CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex
Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vert...
Saved in:
Published in | Radiologia medica Vol. 128; no. 6; pp. 744 - 754 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Milan
Springer Milan
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1826-6983 0033-8362 1826-6983 |
DOI | 10.1007/s11547-023-01641-6 |
Cover
Loading…
Abstract | Purpose
Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.
Materials and methods
We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions.
Results
The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).
Conclusion
Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis. |
---|---|
AbstractList | Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.
We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions.
The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).
Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis. Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.PURPOSERadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects' sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners.We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions.MATERIALS AND METHODSWe annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects' sex and age respectively, and we computed a voting model which combined predictions.The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).RESULTSThe model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects' sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects' age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis.CONCLUSIONRadiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects' sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis. Purpose Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. Materials and methods We annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions. Results The model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years). Conclusion Radiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis. PurposeRadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in identifying physiological changes related to subjects’ sex and age through analysis of radiomics features from CT images of lumbar vertebrae, and define its generalizability across different scanners. Materials and methodsWe annotated spherical volumes-of-interest (VOIs) in the center of the vertebral body for each lumbar vertebra in 233 subjects who had undergone lumbar CT for back pain on 3 different scanners, and we evaluated radiomics features from each VOI. Subjects with history of bone metabolism disorders, cancer, and vertebral fractures were excluded. We performed machine learning classification and regression models to identify subjects’ sex and age respectively, and we computed a voting model which combined predictions.ResultsThe model was trained on 173 subjects and tested on an internal validation dataset of 60. Radiomics was able to identify subjects’ sex within single CT scanner (ROC AUC: up to 0.9714), with lower performance on the combined dataset of the 3 scanners (ROC AUC: 0.5545). Higher consistency among different scanners was found in identification of subjects’ age (R2 0.568 on all scanners, MAD 7.232 years), with highest results on a single CT scanner (R2 0.667, MAD 3.296 years).ConclusionRadiomics features are able to extract biometric data from lumbar trabecular bone, and determine bone modifications related to subjects’ sex and age with great accuracy. However, acquisition from different CT scanners reduces the accuracy of the analysis. |
Author | Riva, Marco Tomei, Massimo Angelotti, Giovanni Barbieri, Riccardo Garoli, Federico Mazziotti, Gherardo Grimaldi, Marco Ortolina, Alessandro Fornari, Maurizio Savini, Giovanni Rizzo, Dario A. A. Levi, Riccardo Mollura, Maximilliano Politi, Letterio S. Battaglia, Massimiliano Savevski, Victor Rohatgi, Saurabh |
Author_xml | – sequence: 1 givenname: Riccardo surname: Levi fullname: Levi, Riccardo organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 2 givenname: Federico surname: Garoli fullname: Garoli, Federico organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 3 givenname: Massimiliano surname: Battaglia fullname: Battaglia, Massimiliano organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 4 givenname: Dario A. A. surname: Rizzo fullname: Rizzo, Dario A. A. organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 5 givenname: Maximilliano surname: Mollura fullname: Mollura, Maximilliano organization: Department of Electronics, Information and Bioengineering, Politecnico Di Milano – sequence: 6 givenname: Giovanni surname: Savini fullname: Savini, Giovanni organization: Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 7 givenname: Marco surname: Riva fullname: Riva, Marco organization: Department of Biomedical Sciences, Humanitas University, Department of Neurosurgery, IRCCS Humanitas Research Hospital – sequence: 8 givenname: Massimo surname: Tomei fullname: Tomei, Massimo organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital – sequence: 9 givenname: Alessandro surname: Ortolina fullname: Ortolina, Alessandro organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital – sequence: 10 givenname: Maurizio surname: Fornari fullname: Fornari, Maurizio organization: Department of Neurosurgery, IRCCS Humanitas Research Hospital – sequence: 11 givenname: Saurabh surname: Rohatgi fullname: Rohatgi, Saurabh organization: Department of Neuroradiology, Massachusetts General Hospital – sequence: 12 givenname: Giovanni surname: Angelotti fullname: Angelotti, Giovanni organization: Artificial Intelligence Center, IRCCS Humanitas Research Hospital – sequence: 13 givenname: Victor surname: Savevski fullname: Savevski, Victor organization: Artificial Intelligence Center, IRCCS Humanitas Research Hospital – sequence: 14 givenname: Gherardo surname: Mazziotti fullname: Mazziotti, Gherardo organization: Department of Biomedical Sciences, Humanitas University, Metabolic Bone Diseases and Osteoporosis Section, Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital – sequence: 15 givenname: Riccardo surname: Barbieri fullname: Barbieri, Riccardo organization: Department of Electronics, Information and Bioengineering, Politecnico Di Milano – sequence: 16 givenname: Marco surname: Grimaldi fullname: Grimaldi, Marco organization: Department of Neuroradiology, IRCCS Humanitas Research Hospital – sequence: 17 givenname: Letterio S. orcidid: 0000-0002-6190-6688 surname: Politi fullname: Politi, Letterio S. email: letterio.politi@hunimed.eu organization: Department of Biomedical Sciences, Humanitas University, Department of Neuroradiology, IRCCS Humanitas Research Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37147473$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URH_gBVggS2y6Cfg3TpZoRAGpEpuytq6dm8GjJB5sR2J2fQ1ejyfBdFqBuujq3sV3jo7OOScnS1yQkNecveOMmfeZc61Mw4RsGG8Vb9pn5Ix3om3avpMn__2n5DznHWOKcda_IKfScGWUkWdkv7lpHGQcaIIhxDn4TD0sNAy4lDAe6P77IYc4xW3wMNE5DmGsXwlxyTSO1NVINJe0-rImpAknKNWsRJpXt0Nf8u_bXxS2SGEZaMafL8nzEaaMr-7vBfl29fFm87m5_vrpy-bDdeOV4qUxShvQZuxH7YwG3oLXDBwHI41HIyTvlZNc4ChB9A4qAl3fqoE75wB7eUEuj777FH-smIudQ_Y4TbBgXLMVXa2CG9WJir59hO7impaarlJCa8W17ir15p5a3YyD3acwQzrYhy4r0B0Bn2LOCUfrQ7lrqiQIk-XM_p3NHmezdTZ7N5ttq1Q8kj64PymSR1Gu8LLF9C_2E6o_uwKrOg |
CitedBy_id | crossref_primary_10_3390_diagnostics15030257 crossref_primary_10_1038_s41598_024_68158_4 crossref_primary_10_1186_s13244_023_01546_y crossref_primary_10_1016_j_acra_2024_04_022 crossref_primary_10_1038_s41598_024_69392_6 crossref_primary_10_1016_j_acra_2023_10_035 crossref_primary_10_1038_s41597_024_03191_6 crossref_primary_10_1055_s_0044_1789218 crossref_primary_10_1007_s11547_024_01853_4 crossref_primary_10_1007_s11604_024_01702_4 crossref_primary_10_1186_s40644_024_00821_5 |
Cites_doi | 10.1038/s41467-021-25779-x 10.1038/s42256-020-00257-z 10.3389/fneur.2019.00789 10.1016/j.acra.2020.03.046 10.1016/j.neuroimage.2017.11.024 10.1016/j.ebiom.2021.103402 10.1148/radiol.2018172361 10.1097/RLI.0000000000000781 10.3174/ajnr.A2609 10.1002/jbmr.4292 10.1148/radiol.2021203783 10.1007/s00330-020-07312-8 10.1590/1414-431x20198962 10.1007/s11914-017-0402-z 10.1007/s00198-002-1322-y 10.1007/s00774-013-0465-6 10.1007/s40134-017-0236-6 10.1007/s40618-022-01837-z 10.1038/nrclinonc.2017.141 10.1016/j.mri.2012.05.001 10.1016/j.ejrad.2022.110669 10.1007/s00198-018-4704-5 10.1148/radiol.2021203281 10.1007/s00330-017-4801-4 10.1148/radiol.2020191145 10.1038/s41591-018-0300-7 10.1016/j.cmpb.2020.105754 10.1186/s40644-021-00387-6 10.1038/s41598-020-61297-4 10.1016/j.clcc.2020.11.001 10.1007/s00330-021-08245-6 10.1007/s00198-019-04910-1 10.1016/j.bone.2020.115558 10.1016/j.ejrad.2019.05.009 10.1158/0008-5472.CAN-17-0339 10.1038/s42256-021-00338-7 10.1145/3377930.3389817 |
ContentType | Journal Article |
Copyright | Italian Society of Medical Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. Italian Society of Medical Radiology. |
Copyright_xml | – notice: Italian Society of Medical Radiology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. Italian Society of Medical Radiology. |
DBID | AAYXX CITATION NPM K9. NAPCQ 7X8 |
DOI | 10.1007/s11547-023-01641-6 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1826-6983 |
EndPage | 754 |
ExternalDocumentID | 37147473 10_1007_s11547_023_01641_6 |
Genre | Journal Article |
GroupedDBID | -5E -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV KPH LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J P9S PF0 PT4 QOR QOS R89 R9I RIG RNS ROL RPX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7U Z7X Z82 Z87 ZMTXR ZOVNA ~A9 ~S- AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ ADHKG AGQPQ NPM K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c441t-7457a57f9f5b75a16ac50ab1a737ce723194b312ef3a29ba5a1a8964d1bbbae93 |
IEDL.DBID | U2A |
ISSN | 1826-6983 0033-8362 |
IngestDate | Fri Jul 11 05:39:32 EDT 2025 Fri Jul 25 10:13:17 EDT 2025 Mon Jul 21 05:50:13 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Tue Jul 01 01:27:35 EDT 2025 Fri Feb 21 02:43:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Trabecular bone structure Computed tomography Lumbar vertebrae Tissue characterization Radiomics |
Language | English |
License | 2023. Italian Society of Medical Radiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7457a57f9f5b75a16ac50ab1a737ce723194b312ef3a29ba5a1a8964d1bbbae93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6190-6688 |
PMID | 37147473 |
PQID | 2825541558 |
PQPubID | 2043526 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2810917482 proquest_journals_2825541558 pubmed_primary_37147473 crossref_citationtrail_10_1007_s11547_023_01641_6 crossref_primary_10_1007_s11547_023_01641_6 springer_journals_10_1007_s11547_023_01641_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Milan |
PublicationPlace_xml | – name: Milan – name: Italy – name: Torino |
PublicationSubtitle | Official Journal of the Italian Society of Medical and Interventional Radiology |
PublicationTitle | Radiologia medica |
PublicationTitleAbbrev | Radiol med |
PublicationTitleAlternate | Radiol Med |
PublicationYear | 2023 |
Publisher | Springer Milan Springer Nature B.V |
Publisher_xml | – name: Springer Milan – name: Springer Nature B.V |
References | Lambin, Leijenaar, Deist (CR7) 2017; 14 Kawashima, Fujita, Buch (CR25) 2019; 116 Fang, Li, Chen (CR23) 2021; 31 Valentinitsch, Trebeschi, Kaesmacher (CR24) 2019; 30 Russo, Lauretani, Bandinelli (CR3) 2003; 14 van Hamersvelt, Schilham, Engelke (CR32) 2017; 27 Tamimi, Cortes, Sánchez-Siles (CR6) 2020; 140 Staal, van der Reijd, Taghavi (CR9) 2021; 20 Franke, Gaser (CR14) 2019; 10 Baum, Gräbeldinger, Räth (CR1) 2014; 32 Han, Wang (CR15) 2020; 197 DeGrave, Janizek, Lee (CR30) 2021; 3 Zwanenburg, Vallières, Abdalah (CR16) 2020; 295 Yu, Huang, Wang (CR4) 2023; 159 Sun, Liu, Guo (CR26) 2021; 21 Hinzpeter, Baumann, Guggenberger (CR11) 2021 Topol (CR35) 2019; 25 Geirhos, Jacobsen, Michaelis (CR29) 2020; 2 Bogowicz, Jochems, Deist (CR36) 2020; 10 Murray, Le, Ebrahimzadeh (CR37) 2017; 5 Biamonte, Levi, Carrone (CR13) 2022; 45 Hemmatian, Bakker, Klein-Nulend, Van Lenthe, G (CR2) 1914 Niu, Olszewski, Zhang (CR34) 2011; 32 Euler, Nowak, Bucher (CR33) 2021; 56 Kanis, Cooper, Rizzoli, Reginster (CR5) 2019; 30 Eweje, Bao, Wu (CR28) 2021; 68 He, Liu, Liu (CR12) 2021; 28 Smets, Shevroja, Hügle (CR22) 2021; 36 Dionísio, Oliveira, Hernandes (CR27) 2020 Hong, Jung, Jo (CR8) 2021; 299 van Griethuysen, Fedorov, Parmar (CR18) 2017; 77 Hsieh, Zheng, Lin (CR21) 2021; 12 Fedorov, Beichel, Kalpathy-Cramer (CR17) 2012; 30 CR20 Berenguer, del Pastor-Juan, R, Canales-Vázquez J (CR31) 2018; 288 Sun, Chen, Liang (CR10) 2021; 301 Fortin, Cullen, Sheline (CR19) 2018; 167 FCF Dionísio (1641_CR27) 2020 A Euler (1641_CR33) 2021; 56 Y Fang (1641_CR23) 2021; 31 P Lambin (1641_CR7) 2017; 14 Q Sun (1641_CR10) 2021; 301 W Sun (1641_CR26) 2021; 21 H Hemmatian (1641_CR2) 1914 A Fedorov (1641_CR17) 2012; 30 M Bogowicz (1641_CR36) 2020; 10 YT Niu (1641_CR34) 2011; 32 A Valentinitsch (1641_CR24) 2019; 30 JH Hong (1641_CR8) 2021; 299 A Zwanenburg (1641_CR16) 2020; 295 Y Han (1641_CR15) 2020; 197 J Smets (1641_CR22) 2021; 36 R Geirhos (1641_CR29) 2020; 2 JA Kanis (1641_CR5) 2019; 30 R Hinzpeter (1641_CR11) 2021 FR Eweje (1641_CR28) 2021; 68 E Biamonte (1641_CR13) 2022; 45 AJ DeGrave (1641_CR30) 2021; 3 K Franke (1641_CR14) 2019; 10 N Murray (1641_CR37) 2017; 5 FCR Staal (1641_CR9) 2021; 20 R Berenguer (1641_CR31) 2018; 288 RW van Hamersvelt (1641_CR32) 2017; 27 JJM van Griethuysen (1641_CR18) 2017; 77 Y Kawashima (1641_CR25) 2019; 116 CR Russo (1641_CR3) 2003; 14 A Yu (1641_CR4) 2023; 159 J-P Fortin (1641_CR19) 2018; 167 C-I Hsieh (1641_CR21) 2021; 12 T Baum (1641_CR1) 2014; 32 L He (1641_CR12) 2021; 28 I Tamimi (1641_CR6) 2020; 140 EJ Topol (1641_CR35) 2019; 25 1641_CR20 |
References_xml | – volume: 12 start-page: 5472 year: 2021 ident: CR21 article-title: Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning publication-title: Nat Commun doi: 10.1038/s41467-021-25779-x – volume: 2 start-page: 665 year: 2020 end-page: 673 ident: CR29 article-title: Shortcut learning in deep neural networks publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00257-z – volume: 10 start-page: 789 year: 2019 ident: CR14 article-title: Ten years of brainage as a neuroimaging biomarker of brain aging: what insights have we gained? publication-title: Front Neurol doi: 10.3389/fneur.2019.00789 – volume: 28 start-page: e165 year: 2021 end-page: e171 ident: CR12 article-title: Radiomics based on lumbar spine magnetic resonance imaging to detect osteoporosis publication-title: Acad Radiol doi: 10.1016/j.acra.2020.03.046 – volume: 167 start-page: 104 year: 2018 end-page: 120 ident: CR19 article-title: Harmonization of cortical thickness measurements across scanners and sites publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.024 – volume: 68 start-page: 103402 year: 2021 ident: CR28 article-title: Deep learning for classification of bone lesions on routine MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103402 – volume: 288 start-page: 407 year: 2018 end-page: 415 ident: CR31 article-title: Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters publication-title: Radiology doi: 10.1148/radiol.2018172361 – volume: 56 start-page: 614 year: 2021 end-page: 620 ident: CR33 article-title: Assessment of bone mineral density from a computed tomography topogram of photon-counting detector computed tomography—effect of phantom size and tube voltage publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000781 – volume: 32 start-page: 1783 year: 2011 end-page: 1788 ident: CR34 article-title: Experimental study and optimization of scan parameters that influence radiation dose in temporal bone high-resolution multidetector row CT publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A2609 – volume: 36 start-page: 833 year: 2021 end-page: 851 ident: CR22 article-title: Machine Learning Solutions for Osteoporosis—A Review publication-title: J Bone Miner Res doi: 10.1002/jbmr.4292 – volume: 299 start-page: 626 year: 2021 end-page: 632 ident: CR8 article-title: Development and validation of a radiomics model for differentiating bone islands and osteoblastic bone metastases at abdominal CT publication-title: Radiology doi: 10.1148/radiol.2021203783 – volume: 31 start-page: 1831 year: 2021 end-page: 1842 ident: CR23 article-title: Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks publication-title: Eur Radiol doi: 10.1007/s00330-020-07312-8 – year: 2020 ident: CR27 article-title: Manual and semiautomatic segmentation of bone sarcomas on MRI have high similarity publication-title: Brazilian J Med Biol Res doi: 10.1590/1414-431x20198962 – year: 1914 ident: CR2 article-title: Aging, Osteocytes, and Mechanotransduction publication-title: Curr Osteoporos Rep doi: 10.1007/s11914-017-0402-z – volume: 14 start-page: 531 year: 2003 end-page: 538 ident: CR3 article-title: Aging bone in men and women: beyond changes in bone mineral density publication-title: Osteoporos Int doi: 10.1007/s00198-002-1322-y – volume: 32 start-page: 56 year: 2014 end-page: 64 ident: CR1 article-title: Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? publication-title: J Bone Miner Metab doi: 10.1007/s00774-013-0465-6 – volume: 5 start-page: 9 year: 2017 ident: CR37 article-title: Imaging the spine with dual-energy CT publication-title: Curr Radiol Rep doi: 10.1007/s40134-017-0236-6 – volume: 45 start-page: 2007 year: 2022 end-page: 2017 ident: CR13 article-title: Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures publication-title: J Endocrinol Invest doi: 10.1007/s40618-022-01837-z – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: CR7 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 30 start-page: 1323 year: 2012 end-page: 1341 ident: CR17 article-title: 3D Slicer as an image computing platform for the quantitative imaging network publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 159 start-page: 110669 year: 2023 ident: CR4 article-title: Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density based on MRI and quantitative CT publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110669 – volume: 30 start-page: 3 year: 2019 end-page: 44 ident: CR5 article-title: European guidance for the diagnosis and management of osteoporosis in postmenopausal women publication-title: Osteoporos Int doi: 10.1007/s00198-018-4704-5 – volume: 301 start-page: 203281 issue: 3 year: 2021 ident: CR10 article-title: Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma publication-title: Radiology doi: 10.1148/radiol.2021203281 – volume: 27 start-page: 4351 year: 2017 end-page: 4359 ident: CR32 article-title: Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study publication-title: Eur Radiol doi: 10.1007/s00330-017-4801-4 – volume: 295 start-page: 328 year: 2020 end-page: 338 ident: CR16 article-title: The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: CR35 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 197 start-page: 105754 year: 2020 ident: CR15 article-title: Skeletal bone age prediction based on a deep residual network with spatial transformer publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105754 – volume: 21 start-page: 20 year: 2021 ident: CR26 article-title: A CT-based radiomics nomogram for distinguishing between benign and malignant bone tumours publication-title: Cancer Imaging doi: 10.1186/s40644-021-00387-6 – volume: 10 start-page: 4542 year: 2020 ident: CR36 article-title: Privacy-preserving distributed learning of radiomics to predict overall survival and HPV status in head and neck cancer publication-title: Sci Rep doi: 10.1038/s41598-020-61297-4 – volume: 20 start-page: 52 year: 2021 end-page: 71 ident: CR9 article-title: Radiomics for the prediction of treatment outcome and survival in patients with colorectal cancer: a systematic review publication-title: Clin Colorectal Cancer doi: 10.1016/j.clcc.2020.11.001 – year: 2021 ident: CR11 article-title: Radiomics for detecting prostate cancer bone metastases invisible in CT: a proof-of-concept study publication-title: Eur Radiol doi: 10.1007/s00330-021-08245-6 – volume: 30 start-page: 1275 year: 2019 end-page: 1285 ident: CR24 article-title: Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures publication-title: Osteoporos Int doi: 10.1007/s00198-019-04910-1 – volume: 140 start-page: 115558 year: 2020 ident: CR6 article-title: Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis publication-title: Bone doi: 10.1016/j.bone.2020.115558 – volume: 116 start-page: 212 year: 2019 end-page: 218 ident: CR25 article-title: Using texture analysis of head CT images to differentiate osteoporosis from normal bone density publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.05.009 – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: CR18 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – ident: CR20 – volume: 3 start-page: 610 year: 2021 end-page: 619 ident: CR30 article-title: AI for radiographic COVID-19 detection selects shortcuts over signal publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00338-7 – volume: 14 start-page: 749 year: 2017 ident: 1641_CR7 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 140 start-page: 115558 year: 2020 ident: 1641_CR6 publication-title: Bone doi: 10.1016/j.bone.2020.115558 – volume: 56 start-page: 614 year: 2021 ident: 1641_CR33 publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000781 – volume: 68 start-page: 103402 year: 2021 ident: 1641_CR28 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2021.103402 – volume: 21 start-page: 20 year: 2021 ident: 1641_CR26 publication-title: Cancer Imaging doi: 10.1186/s40644-021-00387-6 – volume: 5 start-page: 9 year: 2017 ident: 1641_CR37 publication-title: Curr Radiol Rep doi: 10.1007/s40134-017-0236-6 – volume: 30 start-page: 3 year: 2019 ident: 1641_CR5 publication-title: Osteoporos Int doi: 10.1007/s00198-018-4704-5 – volume: 12 start-page: 5472 year: 2021 ident: 1641_CR21 publication-title: Nat Commun doi: 10.1038/s41467-021-25779-x – volume: 28 start-page: e165 year: 2021 ident: 1641_CR12 publication-title: Acad Radiol doi: 10.1016/j.acra.2020.03.046 – volume: 2 start-page: 665 year: 2020 ident: 1641_CR29 publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00257-z – volume: 27 start-page: 4351 year: 2017 ident: 1641_CR32 publication-title: Eur Radiol doi: 10.1007/s00330-017-4801-4 – volume: 30 start-page: 1323 year: 2012 ident: 1641_CR17 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 31 start-page: 1831 year: 2021 ident: 1641_CR23 publication-title: Eur Radiol doi: 10.1007/s00330-020-07312-8 – volume: 197 start-page: 105754 year: 2020 ident: 1641_CR15 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2020.105754 – volume: 10 start-page: 4542 year: 2020 ident: 1641_CR36 publication-title: Sci Rep doi: 10.1038/s41598-020-61297-4 – volume: 295 start-page: 328 year: 2020 ident: 1641_CR16 publication-title: Radiology doi: 10.1148/radiol.2020191145 – volume: 30 start-page: 1275 year: 2019 ident: 1641_CR24 publication-title: Osteoporos Int doi: 10.1007/s00198-019-04910-1 – volume: 299 start-page: 626 year: 2021 ident: 1641_CR8 publication-title: Radiology doi: 10.1148/radiol.2021203783 – volume: 14 start-page: 531 year: 2003 ident: 1641_CR3 publication-title: Osteoporos Int doi: 10.1007/s00198-002-1322-y – volume: 36 start-page: 833 year: 2021 ident: 1641_CR22 publication-title: J Bone Miner Res doi: 10.1002/jbmr.4292 – volume: 116 start-page: 212 year: 2019 ident: 1641_CR25 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2019.05.009 – year: 2021 ident: 1641_CR11 publication-title: Eur Radiol doi: 10.1007/s00330-021-08245-6 – volume: 167 start-page: 104 year: 2018 ident: 1641_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.11.024 – volume: 3 start-page: 610 year: 2021 ident: 1641_CR30 publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00338-7 – volume: 20 start-page: 52 year: 2021 ident: 1641_CR9 publication-title: Clin Colorectal Cancer doi: 10.1016/j.clcc.2020.11.001 – year: 1914 ident: 1641_CR2 publication-title: Curr Osteoporos Rep doi: 10.1007/s11914-017-0402-z – volume: 159 start-page: 110669 year: 2023 ident: 1641_CR4 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2022.110669 – volume: 45 start-page: 2007 year: 2022 ident: 1641_CR13 publication-title: J Endocrinol Invest doi: 10.1007/s40618-022-01837-z – volume: 301 start-page: 203281 issue: 3 year: 2021 ident: 1641_CR10 publication-title: Radiology doi: 10.1148/radiol.2021203281 – volume: 288 start-page: 407 year: 2018 ident: 1641_CR31 publication-title: Radiology doi: 10.1148/radiol.2018172361 – volume: 77 start-page: e104 year: 2017 ident: 1641_CR18 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – year: 2020 ident: 1641_CR27 publication-title: Brazilian J Med Biol Res doi: 10.1590/1414-431x20198962 – volume: 10 start-page: 789 year: 2019 ident: 1641_CR14 publication-title: Front Neurol doi: 10.3389/fneur.2019.00789 – volume: 32 start-page: 1783 year: 2011 ident: 1641_CR34 publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A2609 – volume: 25 start-page: 44 year: 2019 ident: 1641_CR35 publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 32 start-page: 56 year: 2014 ident: 1641_CR1 publication-title: J Bone Miner Metab doi: 10.1007/s00774-013-0465-6 – ident: 1641_CR20 doi: 10.1145/3377930.3389817 |
SSID | ssj0040109 |
Score | 2.3797338 |
Snippet | Purpose
Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine... Radiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine learning in... PurposeRadiomics of vertebral bone structure is a promising technique for identification of osteoporosis. We aimed at assessing the accuracy of machine... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 744 |
SubjectTerms | Accuracy Computed Tomography Datasets Diagnostic Radiology Fractures Imaging Interventional Radiology Machine learning Medicine Medicine & Public Health Neuroradiology Osteoporosis Physiology Radiology Radiomics Regression models Scanners Sex Ultrasound Vertebrae |
Title | CT-based radiomics can identify physiological modifications of bone structure related to subjects’ age and sex |
URI | https://link.springer.com/article/10.1007/s11547-023-01641-6 https://www.ncbi.nlm.nih.gov/pubmed/37147473 https://www.proquest.com/docview/2825541558 https://www.proquest.com/docview/2810917482 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swED-2BsZeSrt1nds0aLC3VmBbkmU_htI0tGRPDbRPRrIkCHR2qRNY3_Y19vX2Sabzn4SSrtBnn2Shn3R3utPvBPBdMixBojlFwCmXLKMqNCkVWaGMDFNnHBKcZz-S6Zxf3YrbjhRW97fd-5Rko6k3ZDdv7SX1NoZiWaiIJu9hIPDs7lfxPB73-pdjsqejx7zc7rkJ2vIrt3KijamZ7MFu5yOScQvqPryz5Sf4MOuy4J_h4fyGovUx5FGZBdKKa-JniCwa0q17Ik24otdq5Gdl8D5QG5ojlSO6Ki1pC8euHi1p6Cy-s2VF6pXGuEz99_cf4hUNUaUhtf11APPJxc35lHYvJ9DCuzdLKrmQSkiXOaGlUFGiChEqHSnJZGGl9-kyrlkUW8dUnGnlRVSaJdxEWmtlM_YFdko_lq9AijAtwqSQ3IqEZ8aqhDHhDEuV8N6hMwFE_WTmRVdWHF-3uM83BZERgNwDkDcA5EkAp-s2D21RjVelhz1GebfB6hwptwKdoTSAb-vPfmtgvkOVtlqhDFY9lTyNAzhssV3_DgsV-pMUC-CsB3vT-f_HcvQ28WP4GDcLD6M2Q9jxyNoT78Qs9QgG48u764tRs3b_Aadz6xk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54Ad0XWXXd7XqL4JsG2iZp2kcRZbyMTzPgW0maBIS1FTsD65t_w7_nL9mcXmYQXcHnnqYhX3LOaU6-LwCHkqEEieYUAadcsoyq0KRUZIUyMkydcUhwHt4kgzG_vBW3HSms7k-79yXJxlPPyW4-2kvqYwxFWaiIJouw7JOBFA9yjeOT3v9yLPZ09JiP33sbgt7lle9qok2oOf8Oa12OSE5aUNdhwZYbsDLsquCb8HA6ohh9DHlU5g5pxTXxI0TuGtKteyLNdkXv1ch9ZfA8ULs1RypHdFVa0grHTh8taegsvrFJReqpxn2Z-vX5hXhHQ1RpSG3__oDx-dnodEC7mxNo4dObCZVcSCWky5zQUqgoUYUIlY6UZLKw0ud0Gdcsiq1jKs608iYqzRJuIq21shnbgqXS9-UXkCJMizApJLci4ZmxKmFMOMNSJXx26EwAUT-YedHJiuPtFn_yuSAyApB7APIGgDwJ4Gj2zkMrqvGp9U6PUd4tsDpHyq3AZCgN4GD22C8NrHeo0lZTtEHVU8nTOICfLbazz6FQof-TYgEc92DPG_9_X35_zXwfVgej4XV-fXFztQ3f4mYS4g7ODix5lO2uT2gmeq-Zv_8AgR_seA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKiEuiPLVAAUjcQOLJLbj5IhoV7QF1AMrcYvs2JZWosmK7Epw42_w9_pL6snHLhVQiXMmjuVnz0w8fs8Ah5KhBInmFAGnXLKMqtCkVGSFMjJMnXFIcL68Ss6H_MeNuHnG4m9Ou_clyZbTgCpN5eRkbNzJnPjmI7-kPt5QlIiKaLIAH707jnBeD-PT3hdzLPx0VJnX3_s3HL3IMV_UR5uwM1iFlS5fJKctwJ_ggy3XYOmyq4ivw_jsmmIkMuROmRFSjGviR4uMGgKueyDN1kXv4cjvyuDZoHabjlSO6Kq0pBWRnd5Z0lBbfGOTitRTjXs09Z_HJ-KdDlGlIbW934Dh4Nv12TntblGghU91JlRyIZWQLnNCS6GiRBUiVDpSksnCSp_fZVyzKLaOqTjTypuoNEu4ibTWymZsExZL35fPQIowLcKkkNyKhGfGqoQx4QxLlfCZojMBRP1g5kUnMY43Xdzmc3FkBCD3AOQNAHkSwNHsnXErsPFf690eo7xbbHWO9FuBiVEawMHssV8mWPtQpa2maIMKqJKncQBbLbazz6Foof-rYgEc92DPG3-7L9vvM9-HpV9fB_nF96ufO7AcN3MQN3N2YdGDbL_43Gai95rp-xcPSvC0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT-based+radiomics+can+identify+physiological+modifications+of+bone+structure+related+to+subjects%27+age+and+sex&rft.jtitle=Radiologia+medica&rft.au=Levi%2C+Riccardo&rft.au=Garoli%2C+Federico&rft.au=Battaglia%2C+Massimiliano&rft.au=Rizzo%2C+Dario+A+A&rft.date=2023-06-01&rft.eissn=1826-6983&rft.volume=128&rft.issue=6&rft.spage=744&rft_id=info:doi/10.1007%2Fs11547-023-01641-6&rft_id=info%3Apmid%2F37147473&rft.externalDocID=37147473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1826-6983&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1826-6983&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1826-6983&client=summon |