - Sensors (Basel). 2017 Nov 17;17(11):
– reference: 24461337 - ISA Trans. 2014 Mar;53(2):591-602
SSID ssj0023338
Score 2.276225
Snippet In the aerospace field, compact optoelectronic platforms (COPs) are being increasingly equipped on unmanned aircraft systems (UAS). They assist UAS in a range...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3190
SubjectTerms adaptive differential evolution algorithm
compact optoelectronic platforms
composite hierarchical anti-disturbance control
phase-lag-free multisensor fusion
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIN-ElgxhYorqx4yQjFKoKicdApW5R4tiiUpVUTfL_uXPS0KJKLGx9OIrrO_u-L737jpA7FA0LmAzdRGSZK6KMwSvY7nAQMu4Hivc1Fji_vsnRWLxM_MlKqy_MCWvkgZuF6xlhQluyDcBDcKHCIFQmShNPpNJXIsPTF2Lekky1VIsD82p0hDiQ-l4JcQzLddha9LEi_ZuQ5e8EyZWIM9wney1UpA_NFA_Ils4Pye6KgOARmeF2xrQrTUdTLCW2nU3gmryauk9gwXqRolnpoMlIp_jYldqi2xL4a7Ggwxofl1GArtQeDaqi7_Oq-OmOQz9mSYXItjwm4-Hz52Dktv0TXAUgp0LgrMPEjzIpBYMfg5kYiYykifxAGKCPGTcyVKLvMWW8FFZacaWV4UykmYE3J2Q7L3J9RqgMDBDBSESpQYE4lRrN_TCJmGFBAhzXIffLdY1VKy6OPS5mMZAMNEHcmcAht93QeaOosWnQIxqnG4Ai2PYDcI24dY34L9dwyM3StDFsGvwnJMl1UZexh4ECZWp8h5w2pu5uxQG1oOaQQ4I1J1iby_o3-fTLCnNLZNOcnf_H5C_IDmAzm5ri9S_JdrWo9RXgnyq9tq7-Dd3dBRQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Composite Hierarchical Anti-Disturbance Control with Multisensor Fusion for Compact Optoelectronic Platforms
URI https://www.ncbi.nlm.nih.gov/pubmed/30241404
https://www.proquest.com/docview/2111148155
https://pubmed.ncbi.nlm.nih.gov/PMC6211030
https://doaj.org/article/f4f800254656434c878cf9ba24b65c4d
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9gKHim9cIFoQBy6GjXe9ax8qREtDhNRSISLlZtlrL40U2a3tSPDvO7N2TI1y4BIlzlpeezye99YzbwDekWiY5iryU5nnvoxzjt_Q3fFByEWojZgWVOB8fqHmC_ltGS73YNtjs7-AzU5qR_2kFvX6w--bP5_Q4Y-JcSJl_9hglKJiHGTuBxiQNPnnuRxeJgRCuIbWVNPlYzzkncDQeNdRWHLq_bsg57-Zk3dC0ewhHPYYkn3ujP4I9oryMTy4oyz4BNbk55SPVbD5imqMXcsT3KdsV_4XNO2mzsje7LRLVWe0HstcNW6DxLaq2WxD62gMMS1zzwzTsu_XbfW3bQ67XKctQd7mKSxmZz9P537fWME3iH5aQtRFlIZxrpTkeDKUopGqWNk41NIir8yFVZGR04AbG2RWWiNMYazgMsst_ngG-2VVFi-AKW2RIcYyziwpx5nMFiKM0phbrlMkvx68317XxPSq49T8Yp0g-yATJIMJPHg7DL3upDZ2DToh4wwDSB3bbajqX0nvbAlOOHJl_ghWpZAm0pGxcZYGMlOhkbkHb7amTdCb6BVJWhbVpkkCiiCkXxN68Lwz9XAogXCGxIg80KObYDSX8T_l6sopdiui2YIf_c8ZvoT7CMpcTkowfQX7bb0pXiPwabMJ3NNLjZ_R7OsEDk7OLi5_TNwiwsTd8Ldl_QYo
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Hierarchical+Anti-Disturbance+Control+with+Multisensor+Fusion+for+Compact+Optoelectronic+Platforms&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Yutang&rft.au=Tian%2C+Dapeng&rft.au=Dai%2C+Ming&rft.date=2018-09-21&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft.spage=3190&rft_id=info:doi/10.3390%2Fs18103190&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18103190
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon