Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm

Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensi...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 12; no. 3; pp. 288 - 301
Main Authors Zhang, Ge, Hou, Jincui, Wang, Jianlin, Yan, Chaokun, Luo, Junwei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.
AbstractList Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.
Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is difficult. Feature selection (FS) has become a necessary strategy to identify and screen out the most relevant attributes. However, the high dimensionality of microarray datasets poses a serious challenge to most existing FS algorithms. For this purpose, we propose a novel feature selection strategy in this paper, called IG-MBKH. A pre-screening method of feature ranking which is based on information gain (IG) and an improved binary krill herd (MBKH) algorithm are integrated in this strategy. When searching for feature subsets using MBKH, a hyperbolic tangent function, an adaptive transfer factor, and a chaos memory weight factor are introduced to facilitate a better searching the possible feature subsets. The results indicates that the IG-MBKH algorithm can achieve improvement in convergence, the number of features and classification accuracy when compared to the BKH, MBKH, and several newest algorithms. Furthermore, we evaluate the impact of different classifiers on the performance of the strategy we propose.
Author Yan, Chaokun
Luo, Junwei
Wang, Jianlin
Zhang, Ge
Hou, Jincui
Author_xml – sequence: 1
  givenname: Ge
  surname: Zhang
  fullname: Zhang, Ge
  organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University
– sequence: 2
  givenname: Jincui
  surname: Hou
  fullname: Hou, Jincui
  organization: School of Computer and Information Engineering, Henan University
– sequence: 3
  givenname: Jianlin
  surname: Wang
  fullname: Wang, Jianlin
  organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University
– sequence: 4
  givenname: Chaokun
  orcidid: 0000-0002-6246-7242
  surname: Yan
  fullname: Yan, Chaokun
  email: ckyan@henu.edu.cn
  organization: School of Computer and Information Engineering, Henan University, Henan Engineering Research Center of Intelligent Technology and Application, Henan University
– sequence: 5
  givenname: Junwei
  surname: Luo
  fullname: Luo, Junwei
  email: luojunwei@hpu.edu.cn
  organization: College of Computer Science and Technology, Henan Polytechnic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32441000$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURi1URB_wB1ggS2zYBPyaPJZloJ2KViyga-vGvhlcOXaxE1Wz4L_XnbRC6qIrR845V9ffd0wOQgxIyHvOPnPGmi-Zi5XsKiZYxZhsRHX3ihzxtm4qrmpxUL47LivRrPghOc75hrFatZK9IYdSKFVGsCPy7wxhmhPSX-jRTC4GOsREr5xJEVKCHf0GE9C1h5zd4AzskevswpZudn1yll6EYozLj3NwgUKwFOhVtEVAS7-6AGlHfyTnPd1gsvTUb2Ny05_xLXk9gM_47vE8Iddn33-vN9Xlz_OL9ellZcqeU1VbUFgrJTprJWuGXsHQsB7bAcBg28l64KLnDYAyCtF2tlwbADRSrWQN8oR8Wubepvh3xjzp0WWD3kPAOGctFKsl5yWdgn58ht7EOYWyXaEkZ1wp2RTqwyM19yNafZvcWB6pn4ItQLsAJcecEw7auGmf0ZTAec2ZfuhQLx3q0qHed6jviiqeqU_TX5TkIuUChy2m_2u_YN0D3-ewMw
CitedBy_id crossref_primary_10_1155_2021_6644652
crossref_primary_10_1631_FITEE_2100569
crossref_primary_10_1142_S0218001423510011
crossref_primary_10_1007_s10115_024_02225_0
crossref_primary_10_1016_j_micpro_2022_104622
crossref_primary_10_1007_s11042_023_16686_y
crossref_primary_10_1111_exsy_13038
crossref_primary_10_1016_j_cmpb_2023_107987
crossref_primary_10_1007_s11042_023_16353_2
crossref_primary_10_1007_s10586_025_05102_9
crossref_primary_10_1186_s12859_023_05267_3
crossref_primary_10_1111_exsy_13294
crossref_primary_10_7717_peerj_cs_1711
crossref_primary_10_1016_j_eij_2023_100416
crossref_primary_10_1007_s11227_022_04507_2
crossref_primary_10_1109_ACCESS_2021_3056407
crossref_primary_10_1007_s12539_021_00430_x
crossref_primary_10_2174_2666145416666230124143912
crossref_primary_10_1155_2021_3303160
crossref_primary_10_3389_fgene_2021_644378
crossref_primary_10_3390_bioengineering10101123
crossref_primary_10_3390_sym14101955
