Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm
Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensi...
Saved in:
Published in | Interdisciplinary sciences : computational life sciences Vol. 12; no. 3; pp. 288 - 301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose. |
---|---|
AbstractList | Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose. Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose. |
Author | Yan, Chaokun Luo, Junwei Wang, Jianlin Zhang, Ge Hou, Jincui |
Author_xml | – sequence: 1 givenname: Ge surname: Zhang fullname: Zhang, Ge organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University – sequence: 2 givenname: Jincui surname: Hou fullname: Hou, Jincui organization: School of Computer and Information Engineering, Henan University – sequence: 3 givenname: Jianlin surname: Wang fullname: Wang, Jianlin organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University – sequence: 4 givenname: Chaokun orcidid: 0000-0002-6246-7242 surname: Yan fullname: Yan, Chaokun email: ckyan@henu.edu.cn organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University – sequence: 5 givenname: Junwei surname: Luo fullname: Luo, Junwei email: luojunwei@hpu.edu.cn organization: College of Computer Science and Technology, Henan Polytechnic University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32441000$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAURi1URB_wB1ggS2zYBPyaPJZloJ2KViyga-vGvhlcOXaxE1Wz4L_XnbRC6qIrR845V9ffd0wOQgxIyHvOPnPGmi-Zi5XsKiZYxZhsRHX3ihzxtm4qrmpxUL47LivRrPghOc75hrFatZK9IYdSKFVGsCPy7wxhmhPSX-jRTC4GOsREr5xJEVKCHf0GE9C1h5zd4AzskevswpZudn1yll6EYozLj3NwgUKwFOhVtEVAS7-6AGlHfyTnPd1gsvTUb2Ny05_xLXk9gM_47vE8Iddn33-vN9Xlz_OL9ellZcqeU1VbUFgrJTprJWuGXsHQsB7bAcBg28l64KLnDYAyCtF2tlwbADRSrWQN8oR8Wubepvh3xjzp0WWD3kPAOGctFKsl5yWdgn58ht7EOYWyXaEkZ1wp2RTqwyM19yNafZvcWB6pn4ItQLsAJcecEw7auGmf0ZTAec2ZfuhQLx3q0qHed6jviiqeqU_TX5TkIuUChy2m_2u_YN0D3-ewMw |
CitedBy_id | crossref_primary_10_1155_2021_6644652 crossref_primary_10_1631_FITEE_2100569 crossref_primary_10_1142_S0218001423510011 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1016_j_micpro_2022_104622 crossref_primary_10_1007_s11042_023_16686_y crossref_primary_10_1111_exsy_13038 crossref_primary_10_1016_j_cmpb_2023_107987 crossref_primary_10_1007_s11042_023_16353_2 crossref_primary_10_1007_s10586_025_05102_9 crossref_primary_10_1186_s12859_023_05267_3 crossref_primary_10_1111_exsy_13294 crossref_primary_10_7717_peerj_cs_1711 crossref_primary_10_1016_j_eij_2023_100416 crossref_primary_10_1007_s11227_022_04507_2 crossref_primary_10_1109_ACCESS_2021_3056407 crossref_primary_10_1007_s12539_021_00430_x crossref_primary_10_2174_2666145416666230124143912 crossref_primary_10_1155_2021_3303160 crossref_primary_10_3389_fgene_2021_644378 crossref_primary_10_3390_bioengineering10101123 crossref_primary_10_3390_sym14101955 crossref_primary_10_1155_2022_1056490 crossref_primary_10_1177_17483026241232295 crossref_primary_10_1007_s13042_024_02292_3 crossref_primary_10_1016_j_compbiolchem_2022_107767 crossref_primary_10_34248_bsengineering_1492652 crossref_primary_10_1007_s11042_022_13964_z crossref_primary_10_1111_exsy_12674 crossref_primary_10_1007_s00521_021_06775_0 crossref_primary_10_1007_s00521_022_07705_4 crossref_primary_10_1038_s41598_022_10441_3 crossref_primary_10_1007_s00521_022_07780_7 crossref_primary_10_1007_s00521_023_08701_y crossref_primary_10_1016_j_knosys_2021_107034 crossref_primary_10_1088_1757_899X_1094_1_012107 crossref_primary_10_1007_s10462_023_10675_1 crossref_primary_10_1093_comjnl_bxac143 crossref_primary_10_1109_ACCESS_2022_3146395 crossref_primary_10_1016_j_compeleceng_2021_107186 crossref_primary_10_3934_mbe_2022641 crossref_primary_10_1109_ACCESS_2022_3180773 crossref_primary_10_1016_j_compbiomed_2021_105051 crossref_primary_10_1109_ACCESS_2023_3326129 crossref_primary_10_29130_dubited_1225446 crossref_primary_10_4015_S1016237223500047 |
Cites_doi | 10.1016/j.asoc.2013.03.021 10.1016/j.asoc.2018.04.033 10.1109/TEVC.2015.2504420 10.1016/j.chaos.2007.09.063 10.1016/j.ejor.2016.03.043 10.1016/j.compbiomed.2016.12.002 10.1016/j.asoc.2017.03.002 10.1186/s12859-016-1239-7 10.1016/j.neucom.2012.09.049 10.1016/j.neucom.2014.01.023 10.1007/s00521-013-1485-9 10.1016/j.patcog.2007.02.007 10.1093/bioinformatics/17.6.509 10.1016/j.knosys.2015.04.015 10.1016/j.swevo.2012.09.002 10.1016/j.cnsns.2012.05.010 10.1038/s41598-017-04037-5 10.1007/3-540-57868-4_57 10.1109/INVENTIVE.2016.7824803 10.1007/s00521-013-1422-y 10.1109/TCBB.2016.2602263 10.1016/S1672-6529(11)60020-6 10.1016/j.patrec.2006.08.016 10.1109/TCBB.2018.2832078 10.1145/2576868 10.1186/s12859-015-0629-6 10.1016/j.engappai.2014.12.014 10.1155/2013/682073 10.1007/978-1-4614-1800-9_115 10.1016/j.chemolab.2018.11.010 10.1109/IECON.2011.6119676 10.1159/000501652 10.1016/j.neucom.2016.08.089 10.1016/j.ijepes.2013.11.016 10.26599/TST.2018.9010101 10.1007/978-1-4615-5725-8_8 10.1016/j.ipm.2007.09.014 10.1049/iet-sen.2018.0006 10.1145/2743065.2743091 |
ContentType | Journal Article |
Copyright | International Association of Scientists in the Interdisciplinary Areas 2020 International Association of Scientists in the Interdisciplinary Areas 2020. |
Copyright_xml | – notice: International Association of Scientists in the Interdisciplinary Areas 2020 – notice: International Association of Scientists in the Interdisciplinary Areas 2020. |
DBID | AAYXX CITATION NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 |
DOI | 10.1007/s12539-020-00372-w |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1867-1462 |
EndPage | 301 |
ExternalDocumentID | 32441000 10_1007_s12539_020_00372_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: Scientific Research Foundation of the Higher Education Institutions of Henan Province grantid: 18A520021 – fundername: NSFC grantid: 61602156; 61972134 – fundername: NSFC grantid: 61802114 – fundername: Science and Technology Development Plan Project of Henan Province grantid: 202102210173 – fundername: NSFC grantid: 61972134 – fundername: NSFC grantid: 61602156 |
GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X2 7X7 7XC 88E 8CJ 8FE 8FG 8FH 8FI 8FJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF D1J D1K DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ K6- KOV LK5 LK8 LLZTM M0K M1P M4Y M7P M7R NPVJJ NQJWS NU0 O9- O9J P62 PATMY PCBAR PQQKQ PROAC PSQYO PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 7SC 8FD ABRTQ FR3 JQ2 K9. L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c441t-6da4e64429dd307fb4af70be8faace8936f12b17aa4c4eed9dacecaaec34536a3 |
IEDL.DBID | U2A |
ISSN | 1913-2751 1867-1462 |
IngestDate | Fri Jul 11 08:55:31 EDT 2025 Fri Jul 25 12:21:42 EDT 2025 Wed Feb 19 02:30:26 EST 2025 Tue Jul 01 02:19:19 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Fri Feb 21 02:33:13 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Feature selection Information gain Modified binary krill herd algorithm Microarray datasets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-6da4e64429dd307fb4af70be8faace8936f12b17aa4c4eed9dacecaaec34536a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6246-7242 |
PMID | 32441000 |
PQID | 2431014437 |
PQPubID | 326319 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2406311483 proquest_journals_2431014437 pubmed_primary_32441000 crossref_citationtrail_10_1007_s12539_020_00372_w crossref_primary_10_1007_s12539_020_00372_w springer_journals_10_1007_s12539_020_00372_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Bromont |
PublicationTitle | Interdisciplinary sciences : computational life sciences |
PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
PublicationTitleAlternate | Interdiscip Sci |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European conference on machine learning, pp 171–182. Springer, New York. https://doi.org/10.1007/3-540-57868-4_57 Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. In: Feature extraction, construction and selection, pp 117–136. Springer, New York. https://doi.org/10.1007/978-1-4615-5725-8_8 MandalBRoyPKMandalSEconomic load dispatch using krill herd algorithmInt J Electr Power Energy Syst20145711010.1016/j.ijepes.2013.11.016 PashaeiEAydinNBinary black hole algorithm for feature selection and classification on biological dataAppl Soft Comput2017569410610.1016/j.asoc.2017.03.002 JadhavSHeHJenkinsKInformation gain directed genetic algorithm wrapper feature selection for credit ratingAppl Soft Comput20186954155310.1016/j.asoc.2018.04.033 YanCMaJLuoHWangJA hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical dataTsinghua Sci Technol20182367337431:CAS:528:DC%2BC1MXhslOru7rL10.26599/TST.2018.9010101 KaregowdaAGManjunathAJayaramMComparative study of attribute selection using gain ratio and correlation based feature selectionInt J Inform Technol Knowl Manag201022271277 GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484510.1016/j.cnsns.2012.05.010 LuoHWangJLiMLuoJNiPZhaoKWuFPanYComputational drug repositioning with random walk on a heterogeneous networkIEEE Trans Pattern Anal Mach Intell201810.1109/TCBB.2018.283207830281439 Martín-ValdiviaMTDíaz-GalianoMCMontejo-RaezAUreña-LópezLUsing information gain to improve multi-modal information retrieval systemsInform Process Manag20084431146115810.1016/j.ipm.2007.09.014 GuoLWangGGGandomiAHAlaviAHDuanHA new improved krill herd algorithm for global numerical optimizationNeurocomputing201413839240210.1016/j.neucom.2014.01.023 XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evolut Comput201520460662610.1109/TEVC.2015.2504420 ChuangLYYangCHYangCHIg-ga: a hybrid filter/wrapper method for feature selection of microarray dataJ Med Biol Eng20103012328 LiJFongSWongRKMillhamRWongKKElitist binary wolf search algorithm for heuristic feature selection in high-dimensional bioinformatics datasetsSci Rep20177143541:CAS:528:DC%2BC1cXhtlKgtL%2FJ10.1038/s41598-017-04037-5286595775489518 YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst20191841021111:CAS:528:DC%2BC1cXisVOiurzO10.1016/j.chemolab.2018.11.010 WangGGuoLGandomiAHCaoLAlaviAHDuanHLiJLévy-flight krill herd algorithmMath Probl Eng201310.1155/2013/682073 ZhangCCaiHHuangJSongYnbcnv: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing dataBMC Bioinform20161713841:CAS:528:DC%2BC28XitVSqtbzM10.1186/s12859-016-1239-7 FongSDebSHanneTLiJLEidetic wolf search algorithm with a global memory structureEur J Oper Res20162541192810.1016/j.ejor.2016.03.043 ZhangYGongDHuYZhangWFeature selection algorithm based on bare bones particle swarm optimizationNeurocomputing201514815015710.1016/j.neucom.2012.09.049 YanCMaJLuoHZhangGLuoJA novel feature selection method for high-dimensional biomedical data based on an improved binary clonal flower pollination algorithmHum Hered20198411131:CAS:528:DC%2BC1MXhvVWqu7%2FP10.1159/000501652 SahuBA combo feature selection method (filter + wrapper) for microarray gene classificationInt J Pure Appl Math201811816389401 Amudhavel J, Kumarakrishnan S, Gomathy H, Jayabharathi A, Malarvizhi M, Kumar KP (2015) An scalable bandwidth reduction and optimization in smart phone ad hoc network (span) using krill herd algorithm. In: Proceedings of the 2015 International conference on advanced research in computer science engineering and technology (ICARCSET 2015), p 26. ACM. https://doi.org/10.1145/2743065.2743091 LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng20118219120010.1016/S1672-6529(11)60020-6 ZhuZOngYSDashMMarkov blanket-embedded genetic algorithm for gene selectionPattern Recogn200740113236324810.1016/j.patcog.2007.02.007 LaiCMYehWCChangCYGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089 AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solitons Fractals20094041715173410.1016/j.chaos.2007.09.063 HuBDaiYSuYMoorePZhangXMaoCChenJXuLFeature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithmIEEE/ACM Trans Comput Biol Bioinform20161561765177310.1109/TCBB.2016.260226328113635 LiuYYiXChenRZhaiZGuJFeature extraction based on information gain and sequential pattern for english question classificationIET Softw201812652052610.1049/iet-sen.2018.0006 BaldiPLongADA bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changesBioinformatics20011765095191:CAS:528:DC%2BD3MXltFOgsLk%3D10.1093/bioinformatics/17.6.509 Lee K, Man Z, Wang D, Cao Z (2011) Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, pp. 2347–2352. IEEE. https://doi.org/10.1109/IECON.2011.6119676 Liu H, Zhao, Z (2012) Manipulating data and dimension reduction methods: Feature selection. In: Computational Complexity: theory, techniques, and applications, pp. 1790–1800. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_115 HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell201540172710.1016/j.engappai.2014.12.014 EkbalASahaSJoint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognitionKnowl Based Syst201585375110.1016/j.knosys.2015.04.015 WangGGuoLWangHDuanHLiuLLiJIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-013-1422-y WangAAnNYangJChenGLiLAlterovitzGWrapper-based gene selection with markov blanketComput Biol Med20178111231:CAS:528:DC%2BC28XitFWltrnM10.1016/j.compbiomed.2016.12.00228006702 WangGGGandomiAHAlaviAHHaoGSHybrid krill herd algorithm with differential evolution for global numerical optimizationNeural Comput Appl20142522973081:CAS:528:DC%2BC2cXhs1Snt7vN10.1007/s00521-013-1485-9 ChengXCaiHZhangYXuBSuWOptimal combination of feature selection and classification via local hyperplane based learning strategyBMC Bioinform201516121910.1186/s12859-015-0629-6 Preeja V, Shahana A (2016) A binary krill herd approach based feature selection for high dimensional data. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp 1–6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7824803 BielzaCLarrañagaPDiscrete bayesian network classifiers: a surveyACM Comput Surv (CSUR)201447114310.1145/2576868 VieiraSMMendonçaLFFarinhaGJSousaJMModified binary pso for feature selection using svm applied to mortality prediction of septic patientsAppl Soft Comput20131383494350410.1016/j.asoc.2013.03.021 MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut Comput2013911410.1016/j.swevo.2012.09.002 TahirMABouridaneAKurugolluFSimultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifierPattern Recogn Lett200728443844610.1016/j.patrec.2006.08.016 H Luo (372_CR2) 2018 Z Hu (372_CR23) 2015; 40 S Mirjalili (372_CR33) 2013; 9 G Wang (372_CR37) 2013 MT Martín-Valdivia (372_CR7) 2008; 44 LY Chuang (372_CR24) 2010; 30 P Baldi (372_CR8) 2001; 17 Y Liu (372_CR38) 2011; 8 E Pashaei (372_CR35) 2017; 56 372_CR4 372_CR1 L Guo (372_CR15) 2014; 138 372_CR39 372_CR9 B Hu (372_CR17) 2016; 15 Y Liu (372_CR26) 2018; 12 A Ekbal (372_CR5) 2015; 85 B Alatas (372_CR32) 2009; 40 CM Lai (372_CR28) 2016; 218 372_CR31 G Wang (372_CR36) 2014; 24 A Wang (372_CR6) 2017; 81 X Cheng (372_CR11) 2015; 16 S Fong (372_CR19) 2016; 254 AH Gandomi (372_CR29) 2012; 17 B Xue (372_CR16) 2015; 20 S Jadhav (372_CR27) 2018; 69 B Sahu (372_CR25) 2018; 118 Z Zhu (372_CR34) 2007; 40 SM Vieira (372_CR41) 2013; 13 B Mandal (372_CR30) 2014; 57 C Yan (372_CR13) 2018; 23 J Li (372_CR20) 2017; 7 C Bielza (372_CR42) 2014; 47 Y Zhang (372_CR12) 2015; 148 C Yan (372_CR21) 2019; 184 C Zhang (372_CR3) 2016; 17 GG Wang (372_CR14) 2014; 25 MA Tahir (372_CR40) 2007; 28 AG Karegowda (372_CR10) 2010; 2 C Yan (372_CR18) 2019; 84 372_CR22 |
References_xml | – reference: ChuangLYYangCHYangCHIg-ga: a hybrid filter/wrapper method for feature selection of microarray dataJ Med Biol Eng20103012328 – reference: LaiCMYehWCChangCYGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089 – reference: WangGGuoLWangHDuanHLiuLLiJIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-013-1422-y – reference: Lee K, Man Z, Wang D, Cao Z (2011) Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, pp. 2347–2352. IEEE. https://doi.org/10.1109/IECON.2011.6119676 – reference: EkbalASahaSJoint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognitionKnowl Based Syst201585375110.1016/j.knosys.2015.04.015 – reference: BaldiPLongADA bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changesBioinformatics20011765095191:CAS:528:DC%2BD3MXltFOgsLk%3D10.1093/bioinformatics/17.6.509 – reference: KaregowdaAGManjunathAJayaramMComparative study of attribute selection using gain ratio and correlation based feature selectionInt J Inform Technol Knowl Manag201022271277 – reference: FongSDebSHanneTLiJLEidetic wolf search algorithm with a global memory structureEur J Oper Res20162541192810.1016/j.ejor.2016.03.043 – reference: HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell201540172710.1016/j.engappai.2014.12.014 – reference: MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut Comput2013911410.1016/j.swevo.2012.09.002 – reference: Amudhavel J, Kumarakrishnan S, Gomathy H, Jayabharathi A, Malarvizhi M, Kumar KP (2015) An scalable bandwidth reduction and optimization in smart phone ad hoc network (span) using krill herd algorithm. In: Proceedings of the 2015 International conference on advanced research in computer science engineering and technology (ICARCSET 2015), p 26. ACM. https://doi.org/10.1145/2743065.2743091 – reference: JadhavSHeHJenkinsKInformation gain directed genetic algorithm wrapper feature selection for credit ratingAppl Soft Comput20186954155310.1016/j.asoc.2018.04.033 – reference: Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European conference on machine learning, pp 171–182. Springer, New York. https://doi.org/10.1007/3-540-57868-4_57 – reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484510.1016/j.cnsns.2012.05.010 – reference: HuBDaiYSuYMoorePZhangXMaoCChenJXuLFeature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithmIEEE/ACM Trans Comput Biol Bioinform20161561765177310.1109/TCBB.2016.260226328113635 – reference: LiJFongSWongRKMillhamRWongKKElitist binary wolf search algorithm for heuristic feature selection in high-dimensional bioinformatics datasetsSci Rep20177143541:CAS:528:DC%2BC1cXhtlKgtL%2FJ10.1038/s41598-017-04037-5286595775489518 – reference: LuoHWangJLiMLuoJNiPZhaoKWuFPanYComputational drug repositioning with random walk on a heterogeneous networkIEEE Trans Pattern Anal Mach Intell201810.1109/TCBB.2018.283207830281439 – reference: ZhangYGongDHuYZhangWFeature selection algorithm based on bare bones particle swarm optimizationNeurocomputing201514815015710.1016/j.neucom.2012.09.049 – reference: ZhuZOngYSDashMMarkov blanket-embedded genetic algorithm for gene selectionPattern Recogn200740113236324810.1016/j.patcog.2007.02.007 – reference: ChengXCaiHZhangYXuBSuWOptimal combination of feature selection and classification via local hyperplane based learning strategyBMC Bioinform201516121910.1186/s12859-015-0629-6 – reference: WangGGGandomiAHAlaviAHHaoGSHybrid krill herd algorithm with differential evolution for global numerical optimizationNeural Comput Appl20142522973081:CAS:528:DC%2BC2cXhs1Snt7vN10.1007/s00521-013-1485-9 – reference: WangAAnNYangJChenGLiLAlterovitzGWrapper-based gene selection with markov blanketComput Biol Med20178111231:CAS:528:DC%2BC28XitFWltrnM10.1016/j.compbiomed.2016.12.00228006702 – reference: VieiraSMMendonçaLFFarinhaGJSousaJMModified binary pso for feature selection using svm applied to mortality prediction of septic patientsAppl Soft Comput20131383494350410.1016/j.asoc.2013.03.021 – reference: ZhangCCaiHHuangJSongYnbcnv: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing dataBMC Bioinform20161713841:CAS:528:DC%2BC28XitVSqtbzM10.1186/s12859-016-1239-7 – reference: WangGGuoLGandomiAHCaoLAlaviAHDuanHLiJLévy-flight krill herd algorithmMath Probl Eng201310.1155/2013/682073 – reference: AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solitons Fractals20094041715173410.1016/j.chaos.2007.09.063 – reference: YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst20191841021111:CAS:528:DC%2BC1cXisVOiurzO10.1016/j.chemolab.2018.11.010 – reference: Preeja V, Shahana A (2016) A binary krill herd approach based feature selection for high dimensional data. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp 1–6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7824803 – reference: Liu H, Zhao, Z (2012) Manipulating data and dimension reduction methods: Feature selection. In: Computational Complexity: theory, techniques, and applications, pp. 1790–1800. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_115 – reference: Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. In: Feature extraction, construction and selection, pp 117–136. Springer, New York. https://doi.org/10.1007/978-1-4615-5725-8_8 – reference: PashaeiEAydinNBinary black hole algorithm for feature selection and classification on biological dataAppl Soft Comput2017569410610.1016/j.asoc.2017.03.002 – reference: LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng20118219120010.1016/S1672-6529(11)60020-6 – reference: TahirMABouridaneAKurugolluFSimultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifierPattern Recogn Lett200728443844610.1016/j.patrec.2006.08.016 – reference: XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evolut Comput201520460662610.1109/TEVC.2015.2504420 – reference: BielzaCLarrañagaPDiscrete bayesian network classifiers: a surveyACM Comput Surv (CSUR)201447114310.1145/2576868 – reference: YanCMaJLuoHZhangGLuoJA novel feature selection method for high-dimensional biomedical data based on an improved binary clonal flower pollination algorithmHum Hered20198411131:CAS:528:DC%2BC1MXhvVWqu7%2FP10.1159/000501652 – reference: MandalBRoyPKMandalSEconomic load dispatch using krill herd algorithmInt J Electr Power Energy Syst20145711010.1016/j.ijepes.2013.11.016 – reference: GuoLWangGGGandomiAHAlaviAHDuanHA new improved krill herd algorithm for global numerical optimizationNeurocomputing201413839240210.1016/j.neucom.2014.01.023 – reference: LiuYYiXChenRZhaiZGuJFeature extraction based on information gain and sequential pattern for english question classificationIET Softw201812652052610.1049/iet-sen.2018.0006 – reference: SahuBA combo feature selection method (filter + wrapper) for microarray gene classificationInt J Pure Appl Math201811816389401 – reference: Martín-ValdiviaMTDíaz-GalianoMCMontejo-RaezAUreña-LópezLUsing information gain to improve multi-modal information retrieval systemsInform Process Manag20084431146115810.1016/j.ipm.2007.09.014 – reference: YanCMaJLuoHWangJA hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical dataTsinghua Sci Technol20182367337431:CAS:528:DC%2BC1MXhslOru7rL10.26599/TST.2018.9010101 – volume: 13 start-page: 3494 issue: 8 year: 2013 ident: 372_CR41 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.03.021 – volume: 69 start-page: 541 year: 2018 ident: 372_CR27 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.04.033 – volume: 20 start-page: 606 issue: 4 year: 2015 ident: 372_CR16 publication-title: IEEE Trans Evolut Comput doi: 10.1109/TEVC.2015.2504420 – volume: 40 start-page: 1715 issue: 4 year: 2009 ident: 372_CR32 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2007.09.063 – volume: 254 start-page: 19 issue: 1 year: 2016 ident: 372_CR19 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2016.03.043 – volume: 81 start-page: 11 year: 2017 ident: 372_CR6 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.12.002 – volume: 56 start-page: 94 year: 2017 ident: 372_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.03.002 – volume: 17 start-page: 384 issue: 1 year: 2016 ident: 372_CR3 publication-title: BMC Bioinform doi: 10.1186/s12859-016-1239-7 – volume: 148 start-page: 150 year: 2015 ident: 372_CR12 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.09.049 – volume: 138 start-page: 392 year: 2014 ident: 372_CR15 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.01.023 – volume: 25 start-page: 297 issue: 2 year: 2014 ident: 372_CR14 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1485-9 – volume: 118 start-page: 389 issue: 16 year: 2018 ident: 372_CR25 publication-title: Int J Pure Appl Math – volume: 40 start-page: 3236 issue: 11 year: 2007 ident: 372_CR34 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2007.02.007 – volume: 17 start-page: 509 issue: 6 year: 2001 ident: 372_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.509 – volume: 85 start-page: 37 year: 2015 ident: 372_CR5 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.04.015 – volume: 9 start-page: 1 year: 2013 ident: 372_CR33 publication-title: Swarm Evolut Comput doi: 10.1016/j.swevo.2012.09.002 – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 372_CR29 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2012.05.010 – volume: 7 start-page: 4354 issue: 1 year: 2017 ident: 372_CR20 publication-title: Sci Rep doi: 10.1038/s41598-017-04037-5 – ident: 372_CR9 doi: 10.1007/3-540-57868-4_57 – ident: 372_CR22 doi: 10.1109/INVENTIVE.2016.7824803 – volume: 24 start-page: 853 issue: 3–4 year: 2014 ident: 372_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-013-1422-y – volume: 15 start-page: 1765 issue: 6 year: 2016 ident: 372_CR17 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2016.2602263 – volume: 8 start-page: 191 issue: 2 year: 2011 ident: 372_CR38 publication-title: J Bionic Eng doi: 10.1016/S1672-6529(11)60020-6 – volume: 28 start-page: 438 issue: 4 year: 2007 ident: 372_CR40 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2006.08.016 – year: 2018 ident: 372_CR2 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TCBB.2018.2832078 – volume: 47 start-page: 1 issue: 1 year: 2014 ident: 372_CR42 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2576868 – volume: 16 start-page: 219 issue: 1 year: 2015 ident: 372_CR11 publication-title: BMC Bioinform doi: 10.1186/s12859-015-0629-6 – volume: 40 start-page: 17 year: 2015 ident: 372_CR23 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2014.12.014 – volume: 30 start-page: 23 issue: 1 year: 2010 ident: 372_CR24 publication-title: J Med Biol Eng – year: 2013 ident: 372_CR37 publication-title: Math Probl Eng doi: 10.1155/2013/682073 – ident: 372_CR4 doi: 10.1007/978-1-4614-1800-9_115 – volume: 184 start-page: 102 year: 2019 ident: 372_CR21 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.11.010 – ident: 372_CR1 doi: 10.1109/IECON.2011.6119676 – volume: 84 start-page: 1 issue: 1 year: 2019 ident: 372_CR18 publication-title: Hum Hered doi: 10.1159/000501652 – volume: 218 start-page: 331 year: 2016 ident: 372_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.089 – volume: 57 start-page: 1 year: 2014 ident: 372_CR30 publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2013.11.016 – volume: 23 start-page: 733 issue: 6 year: 2018 ident: 372_CR13 publication-title: Tsinghua Sci Technol doi: 10.26599/TST.2018.9010101 – ident: 372_CR39 doi: 10.1007/978-1-4615-5725-8_8 – volume: 2 start-page: 271 issue: 2 year: 2010 ident: 372_CR10 publication-title: Int J Inform Technol Knowl Manag – volume: 44 start-page: 1146 issue: 3 year: 2008 ident: 372_CR7 publication-title: Inform Process Manag doi: 10.1016/j.ipm.2007.09.014 – volume: 12 start-page: 520 issue: 6 year: 2018 ident: 372_CR26 publication-title: IET Softw doi: 10.1049/iet-sen.2018.0006 – ident: 372_CR31 doi: 10.1145/2743065.2743091 |
SSID | ssj0064830 |
Score | 2.3988495 |
Snippet | Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 288 |
SubjectTerms | Algorithms Biomedical and Life Sciences Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Datasets Feature selection Health Sciences Hyperbolic functions Immunoglobulins Krill Life Sciences Mathematical and Computational Physics Medicine Original Research Article Searching Statistics for Life Sciences Strategy Theoretical Theoretical and Computational Chemistry Transfer factor |
Title | Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm |
URI | https://link.springer.com/article/10.1007/s12539-020-00372-w https://www.ncbi.nlm.nih.gov/pubmed/32441000 https://www.proquest.com/docview/2431014437 https://www.proquest.com/docview/2406311483 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BJtBeEAwYgTEZiTew1NqOkz4W2FaBygtUGk_RJbZhUpeiLNXUh_3v3LlJq2kMidf4Ryzf2f5Od98dwFs3KI3WZSaddU6aNHiZ04Ilp1pjJqYqB0wUnn61k5n5fJaedaSwyz7avXdJxpt6S3ZTqR5JNnc4aYqSV_dhN2XbnbR4psb9_WtNHiuMkCGipcrSYUeV-fscN5-jWxjzln80Pjsnj-FRhxfFeC3gJ3DP1_vwYF1BcrUPD6edb_wpXDOaWzZefIulbWi_BQFSMeWIO2waXIlP2KKIVTA5PiiKRMSQATFZMXFLdNyk2HCK57XA2gkU04WjAd6JD5G8K-himM_FxDdOjOc_F815--viGcxOjr9_nMiuuIKsCAG10jo0nsCQGjlH5zyUBkM2KH0eECtPKMaGoSqHGaKpDD2kI0efK0RfaZNqi_o57NSL2r8AoQ3BEJuZEEJuTFbmuU1HeeVSo5wN1iUw7Pe4qLrM41wAY15scyazXAqSSxHlUlwl8G4z5vc678Y_ex_2oiu6M3hZKMJGbC_qLIE3m2Y6PewSwdovltyHIBqbhDqBg7XIN78jqGnY-5HA-14HtpPfvZaX_9f9FeypqI8ctnYIO22z9K8J57TlEeyOT398OT6K6v0HBaL1lw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVjwuVSmvQFuMxA0s7dqOkz0upW2Aphe6Um-RE9u00jaL0qyqPfDfmfEmu0KFSlzjRyzP2P5GM98MwHs7KJWUZcKttpar2Due4oI5pVojJqYoB0QUzs90NlFfL-KLjhR200e79y7JcFOvyW4iliNO5g4lTRH89gFsIRhIKZBrIsb9_atVGiqMoCEiuUjiYUeV-fscfz5HdzDmHf9oeHaOd2C7w4tsvBTwU9hw9S48XFaQXOzCo7zzjT-DX4Tm5o1j30NpG9xvhoCU5RRxZ5rGLNhn0xoWqmBSfFAQCQshAyxbEHGLddyk0HBirmpmassMy2cWBzjLPgXyLsOLYTplmWssG09_zJqr9vL6OUyOj84PM94VV-AVIqCWa2uUQzAkRtbiOfelMj4ZlC71xlQOUYz2Q1EOE2NUpfAhHVn8XBnjKqliqY18AZv1rHavgEmFMEQnynufKpWUaarjUVrZWAmrvbYRDPs9Lqou8zgVwJgW65zJJJcC5VIEuRS3EXxYjfm5zLtxb--9XnRFdwZvCoHYiOxFmUTwbtWMp4dcIqZ2szn1QYhGJqGM4OVS5KvfIdRU5P2I4GOvA-vJ_72W1__X_S08zs7z0-L0y9m3N_BEBN2kELY92GybudtHzNOWB0HFfwMKgfb2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEBMv0xgwMgYYiTew1tiOkz6WjVI-OiFBpb1FTmzDpJJOIdXUh_3vu3OSFjRA4jX-iOU727_T3e8O4KUdFErKIuVWW8tV4h3PcMGcUq0RE1MUAyIKT0_1ZKY-nCVnv7D4Q7R775JsOQ2Upalqji6sP9oQ30Qih5xMH0qgIvjlbbiD13FMej0To_4u1ioL1UbQKJFcpEnc0Wb-PMfvT9MNvHnDVxqeoPEu7HTYkY1aYd-HW67ag7ttNcnVHmxPOz_5A7giZLesHfsSytzg3jMEp2xK0Xemrs2KnZjGsFARk2KFgnhYCB9gkxWRuFjHUwoN78x5xUxlmWHThcUBzrI3gcjL8JKYz9nE1ZaN5t8W9Xnz_cdDmI3ffj2e8K7QAi8RDTVcW6McAiMxtBbPvC-U8emgcJk3pnSIaLSPRRGnxqhS4aM6tPi5NMaVUiVSG_kItqpF5R4DkwohiU6V9z5TKi2yTCfDrLSJElZ7bSOI-z3Oyy4LORXDmOeb_Mkklxzlkge55JcRvFqPuWhzcPyz92Evurw7jz9zgTiJbEeZRvBi3YwnidwjpnKLJfVBuEbmoYxgvxX5-ncIOxV5QiJ43evAZvK_r-Xg_7o_h-3PJ-P80_vTj0_gngiqSdFsh7DV1Ev3FOFPUzwLGn4NNQL7Mg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+for+Microarray+Data+Classification+Using+Hybrid+Information+Gain+and+a+Modified+Binary+Krill+Herd+Algorithm&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Ge&rft.au=Hou%2C+Jincui&rft.au=Wang%2C+Jianlin&rft.au=Yan%2C+Chaokun&rft.date=2020-09-01&rft.eissn=1867-1462&rft_id=info:doi/10.1007%2Fs12539-020-00372-w&rft_id=info%3Apmid%2F32441000&rft.externalDocID=32441000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |