CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex

Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vert...

Full description

Saved in:
Bibliographic Details
Published inRadiologia medica Vol. 128; no. 6; pp. 744 - 754
Main Authors Levi, Riccardo, Garoli, Federico, Battaglia, Massimiliano, Rizzo, Dario A. A., Mollura, Maximilliano, Savini, Giovanni, Riva, Marco, Tomei, Massimo, Ortolina, Alessandro, Fornari, Maurizio, Rohatgi, Saurabh, Angelotti, Giovanni, Savevski, Victor, Mazziotti, Gherardo, Barbieri, Riccardo, Grimaldi, Marco, Politi, Letterio S.
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1826-6983
0033-8362
1826-6983
DOI10.1007/s11547-023-01641-6

Cover

Loading…
Abstract Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. Materials and methods We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions. Results The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). Conclusion Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
AbstractList Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions. The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.PURPOSERadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions.MATERIALS AND METHODSWe annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions.The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).RESULTSThe model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.CONCLUSIONRadiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. Materials and methods We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions. Results The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). Conclusion Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
PurposeRadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. Materials and methodsWe annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions.ResultsThe model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).ConclusionRadiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.
Author Riva, Marco
Tomei, Massimo
Angelotti, Giovanni
Barbieri, Riccardo
Garoli, Federico
Mazziotti, Gherardo
Grimaldi, Marco
Ortolina, Alessandro
Fornari, Maurizio
Savini, Giovanni
Rizzo, Dario A. A.
Levi, Riccardo
Mollura, Maximilliano
Politi, Letterio S.
Battaglia, Massimiliano
Savevski, Victor
Rohatgi, Saurabh
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Levi
  fullname: Levi, Riccardo
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 2
  givenname: Federico
  surname: Garoli
  fullname: Garoli, Federico
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 3
  givenname: Massimiliano
  surname: Battaglia
  fullname: Battaglia, Massimiliano
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 4
  givenname: Dario A. A.
  surname: Rizzo
  fullname: Rizzo, Dario A. A.
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 5
  givenname: Maximilliano
  surname: Mollura
  fullname: Mollura, Maximilliano
  organization: Department of Electronics, Information and Bioengineering, Politecnico Di Milano
– sequence: 6
  givenname: Giovanni
  surname: Savini
  fullname: Savini, Giovanni
  organization: Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 7
  givenname: Marco
  surname: Riva
  fullname: Riva, Marco
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neurosurgery, IRCCS Humanitas Research Hospital
– sequence: 8
  givenname: Massimo
  surname: Tomei
  fullname: Tomei, Massimo
  organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital
– sequence: 9
  givenname: Alessandro
  surname: Ortolina
  fullname: Ortolina, Alessandro
  organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital
– sequence: 10
  givenname: Maurizio
  surname: Fornari
  fullname: Fornari, Maurizio
  organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital
– sequence: 11
  givenname: Saurabh
  surname: Rohatgi
  fullname: Rohatgi, Saurabh
  organization: Department of Neuroradiology, Massachusetts General Hospital
– sequence: 12
  givenname: Giovanni
  surname: Angelotti
  fullname: Angelotti, Giovanni
  organization: Artificial Intelligence Center, IRCCS Humanitas Research Hospital
– sequence: 13
  givenname: Victor
  surname: Savevski
  fullname: Savevski, Victor
  organization: Artificial Intelligence Center, IRCCS Humanitas Research Hospital
– sequence: 14
  givenname: Gherardo
  surname: Mazziotti
  fullname: Mazziotti, Gherardo
  organization: Department of Biomedical Sciences, Humanitas University, Metabolic Bone Diseases and Osteoporosis Section, Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital
– sequence: 15
  givenname: Riccardo
  surname: Barbieri
  fullname: Barbieri, Riccardo
  organization: Department of Electronics, Information and Bioengineering, Politecnico Di Milano
– sequence: 16
  givenname: Marco
  surname: Grimaldi
  fullname: Grimaldi, Marco
  organization: Department of Neuroradiology, IRCCS Humanitas Research Hospital
– sequence: 17
  givenname: Letterio S.
  orcidid: 0000-0002-6190-6688
  surname: Politi
  fullname: Politi, Letterio S.
  email: letterio.politi@hunimed.eu
  organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37147473$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gBVggS2y6Cfg3TpZoRAGpEpuytq6dm8GjJB5sR2J2fQ1ejyfBdFqBuujq3sV3jo7OOScnS1yQkNecveOMmfeZc61Mw4RsGG8Vb9pn5Ix3om3avpMn__2n5DznHWOKcda_IKfScGWUkWdkv7lpHGQcaIIhxDn4TD0sNAy4lDAe6P77IYc4xW3wMNE5DmGsXwlxyTSO1NVINJe0-rImpAknKNWsRJpXt0Nf8u_bXxS2SGEZaMafL8nzEaaMr-7vBfl29fFm87m5_vrpy-bDdeOV4qUxShvQZuxH7YwG3oLXDBwHI41HIyTvlZNc4ChB9A4qAl3fqoE75wB7eUEuj777FH-smIudQ_Y4TbBgXLMVXa2CG9WJir59hO7impaarlJCa8W17ir15p5a3YyD3acwQzrYhy4r0B0Bn2LOCUfrQ7lrqiQIk-XM_p3NHmezdTZ7N5ttq1Q8kj64PymSR1Gu8LLF9C_2E6o_uwKrOg
CitedBy_id crossref_primary_10_3390_diagnostics15030257
crossref_primary_10_1038_s41598_024_68158_4
crossref_primary_10_1186_s13244_023_01546_y
crossref_primary_10_1016_j_acra_2024_04_022
crossref_primary_10_1038_s41598_024_69392_6
crossref_primary_10_1016_j_acra_2023_10_035
crossref_primary_10_1038_s41597_024_03191_6
crossref_primary_10_1055_s_0044_1789218
crossref_primary_10_1007_s11547_024_01853_4
crossref_primary_10_1007_s11604_024_01702_4
crossref_primary_10_1186_s40644_024_00821_5
Cites_doi 10.1038/s41467-021-25779-x
10.1038/s42256-020-00257-z
10.3389/fneur.2019.00789
10.1016/j.acra.2020.03.046
10.1016/j.neuroimage.2017.11.024
10.1016/j.ebiom.2021.103402
10.1148/radiol.2018172361
10.1097/RLI.0000000000000781
10.3174/ajnr.A2609
10.1002/jbmr.4292
10.1148/radiol.2021203783
10.1007/s00330-020-07312-8
10.1590/1414-431x20198962
10.1007/s11914-017-0402-z
10.1007/s00198-002-1322-y
10.1007/s00774-013-0465-6
10.1007/s40134-017-0236-6
10.1007/s40618-022-01837-z
10.1038/nrclinonc.2017.141
10.1016/j.mri.2012.05.001
10.1016/j.ejrad.2022.110669
10.1007/s00198-018-4704-5
10.1148/radiol.2021203281
10.1007/s00330-017-4801-4
10.1148/radiol.2020191145
10.1038/s41591-018-0300-7
10.1016/j.cmpb.2020.105754
10.1186/s40644-021-00387-6
10.1038/s41598-020-61297-4
10.1016/j.clcc.2020.11.001
10.1007/s00330-021-08245-6
10.1007/s00198-019-04910-1
10.1016/j.bone.2020.115558
10.1016/j.ejrad.2019.05.009
10.1158/0008-5472.CAN-17-0339
10.1038/s42256-021-00338-7
10.1145/3377930.3389817
ContentType Journal Article
Copyright Italian Society of Medical Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. Italian Society of Medical Radiology.
Copyright_xml – notice: Italian Society of Medical Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. Italian Society of Medical Radiology.
DBID AAYXX
CITATION
NPM
K9.
NAPCQ
7X8
DOI 10.1007/s11547-023-01641-6
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1826-6983
EndPage 754
ExternalDocumentID 37147473
10_1007_s11547_023_01641_6
Genre Journal Article
GroupedDBID -5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
P9S
PF0
PT4
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z87
ZMTXR
ZOVNA
~A9
~S-
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ADHKG
AGQPQ
NPM
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c441t-7457a57f9f5b75a16ac50ab1a737ce723194b312ef3a29ba5a1a8964d1bbbae93
IEDL.DBID U2A
ISSN 1826-6983
0033-8362
IngestDate Fri Jul 11 05:39:32 EDT 2025
Fri Jul 25 10:13:17 EDT 2025
Mon Jul 21 05:50:13 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 01:27:35 EDT 2025
Fri Feb 21 02:43:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Trabecular bone structure
Computed tomography
Lumbar vertebrae
Tissue characterization
Radiomics
Language English
License 2023. Italian Society of Medical Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-7457a57f9f5b75a16ac50ab1a737ce723194b312ef3a29ba5a1a8964d1bbbae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6190-6688
PMID 37147473
PQID 2825541558
PQPubID 2043526
PageCount 11
ParticipantIDs proquest_miscellaneous_2810917482
proquest_journals_2825541558
pubmed_primary_37147473
crossref_citationtrail_10_1007_s11547_023_01641_6
crossref_primary_10_1007_s11547_023_01641_6
springer_journals_10_1007_s11547_023_01641_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Milan
PublicationPlace_xml – name: Milan
– name: Italy
– name: Torino
PublicationSubtitle Official Journal of the Italian Society of Medical and Interventional Radiology
PublicationTitle Radiologia medica
PublicationTitleAbbrev Radiol med
PublicationTitleAlternate Radiol Med
PublicationYear 2023
Publisher Springer Milan
Springer Nature B.V
Publisher_xml – name: Springer Milan
– name: Springer Nature B.V
References Lambin, Leijenaar, Deist (CR7) 2017; 14
Kawashima, Fujita, Buch (CR25) 2019; 116
Fang, Li, Chen (CR23) 2021; 31
Valentinitsch, Trebeschi, Kaesmacher (CR24) 2019; 30
Russo, Lauretani, Bandinelli (CR3) 2003; 14
van Hamersvelt, Schilham, Engelke (CR32) 2017; 27
Tamimi, Cortes, Sánchez-Siles (CR6) 2020; 140
Staal, van der Reijd, Taghavi (CR9) 2021; 20
Franke, Gaser (CR14) 2019; 10
Baum, Gräbeldinger, Räth (CR1) 2014; 32
Han, Wang (CR15) 2020; 197
DeGrave, Janizek, Lee (CR30) 2021; 3
Zwanenburg, Vallières, Abdalah (CR16) 2020; 295
Yu, Huang, Wang (CR4) 2023; 159
Sun, Liu, Guo (CR26) 2021; 21
Hinzpeter, Baumann, Guggenberger (CR11) 2021
Topol (CR35) 2019; 25
Geirhos, Jacobsen, Michaelis (CR29) 2020; 2
Bogowicz, Jochems, Deist (CR36) 2020; 10
Murray, Le, Ebrahimzadeh (CR37) 2017; 5
Biamonte, Levi, Carrone (CR13) 2022; 45
Hemmatian, Bakker, Klein-Nulend, Van Lenthe, G (CR2) 1914
Niu, Olszewski, Zhang (CR34) 2011; 32
Euler, Nowak, Bucher (CR33) 2021; 56
Kanis, Cooper, Rizzoli, Reginster (CR5) 2019; 30
Eweje, Bao, Wu (CR28) 2021; 68
He, Liu, Liu (CR12) 2021; 28
Smets, Shevroja, Hügle (CR22) 2021; 36
Dionísio, Oliveira, Hernandes (CR27) 2020
Hong, Jung, Jo (CR8) 2021; 299
van Griethuysen, Fedorov, Parmar (CR18) 2017; 77
Hsieh, Zheng, Lin (CR21) 2021; 12
Fedorov, Beichel, Kalpathy-Cramer (CR17) 2012; 30
CR20
Berenguer, del Pastor-Juan, R, Canales-Vázquez J (CR31) 2018; 288
Sun, Chen, Liang (CR10) 2021; 301
Fortin, Cullen, Sheline (CR19) 2018; 167
FCF Dionísio (1641_CR27) 2020
A Euler (1641_CR33) 2021; 56
Y Fang (1641_CR23) 2021; 31
P Lambin (1641_CR7) 2017; 14
Q Sun (1641_CR10) 2021; 301
W Sun (1641_CR26) 2021; 21
H Hemmatian (1641_CR2) 1914
A Fedorov (1641_CR17) 2012; 30
M Bogowicz (1641_CR36) 2020; 10
YT Niu (1641_CR34) 2011; 32
A Valentinitsch (1641_CR24) 2019; 30
JH Hong (1641_CR8) 2021; 299
A Zwanenburg (1641_CR16) 2020; 295
Y Han (1641_CR15) 2020; 197
J Smets (1641_CR22) 2021; 36
R Geirhos (1641_CR29) 2020; 2
JA Kanis (1641_CR5) 2019; 30
R Hinzpeter (1641_CR11) 2021
FR Eweje (1641_CR28) 2021; 68
E Biamonte (1641_CR13) 2022; 45
AJ DeGrave (1641_CR30) 2021; 3
K Franke (1641_CR14) 2019; 10
N Murray (1641_CR37) 2017; 5
FCR Staal (1641_CR9) 2021; 20
R Berenguer (1641_CR31) 2018; 288
RW van Hamersvelt (1641_CR32) 2017; 27
JJM van Griethuysen (1641_CR18) 2017; 77
Y Kawashima (1641_CR25) 2019; 116
CR Russo (1641_CR3) 2003; 14
A Yu (1641_CR4) 2023; 159
J-P Fortin (1641_CR19) 2018; 167
C-I Hsieh (1641_CR21) 2021; 12
T Baum (1641_CR1) 2014; 32
L He (1641_CR12) 2021; 28
I Tamimi (1641_CR6) 2020; 140
EJ Topol (1641_CR35) 2019; 25
1641_CR20
References_xml – volume: 12
  start-page: 5472
  year: 2021
  ident: CR21
  article-title: Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25779-x
– volume: 2
  start-page: 665
  year: 2020
  end-page: 673
  ident: CR29
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00257-z
– volume: 10
  start-page: 789
  year: 2019
  ident: CR14
  article-title: Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained?
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00789
– volume: 28
  start-page: e165
  year: 2021
  end-page: e171
  ident: CR12
  article-title: Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.03.046
– volume: 167
  start-page: 104
  year: 2018
  end-page: 120
  ident: CR19
  article-title: Harmonization of cortical thickness measurements across scanners and sites
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.024
– volume: 68
  start-page: 103402
  year: 2021
  ident: CR28
  article-title: Deep learning for classification of bone lesions on routine MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103402
– volume: 288
  start-page: 407
  year: 2018
  end-page: 415
  ident: CR31
  article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters
  publication-title: Radiology
  doi: 10.1148/radiol.2018172361
– volume: 56
  start-page: 614
  year: 2021
  end-page: 620
  ident: CR33
  article-title: Assessment of bone mineral density from a computed tomography topogram of photon-counting detector computed tomography—effect of phantom size and tube voltage
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000781
– volume: 32
  start-page: 1783
  year: 2011
  end-page: 1788
  ident: CR34
  article-title: Experimental study and optimization of scan parameters that influence radiation dose in temporal bone high-resolution multidetector row CT
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A2609
– volume: 36
  start-page: 833
  year: 2021
  end-page: 851
  ident: CR22
  article-title: Machine Learning Solutions for Osteoporosis—A Review
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4292
– volume: 299
  start-page: 626
  year: 2021
  end-page: 632
  ident: CR8
  article-title: Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT
  publication-title: Radiology
  doi: 10.1148/radiol.2021203783
– volume: 31
  start-page: 1831
  year: 2021
  end-page: 1842
  ident: CR23
  article-title: Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07312-8
– year: 2020
  ident: CR27
  article-title: Manual and semiautomatic segmentation of bone sarcomas on MRI have high similarity
  publication-title: Brazilian J Med Biol Res
  doi: 10.1590/1414-431x20198962
– year: 1914
  ident: CR2
  article-title: Aging, Osteocytes, and Mechanotransduction
  publication-title: Curr Osteoporos Rep
  doi: 10.1007/s11914-017-0402-z
– volume: 14
  start-page: 531
  year: 2003
  end-page: 538
  ident: CR3
  article-title: Aging bone in men and women: beyond changes in bone mineral density
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-002-1322-y
– volume: 32
  start-page: 56
  year: 2014
  end-page: 64
  ident: CR1
  article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength?
  publication-title: J Bone Miner Metab
  doi: 10.1007/s00774-013-0465-6
– volume: 5
  start-page: 9
  year: 2017
  ident: CR37
  article-title: Imaging the spine with dual-energy CT
  publication-title: Curr Radiol Rep
  doi: 10.1007/s40134-017-0236-6
– volume: 45
  start-page: 2007
  year: 2022
  end-page: 2017
  ident: CR13
  article-title: Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures
  publication-title: J Endocrinol Invest
  doi: 10.1007/s40618-022-01837-z
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: CR7
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  ident: CR17
  article-title: 3D Slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 159
  start-page: 110669
  year: 2023
  ident: CR4
  article-title: Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density based on MRI and quantitative CT
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2022.110669
– volume: 30
  start-page: 3
  year: 2019
  end-page: 44
  ident: CR5
  article-title: European guidance for the diagnosis and management of osteoporosis in postmenopausal women
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-018-4704-5
– volume: 301
  start-page: 203281
  issue: 3
  year: 2021
  ident: CR10
  article-title: Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma
  publication-title: Radiology
  doi: 10.1148/radiol.2021203281
– volume: 27
  start-page: 4351
  year: 2017
  end-page: 4359
  ident: CR32
  article-title: Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4801-4
– volume: 295
  start-page: 328
  year: 2020
  end-page: 338
  ident: CR16
  article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: CR35
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 197
  start-page: 105754
  year: 2020
  ident: CR15
  article-title: Skeletal bone age prediction based on a deep residual network with spatial transformer
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105754
– volume: 21
  start-page: 20
  year: 2021
  ident: CR26
  article-title: A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-021-00387-6
– volume: 10
  start-page: 4542
  year: 2020
  ident: CR36
  article-title: Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61297-4
– volume: 20
  start-page: 52
  year: 2021
  end-page: 71
  ident: CR9
  article-title: Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review
  publication-title: Clin Colorectal Cancer
  doi: 10.1016/j.clcc.2020.11.001
– year: 2021
  ident: CR11
  article-title: Radiomics for detecting prostate cancer bone metastases invisible in CT: a proof-of-concept study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08245-6
– volume: 30
  start-page: 1275
  year: 2019
  end-page: 1285
  ident: CR24
  article-title: Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-04910-1
– volume: 140
  start-page: 115558
  year: 2020
  ident: CR6
  article-title: Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115558
– volume: 116
  start-page: 212
  year: 2019
  end-page: 218
  ident: CR25
  article-title: Using texture analysis of head CT images to differentiate osteoporosis from normal bone density
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.05.009
– volume: 77
  start-page: e104
  year: 2017
  end-page: e107
  ident: CR18
  article-title: Computational radiomics system to decode the radiographic phenotype
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– ident: CR20
– volume: 3
  start-page: 610
  year: 2021
  end-page: 619
  ident: CR30
  article-title: AI for radiographic COVID-19 detection selects shortcuts over signal
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00338-7
– volume: 14
  start-page: 749
  year: 2017
  ident: 1641_CR7
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 140
  start-page: 115558
  year: 2020
  ident: 1641_CR6
  publication-title: Bone
  doi: 10.1016/j.bone.2020.115558
– volume: 56
  start-page: 614
  year: 2021
  ident: 1641_CR33
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000781
– volume: 68
  start-page: 103402
  year: 2021
  ident: 1641_CR28
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2021.103402
– volume: 21
  start-page: 20
  year: 2021
  ident: 1641_CR26
  publication-title: Cancer Imaging
  doi: 10.1186/s40644-021-00387-6
– volume: 5
  start-page: 9
  year: 2017
  ident: 1641_CR37
  publication-title: Curr Radiol Rep
  doi: 10.1007/s40134-017-0236-6
– volume: 30
  start-page: 3
  year: 2019
  ident: 1641_CR5
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-018-4704-5
– volume: 12
  start-page: 5472
  year: 2021
  ident: 1641_CR21
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25779-x
– volume: 28
  start-page: e165
  year: 2021
  ident: 1641_CR12
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2020.03.046
– volume: 2
  start-page: 665
  year: 2020
  ident: 1641_CR29
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00257-z
– volume: 27
  start-page: 4351
  year: 2017
  ident: 1641_CR32
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-4801-4
– volume: 30
  start-page: 1323
  year: 2012
  ident: 1641_CR17
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 31
  start-page: 1831
  year: 2021
  ident: 1641_CR23
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07312-8
– volume: 197
  start-page: 105754
  year: 2020
  ident: 1641_CR15
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2020.105754
– volume: 10
  start-page: 4542
  year: 2020
  ident: 1641_CR36
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-61297-4
– volume: 295
  start-page: 328
  year: 2020
  ident: 1641_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.2020191145
– volume: 30
  start-page: 1275
  year: 2019
  ident: 1641_CR24
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-019-04910-1
– volume: 299
  start-page: 626
  year: 2021
  ident: 1641_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2021203783
– volume: 14
  start-page: 531
  year: 2003
  ident: 1641_CR3
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-002-1322-y
– volume: 36
  start-page: 833
  year: 2021
  ident: 1641_CR22
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4292
– volume: 116
  start-page: 212
  year: 2019
  ident: 1641_CR25
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2019.05.009
– year: 2021
  ident: 1641_CR11
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-08245-6
– volume: 167
  start-page: 104
  year: 2018
  ident: 1641_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.11.024
– volume: 3
  start-page: 610
  year: 2021
  ident: 1641_CR30
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00338-7
– volume: 20
  start-page: 52
  year: 2021
  ident: 1641_CR9
  publication-title: Clin Colorectal Cancer
  doi: 10.1016/j.clcc.2020.11.001
– year: 1914
  ident: 1641_CR2
  publication-title: Curr Osteoporos Rep
  doi: 10.1007/s11914-017-0402-z
– volume: 159
  start-page: 110669
  year: 2023
  ident: 1641_CR4
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2022.110669
– volume: 45
  start-page: 2007
  year: 2022
  ident: 1641_CR13
  publication-title: J Endocrinol Invest
  doi: 10.1007/s40618-022-01837-z
– volume: 301
  start-page: 203281
  issue: 3
  year: 2021
  ident: 1641_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2021203281
– volume: 288
  start-page: 407
  year: 2018
  ident: 1641_CR31
  publication-title: Radiology
  doi: 10.1148/radiol.2018172361
– volume: 77
  start-page: e104
  year: 2017
  ident: 1641_CR18
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0339
– year: 2020
  ident: 1641_CR27
  publication-title: Brazilian J Med Biol Res
  doi: 10.1590/1414-431x20198962
– volume: 10
  start-page: 789
  year: 2019
  ident: 1641_CR14
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.00789
– volume: 32
  start-page: 1783
  year: 2011
  ident: 1641_CR34
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A2609
– volume: 25
  start-page: 44
  year: 2019
  ident: 1641_CR35
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 32
  start-page: 56
  year: 2014
  ident: 1641_CR1
  publication-title: J Bone Miner Metab
  doi: 10.1007/s00774-013-0465-6
– ident: 1641_CR20
  doi: 10.1145/3377930.3389817
SSID ssj0040109
Score 2.3797338
Snippet Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine...
Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in...
PurposeRadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 744
SubjectTerms Accuracy
Computed Tomography
Datasets
Diagnostic Radiology
Fractures
Imaging
Interventional Radiology
Machine learning
Medicine
Medicine & Public Health
Neuroradiology
Osteoporosis
Physiology
Radiology
Radiomics
Regression models
Scanners
Sex
Ultrasound
Vertebrae
Title CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex
URI https://link.springer.com/article/10.1007/s11547-023-01641-6
https://www.ncbi.nlm.nih.gov/pubmed/37147473
https://www.proquest.com/docview/2825541558
https://www.proquest.com/docview/2810917482
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-2BsZeSrt1nds0aLC3VmBbkmU_htI0tGRPDbRPRrIkCHR2qRNY3_Y19vX2Sabzn4SSrtBnn2Shn3R3utPvBPBdMixBojlFwCmXLKMqNCkVWaGMDFNnHBKcZz-S6Zxf3YrbjhRW97fd-5Rko6k3ZDdv7SX1NoZiWaiIJu9hIPDs7lfxPB73-pdjsqejx7zc7rkJ2vIrt3KijamZ7MFu5yOScQvqPryz5Sf4MOuy4J_h4fyGovUx5FGZBdKKa-JniCwa0q17Ik24otdq5Gdl8D5QG5ojlSO6Ki1pC8euHi1p6Cy-s2VF6pXGuEz99_cf4hUNUaUhtf11APPJxc35lHYvJ9DCuzdLKrmQSkiXOaGlUFGiChEqHSnJZGGl9-kyrlkUW8dUnGnlRVSaJdxEWmtlM_YFdko_lq9AijAtwqSQ3IqEZ8aqhDHhDEuV8N6hMwFE_WTmRVdWHF-3uM83BZERgNwDkDcA5EkAp-s2D21RjVelhz1GebfB6hwptwKdoTSAb-vPfmtgvkOVtlqhDFY9lTyNAzhssV3_DgsV-pMUC-CsB3vT-f_HcvQ28WP4GDcLD6M2Q9jxyNoT78Qs9QgG48u764tRs3b_Aadz6xk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54Ad0XWXXd7XqL4JsG2iZp2kcRZbyMTzPgW0maBIS1FTsD65t_w7_nL9mcXmYQXcHnnqYhX3LOaU6-LwCHkqEEieYUAadcsoyq0KRUZIUyMkydcUhwHt4kgzG_vBW3HSms7k-79yXJxlPPyW4-2kvqYwxFWaiIJouw7JOBFA9yjeOT3v9yLPZ09JiP33sbgt7lle9qok2oOf8Oa12OSE5aUNdhwZYbsDLsquCb8HA6ohh9DHlU5g5pxTXxI0TuGtKteyLNdkXv1ch9ZfA8ULs1RypHdFVa0grHTh8taegsvrFJReqpxn2Z-vX5hXhHQ1RpSG3__oDx-dnodEC7mxNo4dObCZVcSCWky5zQUqgoUYUIlY6UZLKw0ud0Gdcsiq1jKs608iYqzRJuIq21shnbgqXS9-UXkCJMizApJLci4ZmxKmFMOMNSJXx26EwAUT-YedHJiuPtFn_yuSAyApB7APIGgDwJ4Gj2zkMrqvGp9U6PUd4tsDpHyq3AZCgN4GD22C8NrHeo0lZTtEHVU8nTOICfLbazz6FQof-TYgEc92DPG_9_X35_zXwfVgej4XV-fXFztQ3f4mYS4g7ODix5lO2uT2gmeq-Zv_8AgR_seA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKiEuiPLVAAUjcQOLJLbj5IhoV7QF1AMrcYvs2JZWosmK7Epw42_w9_pL6snHLhVQiXMmjuVnz0w8fs8Ah5KhBInmFAGnXLKMqtCkVGSFMjJMnXFIcL68Ss6H_MeNuHnG4m9Ou_clyZbTgCpN5eRkbNzJnPjmI7-kPt5QlIiKaLIAH707jnBeD-PT3hdzLPx0VJnX3_s3HL3IMV_UR5uwM1iFlS5fJKctwJ_ggy3XYOmyq4ivw_jsmmIkMuROmRFSjGviR4uMGgKueyDN1kXv4cjvyuDZoHabjlSO6Kq0pBWRnd5Z0lBbfGOTitRTjXs09Z_HJ-KdDlGlIbW934Dh4Nv12TntblGghU91JlRyIZWQLnNCS6GiRBUiVDpSksnCSp_fZVyzKLaOqTjTypuoNEu4ibTWymZsExZL35fPQIowLcKkkNyKhGfGqoQx4QxLlfCZojMBRP1g5kUnMY43Xdzmc3FkBCD3AOQNAHkSwNHsnXErsPFf690eo7xbbHWO9FuBiVEawMHssV8mWPtQpa2maIMKqJKncQBbLbazz6Foof-rYgEc92DPG3-7L9vvM9-HpV9fB_nF96ufO7AcN3MQN3N2YdGDbL_43Gai95rp-xcPSvC0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT-based+radiomics+can+identify+physiological+modifications+of+bone+structure+related+to+subjects%27+age+and+sex&rft.jtitle=Radiologia+medica&rft.au=Levi%2C+Riccardo&rft.au=Garoli%2C+Federico&rft.au=Battaglia%2C+Massimiliano&rft.au=Rizzo%2C+Dario+A+A&rft.date=2023-06-01&rft.eissn=1826-6983&rft.volume=128&rft.issue=6&rft.spage=744&rft_id=info:doi/10.1007%2Fs11547-023-01641-6&rft_id=info%3Apmid%2F37147473&rft.externalDocID=37147473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1826-6983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1826-6983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1826-6983&client=summon