crossref_primary_10_1155_2022_1056490
crossref_primary_10_1177_17483026241232295
crossref_primary_10_1007_s13042_024_02292_3
crossref_primary_10_1016_j_compbiolchem_2022_107767
crossref_primary_10_34248_bsengineering_1492652
crossref_primary_10_1007_s11042_022_13964_z
crossref_primary_10_1111_exsy_12674
crossref_primary_10_1007_s00521_021_06775_0
crossref_primary_10_1007_s00521_022_07705_4
crossref_primary_10_1038_s41598_022_10441_3
crossref_primary_10_1007_s00521_022_07780_7
crossref_primary_10_1007_s00521_023_08701_y
crossref_primary_10_1016_j_knosys_2021_107034
crossref_primary_10_1088_1757_899X_1094_1_012107
crossref_primary_10_1007_s10462_023_10675_1
crossref_primary_10_1093_comjnl_bxac143
crossref_primary_10_1109_ACCESS_2022_3146395
crossref_primary_10_1016_j_compeleceng_2021_107186
crossref_primary_10_3934_mbe_2022641
crossref_primary_10_1109_ACCESS_2022_3180773
crossref_primary_10_1016_j_compbiomed_2021_105051
crossref_primary_10_1109_ACCESS_2023_3326129
crossref_primary_10_29130_dubited_1225446
crossref_primary_10_4015_S1016237223500047
Cites_doi 10.1016/j.asoc.2013.03.021
10.1016/j.asoc.2018.04.033
10.1109/TEVC.2015.2504420
10.1016/j.chaos.2007.09.063
10.1016/j.ejor.2016.03.043
10.1016/j.compbiomed.2016.12.002
10.1016/j.asoc.2017.03.002
10.1186/s12859-016-1239-7
10.1016/j.neucom.2012.09.049
10.1016/j.neucom.2014.01.023
10.1007/s00521-013-1485-9
10.1016/j.patcog.2007.02.007
10.1093/bioinformatics/17.6.509
10.1016/j.knosys.2015.04.015
10.1016/j.swevo.2012.09.002
10.1016/j.cnsns.2012.05.010
10.1038/s41598-017-04037-5
10.1007/3-540-57868-4_57
10.1109/INVENTIVE.2016.7824803
10.1007/s00521-013-1422-y
10.1109/TCBB.2016.2602263
10.1016/S1672-6529(11)60020-6
10.1016/j.patrec.2006.08.016
10.1109/TCBB.2018.2832078
10.1145/2576868
10.1186/s12859-015-0629-6
10.1016/j.engappai.2014.12.014
10.1155/2013/682073
10.1007/978-1-4614-1800-9_115
10.1016/j.chemolab.2018.11.010
10.1109/IECON.2011.6119676
10.1159/000501652
10.1016/j.neucom.2016.08.089
10.1016/j.ijepes.2013.11.016
10.26599/TST.2018.9010101
10.1007/978-1-4615-5725-8_8
10.1016/j.ipm.2007.09.014
10.1049/iet-sen.2018.0006
10.1145/2743065.2743091
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2020
International Association of Scientists in the Interdisciplinary Areas 2020.
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2020
– notice: International Association of Scientists in the Interdisciplinary Areas 2020.
DBID AAYXX
CITATION
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
DOI 10.1007/s12539-020-00372-w
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Biotechnology Research Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 301
ExternalDocumentID 32441000
10_1007_s12539_020_00372_w
Genre Journal Article
GrantInformation_xml – fundername: Scientific Research Foundation of the Higher Education Institutions of Henan Province
  grantid: 18A520021
– fundername: NSFC
  grantid: 61602156; 61972134
– fundername: NSFC
  grantid: 61802114
– fundername: Science and Technology Development Plan Project of Henan Province
  grantid: 202102210173
– fundername: NSFC
  grantid: 61972134
– fundername: NSFC
  grantid: 61602156
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
7SC
8FD
ABRTQ
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c441t-6da4e64429dd307fb4af70be8faace8936f12b17aa4c4eed9dacecaaec34536a3
IEDL.DBID U2A
ISSN 1913-2751
1867-1462
IngestDate Fri Jul 11 08:55:31 EDT 2025
Fri Jul 25 12:21:42 EDT 2025
Wed Feb 19 02:30:26 EST 2025
Tue Jul 01 02:19:19 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Fri Feb 21 02:33:13 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Feature selection
Information gain
Modified binary krill herd algorithm
Microarray datasets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-6da4e64429dd307fb4af70be8faace8936f12b17aa4c4eed9dacecaaec34536a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6246-7242
PMID 32441000
PQID 2431014437
PQPubID 326319
PageCount 14
ParticipantIDs proquest_miscellaneous_2406311483
proquest_journals_2431014437
pubmed_primary_32441000
crossref_citationtrail_10_1007_s12539_020_00372_w
crossref_primary_10_1007_s12539_020_00372_w
springer_journals_10_1007_s12539_020_00372_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European conference on machine learning, pp 171–182. Springer, New York. https://doi.org/10.1007/3-540-57868-4_57
Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. In: Feature extraction, construction and selection, pp 117–136. Springer, New York. https://doi.org/10.1007/978-1-4615-5725-8_8
MandalBRoyPKMandalSEconomic load dispatch using krill herd algorithmInt J Electr Power Energy Syst20145711010.1016/j.ijepes.2013.11.016
PashaeiEAydinNBinary black hole algorithm for feature selection and classification on biological dataAppl Soft Comput2017569410610.1016/j.asoc.2017.03.002
JadhavSHeHJenkinsKInformation gain directed genetic algorithm wrapper feature selection for credit ratingAppl Soft Comput20186954155310.1016/j.asoc.2018.04.033
YanCMaJLuoHWangJA hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical dataTsinghua Sci Technol20182367337431:CAS:528:DC%2BC1MXhslOru7rL10.26599/TST.2018.9010101
KaregowdaAGManjunathAJayaramMComparative study of attribute selection using gain ratio and correlation based feature selectionInt J Inform Technol Knowl Manag201022271277
GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484510.1016/j.cnsns.2012.05.010
LuoHWangJLiMLuoJNiPZhaoKWuFPanYComputational drug repositioning with random walk on a heterogeneous networkIEEE Trans Pattern Anal Mach Intell201810.1109/TCBB.2018.283207830281439
Martín-ValdiviaMTDíaz-GalianoMCMontejo-RaezAUreña-LópezLUsing information gain to improve multi-modal information retrieval systemsInform Process Manag20084431146115810.1016/j.ipm.2007.09.014
GuoLWangGGGandomiAHAlaviAHDuanHA new improved krill herd algorithm for global numerical optimizationNeurocomputing201413839240210.1016/j.neucom.2014.01.023
XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evolut Comput201520460662610.1109/TEVC.2015.2504420
ChuangLYYangCHYangCHIg-ga: a hybrid filter/wrapper method for feature selection of microarray dataJ Med Biol Eng20103012328
LiJFongSWongRKMillhamRWongKKElitist binary wolf search algorithm for heuristic feature selection in high-dimensional bioinformatics datasetsSci Rep20177143541:CAS:528:DC%2BC1cXhtlKgtL%2FJ10.1038/s41598-017-04037-5286595775489518
YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst20191841021111:CAS:528:DC%2BC1cXisVOiurzO10.1016/j.chemolab.2018.11.010
WangGGuoLGandomiAHCaoLAlaviAHDuanHLiJLévy-flight krill herd algorithmMath Probl Eng201310.1155/2013/682073
ZhangCCaiHHuangJSongYnbcnv: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing dataBMC Bioinform20161713841:CAS:528:DC%2BC28XitVSqtbzM10.1186/s12859-016-1239-7
FongSDebSHanneTLiJLEidetic wolf search algorithm with a global memory structureEur J Oper Res20162541192810.1016/j.ejor.2016.03.043
ZhangYGongDHuYZhangWFeature selection algorithm based on bare bones particle swarm optimizationNeurocomputing201514815015710.1016/j.neucom.2012.09.049
YanCMaJLuoHZhangGLuoJA novel feature selection method for high-dimensional biomedical data based on an improved binary clonal flower pollination algorithmHum Hered20198411131:CAS:528:DC%2BC1MXhvVWqu7%2FP10.1159/000501652
SahuBA combo feature selection method (filter + wrapper) for microarray gene classificationInt J Pure Appl Math201811816389401
Amudhavel J, Kumarakrishnan S, Gomathy H, Jayabharathi A, Malarvizhi M, Kumar KP (2015) An scalable bandwidth reduction and optimization in smart phone ad hoc network (span) using krill herd algorithm. In: Proceedings of the 2015 International conference on advanced research in computer science engineering and technology (ICARCSET 2015), p 26. ACM. https://doi.org/10.1145/2743065.2743091
LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng20118219120010.1016/S1672-6529(11)60020-6
ZhuZOngYSDashMMarkov blanket-embedded genetic algorithm for gene selectionPattern Recogn200740113236324810.1016/j.patcog.2007.02.007
LaiCMYehWCChangCYGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089
AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solitons Fractals20094041715173410.1016/j.chaos.2007.09.063
HuBDaiYSuYMoorePZhangXMaoCChenJXuLFeature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithmIEEE/ACM Trans Comput Biol Bioinform20161561765177310.1109/TCBB.2016.260226328113635
LiuYYiXChenRZhaiZGuJFeature extraction based on information gain and sequential pattern for english question classificationIET Softw201812652052610.1049/iet-sen.2018.0006
BaldiPLongADA bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changesBioinformatics20011765095191:CAS:528:DC%2BD3MXltFOgsLk%3D10.1093/bioinformatics/17.6.509
Lee K, Man Z, Wang D, Cao Z (2011) Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, pp. 2347–2352. IEEE. https://doi.org/10.1109/IECON.2011.6119676
Liu H, Zhao, Z (2012) Manipulating data and dimension reduction methods: Feature selection. In: Computational Complexity: theory, techniques, and applications, pp. 1790–1800. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_115
HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell201540172710.1016/j.engappai.2014.12.014
EkbalASahaSJoint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognitionKnowl Based Syst201585375110.1016/j.knosys.2015.04.015
WangGGuoLWangHDuanHLiuLLiJIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-013-1422-y
WangAAnNYangJChenGLiLAlterovitzGWrapper-based gene selection with markov blanketComput Biol Med20178111231:CAS:528:DC%2BC28XitFWltrnM10.1016/j.compbiomed.2016.12.00228006702
WangGGGandomiAHAlaviAHHaoGSHybrid krill herd algorithm with differential evolution for global numerical optimizationNeural Comput Appl20142522973081:CAS:528:DC%2BC2cXhs1Snt7vN10.1007/s00521-013-1485-9
ChengXCaiHZhangYXuBSuWOptimal combination of feature selection and classification via local hyperplane based learning strategyBMC Bioinform201516121910.1186/s12859-015-0629-6
Preeja V, Shahana A (2016) A binary krill herd approach based feature selection for high dimensional data. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp 1–6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7824803
BielzaCLarrañagaPDiscrete bayesian network classifiers: a surveyACM Comput Surv (CSUR)201447114310.1145/2576868
VieiraSMMendonçaLFFarinhaGJSousaJMModified binary pso for feature selection using svm applied to mortality prediction of septic patientsAppl Soft Comput20131383494350410.1016/j.asoc.2013.03.021
MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut Comput2013911410.1016/j.swevo.2012.09.002
TahirMABouridaneAKurugolluFSimultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifierPattern Recogn Lett200728443844610.1016/j.patrec.2006.08.016
H Luo (372_CR2) 2018
Z Hu (372_CR23) 2015; 40
S Mirjalili (372_CR33) 2013; 9
G Wang (372_CR37) 2013
MT Martín-Valdivia (372_CR7) 2008; 44
LY Chuang (372_CR24) 2010; 30
P Baldi (372_CR8) 2001; 17
Y Liu (372_CR38) 2011; 8
E Pashaei (372_CR35) 2017; 56
372_CR4
372_CR1
L Guo (372_CR15) 2014; 138
372_CR39
372_CR9
B Hu (372_CR17) 2016; 15
Y Liu (372_CR26) 2018; 12
A Ekbal (372_CR5) 2015; 85
B Alatas (372_CR32) 2009; 40
CM Lai (372_CR28) 2016; 218
372_CR31
G Wang (372_CR36) 2014; 24
A Wang (372_CR6) 2017; 81
X Cheng (372_CR11) 2015; 16
S Fong (372_CR19) 2016; 254
AH Gandomi (372_CR29) 2012; 17
B Xue (372_CR16) 2015; 20
S Jadhav (372_CR27) 2018; 69
B Sahu (372_CR25) 2018; 118
Z Zhu (372_CR34) 2007; 40
SM Vieira (372_CR41) 2013; 13
B Mandal (372_CR30) 2014; 57
C Yan (372_CR13) 2018; 23
J Li (372_CR20) 2017; 7
C Bielza (372_CR42) 2014; 47
Y Zhang (372_CR12) 2015; 148
C Yan (372_CR21) 2019; 184
C Zhang (372_CR3) 2016; 17
GG Wang (372_CR14) 2014; 25
MA Tahir (372_CR40) 2007; 28
AG Karegowda (372_CR10) 2010; 2
C Yan (372_CR18) 2019; 84
372_CR22
References_xml – reference: ChuangLYYangCHYangCHIg-ga: a hybrid filter/wrapper method for feature selection of microarray dataJ Med Biol Eng20103012328
– reference: LaiCMYehWCChangCYGene selection using information gain and improved simplified swarm optimizationNeurocomputing201621833133810.1016/j.neucom.2016.08.089
– reference: WangGGuoLWangHDuanHLiuLLiJIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-013-1422-y
– reference: Lee K, Man Z, Wang D, Cao Z (2011) Classification of microarray datasets using finite impulse response extreme learning machine for cancer diagnosis. In: IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society, pp. 2347–2352. IEEE. https://doi.org/10.1109/IECON.2011.6119676
– reference: EkbalASahaSJoint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognitionKnowl Based Syst201585375110.1016/j.knosys.2015.04.015
– reference: BaldiPLongADA bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changesBioinformatics20011765095191:CAS:528:DC%2BD3MXltFOgsLk%3D10.1093/bioinformatics/17.6.509
– reference: KaregowdaAGManjunathAJayaramMComparative study of attribute selection using gain ratio and correlation based feature selectionInt J Inform Technol Knowl Manag201022271277
– reference: FongSDebSHanneTLiJLEidetic wolf search algorithm with a global memory structureEur J Oper Res20162541192810.1016/j.ejor.2016.03.043
– reference: HuZBaoYXiongTChiongRHybrid filter-wrapper feature selection for short-term load forecastingEng Appl Artif Intell201540172710.1016/j.engappai.2014.12.014
– reference: MirjaliliSLewisAS-shaped versus v-shaped transfer functions for binary particle swarm optimizationSwarm Evolut Comput2013911410.1016/j.swevo.2012.09.002
– reference: Amudhavel J, Kumarakrishnan S, Gomathy H, Jayabharathi A, Malarvizhi M, Kumar KP (2015) An scalable bandwidth reduction and optimization in smart phone ad hoc network (span) using krill herd algorithm. In: Proceedings of the 2015 International conference on advanced research in computer science engineering and technology (ICARCSET 2015), p 26. ACM. https://doi.org/10.1145/2743065.2743091
– reference: JadhavSHeHJenkinsKInformation gain directed genetic algorithm wrapper feature selection for credit ratingAppl Soft Comput20186954155310.1016/j.asoc.2018.04.033
– reference: Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: European conference on machine learning, pp 171–182. Springer, New York. https://doi.org/10.1007/3-540-57868-4_57
– reference: GandomiAHAlaviAHKrill herd: a new bio-inspired optimization algorithmCommun Nonlinear Sci Numer Simul201217124831484510.1016/j.cnsns.2012.05.010
– reference: HuBDaiYSuYMoorePZhangXMaoCChenJXuLFeature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithmIEEE/ACM Trans Comput Biol Bioinform20161561765177310.1109/TCBB.2016.260226328113635
– reference: LiJFongSWongRKMillhamRWongKKElitist binary wolf search algorithm for heuristic feature selection in high-dimensional bioinformatics datasetsSci Rep20177143541:CAS:528:DC%2BC1cXhtlKgtL%2FJ10.1038/s41598-017-04037-5286595775489518
– reference: LuoHWangJLiMLuoJNiPZhaoKWuFPanYComputational drug repositioning with random walk on a heterogeneous networkIEEE Trans Pattern Anal Mach Intell201810.1109/TCBB.2018.283207830281439
– reference: ZhangYGongDHuYZhangWFeature selection algorithm based on bare bones particle swarm optimizationNeurocomputing201514815015710.1016/j.neucom.2012.09.049
– reference: ZhuZOngYSDashMMarkov blanket-embedded genetic algorithm for gene selectionPattern Recogn200740113236324810.1016/j.patcog.2007.02.007
– reference: ChengXCaiHZhangYXuBSuWOptimal combination of feature selection and classification via local hyperplane based learning strategyBMC Bioinform201516121910.1186/s12859-015-0629-6
– reference: WangGGGandomiAHAlaviAHHaoGSHybrid krill herd algorithm with differential evolution for global numerical optimizationNeural Comput Appl20142522973081:CAS:528:DC%2BC2cXhs1Snt7vN10.1007/s00521-013-1485-9
– reference: WangAAnNYangJChenGLiLAlterovitzGWrapper-based gene selection with markov blanketComput Biol Med20178111231:CAS:528:DC%2BC28XitFWltrnM10.1016/j.compbiomed.2016.12.00228006702
– reference: VieiraSMMendonçaLFFarinhaGJSousaJMModified binary pso for feature selection using svm applied to mortality prediction of septic patientsAppl Soft Comput20131383494350410.1016/j.asoc.2013.03.021
– reference: ZhangCCaiHHuangJSongYnbcnv: a multi-constrained optimization model for discovering copy number variants in single-cell sequencing dataBMC Bioinform20161713841:CAS:528:DC%2BC28XitVSqtbzM10.1186/s12859-016-1239-7
– reference: WangGGuoLGandomiAHCaoLAlaviAHDuanHLiJLévy-flight krill herd algorithmMath Probl Eng201310.1155/2013/682073
– reference: AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solitons Fractals20094041715173410.1016/j.chaos.2007.09.063
– reference: YanCMaJLuoHPatelAHybrid binary coral reefs optimization algorithm with simulated annealing for feature selection in high-dimensional biomedical datasetsChemom Intell Lab Syst20191841021111:CAS:528:DC%2BC1cXisVOiurzO10.1016/j.chemolab.2018.11.010
– reference: Preeja V, Shahana A (2016) A binary krill herd approach based feature selection for high dimensional data. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp 1–6. IEEE. https://doi.org/10.1109/INVENTIVE.2016.7824803
– reference: Liu H, Zhao, Z (2012) Manipulating data and dimension reduction methods: Feature selection. In: Computational Complexity: theory, techniques, and applications, pp. 1790–1800. Springer, New York. https://doi.org/10.1007/978-1-4614-1800-9_115
– reference: Yang J, Honavar V (1998) Feature subset selection using a genetic algorithm. In: Feature extraction, construction and selection, pp 117–136. Springer, New York. https://doi.org/10.1007/978-1-4615-5725-8_8
– reference: PashaeiEAydinNBinary black hole algorithm for feature selection and classification on biological dataAppl Soft Comput2017569410610.1016/j.asoc.2017.03.002
– reference: LiuYWangGChenHDongHZhuXWangSAn improved particle swarm optimization for feature selectionJ Bionic Eng20118219120010.1016/S1672-6529(11)60020-6
– reference: TahirMABouridaneAKurugolluFSimultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifierPattern Recogn Lett200728443844610.1016/j.patrec.2006.08.016
– reference: XueBZhangMBrowneWNYaoXA survey on evolutionary computation approaches to feature selectionIEEE Trans Evolut Comput201520460662610.1109/TEVC.2015.2504420
– reference: BielzaCLarrañagaPDiscrete bayesian network classifiers: a surveyACM Comput Surv (CSUR)201447114310.1145/2576868
– reference: YanCMaJLuoHZhangGLuoJA novel feature selection method for high-dimensional biomedical data based on an improved binary clonal flower pollination algorithmHum Hered20198411131:CAS:528:DC%2BC1MXhvVWqu7%2FP10.1159/000501652
– reference: MandalBRoyPKMandalSEconomic load dispatch using krill herd algorithmInt J Electr Power Energy Syst20145711010.1016/j.ijepes.2013.11.016
– reference: GuoLWangGGGandomiAHAlaviAHDuanHA new improved krill herd algorithm for global numerical optimizationNeurocomputing201413839240210.1016/j.neucom.2014.01.023
– reference: LiuYYiXChenRZhaiZGuJFeature extraction based on information gain and sequential pattern for english question classificationIET Softw201812652052610.1049/iet-sen.2018.0006
– reference: SahuBA combo feature selection method (filter + wrapper) for microarray gene classificationInt J Pure Appl Math201811816389401
– reference: Martín-ValdiviaMTDíaz-GalianoMCMontejo-RaezAUreña-LópezLUsing information gain to improve multi-modal information retrieval systemsInform Process Manag20084431146115810.1016/j.ipm.2007.09.014
– reference: YanCMaJLuoHWangJA hybrid algorithm based on binary chemical reaction optimization and tabu search for feature selection of high-dimensional biomedical dataTsinghua Sci Technol20182367337431:CAS:528:DC%2BC1MXhslOru7rL10.26599/TST.2018.9010101
– volume: 13
  start-page: 3494
  issue: 8
  year: 2013
  ident: 372_CR41
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.03.021
– volume: 69
  start-page: 541
  year: 2018
  ident: 372_CR27
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.04.033
– volume: 20
  start-page: 606
  issue: 4
  year: 2015
  ident: 372_CR16
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2015.2504420
– volume: 40
  start-page: 1715
  issue: 4
  year: 2009
  ident: 372_CR32
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2007.09.063
– volume: 254
  start-page: 19
  issue: 1
  year: 2016
  ident: 372_CR19
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2016.03.043
– volume: 81
  start-page: 11
  year: 2017
  ident: 372_CR6
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.12.002
– volume: 56
  start-page: 94
  year: 2017
  ident: 372_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.03.002
– volume: 17
  start-page: 384
  issue: 1
  year: 2016
  ident: 372_CR3
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-016-1239-7
– volume: 148
  start-page: 150
  year: 2015
  ident: 372_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.09.049
– volume: 138
  start-page: 392
  year: 2014
  ident: 372_CR15
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.023
– volume: 25
  start-page: 297
  issue: 2
  year: 2014
  ident: 372_CR14
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1485-9
– volume: 118
  start-page: 389
  issue: 16
  year: 2018
  ident: 372_CR25
  publication-title: Int J Pure Appl Math
– volume: 40
  start-page: 3236
  issue: 11
  year: 2007
  ident: 372_CR34
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.02.007
– volume: 17
  start-page: 509
  issue: 6
  year: 2001
  ident: 372_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.509
– volume: 85
  start-page: 37
  year: 2015
  ident: 372_CR5
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.04.015
– volume: 9
  start-page: 1
  year: 2013
  ident: 372_CR33
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2012.09.002
– volume: 17
  start-page: 4831
  issue: 12
  year: 2012
  ident: 372_CR29
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.05.010
– volume: 7
  start-page: 4354
  issue: 1
  year: 2017
  ident: 372_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04037-5
– ident: 372_CR9
  doi: 10.1007/3-540-57868-4_57
– ident: 372_CR22
  doi: 10.1109/INVENTIVE.2016.7824803
– volume: 24
  start-page: 853
  issue: 3–4
  year: 2014
  ident: 372_CR36
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1422-y
– volume: 15
  start-page: 1765
  issue: 6
  year: 2016
  ident: 372_CR17
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2016.2602263
– volume: 8
  start-page: 191
  issue: 2
  year: 2011
  ident: 372_CR38
  publication-title: J Bionic Eng
  doi: 10.1016/S1672-6529(11)60020-6
– volume: 28
  start-page: 438
  issue: 4
  year: 2007
  ident: 372_CR40
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2006.08.016
– year: 2018
  ident: 372_CR2
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TCBB.2018.2832078
– volume: 47
  start-page: 1
  issue: 1
  year: 2014
  ident: 372_CR42
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2576868
– volume: 16
  start-page: 219
  issue: 1
  year: 2015
  ident: 372_CR11
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-015-0629-6
– volume: 40
  start-page: 17
  year: 2015
  ident: 372_CR23
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2014.12.014
– volume: 30
  start-page: 23
  issue: 1
  year: 2010
  ident: 372_CR24
  publication-title: J Med Biol Eng
– year: 2013
  ident: 372_CR37
  publication-title: Math Probl Eng
  doi: 10.1155/2013/682073
– ident: 372_CR4
  doi: 10.1007/978-1-4614-1800-9_115
– volume: 184
  start-page: 102
  year: 2019
  ident: 372_CR21
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.11.010
– ident: 372_CR1
  doi: 10.1109/IECON.2011.6119676
– volume: 84
  start-page: 1
  issue: 1
  year: 2019
  ident: 372_CR18
  publication-title: Hum Hered
  doi: 10.1159/000501652
– volume: 218
  start-page: 331
  year: 2016
  ident: 372_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.089
– volume: 57
  start-page: 1
  year: 2014
  ident: 372_CR30
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2013.11.016
– volume: 23
  start-page: 733
  issue: 6
  year: 2018
  ident: 372_CR13
  publication-title: Tsinghua Sci Technol
  doi: 10.26599/TST.2018.9010101
– ident: 372_CR39
  doi: 10.1007/978-1-4615-5725-8_8
– volume: 2
  start-page: 271
  issue: 2
  year: 2010
  ident: 372_CR10
  publication-title: Int J Inform Technol Knowl Manag
– volume: 44
  start-page: 1146
  issue: 3
  year: 2008
  ident: 372_CR7
  publication-title: Inform Process Manag
  doi: 10.1016/j.ipm.2007.09.014
– volume: 12
  start-page: 520
  issue: 6
  year: 2018
  ident: 372_CR26
  publication-title: IET Softw
  doi: 10.1049/iet-sen.2018.0006
– ident: 372_CR31
  doi: 10.1145/2743065.2743091
SSID ssj0064830
Score 2.3988495
Snippet Due to the presence of irrelevant or redundant data in microarray datasets, capturing potential patterns accurately and directly via existing models is...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 288
SubjectTerms Algorithms
Biomedical and Life Sciences
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Datasets
Feature selection
Health Sciences
Hyperbolic functions
Immunoglobulins
Krill
Life Sciences
Mathematical and Computational Physics
Medicine
Original Research Article
Searching
Statistics for Life Sciences
Strategy
Theoretical
Theoretical and Computational Chemistry
Transfer factor
Title Feature Selection for Microarray Data Classification Using Hybrid Information Gain and a Modified Binary Krill Herd Algorithm
URI https://link.springer.com/article/10.1007/s12539-020-00372-w
https://www.ncbi.nlm.nih.gov/pubmed/32441000
https://www.proquest.com/docview/2431014437
https://www.proquest.com/docview/2406311483
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BJtBeEAwYgTEZiTew1NqOkz4W2FaBygtUGk_RJbZhUpeiLNXUh_3v3LlJq2kMidf4Ryzf2f5Od98dwFs3KI3WZSaddU6aNHiZ04Ilp1pjJqYqB0wUnn61k5n5fJaedaSwyz7avXdJxpt6S3ZTqR5JNnc4aYqSV_dhN2XbnbR4psb9_WtNHiuMkCGipcrSYUeV-fscN5-jWxjzln80Pjsnj-FRhxfFeC3gJ3DP1_vwYF1BcrUPD6edb_wpXDOaWzZefIulbWi_BQFSMeWIO2waXIlP2KKIVTA5PiiKRMSQATFZMXFLdNyk2HCK57XA2gkU04WjAd6JD5G8K-himM_FxDdOjOc_F815--viGcxOjr9_nMiuuIKsCAG10jo0nsCQGjlH5zyUBkM2KH0eECtPKMaGoSqHGaKpDD2kI0efK0RfaZNqi_o57NSL2r8AoQ3BEJuZEEJuTFbmuU1HeeVSo5wN1iUw7Pe4qLrM41wAY15scyazXAqSSxHlUlwl8G4z5vc678Y_ex_2oiu6M3hZKMJGbC_qLIE3m2Y6PewSwdovltyHIBqbhDqBg7XIN78jqGnY-5HA-14HtpPfvZaX_9f9FeypqI8ctnYIO22z9K8J57TlEeyOT398OT6K6v0HBaL1lw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVjwuVSmvQFuMxA0s7dqOkz0upW2Aphe6Um-RE9u00jaL0qyqPfDfmfEmu0KFSlzjRyzP2P5GM98MwHs7KJWUZcKttpar2Due4oI5pVojJqYoB0QUzs90NlFfL-KLjhR200e79y7JcFOvyW4iliNO5g4lTRH89gFsIRhIKZBrIsb9_atVGiqMoCEiuUjiYUeV-fscfz5HdzDmHf9oeHaOd2C7w4tsvBTwU9hw9S48XFaQXOzCo7zzjT-DX4Tm5o1j30NpG9xvhoCU5RRxZ5rGLNhn0xoWqmBSfFAQCQshAyxbEHGLddyk0HBirmpmassMy2cWBzjLPgXyLsOLYTplmWssG09_zJqr9vL6OUyOj84PM94VV-AVIqCWa2uUQzAkRtbiOfelMj4ZlC71xlQOUYz2Q1EOE2NUpfAhHVn8XBnjKqliqY18AZv1rHavgEmFMEQnynufKpWUaarjUVrZWAmrvbYRDPs9Lqou8zgVwJgW65zJJJcC5VIEuRS3EXxYjfm5zLtxb--9XnRFdwZvCoHYiOxFmUTwbtWMp4dcIqZ2szn1QYhGJqGM4OVS5KvfIdRU5P2I4GOvA-vJ_72W1__X_S08zs7z0-L0y9m3N_BEBN2kELY92GybudtHzNOWB0HFfwMKgfb2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEBMv0xgwMgYYiTew1tiOkz6WjVI-OiFBpb1FTmzDpJJOIdXUh_3vu3OSFjRA4jX-iOU727_T3e8O4KUdFErKIuVWW8tV4h3PcMGcUq0RE1MUAyIKT0_1ZKY-nCVnv7D4Q7R775JsOQ2Upalqji6sP9oQ30Qih5xMH0qgIvjlbbiD13FMej0To_4u1ioL1UbQKJFcpEnc0Wb-PMfvT9MNvHnDVxqeoPEu7HTYkY1aYd-HW67ag7ttNcnVHmxPOz_5A7giZLesHfsSytzg3jMEp2xK0Xemrs2KnZjGsFARk2KFgnhYCB9gkxWRuFjHUwoN78x5xUxlmWHThcUBzrI3gcjL8JKYz9nE1ZaN5t8W9Xnz_cdDmI3ffj2e8K7QAi8RDTVcW6McAiMxtBbPvC-U8emgcJk3pnSIaLSPRRGnxqhS4aM6tPi5NMaVUiVSG_kItqpF5R4DkwohiU6V9z5TKi2yTCfDrLSJElZ7bSOI-z3Oyy4LORXDmOeb_Mkklxzlkge55JcRvFqPuWhzcPyz92Evurw7jz9zgTiJbEeZRvBi3YwnidwjpnKLJfVBuEbmoYxgvxX5-ncIOxV5QiJ43evAZvK_r-Xg_7o_h-3PJ-P80_vTj0_gngiqSdFsh7DV1Ev3FOFPUzwLGn4NNQL7Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+Selection+for+Microarray+Data+Classification+Using+Hybrid+Information+Gain+and+a+Modified+Binary+Krill+Herd+Algorithm&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Ge&rft.au=Hou%2C+Jincui&rft.au=Wang%2C+Jianlin&rft.au=Yan%2C+Chaokun&rft.date=2020-09-01&rft.eissn=1867-1462&rft_id=info:doi/10.1007%2Fs12539-020-00372-w&rft_id=info%3Apmid%2F32441000&rft.externalDocID=32441000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon